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ABSTRACT 
 

Both accelerated and suppressed bone remodelling can lead to the development of a stress fracture 

injury. A stress fracture injury can threaten an athlete’s performance by causing months of missed 

training time if a stress fracture is sustained during a crucial phase of the season. This thesis presents 

a series of studies that investigated bone metabolism in endurance athletes and potential ways to 

improve bone health and reduce the risk of stress fracture injury.  

 

Triathletes are endurance athletes that anecdotally have a high incidence of stress fracture injury, but 

there is limited research into bone health in these athletes. Therefore, the first two studies in this 

thesis investigated bone metabolism in a group of elite British triathletes during off-season and pre-

competition training. The results showed that elite triathletes had elevated bone turnover at both 

phases of the season, although this was highest during off-season training. The high bone turnover 

may be related to large training volumes, low energy intakes and high dermal calcium losses in the 

sweat.   

 

Given the potential contribution of high dermal calcium losses to the disruption of calcium 

homeostasis and the different rates of losses in different types of training sessions, the timing of 

calcium ingestion around training sessions may be more important than total calcium intakes 

throughout the day. As such, the third study in this thesis investigated the mechanism and timeframe 

of Parathyroid hormone (PTH) and calcium regulation during exercise and recovery. The results 

showed that PTH secretion was controlled by a combination of changes in ionised calcium (Ca2+) 

and phosphate (PO4) and that the mechanism might be different during exercise and recovery. Taken 

together these results advocate the use of pre-exercise calcium supplementation, which may prevent 

the disruption of calcium homeostasis and attenuate the PTH and bone resorption response to intense 

exercise, although further research is required before this can be implemented in elite triathletes.  

 



iii 

 

The large training volumes performed by elite triathletes, meant that daily energy expenditures and 

energy requirements were high, although consuming almost 6,000 kcal.d-1 was difficult when three 

or four training sessions were regularly performed each day. Therefore, a practical nutritional 

intervention was needed to help triathletes ingest some of the required nutrients. The fourth study in 

this thesis investigated the effect of a post-exercise carbohydrate and protein (CHO+PRO) recovery 

solution on the bone metabolism response to an intense running bout. The results showed that 

consuming a CHO+PRO recovery solution immediately after exercise created a more positive bone 

turnover balance in the acute recovery period from exercise, by suppressing bone resorption and 

increasing bone formation. Further research is required to explore the long-term effects of post-

exercise suppression of bone resorption.  

 

This thesis had direct impact on elite British triathletes, by influencing athlete behaviour and 

nutritional practices in the daily training environment. The research has also influenced British 

Triathlon coaches and sports science and medicine staff by increasing the importance placed on bone 

health and by providing information that will allow training and nutritional practices to be improved 

or altered to promote a more anabolic environment for bone.  

 

Key words: Bone, Bone Turnover, Bone metabolism, Bone Injury, Stress Fracture Injury, Endurance, 

Athlete, Triathlete, Training, Nutrition, Parathyroid Hormone, Calcium, Carbohydrate, Protein.    
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Bone mass is gained and lost throughout an individual’s lifetime, due to changes in the relative 

amounts of bone formation and bone resorption (Weaver, 2000; Bachrach, 2001; Cashman, 2007). 

These changes are reflected in longer term alterations to bone mineral density (BMD) and bone 

structure, which are measured through bone scans such as dual-energy X-ray absorptiometry (DXA) 

or quantitative computed tomography (QCT), or in acute changes in biochemical markers of bone 

turnover, which are measured in blood or urine. For example, the menopause causes an increase in 

bone turnover, with greater increases in bone resorption than bone formation, leading to a loss of 

bone mass (Garnero et al., 1996a).  

 

Bone remodelling involves the sequential and coordinated actions of osteoclasts and osteoblasts, 

where the processes of bone formation and bone resorption occur in a cycle (Stewart and Hannon, 

2000; Hadjidakis and Androulakis, 2006). Bone remodelling has three essential roles; it can access 

stores of calcium and phosphate (PO4) from the bone, that are released into the serum when needed, 

maintaining homeostasis of these essential minerals, and it provides a mechanism for the skeleton to 

both adapt to mechanical loading and repair damage caused by mechanical loading (Parfitt, 1994; 

Parfitt et al., 2000; Shaffler and Jepson, 2000; Burr, 2002; Frost, 2003). The amount of bone removed 

and the amount formed should be similar during adulthood, meaning that the total quantity of bone 

remains constant under healthy conditions (Currey, 2003). There are various factors that affect bone 

remodelling and the balance between bone resorption and bone formation, including; age, fractures, 

drugs and disease, exercise, menstrual status, systemic and reproductive hormones and diet (Bennell 

et al., 1996a; Vasikaran et al., 2011a). An imbalance in bone remodelling, where the processes of 

bone resorption and bone formation become uncoupled and shift in favour of increased bone 

resorption, can cause bone loss, and this uncoupling has been implicated in the formation of stress 

fracture injuries (Schaffler et al., 1990).  

 

A stress fracture can be defined as a partial or complete fracture of a bone that is a result of repeated 

stress applied to the bone that is less than the force required to fracture a bone in a single application 

(Martin and McCulloch, 1987). The development of a stress fracture involves repetitive loading, 

bone fatigue, microdamage accumulation and increased bone remodelling (Grimston and Zernicke, 
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1993; Bennell et al., 1996a). Based on the studies by Straus (1932), Roberts et al. (1939), Murguia 

et al. (1988) and Mori and Burr (1993), Bennell et al. (1996a) proposed two hypotheses that may 

explain the development of a stress fracture. The first is the Primary Microdamage Hypothesis, which 

suggests that microdamage occurs first due to repetitive loading and a remodelling response is 

initiated in order to repair the microdamage that has accumulated. The second is the Primary 

Remodelling Hypothesis, which suggests that accelerated bone remodelling caused by diet, exercise 

or hormonal factors leads to weakened sites on the bone surface and when subsequent bone strain 

occurs, microdamage may accumulate at these already weakened areas. In both cases, if 

microdamage accumulation exceeds repair by the remodelling process, a stress fracture may develop. 

 

The risk of stress fracture injury is greater in athletic populations due to the high amounts of 

mechanical loading experienced and this varies amongst athletes of different sports, as does BMD 

and a low BMD is a risk factor for stress fracture injury development (Carbon et al., 1990; Myburgh 

et al., Bennell et al., 1996; Wentz et al., 2012). There are groups of athletes that generally have high 

BMDs, such as weight lifters and games players (Karlsson et al., 1993; Bennell et al., 1997; Calbet 

et al., 2001; Egan et al., 2006), and groups that generally have low BMDs, such as road cyclists 

(Maïmoun et al., 2004b; Rector et al., 2008; Medelli et al., 2009a; Scofield and Hecht, 2012), dancers 

(Kahn et al., 1996), swimmers (Nikander et al., 2010; Gomez-Bruton et al., 2015) and jockeys 

(Waldron-Lynch et al., 2010). Alternatively, there are some athletes that have relatively high BMDs 

yet still suffer from a high incidence of stress fractures, such as triathletes (McClanahan et al., 2002; 

Maïmoun et al., 2004b), rowers (Cohen et al., 1995; Jürimäe et al., 2006), sprinters (Maïmoun et al., 

2004a), jumpers (Heinonen et al., 2001), distance runners (Stewart and Hannon, 2000; Maïmoun et 

al., 2004a) and gymnasts (Kirchner et al., 1995). 

 

The implications for athletes are clear given that a stress fracture results in an average of 169 days 

(with a range of 90 to 270 days) of missed training (Matheson et al., 1987; Ranson et al., 2010). 

Between March 2015 and September 2016, 21 elite British triathletes suffered from 25 over-use 

injuries, 7 of which were medial tibial stress syndrome, that often leads to a stress response if left 

untreated (Detmer, 1986; Fredericson et al., 1995; Anderson et al., 1997; Beck, 1998; Galbraith et 
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al., 2009). A number of highly successful athletes have suffered multiple stress fractures, such as 

Mo Farah (2 x 5,000 m and 10,000 m Olympic Champion), Paula Radcliffe (Marathon World Record 

holder), Jonathan Brownlee (Triathlon Olympic silver and bronze medallist) and Alistair Brownlee 

(2 x Triathlon Olympic Champion). A number of studies have investigated the prevalence of stress 

fracture injuries in certain groups of athletes, such as track and field athletes and middle and long 

distance runners and have showed that the prevalence of stress fracture injury is high in these athletic 

groups (Hulkko and Orava 1987; Barrow and Saha, 1988; Zernicke et al., 1993; Johnson et al., 1994; 

Bennell et al., 1995; Bennell et al., 1996b; Bennell et al., 1998; Billat et al,. 2001; Jones et al., 2002; 

Iwamoto et al., 2011; Tenforde et al., 2013; Yagi et al., 2013). Anecdotal reports suggest that elite 

triathletes suffer from a large number of stress fracture injuries, however, there are limited studies 

that have investigated stress fracture injury prevalence in elite triathletes. There are also limited 

studies that have explored possible causes of stress fracture injury in these athletes or possible 

interventions to reduce the prevalence of these injuries (Gosling et al., 2008).  

 

Bone health and stress fracture risk is influenced by non-modifiable and modifiable factors. Non-

modifiable factors include; genetics, ethnicity, age, disease and sex, and modifiable factors include; 

mechanical loading (intensity, duration, mode, biomechanics), endocrine status, hormones and 

nutrition (Cashman, 2007; Vasikaran et al. 2011a). Further risk factors identified for stress fracture 

development, particularly in athletes include; increased, decreased or uncoupled bone remodelling 

(Parfitt, 1982; Schaffler et al., 1990; Bennell et al., 1996a; Burr, 2002; Schaffler, 2003), low BMD 

and bone thickness (Bennell et al., 1999; Ackerman et al., 2012; Gomez-Bruton et al., 2015; 

Tenforde et al., 2015), low calcium and vitamin D intake (Loud et al., 2007; McCabe et al., 2012), 

energy restriction (Ihle and Loucks 2004), menstrual irregularity (Ackerman et al., 2012) and high 

running volumes (Bennell et al., 1999; Tenforde et al., 2015). As bone is a nutritionally modulated 

tissue, an individual’s nutritional status is an important factor that influences both long-term bone 

health and acute bone turnover (Babraj et al., 2005; Walsh and Henriksen, 2010), and can 

consequently influence stress fracture injury development. Additionally, as nutrient ingestion 

provides the substrates for bone collagen synthesis, but also causes the release of gastrointestinal 
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hormones that may play a part in the regulation of bone turnover, adequate energy availability and 

good dietary practices are critical for bone health in athletes.   

 

Consuming a mixed nutrient meal suppresses all markers of bone turnover at rest (Clowes et al., 

2002a) and consuming individual nutrients separately (glucose, fat, protein and calcium), also 

suppresses bone resorption at rest (Blumsohn et al., 1994a; Bjarnson et al., 2002; Clowes et al., 2003; 

Henriksen et al., 2003). Guillemant et al. (2004) showed that calcium ingestion before and during 

cycling prevented the increase in carboxyterminal cross-linking telopeptide of type 1 collagen (β-

CTX) concentrations and the increase in parathyroid hormone (PTH) was partially suppressed 

compared to the placebo trial. Barry et al. (2011) hypothesised that the disruption of calcium 

homeostasis is a potential mediator of bone loss, which is mediated by PTH. PTH secretory activity 

is regulated by the presence of ionised calcium (Ca2+) in serum at rest, but the hypothesis that 

decreased Ca2+ triggers increased PTH during exercise has not yet been proven (Barry and Khort, 

2007; Barry et al., 2011). PO4 and Vitamin D also contribute to PTH regulation, as 1,25 

dihydroxyvitamin D (1,25(OH)2D3) regulates the active transport of calcium and PO4 absorption in 

the small intestine (Heaney and Barger-Lux, 1985; Heaney et al., 2003; Martin et al., 2005; Cashman, 

2007). Vitamin D concentrations vary during different seasons and deficiencies are often present in 

winter months in athletes (Close et al., 2013). 

 

Nutrient ingestion before and during exercise has also been investigated due to the increase in bone 

resorption observed after prolonged and intense bouts of exercise (Guillemant et al., 2004; Maïmoun 

et al., 2006; Herrmann et al., 2007; Kerschan-Schindl et al., 2009; Scott et al., 2011; Scott et al., 

2012), with an imbalance in bone turnover (increased bone resorption without concomitant increases 

in bone formation) being shown for up to 4 days after a bout of exhaustive running (Scott et al., 

2010). Pre-exercise and during exercise feeding showed small, transient effects on bone metabolism 

(Scott et al., 2012; Sale et al., 2015). Nevertheless, these dietary practices may not be practical for 

athletes as they often cause gastrointestinal distress during training sessions that may limit 

performance (Pfieffer et al., 2012), meaning that other nutritional interventions need to be 

investigated.   
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1.1 Fast Practitioner and Slow Researcher Model  

This programme of work has an applied focus and an aim of the thesis is to produce research that 

can have direct impact on elite athletes. Coutts (2016) highlights the important role that research 

plays in the development of effective evidence-based practices in elite sport. It is common for 

researchers to perform laboratory-based experiments with the aim of translating the findings for 

practitioners. This thesis will also employ a reverse approach; working directly with elite athletes in 

their training environment to understand what is influencing bone metabolism and bone health. This 

approach will allow possible issues and areas for intervention to be identified. These areas and issues 

can be subsequently investigated in a laboratory setting, whilst being mindful of real life athlete 

practice, to ensure that the findings are applicable to elite athletes (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. A conceptual model for the complementary relationship between practitioners and 

researchers in elite sport. Redrawn from Coutts (2016).   
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AIMS AND OBJECTIVES 
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1.2 Aims 

The aims of this thesis are: 

1. To identify what is influencing bone metabolism in elite triathletes (Chapters 4 and 5). 

2. To identify possible areas for intervention amongst elite triathletes that may be used to 

improve bone health and reduce the risk of stress fracture injury in this athletic population 

(Chapters 4 and 5). 

3. To produce research that is applicable to elite athletes and has the potential to directly 

influence athlete behaviour in relation to bone health (Chapters 4, 5 and 7).  

1.3 Objectives 

The aims of the thesis will be achieved via these objectives: 

1. To investigate resting bone turnover in a group of elite British triathletes (Chapter 4).  

2. To record historic (retrospective) stress fracture injury occurrence in a group of elite British 

triathletes (Chapter 4).  

3. To investigate energy intakes, macronutrient composition of the diet and calcium intakes in 

a group of elite British triathletes (Chapter 4). 

4. To investigate dermal calcium losses during different training sessions in a group of elite 

British triathletes (Chapter 4).  

5. To measure the amount of energy expended by elite British triathletes during 10 days of 

training (Chapter 4).  

6. To investigate resting bone turnover, energy intakes, macronutrient composition of the diet, 

calcium intakes and dermal calcium losses, at a different phase of the season, in a subset of 

elite British triathletes and to compare this to the results obtained in the study reported in 

Chapter 4 (Chapter 5).  

7. To investigate the dynamic nature of PTH and calcium regulation during exercise and 

recovery (Chapter 6). 

8. To investigate the effect of feeding carbohydrate (CHO) and protein (PRO) on bone turnover, 

after an exhaustive run (Chapter 7).  
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CHAPTER 2: REVIEW OF LITERATURE 
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2.1 Introduction to the review of literature 

This literature review will cover bone mass in endurance athletes, as it has been reported that some 

endurance athletes have low BMDs (Maïmoun et al., 2004b; Rector et al., 2008; Medelli et al., 2009a; 

Scofield and Hecht, 2012) and some have high BMDs (Stewart and Hannon, 2000; McClanahan et 

al., 2002; Maïmoun et al., 2004a; Maïmoun et al., 2004b) yet still suffer from bone injuries such as 

stress fractures. This literature review will examine the risk and epidemiology of stress fracture 

injuries in endurance athletes, as an integral part of this thesis was to provide insight into bone 

metabolism and bone injury in triathletes. Triathletes were studied in this thesis and were a prime 

focus due to the high prevalence of stress fractures amongst current elite British triathletes. Some of 

this information is from anecdotal reports by British Triathlon coaches and sports science support 

staff, that was discerned through work at the English Institute of Sport and British Triathlon as a 

Performance Nutritionist. Therefore, further sections of this literature review will cover the sport of 

triathlon and the published data surrounding bone health and bone metabolism in triathletes.  

 

This literature review will cover the female athlete triad (the triad) and the relative energy deficit in 

sport (RED-S) paradigm, as almost one third of the elite triathletes studied in this thesis were female. 

The RED-S paradigm also highlights that a relative energy deficiency will affect many physiological 

aspects, not just the three entities emphasised by the triad, and it has been suggested that this 

phenomenon is prevalent in male athletes also (Mountjoy et al., 2014). The energy deficiency caused 

by an imbalance between energy intake and energy expenditure is the underlying cause of both the 

triad and RED-S, therefore methods of measuring energy expenditures will also be examined in this 

literature review.  

 

Latter sections of this literature review will cover bone remodelling, bone turnover and how bone 

turnover is measured, as the studies in this thesis measured bone turnover markers that provide 

estimations of whole body bone resorption and formation. Certain bone turnover markers that were 

measured in this thesis, or that are the most regularly measured markers in recent publications, will 

be reviewed in more detail. The literature review will go on to examine the effects of exercise (acute 

bouts, repeated bouts and over an athletic season) on these bone turnover markers. This is important 
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as the experimental studies in this thesis measured bone turnover markers after acute bouts of 

exercise, on consecutive mornings after numerous training sessions and during different phases of a 

triathlon season. Final sections will review PTH regulation and its response to exercise, as studies in 

this thesis investigated the PTH response to exercise, as well as calcium intakes and dermal losses. 

Lastly, the effect of nutrient ingestion on bone turnover markers and the relationship with exercise 

will also be reviewed, as these were also important aspects of this thesis.  

 

2.2 Bone mass 

Bone mass is gained and lost throughout an individual’s lifetime, due to changes in the relative 

amounts of bone formation and bone resorption (bone turnover) at different stages of life. Skeletal 

growth and bone acquisition is rapid during childhood and puberty, peaking during early adulthood 

and then decreasing in later life, particularly after the menopause in females (Heaney et al., 2000; 

Weaver, 2000; Bachrach, 2001; Cashman, 2007). Bone mass and structure can be assessed by 

techniques such as, DXA, QCT, high resolution peripheral quantitative computed tomography, 

magnetic resonance imaging (MRI) and finite element analysis (Banfi et al., 2010).  

 

DXA is now the most widely used and available bone densitometry technique (Blake and Fogelman, 

2007; Adams, 2013). It is also considered the ‘gold standard’ measurement used to diagnose 

osteoporosis (Compston, 2005; Blake and Fogelman, 2007). DXA measurements reflect the mass of 

the bone but are not very sensitive to subtle changes in bone density or bone mineral content (BMC) 

and do not detect 3D geometry, microarchitecture or the intrinsic properties of bone matrix. In 

longitudinal studies it is suggested that 18 – 24 months is necessary between measures to show a 

significant change, unless large changes in BMD are anticipated (Gluer, 1999), for example, when 

using medications such as glucocorticoids or bisphosphonates, which are known to significantly 

change BMD. DXA scans measure BMC, bone area, areal BMD and volumetric BMD and these 

have been shown to be stable after reaching peak bone mass in early adulthood, until the onset of 

bone loss in later life (Clarke and Kholsa, 2010). There may be slight changes in these measurements 
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outside of the expected changes that occur with normal aging, particularly in the athletic population, 

due to bone adaptation to new physiological strains or loading (Ferretti et al., 1998; Bachrach, 2001).  

 

DXA measurements have also been used to determine the risk of fracture in the general population; 

the lower the BMD, the higher the risk of suffering a fracture, which is particularly true in terms of 

osteoporotic fractures (Hui et al., 1989; Fujiwara et al., 2003; Johnell et al., 2005; Stewart et al., 

2006). BMD and other structural geometry measurements derived from DXA scans have previously 

been shown to be related to the development of stress fractures in Marine Corps (Beck et al., 1996). 

The relative risk of fracture is increased in athletic populations, which will be discussed in 

subsequent sections. 

 

2.2.1 Bone mass and mechanical loading  

Mechanotransduction is the physical, biological and chemical basis of how mechanical signals 

(skeletal loading) are transformed into anabolic signals for bone adaptation, that is fulfilled by bone 

metabolism and remodelling, leading to increases in bone quantity (mass) and bone quality (Rubin 

et al., 2006). Mechanical loading experienced by the skeletal system, caused by muscular 

contractions or by weight-bearing exercise, causes strain in bone tissues and matrix deformation. 

Bone cells experience interstitial fluid flow and dynamic pressure changes (Piekarski and Munro, 

1977), pressure in the medullary cavity (Qin et al., 2003) and shear forces through canaliculi (Han 

et al., 2004). Bone remodelling is sensitive to strain magnitude (Rubin and Lanyon, 1985), the 

number of loading cycles (Rubin and Lanyon, 1984), the distribution of loading (Lanyon et al., 1982) 

and the rate of strain (O’Connor et al., 1982). This is also known as the ‘Mechanostat Theory’, which 

describes the mechanism of how the skeleton responds to frequently experienced strains via bone 

remodelling (Frost, 1987). However, the loading experienced must be dynamic, as the skeleton does 

not respond to static loads (Lanyon and Rubin, 1984) and the anabolic potential of the mechanical 

loading increases as rest periods are introduced between loading cycles (Srinivasan et al., 2002). 

This is reflected in the lower BMDs of swimmers and cyclists compared to runners or games players. 

However, too much mechanical loading can cause matrix microdamage and death of nearby cells 

(Verborgt et al., 2000).  



13 

 

 

How this mechanical loading transfers to changes in BMD or bone structure is not fully understood; 

the exact loads, strain magnitudes, number of loading cycles, rest periods between loading cycles or 

the strain rates necessary to cause positive adaptation to the bone in vivo are unknown. However, we 

do know that there are several bone cells that are sensitive to mechanical signals, including; stromal 

cells, osteoblasts and osteocytes, however it is difficult to designate a critically responsive cell 

because they are all important (Rubin et al., 2006). There are also several components of the cells 

that could act as the mechanoreceptor, transducing a physical load into a cellular response. For 

example; ion channel activity in osteoblasts, stimulated by strain to the membrane (Duncan et al., 

1992) or by PTH (Ferrier et al., 1986), activates bone cells and bone remodelling, via intracellular 

signalling cascades including β-Catenin, MTORC2, cAMP and intracellular calcium. With the 

multiplicity of mechanical signals presented to the cell, it is likely that no one mechanosensor or 

receptor mechanism is responsible for perceiving or responding to the mechanical loading; multiple 

mechanosensors are likely to interact and integrate mechanical and chemical information from the 

environment. 

 

Bennell et al. (1997) investigated bone mass and bone turnover in a 12 month longitudinal study 

amongst track and field athletes and controls; DXA scans were performed at baseline and 12 months 

later. The results showed that differences in bone mass in different types of athletes were greatest at 

the sites subjected to mechanical loading, providing evidence for an osteogenic effect of mechanical 

loading. The greatest BMD at the lumbar spine in power athletes suggests that strain magnitude may 

be a more potent stimulus than strain frequency. The hypothesis that high-magnitude strains applied 

at a high rate with relatively few strain cycles, produces maximal osteogenesis, has been proven in 

animal models of controlled external loading (O’Connor et al., 1982; Rubin and Lanyon, 1984; 

Rubin and Lanyon, 1985; Raab-Cullen et al., 1994). If this theory is applied to humans, sports such 

as weight lifting, sprinting and jumping should have a greater osteogenic effect than distance running, 

which is characterised by lower-magnitude strains with repetitive strain cycles. Bennell et al. (1997) 

showed that the endurance runners had a greater bone mass than controls at lower limb sites, 
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suggesting that the ground reaction forces applied to the lower limbs during running training provide 

an osteogenic response to the bones of the lower limbs only.  

 

This site-specific osteogenic response may be due to the propagation of ground reaction forces from 

the foot upwards (Light et al., 1980; Snow-Harter et al., 1992), meaning that a ‘strain threshold’ is 

not reached at sites further away from where the ground reaction force was applied. This explains 

why Bennell et al. (1997) showed the least difference in BMD between endurance athletes and 

controls at proximal sites such as the femur and lumbar spine. Lohman et al. (1995) and Bennell et 

al. (1997) proposed that there may be a local effect of mechanical loading on net bone formation and 

that exercise may influence the pattern in which BMD is distributed throughout the skeleton without 

necessarily increasing the total amount of BMC.  

 

Jürimäe et al. (2006) showed that arm BMD increased significantly after 6 months of intense training, 

in 12 well-trained rowers, but whole body BMD and BMC remained unchanged. Arm BMD in the 

rowers is similar to leg BMD in the runners (Bennell et al., 1997), which supports the importance of 

impact activity on bone development. The authors suggest that the bone adaptation threshold at the 

arms may be lower than at other sites, due to the bones of the arms not being exposed to as much 

mechanical loading as the bones of the lower limbs or spine, due to walking and other day to day 

activities. Therefore when the bones of the arms are weight trained the adaptation threshold is likely 

to be surpassed (Lohmann et al., 1995; Hsieh et al., 2001).  

 

Bennell et al. (1997) showed that lower limb BMD did not change in any group, which, was 

attributed to the athletes maintaining baseline levels of training throughout the 12 month study, 

making it plausible that bones of the lower limbs had already adapted to this amount of mechanical 

loading. Achieving additional gains in bone mass may require an increase in training load or intensity, 

in order to reach the new elevated threshold for osteogenic bone adaptation. The osteogenic bone 

adaptation threshold has not yet been quantified in humans, but Brahm et al. (1997a) established that 

running for approximately 7 hours per week has a positive effect on bone metabolism and suggests 

that there may be a threshold of around 80 – 100 km per week, around which the effects of running 
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are positive, but above this and the effects are negative (Frost, 1987; Burrows et al., 2003).  An 

increase in training load may occur at different points of an athlete’s season or lifetime; for example, 

the training load will change significantly during an Olympic cycle, meaning that sometimes it may 

exceed the bone adaptation threshold, and other times not. When a junior athlete transitions to senior 

level, which will coincide with a significant increase in training load, this is likely to surpass the 

adaptation threshold. Anecdotal reports by British Triathlon coaches, suggest that this increase in 

training load does not always remain osteogenic and often causes over-use and stress fracture injuries 

in many cases. Studies have reported that stress fracture injury occurrence increases following a 

sudden change in training routine, such as a change from low volumes to high volumes of training 

(Goldberg and Pecora, 1994; Duckham et al., 2014).  

 

2.2.2 Bone mass measurements in athletes 

Hetland et al. (1993) showed that lumbar BMC was 19% lower in elite runners (that cover ≥100 km 

per week) than non-runners. In addition the authors showed that the elite runners had increased bone 

turnover by 20 – 30% compared to the controls. However this study provides a cross-sectional view 

during only one phase of training and there is a lack of longitudinal research that has investigated 

the change in both bone turnover and bone mass in endurance athletes over the course of a season or 

number of seasons. There are however some studies that have investigated seasonal variation in 

BMD in athletes such as triathletes and basketball players. 

 

Klesges et al. (1996) showed a 6.1% decrease in total BMC and a 10.5% decrease in the bones of 

the lower limbs, over 10 months in collegiate basketball players. The authors attributed the decreased 

BMC measurements to dermal calcium losses, and in accordance showed that calcium 

supplementation was associated with increased BMC. McClanahan et al. (2002) measured BMD in 

21 amateur triathletes and showed that there was no significant difference in whole body BMD over 

6 months of training (1.082 ± 0.091 vs 1.083 ± 0.091 g.cm-2). Calcium intake was recorded at week 

12 and week 24, however only the average of the two time points was reported as 994 ± 519 mg.day-

1. Overall dietary intake and training loads were not reported so it is not known whether these 
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changed significantly throughout the 6 month period, despite their potential influence on BMD 

(Specker, 1996; New et al., 1997; Nattiv et al., 2007; Mountjoy et al., 2014).  

 

Bennell et al. (1997) measured BMC and BMD at baseline and 12 months later in 50 power athletes, 

61 endurance athletes and 55 nonathlete controls and bone turnover markers (osteocalcin; OC and 

urinary Pryidinoline; u-PYD) were measured at baseline. Compared with controls, male power 

athletes had higher BMDs at all regional sites, whereas male endurance athletes had higher BMD at 

lower limb sites only. The annual change in total body BMC ranged from 1.6 – 1.8% in all male 

groups. Lumbar spine BMD increased the most in power athletes and tibia/fibula BMD did not 

change in any group within 12 months. Neither of the bone turnover markers predicted 12 month 

changes in bone mass, however a single measurement of two bone turnover markers is an inadequate 

measure of bone turnover, which can respond acutely to various external factors.  

 

Stewart and Hannon (2000) tested 12 competitive runners, 14 cyclists, 13 athletes that performed 

both running and cycling (‘both’ group) and 23 nonexercising controls. The authors showed that the 

runners had the highest total BMD, leg BMD and leg BMC out of the 4 groups. Only the ‘both’ 

group had greater spine BMD than the runners and the cyclists had lower arm BMD than the runners. 

As there were no anthropometric differences between any of the athletic groups, yet the BMD and 

BMC measurements varied amongst athletes, it is possible that the differences in measurements may 

be partly attributed to differences in exercise and training, particularly during childhood and 

adolescence (Tenforde and Fredericson, 2011; Duckham et al., 2013; Gomez-Bruton et al., 2015). 

Only one scan was performed in this study, so this data only provides a cross-sectional view of BMD. 

The authors explain that skeletal mass can be improved during adult life by performing impact 

bearing activities, which will probably be site-specific. Adaptations to BMD and bone structure 

throughout a season as mechanical loading changes is yet to be investigated, as repeated DXA scans 

(more than two) are not often performed in athletes or other healthy individuals.  

 

A case study by Zanker et al. (2004) highlighted an extreme case of low BMD in a female endurance 

athlete. Repeated BMD measures were made over a period of 12 years. The athlete suffered from 
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primary amenorrhea and osteoporosis at age 24.8 years and had a weekly training distance of 90 – 

100 km of running, 100 – 120 km of cycling and 5 – 6 km of swimming. The athlete had also suffered 

multiple bilateral stress fractures of the tibia and metatarsals. When the athlete lost 3.7 kg in body 

mass, BMD decreased by 9.8% at the lumbar spine and by 12.1% at the proximal femur. When the 

individual was treated with oestradiol skin patches and norethisterone, lumbar spine BMD increased 

by 9.4% and when the individual gained 8.1 kg in body mass, proximal femur BMD increased by 

16.9%, but with no further increase at the lumbar spine. Body mass changes in endurance athletes 

may occur throughout the competitive season, with body mass losses occurring during high training 

loads due to increased energy expenditure and/or inadequate energy intake. Therefore, this warrants 

regular DXA or QCT scans throughout a competitive season, particularly if athletes display any risk 

factors for the female athlete triad or RED-S and this may help to maintain or improve bone health 

if necessary. However, a limitation of this and other case studies is that it is not possible to make 

recommendations for treatment or prevention of poor bone health in other athletes based on the 

observations of one extreme case.  

 

2.3 Stress fracture injuries   

A stress fracture can be defined as a partial or complete fracture of a bone that is a result of repeated 

stress applied to the bone that is less than the force required to fracture a bone in a single application 

(Martin and McCulloch, 1987). The development of a stress fracture involves repetitive loading, 

bone fatigue, microdamage accumulation and increased bone remodelling (Grimston and Zernicke, 

1993; Bennell et al., 1996a). Stress fracture development should be seen as a process rather than an 

event and is therefore the unsuccessful process of the bone adapting to a change in the mechanical 

environment caused by repetitive loading (Bennell et al., 1996a).  

 

The skeleton has mechanisms that prevent the progression of microdamage, that under normal 

circumstances function effectively to prevent stress fracture development. One of these mechanisms 

is the remodelling process. Bennell et al. (1996a) postulated two hypotheses that may explain the 

development of a stress fracture. The first is the Primary Microdamage Hypothesis and suggests that 
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microdamage occurs first due to repetitive loading and a remodelling response is initiated, in order 

to repair the microdamage that has accumulated (Straus, 1932, Roberts et al., 1939; Schaffler et al., 

1989; Frost, 1991). The second is the Primary Remodelling Hypothesis and this suggests that 

accelerated bone remodelling caused by diet, exercise and hormonal factors causes weakened sites 

on the bone surface (Murguia et al., 1988; Mori and Burr, 1993). When subsequent bone strain occurs, 

microdamage may accumulate at these already weakened areas. In both cases, if microdamage 

accumulation exceeds repair by the remodelling process, a stress fracture may develop (Figure 2). 

The difference between the two hypotheses is determined by whether bone remodelling precedes or 

follows microdamage production. The bone remodelling process will be discussed in latter sections 

of this literature review, but as the process is cyclical, it may be that these two hypotheses overlap 

and both mechanisms occur simultaneously.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Redrawn from Bennell et al. (1996a). Possible mechanisms for stress fracture development; 

the Primary Microdamage Hypothesis and the Primary Remodelling Hypothesis.  
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A stress fracture injury is a debilitating injury for an athlete and depending on the severity of the 

injury can result in an average of 169 days (range of 90 to 270) of restricted weight-bearing activity 

and therefore missed training (Matheson et al., 1987; Ranson et al., 2010). As previous stress fracture 

is a risk factor for future stress fractures (Nattiv et al., 2000; Kelsey et al., 2007), it is vital that more 

research is conducted into how stress fracture injury can be prevented in the first instance, to 

minimise the chance of recurrent stress injuries and therefore large amounts of missed training time.   

 

2.3.1 Risk factors for the development of stress fracture injury 

Some of the risk factors identified for stress fracture development, particularly in athletes include; 

increased bone remodelling and bone turnover, low BMD and bone thickness, low calcium and 

vitamin D intake, energy restriction, menstrual irregularity, high running volumes and reduced lower 

leg muscle strength (Bennell et al., 1999). Figure 3 summarises the contribution of risk factors to 

stress fracture pathogenesis.  
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Figure 3. Redrawn from Bennell et al. (1999). A summary of the contribution of risk factors to stress 

fracture pathogenesis. Bone health is a major factor that determines how the bone responds to loading. 

Factors that affect bone health such as, diet and nutrition, endocrine status and exercise were key 

components of this thesis.  

 

Accelerated bone remodelling and bone turnover, which can result from excessive bone strain or 

other systemic factors (Bennell et al., 1999), can predispose the bone to stress fracture development 

due to increased microdamage accumulation and therefore weakening of the bone at specific sites. 

Bennell et al. (1998) studied 95 track and field athletes that developed 20 stress fractures over the 

12 month observation period. OC, PYD, deoxypryidinoline (DPD), and aminoterminal cross-linking 

telopeptide of type 1 collagen (NTX) were measured once a month to reflect bone formation and 

resorption. There was no difference in bone turnover marker concentrations between those that 

obtained a stress fracture injury and those that did not, suggesting that biochemical markers of bone 

turnover may not be the best predictors of stress fracture injury in athletes. However, there could 

have been changes in bone turnover that occurred between the monthly samples and due to the 

responsiveness and sensitivity of bone turnover to various external factors (which will be discussed 

in later sections), the monthly measurements may not have been frequent enough to detect changes 

in bone turnover.  

 

Stress fractures are more likely to develop in the bones of the lower limbs, such as the tibia, fibula, 

metatarsals, navicular, femur and pelvis (Hulkko and Orava, 1987; Bennell et al., 1996b), due to the 

greater loads applied to these extremities through ground reaction forces (Light et al., 1980; Snow-

Harter et al., 1992). The lower limbs are often subject to exercise that consist of repetitive loading, 

for example, running produces ground reaction forces nearly five times greater than walking 

(Wasserstein and Spindler, 2015), but is usually in a single plane and at a constant rate with little 

variation during long distance races or training runs (Rubin and Lanyon, 1984; Burr et al., 1985; 

Burr, 2002; Robling, 2009). A further risk factor amongst athletes, particularly in those that have 

high running volumes, is reduced lower leg muscle strength. The muscles may protect the tibia by 

counteracting the joint and ground reaction forces applied to the bone, so if the muscles are weakened 
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or fatigued due to injury or overtraining, the tibia may be less protected (Martin and McCulloch, 

1987; Bergman et al., 2004).  

 

Loud et al. (2007) showed that female athletes that had suffered a stress fracture had lower spine 

BMD compared to controls, after controlling for menstrual function and physical activity. Similarly, 

Bennell et al. (1996b) showed that female track and field athletes with lower BMD at the spine were 

at a greater risk of developing a stress fracture. However, as stress fractures are more likely to 

develop in the lower limbs (Hulkko and Orava, 1987; Bennell et al., 1996b), the relevance of low 

BMD at the spine is questionable. Another study in female athletes showed that after adjusting for 

body weight, those that had previously suffered from stress fractures, had thinner tibial cross-

sectional area, lower BMD and less cortical area in the posterior tibia (Schnackenburg et al., 2011). 

As bone strength is also related to bone structure and geometry (Nordin and Frankel, 1989), specific 

measures of these, such as cross-sectional area or cortical thickness, at likely fracture sites such as 

the tibia, are more applicable measures of stress fracture risk (Giladi et al., 1987; Milgrom et al., 

1988; Milgrom et al., 1989; Beck et al., 1996; Crossley et al., 1999). There are several studies that 

have investigated the relationship between BMD, bone structure and stress fracture risk in athletes 

(Carbon et al., 1990; Myburgh et al., 1990; Grimston et al., 1991; Crossley et al. 1999; Ackerman 

et al., 2012; Gomez-Bruton et al., 2015; Tenforde et al., 2015).  

 

Calcium and vitamin D intake is also related to stress fracture injury (Medelli et al., 2009a; Nieves 

et al., 2010; Tenforde et al., 2010; Sonneville et al., 2012; Wentz et al., 2012). A review paper 

(McCabe et al., 2012) identified 3 studies that showed positive correlations between vitamin D intake 

and protection against stress fracture injury (Givon et al., 2000; Ruohola et al., 2006; Lappe et al., 

2008), while 2 studies showed no association (Loud et al., 2005; Välimäki et al., 2005). Studies such 

as that by Loud et al. (2005) are limited by the retrospective survey-based method of recalling 

calcium and vitamin D intakes. Nieves et al. (2010) showed that higher intakes of calcium, milk and 

servings of dairy products per day, were each related to reduced rate of stress fracture in 125 female 

cross country runners, where the incidence was 14.4% over 2 years. In a randomised, double-blind, 

placebo-controlled trial, Lappe et al. (2008) assessed the incidence of stress fracture injuries over 8 
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week training periods in female Navy recruits, which ran between May 2001 and March 2006. The 

recruits were randomised to 2000 mg of calcium and 800 IU vitamin D per day or a placebo. The 

authors showed that out of the 3,700 recruits, 309 were diagnosed with a stress fracture, with a 21% 

lower incidence in the supplemented group compared to the placebo group. This highlights the 

importance of calcium and vitamin D intakes and the need for supplementation if deficiencies are 

present, which are common in athletes (Close et al., 2013). However, Lappe et al. (2008) did not 

account for differences in sun light exposure between recruits across the 5 years that the study was 

performed, which may have varied throughout the study period (Webb et al., 1988).  

 

Inadequate energy intakes can increase the risk of stress fractures, particularly if coupled with 

abnormal or restrictive eating habits. Chronic energy deficit, due to restricted energy intake or 

excessive energy expenditure, causes weight loss and compensatory suppression of endocrine 

function and other physiological systems, including reproductive function (De Souza and Williams, 

2005; Manore et al., 2007; Melin et al., 2014). Supressed oestrogen release in females is associated 

with stress fractures, decreased BMD, failure to attain peak bone mass in early adulthood, and brittle 

bone diseases in later life such as, osteoporosis and osteopenia (De Souza and Williams, 2005; De 

Souza et al., 2008). Similarly, suppressed reproductive hormones involved in the hypothalamic-

pitiutary-gonadal axis, such as testosterone in males, causes hypogonadotropic hypogonadism, 

which predisposes male athletes to bone stress injuries (Bennell et al., 1996c; Tenforde et al., 2016). 

Ihle and Loucks (2004) showed that reduced energy availabilities, to 30 kcal.kgLBM-1.d-1, cause the 

suppression of bone formation, and also cause a wide range of metabolic hormones to be affected 

such as, 3,3,5-triiodothyronine (T3) and insulin growth factor-1 (IGF-1).  

 

Late menarche appears to be a risk factor for stress fracture development in female athletes and this 

is probably caused by other factors, such as, excessive training, low energy intakes and low body 

weight (Bennell et al., 1995; Duckham et al., 2012; Tenforde et al., 2015; Mallinson et al., 2016). 

An abnormal menstrual cycle is also a risk factor for stress fracture development; oestrogen increases 

bone mass by dampening osteoclastic bone resorption (Lindsay et al., 1976; Christiansen et al., 1981; 

Kameda et al., 1997), and those with amenorrhea or oligomenorrhea have disrupted oestrogen release 
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as well as disrupted luteinising hormone and follicle-stimulating hormone pulsatility (Fisher et al., 

1986; Grinspoon et al., 1999). Several studies have demonstrated that amenorrheic or 

oligomenorrheic athletes have an increased risk of stress fracture injury, as well as developing 

osteoporosis in later life (Clark et al., 1988; Myburgh et al., 1990; Winfield et al., 1997; Bennell et 

al., 1999; Grinspoon et al., 1999; Rauh et al., 2006; Shaffer et al., 2006). Amenorrhea is one of the 

three entities of the female athlete triad, along with low energy availability and poor bone health 

(Nattiv et al., 1994). More recently, the RED-S concept has been proposed due to the recognition 

that these factors are not exclusive to females. RED-S also refers to impaired physiological function 

including, but not limited to, metabolic, reproductive, bone, immunological, gastrointestinal and 

cardiovascular health (Mountjoy et al., 2014), which will be discussed in subsequent sections.  

 

Despite the recent recognition of these entities in male athletes the majority of studies have 

investigated this in female athletes only (Tenforde et al., 2016) and there is a lack of evidence for 

RED-S occurring in male athletes. Hetland et al. (1993), Stewart and Hannon (2000) and Hind et al. 

(2006) have showed that male endurance runners suffer from low BMD, and Vogt et al. (2005) and 

Müller et al. (2006) have reported that male cyclists and ski jumpers have severely reduced energy 

availabilities, but these factors have not been linked to stress fracture injury in males. Several studies 

have explored reduced reproductive function (hypogonadotropic-hypogonadism) in male endurance 

athletes (Mathur et al., 1986; McColl et al., 1989; Hackney et al., 1988; Hackney et al., 1990; 

Wheeler et al., 1991; Roberts et al., 1993; De Souza et al., 1994; Hackney et al., 1998; Skarda and 

Burge, 1998) but there are less studies that investigate this in relation to bone health and stress 

fracture risk (Smith and Rutherford, 1993; Bennell et al., 1996c; Maïmoun et al., 2003; Vinther et 

al., 2008). 

 

2.3.2 Stress fractures in athletes 

During a 14 year period, Hulkko and Orava, (1987) treated 368 stress fractures in 324 athletes, 72% 

of which occurred in runners. International level runners experienced the greatest risk of multiple 

fractures and poor bone healing. In a study of 230 runners over three years, 21 (9.1%) of the athletes 

suffered a stress fracture (Yagi et al., 2013). Similarly, a study of 701 cross country runners identified 
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a 5.4% and 4% rate of stress fractures in female and male adolescents across 2 – 3 seasons (Tenforde 

et al., 2013). Billat et al. (2001) recorded that top-class marathon runners cover over 200 km per 

week and run twice daily, therefore it is not surprising that the highest incidence rates of stress 

fractures occur in these athletes (Johnson et al., 1994; Bennell et al., 1996b; Jones et al., 2002; 

Iwamoto et al., 2011). A series of studies undertaken by Bennell and colleagues mapped stress 

fracture epidemiology particularly across track and field athletes. Bennell et al. (1995) showed that 

in 53 female athletes there were 45 incidences of stress fracture injuries throughout the participants’ 

lifetimes. Bennell et al. (1996b) showed that over 12 months, 26 stress fractures were reported in 

111 track and field athletes, resulting in an incidence rate of 21.1%. Bennell et al. (1998) showed 

that over 12 months, 20 stress fractures were obtained in 95 track and field athletes. It should be 

noted that ascertainment or publication bias may be present in these studies that have used 

questionnaires to retrospectively assess stress fracture injury incidence, due to athletes that are 

concerned about the topic, i.e. if they have previously suffered from a stress fracture, being more 

likely to respond to questionnaires and participate in the research.  

 

Although the epidemiology and risk of stress fracture injury has been fairly well documented in 

runners and track and field athletes, there are limited studies that have investigated this risk amongst 

triathletes. Triathlon is a sport where anecdotally, athletes suffer from a large number of stress 

fractures and overuse injuries, but there are only a few studies that have recorded this, and there are 

no studies that have investigated this in elite Olympic triathletes. This high prevalence is probably 

due to the high training volumes and having three disciplines to practice, two of which are non-

weight-bearing (swimming and cycling), followed by a weight-bearing run, which also means that 

triathletes have little recovery time between sessions. Andersen et al. (2013) showed that the average 

prevalence of overuse injuries was 56% amongst 174 amateur triathletes participating in a long 

distance triathlon; further research is therefore warranted in this area.  

 

Prevention studies in military recruits and athletes have investigated the use of shock absorbing 

orthotics in marching boots, along with a reduction in the frequency and intensity of running sessions, 

pre-exercise leg muscle stretching and oral calcium and vitamin D supplementation (Belkin, 1980; 
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Scully and Besterman, 1982; Sterling et al., 1992; Ross and Woodward, 1994; Jones et al., 2002; 

Lappe et al., 2008). There is, however, a lack of studies that have investigated how stress fracture 

injuries can be prevented in athletes, perhaps because of the difficulty in carrying out intervention 

studies over prolonged periods in elite athlete populations. It is therefore important to investigate the 

risk of stress fracture injury and possible ways to reduce the risk in triathletes.  

 

2.4 Triathlon  

Triathlon is a sport consisting of three different events; swimming, cycling and running. There are 

five different triathlon races; super sprint, sprint, standard, middle distance and long distance, the 

distances are shown in Table 1. Triathlon is a relatively new sport; becoming an Olympic sport for 

the first time in Sydney 2000 and participation in triathlon has increased in recent years (Strock et 

al., 2006; Gosling et al., 2008). Olympic triathletes compete in the standard distance and there are 

currently 11 males and 10 females in the British Triathlon team (2015 – 2016 World Class funding). 

 

Table 1. Triathlon race distances.  

 Distance (km) 

 Swim Bike Run 

Super sprint 0.4 10 2.5 

Sprint 0.75 20 5 

Standard (Olympic) 1.5 40 10 

Middle distance 1.9 90 21 

Long distance 3.8 180 42 

 

There are a number of studies that have investigated triathlon training and injuries (Ireland and 

Micheli, 1987; Massimino et al., 1988; Williams et al., 1988; O’Toole et al., 1989; Collins et al., 

1989; Migliorini et al., 1991; Korkia et al., 1994; Wilk et al., 1995; Manninen and Kallinen, 1996; 

Cipriani et al., 1998; Vleck and Garbutt, 1998; Fawkner et al., 1999; Clements et al., 1999; Burns et 

al., 2003; Egerman et al., 2003; Shaw et al., 2004; Burns et al., 2005; Villavicencio et al., 2006; 
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Andersen et al., 2013). A review of these studies concluded that there is a significant lack of 

published information describing injuries, the profile of injuries sustained and evidence for the 

prevention of injuries in triathlon (Gosling et al., 2008). These studies are limited by retrospective 

designs or inconsistencies in the definitions used to define injuries, further, training regimes are 

complex and varied, meaning it is difficult to measure risk exposure to injury.  

 

There are 8 studies that have investigated training and injuries in ‘elite’ triathletes (Massimino et al., 

1988; O’Toole et al., 1989; Collins et al., 1989; Migliorini et al., 1991; Vleck and Garbutt, 1998; 

Clements et al., 1999; Egerman et al., 2003; Villavicencio et al., 2006). Only one of these studies 

investigated injury and training characteristics of elite Olympic triathletes (Vleck and Garbutt, 1998). 

Vleck and Garbutt (1998) investigated overuse injuries in 12 elite, 17 development and 87 club level 

male triathletes, using a 5 year retrospective questionnaire. Overuse injury occurred in 75% of elite 

and development triathletes, with 2 – 3 sites being affected by injury and running accounting for 

more of the total number of injuries than swimming and cycling in the elite triathletes. This study is 

limited by the retrospective design and the reliance on subjective recall. Scofield and Hecht (2012) 

highlighted that very limited research has been implemented on the topic of bone health in triathletes, 

but suggest that the amount of cross-training performed by triathletes may be more beneficial for 

bone compared to competing in a single discipline, particularly cycling or swimming alone. The 

authors fail to address the huge volume of training performed by triathletes in comparison to athletes 

of single disciplines and the subsequent effects this has on energy availability, the repetitious nature 

of the training and the lack of rest and recovery, all of which influence bone health. A unique aspect 

of a triathlon race is the transition from two non-weight-bearing activities (swimming and cycling) 

to a high intensity, weight-bearing run and the effect that performing all three activities in succession 

has on both the acute bone turnover response but also on long-term bone health is unknown.   

 

A number of studies have investigated nutritional practices of elite triathletes, but used self-reported 

diet diaries as the main outcome measure (Burke and Read, 1987; Burke et al., 1991; Frentsos and 

Baer, 1997; Bentley et al., 2007; Cox et al., 2010). Cox et al. (2010) collected food and fluid diaries 

from 51 elite male and female Australian triathletes and showed that the triathletes consumed 
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adequate CHO intake pre-race. The triathletes failed to consume adequate CHO intake during the 

race (in relation to recommended guidelines; Burke et al., 2001) and this was attributed to limited 

opportunities to ingest the CHO and gastrointestinal intolerance. Given the importance of nutritional 

status on bone health and also performance in triathlon, there are a lack of studies that have 

investigated bone health and nutritional practices in elite Olympic triathletes. 

 

2.5 The Female Athlete Triad  

The triad was first identified by Yeager et al. (1993) and Nattiv et al. (1994) and is the 

interrelationship between energy availability, menstrual function and bone health (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Redrawn from Nattiv et al. (2007) ACSM Position Stand The Female Athlete Triad. This 

figure represents the spectrums of energy availability, bone health and menstrual function that female 

athletes can move along.  

 

When an athlete is suffering from the unhealthy conditions characterised by the triad, low energy 

availability can impair bone health by inducing amenorrhea and therefore removing the protective 

effect of oestrogen on osteoclastic bone resorption (Eastell, 2005). This can also suppress other 

hormones such as IGF-1, T3, insulin and leptin that promote bone formation (Nattiv et al., 2007). 
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Similarly, low energy availability can alter levels of other metabolic hormones and substrates, such 

as, cortisol, growth hormone, ghrelin, peptide-tyrosine-tyrosine, glucose, fatty acids and ketones 

(Loucks and Thuma, 2003; Wade and Jones, 2004; Melin et al., 2014).  

 

Energy availability is defined as dietary intake minus exercise energy expenditure, relative to lean 

body mass (Nattiv et al., 2007). When energy availability is low (usually at or below 30 kcal.kgLBM-

1.d-1) physiological mechanisms reduce the amount of energy needed for physiological processes, 

such as cell repair, thermoregulation, immunity, growth, bone turnover and reproduction (Wade et 

al., 1996). Luteinising hormone pulsatility and therefore reproductive function (Loucks and Thuma, 

2003) and bone formation (Ihle and Loucks, 2004) are compromised abruptly at a threshold of energy 

availability (≤30 kcal.kgLBM-1.d-1), which corresponds closely to resting metabolic rate (Loucks et 

al., 2011).  

 

In athletes, low energy availabilities (<45 kcal.kgLBM-1.d-1, which usually corresponds to energy 

balance), can occur by increased exercise energy expenditures without sufficient energy intakes or 

by reducing energy intakes but maintaining exercise energy expenditures. This can occur through 

purposeful dieting, abnormal eating practices, eating disorders, or excessive exercise, or can be 

inadvertent, due to the lack of a strong biological drive for athletes to match their energy expenditures 

with increased energy intakes (Truswell, 2001; Nattiv et al., 2007). This could also be due to the 

appetite suppressing effect of exercise (King et al., 1994; King et al., 1997; Hubert et al., 1998), 

which is more pronounced when consuming a high carbohydrate diet as endurance athletes tend to 

do (Horvath et al., 2000a; Horvath et al., 2000b; Stubbs et al., 2004). Risk factors for athletes 

suffering low energy availabilities include; starting a sport from a young age, particularly one that 

favours leanness for performance, dieting to meet race weight or body composition goals, injury, 

and a sudden increase in training volume (Sundgot-Borgen et al., 1994; Sundgot-Borgen, 2002).   

 

Menstrual disorders result from disrupted luteinizing hormone pulsatility (Loucks et al., 1989; 

Laughlin et al., 1996), which has been shown to be disrupted at energy availabilities of 30 

kcal.kgLBM-1.d-1 (Loucks and Thuma, 2003). The energy availability of amenorrheic athletes is 



29 

 

consistently less than 30 kcal.kgLBM-1.d-1 (Drinkwater et al., 1984; Deuster et al., 1986; Keiserauer 

et al., 1989; Myerson et al., 1991; Wilmore et al., 1992; Kopp-Woodroffe et al., 1999; Thong et al., 

2000). Menstrual disorders can be classed as oligomenorrhea, primary amenorrhea or seconday 

amenorrhea. Oligomenorrhea is classified as menstrual cycles occurring at intervals longer than 35 

days, primary amenorrhea is classified as no menarche by the age of 15 years and secondary 

amenorrhea is classified as the absence of menstrual cycles lasting more than 3 months once menses 

have begun (Practice Committee of the American Society for Reproductive Medicine, 2004). An 

athlete can still have what appear to be normal menstrual cycles, but have a short luteal phase and 

therefore luteinizing hormone release is impaired. Alternatively, athletes can have anovulation where 

there is no ovulation during the menstrual cycle. Therefore, female athletes could be at risk of 

suffering from impaired oestrogen release, resulting in a lack of osteoclast activity suppression, 

without being aware of it. The prevalence of secondary amenorrhea has been reported to be as high 

as 65% in long distance runners (Dusek, 2001). The prevalence of amenorrhea has been shown to 

increase from 3% to 60% as running mileage increases from 13 to 113 km per week, which coincided 

with a decrease in body weight from 60 to 50 kg (Sanborn et al., 1982).  

 

The triad focuses on BMD as the measure of bone health, despite this, BMD is only one aspect of 

bone strength and is not the best predictor of fracture or stress fracture risk in athletes (Leib et al., 

2004). When measured by DXA, BMD is expressed as T-scores and Z-scores, which are used to 

compare individuals of the same age and sex. The World Health Organisation has defined 

osteoporosis in postmenopausal women as a T-score ≤-2.5 and in the rest of the population a Z-score 

of ≤-2.0 coupled with another clinical risk factor for fracture indicates osteoporosis. Clinical risk 

factors include; chronic undernutrition, eating disorders, menstrual disorders, hypogonadism, 

glucocorticoid exposure and previous fractures. A Z-score of -1.0 or below in an athlete warrants 

investigation, especially if coupled with another risk factor. Athletes involved in weight-bearing 

sports should have a 5 – 30% greater BMD than non-active indivuduals of the same age (Fehling et 

al., 1995; Nichols et al., 2000; Nichols et al., 2007; Tenforde et al., 2015), however poor nutritional 

status and impaired menstrual function can attenuate the beneficial effects of exercise in athletes 

(Pearce et al., 1996; Christo et al., 2008; Ackerman et al., 2012).  
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BMD starts to decline as amenorrhea progresses, this happens gradually and the loss of BMD may 

not be fully reversible (Warren et al., 2002). The relative risk for stress fracture injury is two to four 

times greater in amenorrheic than eumenorrheic athletes and increases further when nutritional 

deficiencies and a low BMD is present (Bennell et al., 1999). Barrack et al. (2014) showed that the 

risk of a bone stress injury increased from 15 – 20% when a single risk factor was present, to 30 – 

50% when two or more risk factors were present. Risk factors include BMD Z-score <-1.0, BMI <21, 

purposeful exercise >12 h.wk-1, participation in a leanness sport, elevated dietary restraint and 

abnormal menstrual status.  

 

2.6 Relative Energy Deficit in Sport (RED-S) 

Recently it has become evident that a relative energy deficiency does not affect only three entities, 

but actually affects many aspects of physiological function (Mountjoy et al., 2014), including but 

not limited to; metabolic rate, reproductive function, bone health, immunity, endocrine systems, 

growth and development, cardiovascular systems, gastrointestinal systems and psychological health. 

It is also more evident that this syndrome can occur in men, and therefore a new terminology was 

created; RED-S.  

 

The underlying problem of RED-S is a decreased energy availability that is inadequate to support 

physiological functions involved in health and performance. When energy availability decreases, 

these functions are compromised in order to reduce the energy they require. This leads to a disruption 

in hormones and other metabolic characteristics (Loucks, 2004). Although the literature on low 

energy availability and the symptoms of RED-S focuses on female athletes (Moutjoy et al., 2014), 

research has shown that a high number of male athletes also have severely restricted energy 

availabilities, low BMD and altered endocrine function (Hetland et al.,1993; Stewart and Hannon, 

2000; Nichols et al., 2003; Ferrand and Brunet, 2004; Vogt et al., 2005; Hind et al., 2006; Muller et 

al., 2006; Hackney, 2008; Rector et al., 2008; Smathers et al., 2009; Sundgot-Borgen and Torstveit, 
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2010; Guillaume et al., 2012; Sundgot-Borgen et al., 2013; Tenforde et al., 2015), which is most 

common in endurance athletes. 

 

Top level endurance athletes such as marathon runners are likely to have particularly low energy 

availabilities. Fudge et al., (2006) demonstrated through the use of doubly labelled water (DLW), 

the gold standard measure of energy expenditure, that elite male Kenyan runners have energy 

availabilities as low as 6 kcal.kgLBM-1.d-1. Drenowatz et al. (2012) demonstrated that athletes 

ranging from 10 km runners to Ironman distance triathletes have energy availabilities ranging from 

24 kcal.kgLBM-1.d-1 to 33 kcal.kgLBM-1.d-1.  

 

Ihle and Loucks (2004) examined the dose-response relationship between energy availability and 

bone turnover in sedentary females. Generally, energy availability is balanced, i.e. energy 

expenditure is equal to energy intake at 45 kcal.kgLBM-1.d-1, although this may not be the case in 

athletes of small body size, as resting metabolic rate is underestimated in the linear scaling of energy 

availability relative to lean body mass (Loucks et al., 2011). In the study, energy availability was 

reduced to 10 kcal.kgLBM-1.d-1, by exercise and a severe energy restriction, a value which is not far 

from practices of some amenorrheic athletes (Thong et al., 2000). This caused NTX to increase by 

34% and coincided with reduced oestrogen levels. Ihle and Loucks (2004) were the first authors to 

show that bone formation is impaired at much higher levels of energy availability than bone 

resorption is; carboxyterminal propeptide of type 1 procollagen (P1CP) was significantly reduced 

even at an energy availability of 30 kcal.kgLBM-1.d-1, a level that is not uncommon in endurance 

athletes (Thong et al., 2000; Fudge et al., 2006). There was however, a different response to energy 

restriction between the two measures of bone formation; P1CP, which represents type 1 collagen 

formation, decreased linearly with decreasing energy availability, whereas OC, a measure of matrix 

mineralisation, decreased the most when energy availability was between 20 and 30 kcal.kgLBM-1.d-

1. This suggests that restricted energy availability may affect the bone formation process by various 

mechanisms, which requires elucidation. However, some field studies have failed to show 

associations between energy availability and measures of energy conservation (Koehler et al., 2013; 

Reed et al., 2013). This suggests that other factors that are common in athletic environments, such 
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as psychological stressors and differences in energy availabilities on different days, (probably due 

to training schedules), could mean that low energy availabilities do not affect the body’s 

physiological systems in a constant and predictable way, as is often shown during laboratory studies.  

 

VanHeest et al. (2014) has shown that ovarian suppression, originating from hypothalamic 

dysfunction in combination with energy conservation caused by an energy deficit, is associated with 

poor sports performance, as demonstrated by 400m swim times over a 12 week competitive season. 

Five elite swimmers that were retrospectively classed as ovarian suppressed, based on serum 

progesterone and oestradiol levels and self-reported menstrual status, had significant suppression of 

metabolic and bioenergetic parameters. T3, a thyroid hormone that is supressed during a sustained 

energy deficit, was 19% lower in the ovarian suppressed swimmers compared to the 5 swimmers 

that had cyclic menstrual function. Resting energy expenditure:predicted resting energy expenditure 

(REE:pREE) was 27% lower and energy availability was 90% lower in the ovarian suppressed 

swimmers. The authors showed that sports performance declined by 9.8% in the ovarian suppressed 

group, whereas performance increased by 8.2% in the cyclic menstrual group. The ovarian 

suppressed athletes expended 900 – 1,225 kcal.day-1 during training, with a REE:pREE of 77 – 84%, 

which is indicative of hypometabolism. This caused energy conservation and therefore maintenance 

of higher body mass and composition, despite a significant and constant energy deficit. Constant 

energy deficits in athletes can be maintained for long periods of time, and the results from VanHeest 

et al. (2014) show that this will eventually have detrimental performance effects. It is yet to be 

investigated whether this also occurs in elite male athletes. This is the first study that has shown a 

direct performance effect of low energy availabilities in the free-living athlete.  

 

2.7 Methods of measuring energy expenditure  

There are numerous methods available to measure energy expenditure in humans; direct and indirect 

calorimetry and non-calorimetric methods. Non-calorimetric methods include; questionnaires, heart 

rate monitors, motion sensors and the DLW method. There are a number of strengths and weaknesses 

of each of these methods which means a compromise is needed, particularly when implementing 
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these methods in athletes. Ravussin et al. (1986) described the use of indirect calorimetry or an open-

circuit respiratory chamber and showed that the coefficient of variation (CV) of 24 h energy 

expenditure was 2.4%, which is similar to other studies (Dallosso et al., 1981; Garby et al., 1984). 

However, the limitation of participants having to live in a confined chamber for the duration of the 

study means that this method is inaccessible and unfeasible for the majority of athletes. It also does 

not represent the normal, daily routines of participants.  

 

The DLW method that was developed by Lifson et al. (1955) and validated by Schoeller and van 

Santen (1982), Schoeller and Webb (1984) and Schoeller et al. (1986), allows energy expenditures 

to be measured in free-living participants over a number of days, without interfering with daily 

routines. This method involves participants receiving a loading dose of water labelled with 2H and 

18O isotopes, which mix with the hydrogen and oxygen in body water. As energy is expended, carbon 

dioxide and water are produced; carbon dioxide is only excreted in the breath, but water is excreted 

in the breath, urine and sweat. As 18O is contained in both carbon dioxide and water, it is lost more 

rapidly than 2H is, which is contained in water but not carbon dioxide (Schoeller and van Santen, 

1982). Over a period of 4 – 20 days, the difference between the rate of loss of 18O and 2H from the 

body reflects the rate at which carbon dioxide is produced. This is then used to estimate energy 

expenditure using a formula based on carbon dioxide production rate and respiratory quotient (Weir, 

1949).  

 

Limitations of this DLW method include the high costs of the isotopes, equipment and expertise 

needed for analysis and the equations used to determine total energy expenditure and physical 

activity level. The physical activity level has been calculated from pooled analysis of DLW studies, 

but it remains unclear whether the equations used to calculate total energy expenditure and estimated 

energy requirements are appropriate for non-Western populations (Park et al., 2014). Due to the large 

energy expenditures of athletes and the very different lifestyles compared to the normal population, 

these equations may not be appropriate for athletes. For example, in a study determining the physical 

activity level of healthy Japanese adults, the largest value for physical activity level was 1.91 ± 0.30 
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which represents 1 h of hard muscular work such as training, carrying lumbers or farming (Ishikawa-

takata et al., 2008) and athletes will often perform hard training for much longer than 1 h per day.  

 

Despite these limitations, the DLW method is currently considered the gold standard measure of 

energy expenditure in free-living participants, and as such, there are a number of studies that have 

employed the DLW method in athletes (Westerterp et al., 1986; Schulz et al., 1992; Sjödin et al., 

1994; Trappe et al, 1997; Ebine et al., 2000; Ebine et al., 2002; Ekelund et al., 2002; Hill and Davies, 

2002; Fudge et al., 2006; Rehrer et al., 2010). Westerterp et al. (1986) measured energy expenditure 

in 4 cyclists during the Tour de France and showed that the average daily energy expenditure was 

8,054 kcal.d-1 when the cyclists covered 3,500 km over 23 days, although it is likely that there was 

some measurement error due to the length of the study period and the need for multiple DLW doses. 

Similarly, Rehrer et al. (2010) showed that elite cyclists expended 6,548 kcal.d-1 during a 6 day, 10 

stage cycling race and the riders managed to match this with energy intakes of 6,525 kcal.d-1 on 

average, although the authors only collected full data sets for 3 participants and one of the 

participants did not receive the full DLW dose.  

 

Sjödin et al. (1994) showed that elite male cross-country skiers expended 7,218 kcal.d-1 and the 

females expended 4,374 kcal.d-1 on average during a pre-season training camp, and the energy 

expenditures were very closely matched with energy intakes. In contrast, Trappe et al. (1997) showed 

that female swimmers expended 5,593 kcal.d-1 but consumed only 3,136 kcal.d-1 on average. Schulz 

et al. (1992) showed that 9 female distance runners expended only 2,768 ± 382 kcal. This is lower 

than the values reported in a study of elite male Kenyan runners (Fudge et al., 2006), which showed 

that on average the athletes expended 3,492 kcal.d-1 but consumed 3,165 kcal.d-1. This means that the 

athletes were in a negative energy balance throughout the study, which took place during an intense 

training period prior to a major competition. The authors suggest that the accompanying weight loss 

may be beneficial for performance in these runners as it was gradual and should improve running 

economy and performance in the heat, especially as the athletes’ diets were high in CHO (9.8 

g.kgBM-1.d-1), although there were no accompanying measures of metabolic or stress hormones. It is 

yet to be investigated what effect this gradual reduction in body mass and consistent negative energy 
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balance in the lead up to a competition has on bone health and bone turnover in runners and other 

endurance athletes.   

 

2.8 The skeletal system and bone remodelling 

The human skeletal system is a robust structure that has many different functions; it protects internal 

organs, it provides a source of haematopoietic, mesenchymal and endothelial stem cells, it helps 

regulate essential mineral homeostasis by acting as a reservoir, it gives us shape, structure and it acts 

as a scaffold to produce movement. Bone is made up of type 1 collagen, consisting of triple helices 

and crystals of calcium hydroxyapatite [Ca10(PO4)6(OH)2]; type 1 collagen is characterised as osteoid 

and bone as mineralised osteoid (Gupta et al. 2006; Grynpas and Omelon, 2007; Zhu and Prince, 

2012). Bone consists of cortical and trabecular bone; cortical bone is the compact bone that is 

designed to maintain the strength and stiffness of the skeleton and trabecular bone is the cancellous 

or spongy bone designed to maintain the toughness of the skeleton which has the ability to deform 

and absorb energy. After skeletal growth or bone modelling is complete, remodelling of bone 

continues and each year about 10% of the entire skeleton is broken down and replaced with new 

bone.  

 

Lanyon (1987) showed that in locations where the skeleton has a primary protective role i.e., the 

skull, the bone’s architecture is achieved during growth and is under direct genetic control. However, 

in parts of the skeleton where resistance to repetitive loading is important, i.e., bones of the lower 

limbs, only the general shape of the bone will be achieved through growth and genetic control. The 

remaining characteristics of the bone, such as the stiffness or toughness of the bone, are determined 

by functional adaptation i.e., mechanical loading placed on the bone, particularly throughout 

childhood and adolescence. Because the skeleton is in a constant state of repair, these remaining 

functional characteristics of bone are altered throughout an individual’s lifetime. This idea has 

previously been described as a ‘mechanostat’, where the mechanism of bone remodelling responds 

to frequently experienced strains (Frost, 1987). The full sequence of bone remodelling occurs 

between 100 days and 1 year via a negative feedback loop that involves systemic hormones, such as 
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IGF-1, GH, calcitonin, vitamin D3, oestrogen and PTH (Stewart and Hannon, 2000; Zaidi et al., 2002; 

Nakamura et al., 2007; Krum et al., 2008; Crockett et al., 2011). Although the main function of PTH 

is to regulate blood calcium levels, it also has an important role in bone formation and prevents 

osteoblast and osteocyte apoptosis. This is why intermittent administration of PTH is a treatment for 

osteoporosis, as it acts to increase osteoblast number, bone formation and bone mass (Crockett et al., 

2011). PTH will be discussed in more detail in later sections as PTH was investigated in the studies 

reported in this thesis.  

 

Bone remodelling is defined as an active process throughout the skeleton which requires the 

sequential and coordinated actions of osteoclasts and osteoblasts that are coupled together at the 

basic multicellular unit level (Frost, 1964). Osteocytes, which are latent osteoblasts, lie embedded 

within lacunae in mineralized bone and connect with others via the canicular system, thus forming a 

cellular network that can respond to mechanical loading and strong forces exerted on the bone 

(Lanyon, 1998). This means that osteocytes are the main means of bone repair and adaptation to 

exercise (Frost, 1960; Frost, 1986). For instance, when microdamage or a microcrack is formed 

during stress fracture development, it causes disruption of the cellular network, this is detected by 

the osteocytes, which send signals to osteoblasts on the bone surface (Burger et al., 1998). This 

causes cells from the bone marrow to be incorporated into the area of the microdamage, which then 

differentiate into osteoclasts and resorb the bone around the microdamage.  

 

Osteoclasts are multi-nucleated, exclusive bone resorptive cells that are members of the 

monocyte/macrophage family (Suda et al., 1999; Banfi et al., 2010). Osteoclasts resorb bone by 

firstly adhering to bone, creating a sealing zone into which hydrochloric acid and acidic proteases 

are secreted. This along with the H+ ATPase pump creates an acidic environment that breaks down 

the bone mineral (Salo et al., 1997; Teitelbaum and Ross, 2003; Stenbeck and Horton, 2004). 

Additionally, osteocyte apoptosis can occur at sites of microdamage and these dying osteocytes are 

targeted for removal by osteoclasts (Verborgt et al., 2002).  
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Osteoblasts are then recruited to the resorption pit where they lay down new osteoid, until the 

resorbed bone is completely replaced by new. Bone resorption continues for around 2 weeks, the 

reversal phase, where mononuclear cells appear on the bones surface, may last up to 5 weeks, and 

bone formation can continue for up to 4 months until the new bone is completely mineralised 

(Stewart and Hannon, 2000; Hadjidakis and Androulakis, 2006; Crockett et al., 2011) (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The bone remodelling cycle. Redrawn from Crockett et al. (2011). Microdamage or 

mechanical loading (1) stimulates the recruitment, proliferation, differentiation and activation of 

osteoclasts that resorb the damaged bone (2). Osteoclasts then die by apoptosis (3), and osteoblasts 

migrate to the resorption pit by chemotaxis and replace the resorbed bone with unmineralised osteoid, 

which then becomes mineralised (4).  

 

There are three goals of bone remodelling; 1) to provide a mechanism to maintain homeostasis of 

essential minerals such as calcium and phosphate, by providing a store that can be released into the 

serum when needed; 2) to provide a mechanism for the skeleton to adapt to mechanical loading, 

maintaining skeletal integrity; 3) to provide a mechanism to repair any damage caused by mechanical 
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loading, that must be repaired to prevent fracture (Parfitt, 1994; Parfitt et al., 2000; Shaffler and 

Jepson, 2000; Burr, 2002; Frost, 2003). The repair of microdamage is considered the most important 

purpose of bone remodelling (Heaney, 2003; Parfitt, 2004). At any one time, around 20% of 

trabecular bone surface is undergoing remodelling (Frost, 1991), but the amount of bone removed 

and the amount formed should be alike, meaning that the total quantity of bone remains constant 

under healthy conditions (Currey, 2003). In peripheral trabecular bone, a turnover rate of 2% per 

year is sufficient to maintain mechanical proficiency of the bone and even after allowing for the 

other purposes of bone remodelling, bone turnover rates exceeding that may be detrimental to bone 

health (Parfitt, 2004).  

 

It is hypothesised that there are two types of bone remodelling; stochastic (not site-dependent) and 

targeted site-specific. The first goal of bone remodelling (mineral homeostasis) can be accomplished 

via stochastic remodelling, but the second two goals (adaptation to and repair from mechanical 

loading) require site-specific remodelling (Mori and Burr, 1993; Parfitt et al., 1996; Han et al., 1997; 

Burr, 2002; Parfitt, 2009). Interventions that prevent the need for stochastic remodelling, without 

preventing targeted repair of microdamage or adaptation to mechanical loading, would be ideal for 

athletes training multiple times a day, thus placing significant stress on the skeletal system. This 

would prevent whole body net bone loss without preventing targeted repair of damaged bone and 

positive adaptation to altered mechanical loading (Burr, 2002). An example of an intervention that 

may prevent the need for stochastic bone remodelling is pre-exercise calcium supplementation, 

which prevents the need to resorb bone to maintain mineral homeostasis (Guillemant et al., 2004; 

Barry and Khort, 2007; Barry et al., 2011); although, it is not known how such an intervention affects 

site specific remodelling.  

 

Schaffler (2003) proposed that there is a homeostatic balance between the amount of microdamage 

occurring and the intrinsic repair by bone remodelling, and when this is not operating properly, i.e., 

there is too much or too little bone remodelling, microdamage will accumulate and there may be 

excessive unmineralised bone. When this reaches a threshold, the bone becomes mechanically 

unstable and will fail, leading to a fracture (Martin, 1992). However, a number of studies that have 
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examined the bone remodelling threshold have used bisphosphonate treatment in animals to suppress 

bone remodelling, so it is not currently known what this threshold is in humans or even if this 

mechanism translates from in vitro to in vivo (Mashiba et al., 2000; Mashiba et al., 2001; Schaffler, 

2003). 

 

As well as diseases such as osteoporosis and arthritis and medications such as bisphosphonates 

(Allen and Burr, 2011), there are numerous other factors that influence bone remodelling. These can 

be grouped into mechanical, hormonal or lifestyle factors. Sleep, smoking, energy availability, 

nutrient ingestion and exercise are examples of lifestyle factors that may affect the amount of bone 

remodelling in an individual (Ihle and Loucks, 2004; Zanker and Cooke, 2004; Burckhardt et al., 

2010; Scott et al., 2012). Calcium and vitamin D intake (Heaney et al., 1982; Lappe et al., 2008; 

Barry et al., 2011; Tenforde et al., 2015), growth factors (insulin growth factors (IGFs), fibroblast 

growth factors, transforming growth factors) (Misra et al., 2009), cytokines, macrophage colony-

stimulating factor, receptor activator of nuclear factor kappa-B ligand (RANKL), interleukin (IL) -

4, IL-6 (Martin and Sims, 2015), prostaglandins, proteinases (Martin and Ng 1994) and sex hormones 

(Hetland et al., 1993; Zanker and Swaine, 1998a; Zanker and Swaine, 1998b; Compston, 2001) may 

also influence bone remodelling, although in reality there are likely to be many more factors that 

influence bone remodelling, that exceed the scope of this literature review or thesis. Some of these 

factors, primarily energy availability, nutrient ingestion, exercise, calcium and vitamin D intakes 

will be discussed in more detail throughout this literature review, as they were key components of 

this thesis and were measured in the experimental studies.  

 

2. 9 Biochemical markers of bone turnover  

Bone turnover refers to the total volume of bone that is both resorbed and formed over a period of 

time, which can be estimated through the measurement of biochemical markers of bone turnover 

(Parfitt, 2004). In adults, bone turnover occurs mainly through bone remodelling, but can also occur 

through bone modelling that mainly occurs during growth (Parfitt, 1996).  
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Unlike static measures of bone mass and structure, biochemical makers of bone turnover can detect 

the dynamics of the metabolic status of the bone (Seibel, 2000) and allow for an imbalance in bone 

turnover to be detected if it exists. But bone turnover markers are only able to estimate whole body 

bone turnover, rather than a specific rate of bone remodelling (Malm et al., 1993; Maïmoun et al., 

2004a; Parfitt, 2004; Jürimäe et al., 2006). An imbalance in bone turnover is often described as an 

‘uncoupling’ of bone turnover, where by the concentrations of bone resorption and bone formation 

markers either change in opposite directions or one changes and the other remains stable. However, 

bone coupling or uncoupling can only occur at a specific basic multicellular unit. Bone remodelling 

takes place asynchronously throughout the skeleton at anatomically distinct sites (Sims and Martin, 

2014) and this cannot be directly measured in vivo as there is no way to isolate the actions of 

individual basic multicellular units at specific skeletal sites. Therefore measurements of bone 

turnover markers are not able to measure the level of uncoupling or coupling of bone remodelling, 

and describing changes in bone turnover marker concentrations as an imbalance of the two processes 

may be more relevant. The result of uncoupled bone remodelling at the basic multicellular unit level 

is often a change in bone structure, strength, volume and mass (Seibel, 2000; Seibel, 2005; Ott, 2008; 

Banfi et al., 2010). Bone metabolism is a phrase that is often used interchangeably with bone 

turnover and bone remodelling. As previously explained, bone turnover and bone remodelling 

describe different aspects of bone metabolism. Bone metabolism is used in this thesis to refer to the 

overall state and the overall bone response to an intervention.  

 

Several blood and urinary markers provide estimations of both bone formation and resorption; the 

biological processes that govern bone turnover. Caution should be taken when interpreting measured 

bone turnover markers; the majority of the markers can be found in tissues other than bone, such as 

cartilage, meaning that concentrations of these markers may be influenced by processes other than 

bone turnover (Seibel, 2000; Banfi et al., 2010). Structural alterations in bone can occur due to 

mechanical loading without associated changes in systemic bone turnover markers (Vainionpää et 

al., 2006; Vainionpää et al., 2009), which may mean that bone turnover markers are not sensitive 

enough to detect increased or changed bone turnover at the tissue level (Scott et al., 2013). Bone 

turnover markers are not site specific and do not indicate where on the skeleton the resorption or 
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formation is taking place, resulting in the assumption that the changes in bone turnover take place at 

the sites of mechanical loading. Spot measures of bone turnover markers reflect the state of bone 

turnover at that point in time only or reflect the acute activation of the bone resorption and bone 

formation processes. Because of the responsiveness of bone turnover markers to nutrient ingestion 

(Clowes et al., 2002a; Henriksen et al., 2003; Walsh and Henriksen, 2010), exercise (Malm et al., 

1993; Kristoffersson et al., 1995; Brahm et al., 1996; Thorsen et al., 1997; Langberg et al., 2000; 

Guillemant et al., 2004) and other external factors (Vasikaran et al., 2011a), timings of blood samples 

and the external conditions should be tightly controlled in each instance (Delmas et al., 2000). Day-

to-day variability for bone formation markers is between 5 and 13% and for bone resorption markers 

is between 6 and 35%, under research conditions (Hannon and Eastell, 2000; Blumsohn et al., 1994b).  

 

2.9.1 Bone formation markers 

Bone formation markers are direct or indirect products of osteoblast activity that are released into 

the blood (Delmas et al., 2000), at different phases of osteoblast differentiation and osteoid 

deposition and maturation. Bone alkaline phosphatase (BALP) is a ubiquitous marker of formation 

that is found on the outer cell surface of osteoblasts, it is involved in all phases of bone mineralisation 

and therefore provides a specific indicator of osteoblast activity (Epstein et al., 1988; Van Straalen 

et al., 1991). There are different isoforms of enzymatic alkaline phosphatase that originate from 

various tissues such as the liver, bone, intestine, spleen, kidney and placenta. In healthy adults, about 

50% of alkaline phosphatase is derived from the liver, with the other 50% arising from bone, whereas 

during skeletal growth, around 90% of alkaline phosphatase is bone specific (Magnusson et al., 

1999). The assays used to measure BALP show up to 20% of cross-reactivity with liver alkaline 

phosphatase, which can lead to falsely high results (Langlois et al., 1994; Martin et al., 1997; Woitge 

et al., 1996), and there are therefore more accurate markers of bone formation, that are subsequently 

discussed.  

 

OC (also known as bone-Gla-protein) is a hydroxyapatite-binding protein, that is synthesised by 

osteoblasts during bone formation, which can be measured when it enters the extracellular 

compartment (Poser et al., 1980). OC is also excreted by the kidneys and can be measured in the 



42 

 

urine. The total OC content of the bone accounts for around 15% of the non-collagenous protein 

fraction and it is considered a specific marker of osteoblast function (Brown et al., 1984). There is 

also evidence that OC (particularly undercarboxylated OC) plays a role in energy metabolism 

(Confavreux et al., 2009; Fernandez-Real et al., 2009; Hwang et al., 2009; Confavreux, 2011; 

Lombardi et al., 2012), therefore, any change in OC during exercise may not be specifically related 

to changes in bone formation, but could potentially be an adaptation to altering energy requirements 

that are often changing in athletes (Confavreux et al., 2009). Adding to the limitations of using OC 

in bone formation assessment, is the presence of various types of OC-derived fragments circulating 

in the blood stream (intact 1-49 or N-mid 1-43), which are subject to rapid degradation in the serum 

and this leads to heterogeneity of the OC fragments (Bell, 1997; Seibel et al., 2001; Vasikaran et al., 

2011a). Since OC is incorporated into the bone matrix, some OC fragments may also be released 

during bone resorption, which may be particularly true in individuals with high bone turnover (Chen 

et al., 1996; Gorai et al., 1997; Salo et al., 1997). Considering the activity levels of the participants 

studied in this thesis, bone turnover may be higher than average, meaning that OC may not be the 

best marker of bone turnover in this instance. There are also multiple analytical methods used to 

measure OC that produce varying results and means that results from one assay cannot be compared 

to another (Diaz Diego et al., 1994; Masters et al., 1994; Vergnaud et al., 1997; Vasikaran et al., 

2011a).  

 

Carboxyterminal propeptide of type 1 procollagen (P1CP) and aminoterminal propeptide of type 1 

procollagen (P1NP) are considered to be quantitative measures of newly formed type 1 collagen, as 

they enter extracellular space following the synthesis of new collagen by osteoblasts (Hassager et 

al., 1991; Eriksen et al., 1993). Bone collagen consists of 95% of type 1 collagen, and this composes 

90% of bone matrix. Type 1 collagen is also found in skin, dentin, cornea, vessels, tendons and 

fibrocartilage, but most of these tissues exhibit slower turnover rates than bone and therefore they 

contribute very little to circulating concentrations. Collagen precursors in triple helical form present 

short-terminal peptides at both the amino and carboxy terminals that are enzymatically cleaved and 

liberated into the circulation once the precursor molecule is secreted into the extracellular space 

(Fessler et al., 1975). P1CP has a short serum half-life of only 6 – 8 minutes (Olsen et al., 1977; 



43 

 

Smedsrod et al., 1990) so this is often difficult to capture and measure. P1NP has a longer half-life, 

there are specific, more accurate (and automated) immunoassays for P1NP and it is thermostable, 

similar to other markers of collagen metabolism (Seibel, 2000; Seibel, 2005). These are the reasons 

why this marker of bone formation is measured throughout this thesis.  

 

2.9.2 Bone resorption markers 

With the exception of tartrate-resistant acid phosphatase (isoenzyme 5b) (TRAP5b), most bone 

resorption markers are degradation products of type 1 collagen that can be measured in the blood or 

urine. TRAP5b is one of five isoforms of ubiquitous acid phosphatases. Isoform 5 has two different 

subforms; 5a which is expressed by macrophages, platelets and erythrocytes and 5b which is 

osteoclast specific (Halleen et al., 2000). Osteoclasts secrete TRAP5b into the bloodstream, therefore 

the concentration and activity of this enzyme represents osteoclast activity (Halleen et al., 1998). 

TRAP5b is not very stable once blood is drawn; it loses approximately 20% activity every hour (Bais 

and Edwards, 1976), and this is one of the reasons that TRAP5b is not routinely measured as a marker 

of bone resorption. Further, the activity of osteoclasts may not directly relate to the amount of bone 

being resorbed.   

 

RANKL is a member of the tumor necrosis factor ligand family that is involved in the first step 

essential for activating the bone resorption process by stimulating osteoclastogenesis. When RANKL 

binds to its receptor; receptor activator of nuclear factor kappa-B (RANK), which is located on 

osteoclast precursor cells, this causes the differentiation of the osteoclast precursor cells into active 

osteoclasts. RANKL is expressed on cells of the osteoblastic lineage, particularly immature cells 

such as osteocytes. Osteoprotegerin (OPG) is a decoy receptor for RANKL, which acts as a paracrine 

inhibitor of osteoclast formation (Martin and Sims, 2015). When OPG binds to RANKL it prevents 

the binding of RANKL to its receptor RANK. Thus, the ratio of RANKL/OPG is the more accurate 

measurement of osteoclast formation and activity, compared to a singular measurement of either 

receptor. If the RANKL/OPG ratio changes in favour of RANKL, osteoclastogenesis is likely to 

increase, and if the RANKL/OPG ratio changes in favour of OPG, osteoclastogenesis is likely to 

decrease (Theoleyre et al., 2004; Kearns et al., 2008). Despite this, true concentrations of RANKL, 
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OPG and RANK are difficult to measure as they exist in both free and bound forms. RANKL is also 

undetectable in approximately 70% of healthy controls (Hegedus et al., 2002), which may produce 

misleading results when expressing the RANKL/OPG ratio (Scott et al., 2010) and is the main reason 

that RANKL and OPG are not routinely measured as markers of bone resorption.  

 

PYD and DPD function as molecular bridges that cross-link several collagen molecules, providing 

mechanical stability. Proteolytic enzymes, derived from osteoclast activity, degrade these cross-links 

and they are subsequently released into the bloodstream and urine. Therefore PYD and DPD reflect 

degradation of mature, fully mineralised collagen only. PYD is predominately found in cartilage, but 

is also found in bone, tendon and connective tissue and DPD is found in bone and dentin (Eyre et al., 

1988). Due to the much higher turnover of bone compared to the other tissues that PYD and DPD 

are found in, the PYD and DPD fragments that originate from the other tissues have minimal 

contribution to the measured concentrations. Despite this, PYD and DPD were previously viewed as 

the best indicators of bone resorption (Eyre et al., 1988; Seibel et al., 1992; Brixen and Eriksen, 

1999; Kraenzlin and Seibel, 1999), but in recent years, assays for cross-linked telopeptide molecules 

have been developed and are now used more widely.  

 

Cross-linked telopeptides result from the enzymatic degradation of the amino-terminal (NTX) and 

carboxy-terminal (CTX) regions of type 1 collagen. Following proteolytic degradation, they are 

released into the blood and then the urine. CTX molecules can be detected as four different isoforms; 

α-L, β-L, α-D and β-D, that occur due to modifications to the collagen molecules via isomerisation 

and racemisation, which often occurs as an effect of ageing (Cloos et al., 1998; Gineyts et al., 2000). 

Bonde et al. (1994) developed the β-CTX enzyme-linked immunosorbent assay (ELISA) which was 

advanced in later years (Bonde et al., 1997). Measurement of β-CTX is now available on automated 

immunoassay analysers (electro-chemiluminescence immuno assasy; ECLIA) which reduce the 

analytical variability. This is one of the reasons that β-CTX is measured as a marker of bone 

resorption throughout this thesis, other reasons are explained in subsequent sections.   

 

2.9.3 Variability of bone turnover markers 
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There are three main causes of variability in the measurement of bone turnover markers; pre-

analytical, analytical and biological variability. Standardisation of procedures of all scientific 

measurements help to control the first two causes of variability, this includes; timing and mode of 

sample collection, handling, storage and transport of the sample, accounting for thermodegradation 

and photolysis, preparation for analyses through centrifugation, freezing, thawing and aliquoting 

(Banfi and Dolci, 2003; Seibel, 2005), as well as using specific and rigorously controlled assays that 

are part of a routine proficiency testing program (Seibel et al., 2001). Due to large variabilities, small 

sample sizes are not ideal and serial measurements should be performed whenever possible (Banfi 

et al., 2010).  

 

Among the different bone resorption markers, breakdown products of type 1 collagen have been 

shown to have superiority over other degradation products (Garnero et al., 1996b), due to their 

stability in blood once drawn and due to the development of accurate, automated assays used to 

measure them (Seibel, 2000; Seibel, 2005; Vasikaran et al., 2011a; Vasikaran et al., 2011b). Serum 

and plasma based markers have better clinical value than urinary markers because of lower 

imprecision, diurnal variation, day-to-day variability and intra-individual variability in blood 

markers compared to urine markers (Popp-Snijders et al., 1996; Garnero et al., 2001). One blood 

sample is also easier and more convenient than collecting daily urine output, in addition, the 

correction for creatinine in urine adds another source of variation (Vasikaran et al., 2011a). Christgau 

et al. (2000) and Eastell et al. (2000) showed that serum measures of CTX and NTX have an 

approximately two-fold lower intra-individual variability compared with urinary markers.  

 

Vasikaran et al. (2011a) separated sources of pre-analytical variation into “controllable” and 

“uncontrollable” sources. Controllable sources include; circadian variations, fasting/feeding status, 

exercise status, menstrual status, seasonal and dietary status. Uncontrollable sources include; age, 

menopausal status, sex, fracture history, pregnancy and lactation, drugs, disease, immobility, 

geography, ethnicity and oral contraception use. Some of these factors, such as, sex, fracture history 

and oral contraceptive use were considered throughout this thesis, whereas some of these factors 

such as, pregnancy and lactation, drug use and disease were not considered in further sections 
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because they were not relevant to the participants that participated in the experimental studies of this 

thesis. These sources of pre-analytical variability were controlled for throughout the experimental 

studies in this thesis. 

 

The International Osteoporosis Foundation and The International Federation of Clinical Chemistry 

and Laboratory Medicine recommend that serum or plasma P1NP and β-CTX are used as reference 

analytes for bone turnover markers in clinical studies (Vasikaran et al., 2011a; Vasikaran et al., 

2011b; Vasikaran et al., 2011c), which is another reason that these bone turnover markers are 

measured throughout this thesis. P1NP and β-CTX are recommended because of adequate 

characterisation of the markers, the specificity to bone, wide availability of analysis, relatively low 

biological and analytical variability when sufficiently controlled, ease of sample handling and 

analysis and sample stability (Vasikaran et al., 2011b).  

 

2.9.4 Circadian rhythms of bone turnover markers  

Distinct circadian rhythms of bone turnover markers have been demonstrated in humans. Although 

markers of bone formation also show circadian rhythms, the relative amplitude of these rhythms is 

much smaller than that of bone resorption markers (Eastell et al., 1992). Most studies report daily 

amplitudes of 15 – 30%, but the most pronounced diurnal changes have been shown for CTX (Eastell 

et al., 1992; Greenspan et al., 1997; Schlemmer and Hassager, 1999; Wichers et al., 1999). Circadian 

rhythms generally have 2 components; an endogenous component that is controlled by a body clock 

and is influenced by other endocrine circadian rhythms, and an exogenous component that is 

influenced by cyclical changes in the external environment, such as diet and exercise. Exogenous 

influences can amplify endogenous rhythms (Blumsohn et al., 1994b).  

 

DPD has a large-amplitude circadian rhythm, with a peak at around 07:00 and a nadir around 17:00 

(Eastell et al., 1992; Schlemmer et al., 1992), and NTX follows a similar rhythm (Blumsohn et al., 

1994b). Blumsohn et al., (1994b) showed that daily excretion of DPD and NTX decreased 

significantly and the circadian rhythm was attenuated in participants that were given a 1000 mg 

calcium supplement every evening (at 23:00) for 14 days. But excretion did not decrease in 
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participants that were given the calcium supplement in the morning (at 08:00). This evening calcium 

supplementation also reversed the night-time increase in PTH.  

 

PTH, which is discussed in more detail later sections, has a pronounced circadian rhythm; there is a 

peak in PTH in the early hours of the morning between 02:00 and 04:00 and a nadir between 08:00 

and 10:00 (Jubiz et al., 1972; Logue et al., 1989; Kitamura et al., 1990; Calvo et al., 1991; Fuleihan 

et al., 1997). It has been proposed that PTH contributes to the nocturnal increases in bone resorption, 

as both increase at night (Logue et al., 1989; Calvo et al., 1991; Hassager et al., 1992; Schlemmer 

et al., 1992). However, Ledger et al. (1995) tested this hypothesis in 10 young and 10 elderly 

participants and showed that when calcium was infused over-night, causing suppression of the peaks 

in PTH, the nocturnal peaks in NTX persisted. Therefore, the authors concluded that the circadian 

rhythm of bone resorption is not totally mediated by PTH secretion, but that PTH does set the 

absolute level of bone resorption at which the circadian rhythm occurs (Ledger et al., 1995). Previous 

studies have shown that PTH does not respond to feeding of macronutrients (Scott et al., 2012; Sale 

et al., 2015) but does respond to feeding of micronutrients, such as calcium, PO4 and vitamin D. The 

circadian rhythm of PTH is less likely to be controlled by feeding than markers of bone turnover are 

and is more likely to be endogenous (Fuleihan et al. 1997), although Fuleihan et al. (1997) failed to 

consider changes in PO4 and how they relate to PTH. Logue et al. (1992) showed that the daily 

response of PTH is regulated by the circadian clock throughout a 24 h period and that the timing of 

the nocturnal peak (02:00 – 06:00) does not change when the sleep pattern is shifted. However, 

Fraser et al. (1994) showed that a 96 h fast significantly alters the circadian rhythm of PTH secretion 

by lowering serum calcium concentrations and by suppressing the circadian rhythm of serum PO4, 

which the authors propose plays an important role in the control of the PTH rhythm.   

 

PYD, OC, BALP, P1CP, CTX and carboxyterminal cross-linked telopeptide of type 1 procollagen 

(ICTP – a marker of bone resorption) have been reported to have strong circadian rhythms, with peak 

values all occurring at night/early morning (Gundberg et al., 1985; Hassager et al., 1992; Wichers 

et al., 1999) and the nadir occurring in the late afternoon (Nielsen et al., 1990; Eastell et al., 1992; 

Hassager et al., 1992; Schlemmer at al., 1992; Schlemmer et al., 1994; Ledger et al., 1995). The 
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aetiology of these circadian rhythms is relatively unknown. The nocturnal increase in bone resorption 

may be caused by the absence of nutrient ingestion and the subsequent decrease in serum calcium 

levels. Although Schlemmer and Hassager (1999) showed that the nightly fast could only explain a 

small part of the circadian rhythm in bone resorption and that there is only a significant effect of 

fasting during the early day time. The circadian rhythm of bone resorption markers is independent 

of sex, sex hormones, posture, PTH and cortisol (Schlemmer et al., 1994; Ledger et al., 1995; 

Schlemmer et al., 1997; Schlemmer and Hassager, 1999). 

 

Bjarnson et al. (2002) demonstrated that markers of bone resorption do not have a fully endogenous 

circadian rhythm, but that the variations in concentrations are induced by food intake and are reduced 

during fasting. Separate intakes of glucose, protein and fat all caused a decrease in bone resorption 

of a similar magnitude, suggesting insulin is responsible for only part of this response. Bjarnson et 

al. (2002) estimate that a fasting period of more than 4 hours (probably between 6 and 9 hours) is 

needed for subsequent food intake to induce a decrease in bone resorption. When participants 

consumed a normal diet, there was a decrease in bone resorption after breakfast (therefore after an 

overnight fast), but there was no additional decrease in bone resorption after lunch or dinner, which 

were 4 – 6 hours after the previous meal. The response of serum CTX concentrations during both 

fasting and normal diet ingestion followed the same pattern, but the increases and decreases were 

more pronounced and rapid during feeding, so it is unlikely that consuming a meal in the afternoon 

or evening would cause a suppression of bone resorption markers as it would go against the direction 

of the natural circadian rhythm.  

 

Clowes et al. (2002a) measured bone turnover markers at 09:00 for 10 consecutive days in 20 

premenopausal females that were fed or fasted on alternate days. The authors conclude that feeding 

suppresses all markers of bone turnover (CTX, NTX, DPD, P1NP, OC and BALP); the decrease in 

bone formation markers was 4% and for bone resorption markers was between 7 and 18%. Likewise, 

Christgau (2000) demonstrated that fasting reduced the amplitude of the increases and decreases of 

the circadian rhythm of CTX; the maximum changes from the 24 hour mean were 20.3% in the fasted 

and 44.8% in the nonfasting. Therefore, it is important to consider nutrient intake in participants 
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when measuring markers of bone turnover, in order to reduce intra- and inter-individual variability 

due to circadian rhythms. As such, the timings of all blood samples taken throughout this thesis were 

controlled for and all resting/baseline samples were taken in a fasted state prior to any physical 

activity.  

 

2.10 Effects of exercise on bone turnover markers  

Studies that have investigated the effects of exercise on bone turnover markers have shown different 

responses. Additionally, different studies employ very different experimental protocols, which 

contribute to the lack of detailed understanding surrounding the bone turnover marker response to 

exercise. Several studies that have investigated the effects of exercise on bone turnover markers have 

studied sedentary or recreationally active individuals (Brahm et al., 1996; Thorsen et al., 1997; 

Langberg et al., 2000; Malm et al., 2003; Hermann et al., 2007; Mouzopoulos et al., 2007; Lippi et 

al., 2008; Scott et al., 2011; Scott et al., 2013), therefore this data may not closely relate to athletes 

and cannot be simply transferred to elite athletes that train every day.  

 

Research that has studied elite athletes or amateur endurance athletes will be subsequently discussed. 

A number of investigations have measured bone turnover before and after acute bouts of exercise, 

that often occur outside the laboratory setting and are often poorly controlled. Data collected in this 

way, does however have ecological validity and reflects the bone turnover response to a race or 

training session surrounded by the normal routine of an athlete. This may help provide practical and 

relevant information about maintaining bone health in athletic populations. Study protocols that take 

laboratory control of bone turnover measurements into the applied setting of elite athlete training or 

race environments are therefore necessary.  

 

2.10.1 Bone turnover markers and acute exercise 

Crespo et al. (1999) studied elite marathon runners that had completed the Marathon World Cup. 

Blood samples were taken before the race, immediately and 24 h after the race, for the measurement 

of calcium, PO4, alkaline phosphatase, TRAP, total proteins and cortisol. The authors showed 
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significant increases in alkaline phosphatase and decreased TRAP immediately after exercise and 24 

hours later. The authors suggest that this means that there was an imbalance in bone turnover in the 

favour of bone formation, and that the marathon had an osteogenic effect, however, the use of 

alkaline phosphatase to determine bone formation is dubious as it is a ubiquitous enzyme located in 

most tissues, and is present in several isoenzyme forms (Harris, 1990).  The pre-race sample was 

taken 5 minutes before the start of the race meaning that this was likely to be after breakfast or other 

food consumption, which would have affected the variation of the measured metabolites and markers. 

The authors also failed to control or record food or fluid intake during and after the race, which 

would have affected the immediate post-race and 24 h post-race measurements.  

 

Malm et al. (1993) studied 15 females and 8 males that completed the Helsinki City Marathon. One 

of the females had undergone a hysterectomy and 2 were on oestrogen replacement therapy, 

suggesting that they were menopaused, which would have affected bone turnover and bone mass 

(Garnero et al., 1996a; Vedi and Compston, 1996), therefore these participants should not have been 

included in the study. OC decreased during and 1 day after the marathon and this decline was 

sustained for 3 days in males and for the 5 days follow-up in females. BALP activity decreased in 

females but remained unchanged in males. Hydroxyproline, urinary output of collagen breakdown, 

increased in both males and females after the race, but this did not reach statistical significance. The 

authors did not control dietary intakes closely throughout the study period; participants were asked 

participants to follow a low gelatin diet, which can affect hydroxyproline excretion, and to consume 

a standardised amount of dairy products each day, although there was no mention of whether 

participants adhered to this. The authors attribute the changes shown to an increase in cortisol 

concentrations, which have been shown to increase up to fourfold during a marathon (Fellmann et 

al., 1989), however cortisol was not measured in this study so this conclusion is speculative. 

 

Langberg et al. (2000) measured bone turnover makers in 17 amateur male runners, 7 days prior to, 

immediately post, 1, 2, 3, 4, 5 and 6 days after completion of a marathon run. Immediately after the 

marathon run there was a transient decrease in P1CP that subsequently increased 1 day after the run, 

peaked 3 days after and returned to baseline 5 days after the run. ICTP showed a significant increase 
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immediately after the run, but then returned to baseline 1 day after the run. The immediate post-run 

changes in P1CP and ICTP suggest an immediate imbalance in bone turnover in the direction of 

increased bone resorption, but in the recovery period following the race, the direction of the 

imbalance is reversed and favours increased bone formation. The week of complete rest after the run, 

is likely to have facilitated the positive bone turnover balance observed. This behaviour is not akin 

to that of elite runners, who would rarely have a full week of rest. If the participants in this study 

trained again 1, 2 or 3 days post-marathon, the imbalance in bone turnover in favour of increased 

resorption may have been maintained. This however needs to be explored as studies that investigate 

repeated exercise bouts and that reflect normal routines of athletes are lacking. There are a number 

of limitations of the study, including the lack of a baseline sample taken prior to the marathon run to 

compare the post-marathon sample. The ‘baseline’ sample was taken 1 week before the start of the 

marathon and there could have been significant changes in behaviour in that 1 week period such as, 

changes in energy and carbohydrate intakes for the purpose of glycogen loading (Coyle, 1991; 

Hawley et al., 1997).  

 

As well as triathlon and marathon running, ultra-distance running has become more popular in recent 

years (Hoffman et al., 2010; Knechtle et al., 2011). Mouzopoulos et al. (2007) studied 16 male 

athletes before and after competing in a 245 km ultra-marathon. The authors showed that OC, P1CP 

and BALP concentrations significantly decreased after the run and ICTP, cortisol and PTH 

concentrations increased immediately after the run. This suggests that bone formation is suppressed 

and bone resorption is increased after the completion of an ultra-marathon, which the authors related 

to an increase in cortisol and PTH concentrations.  

 

Similarly, Kershcan-Schindl et al. (2009) studied runners before and after completing a 246 km race. 

Morning blood samples were taken the day before, immediately after and 3 days after the race, but 

there were no dietary or exercise controls in place between any of the samples and similar to 

Langberg et al. (2000) the ‘baseline’ sample was not taken on the same day as the race. The sample 

taken immediately after the race was taken in the afternoon and it is not clear at what time any of the 

samples were taken, which is important due to the strong circadian rhythms of the measured markers 
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(Gundberg et al., 1985; Nielsen et al., 1990; Eastell et al., 1992; Hassager et al., 1992; Schlemmer 

at al., 1992; Schlemmer et al., 1994; Ledger et al., 1995; Wichers et al., 1999). The authors showed 

that CTX was significantly increased immediately after the race, as well as 3 days after. RANKL 

and OPG were increased immediately and 3 days after the race and OC was suppressed immediately 

after the race but returned almost to baseline 3 days after the race. These results suggest a transient 

dissociation of bone resorption and formation in the direction of increased bone resorption, but there 

are several limitations with this study. Although measures of haematocrit were taken, concentrations 

of the bone turnover markers were not adjusted for changes in haematocrit or plasma volume and 

considering that the average race time was 32 h 52 min, drastic haemoconcentration was likely to 

have occurred during this extensive exercise bout (Leithӓuser et al., 2003; Wu et al., 2004). Further, 

the sample taken 3 days after the race allowed time for the participants to rehydrate and correct their 

fluid balance. This means that the changes in concentrations may not be absolute changes in bone 

turnover marker concentrations, but they may reflect large decreases and increases in blood plasma 

volumes and this makes it difficult to draw convincing conclusions from this data.  

 

The lack of agreement in what happens to bone turnover after exercise is not surprising considering 

the different exercise bouts studied and the lack of control around blood sampling, including timings 

and dietary control. This is undoubtedly more challenging in a field setting compared to a laboratory 

setting, as shown in the studies mentioned above, but the basic, necessary controls, that help 

minimise pre-analytical variation (Vasikaran et al., 2011a), have not been implemented in many of 

these studies.  

 

Recent investigations published by Scott and colleagues, performed in the laboratory, were more 

tightly controlled for confounding variables. Scott et al. (2010) was the first study to measure bone 

turnover on the days that follow weight-bearing exercise in a laboratory setting. The authors 

controlled the dietary intakes of participants throughout the study, prescribing diets for a total of 8 

days. Participants also refrained from exercise, other than that performed in the laboratory. 

Additionally, blood samples were taken after an overnight fast and were always drawn between 

08:00 and 08:30. The study investigated the effect of an exhaustive running bout, on markers of bone 
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turnover, between endurance trained and recreationally active male participants. Times to exhaustion 

are not stated, but distance covered was greater in the endurance trained participants compared to 

the recreationally active participants, meaning that the mechanical loading placed on the bones is 

likely to be different. Despite this, the results showed that there was no significant differences 

between the endurance trained athletes and recreationally active males for any variable. A rested 

control group was also included and this group showed no significant changes in any variable 

throughout the 8 days, which allows the authors to conclude that the changes in bone marker 

concentrations were due to the exercise undertaken.  

 

The exercise bout performed in the study by Scott et al. (2010) caused a significant increase in β-

CTX concentrations on follow-up days 1 – 4, OPG increased after 20 minutes and was increased on 

the first follow-up day. PTH, albumin-adjusted calcium (ACa) and PO4 were also increased 

throughout exercise although there was no change in P1NP or BALP. The increase in bone resorption 

that was sustained for at least 4 days, with no subsequent increase in bone formation, suggests that 

during recovery from exhaustive running, bone turnover favours increased bone resorption. 

Participants undertook the run in a fasted state which relates closely to eating practices of endurance 

athletes, as fasted training is often performed (dependent on the phase of the season) for training 

adaptation purposes (Hansen et al., 2005; Hawley and Burke, 2010; Van Proeyen et al., 2011; 

Bartlett et al., 2015). The run to exhaustion protocol is likely to have caused further glycogen 

depletion. Furthermore, participants did not compensate for the energy that they expended during 

the running bout, and the energy intake remained constant on each day of the experimental protocol. 

This suggests that participants may have been in a negative energy balance on the exercise day as 

their energy expenditure is likely to have exceeded their energy intake. This is also relevant to the 

endurance athlete population, who regularly fail to compensate for large energy expenditures (Fudge 

et al., 2006; Drenowatz et al., 2012).  

 

Scott et al. (2011) compared the effects of exercise intensity on the bone turnover response. The 

exercise performed was 60 minutes of treadmill running at three different intensities; 55%VO2max, 

65%VO2max and 75%VO2max. Exercise intensity was investigated because it has previously been 
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shown that military recruits with poor physical conditioning who exercise at higher relative 

intensities have an increased risk of stress fracture injury compared to relatively fitter recruits 

(Välimäki et al., 2005). It was therefore hypothesised that cardiovascular intensity, rather than the 

amount of mechanical loading experienced, may contribute to some of the negative effects of 

endurance exercise on bone, such as reduced BMD (Bilanin et al., 1989; Hind et al., 2006) and 

increased stress fracture injury (Bennell et al., 1996b; Lappe et al., 2008). The findings of the study 

showed that running at 75%VO2max caused a greater increase in β-CTX concentrations compared to 

running at 55%VO2max in the hour post-exercise, but markers of bone formation were not affected. 

This suggests that during the hours following a running bout bone resorption is increased but bone 

formation remained unchanged. However, BALP concentrations increased 3 and 4 days post-

exercise, which suggests a more long-term beneficial effect of a 60 minute running bout on bone 

mineralisation. PTH concentrations were significantly increased after exercise at the highest exercise 

intensity only, which could not be explained by changes in calcium or PO4, this will be explored 

further in subsequent sections and chapters of this thesis.  

 

2.10.2 Bone turnover and repeated bouts of exercise 

The studies discussed in the previous section all measured the effect of acute bouts of exercise on 

bone turnover, but there is a lack of data surrounding the effect of repeated exercise on bone turnover. 

This is particularly important for athletes training multiple times a day, as repeated exercise bouts 

have the potential to cause a greater disturbance in bone turnover than singular acute bouts of 

exercise (Zanker and Swaine, 2000). Some studies have investigated the effect of prolonged army 

and navy recruit training programs (8 weeks, 10 weeks and 4 months) on bone turnover and stress 

fracture incidence or adaptation of the tibia (Lappe et al., 2008; Evans et al., 2009; Izard et al., 2016). 

Two studies have investigated the effects of 3 or 5 days of consecutive running and energy restriction 

on bone turnover (Zanker and Swaine, 2000; Ihle and Loucks, 2004), but only one of these studies 

examined athletes, the other sedentary females.  

 

The lack of research in this specific area may be due to the difficulty in executing this sort of study 

in a well-controlled manner or the difficultly in accessing athletes that train in this way. There is a 
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need for more of these types of studies as they reflect the normal routine of endurance athletes more 

closely and therefore hold more ecological validity. Some endurance athletes such as triathletes, who 

have 3 disciplines to practice, often train 3 – 4 times a day, leaving minimal recovery time between 

training sessions and therefore a very limited amount of rest across a whole season. There are 

currently no studies that have investigated the effects of this type of extreme training schedule on 

bone turnover.   

 

Scott et al. (2013) investigated the bone turnover response to two consecutive bouts of running, with 

recovery durations of 3 hours or 23 hours between the two running bouts. The different recovery 

periods did not affect markers of bone resorption or formation during the 1 – 4 days after exercise, 

nor did the different recovery periods alter the increase in OPG, PTH, ACa and PO4 in the second 

bout. One possible reason for the lack of increased bone resorption in the days following exercise 

could be due to the consumption of a supplementary 660 kcal on exercise days. Participants were 

provided with a total energy intake of 3,100 kcal, meaning that participants were likely to have 

maintained energy balance on exercise days and may have been able to fully recover during the 3 

hours of recovery between running bouts. This is in agreement with data from Zanker and Swaine 

(2000) and Ihle and Loucks (2004), who showed that there was no effect of repeated weight-bearing 

exercise on bone turnover if participants were in an energy balance, but when participants were 

energy restricted, bone turnover became imbalanced, with suppressed bone formation or increased 

bone resorption. This suggests that if Scott et al. (2013) had not provided participants with the 

additional 660 kcal to replace the energy expended during the exercise, bone turnover may have 

become imbalanced to a greater extent in the second exercise bout and during the days following the 

exercise bout with the short recovery duration.  

 

Zanker and Swaine (2000) reproduced the energy restricted conditions that regularly occur in 

endurance athletes, but in a laboratory environment. The experimental trials involved 60 minutes of 

running on 3 consecutive days, where participants consumed either 100% of their estimated energy 

requirements, or 50% of their estimated energy requirements. P1NP and IGF-1 were reduced by 15% 

and 17% in response to the energy restricted condition, but there was no change in any bone turnover 
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markers during the energy balance condition. There was a strong correlation found between the 

decrease in P1NP and IGF-1 (r = 0.97). The authors concluded that in trained male distance runners, 

who are accustomed to this type of exercise, repeated periods of running do not affect bone turnover, 

unless the runners are under energy restricted conditions. These findings support that a negative 

energy balance, reduced levels of IGF-1 and reduced collagen synthesis are linked and that these 

factors may contribute to the imbalance in bone turnover seen in some trained distance runners 

(MacDougall et al., 1992; Drinkwater et al., 1993; Hetland et al., 1993).  

 

Oosthuyse et al. (2013) investigated the effect of 4 consecutive days of cycling for 3 hours each day 

in 10 trained male cyclists. β-CTX concentrations increased from pre to post-exercise on days 1 – 2 

and BALP concentrations were unchanged, however on days 3 – 4 both β-CTX and BALP 

concentrations were suppressed pre- to post-exercise. Therefore the third and fourth day of cycling 

failed to provide an immediate stimulus to promote further bone resorption. Although there was a 

decrease in exercise intensity and total energy expenditure on day 3, the authors attribute the β-CTX 

response to a decrease in the rate of calcium lost in sweat, as the β-CTX response reflects the sweat 

calcium excretion response. The high rate of sweat calcium excretion on day 1 was accompanied by 

a decrease in serum calcium concentration from pre to post-exercise, but the lower rates of sweat 

calcium excretion on days 3 – 4 did not affect serum calcium concentrations. The authors failed to 

explain why the rates of sweat calcium excretion on days 3 – 4 were lower. β-CTX concentrations 

did not recover to baseline concentrations following 21 h of recovery after each cycling bout, which 

shows that an extended recovery period, that is longer than one day, is needed for bone resorption to 

return to baseline levels after prolonged cycling.  

 

This persistent increase in bone resorption may have long-term detrimental consequences on bone 

health, as the simple presence of more sites of bone resorption is sufficient to increase the weakness 

of the bone (Parfitt, 1993). This may increase the risk of fracture (Burr et al., 1997), may contribute 

to low BMD scores in cyclists (Stewart and Hannon, 2000; Rector et al., 2008; Medelli et al., 2009a) 

and the 60% of cyclists that are classified as osteopenic (Nichols et al., 2003; Rector et al., 2008; 

Medelli et al., 2009b). Elite cyclists often train for 6 days followed by 1 rest day (Rehrer et al., 2010), 
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so investigating this routine is pertinent. Hinton et al. (2010) measured resting OC, BALP and CTX 

concentrations throughout a 6 day cycling tour and showed that OC was significantly increased at 1, 

3 and 5 days throughout the tour and CTX was significantly increased on day 3. The average resting 

concentrations of CTX were higher than that of non-active individuals (Appendix A) and there were 

large individual differences, with one participant having a CTX concentration of approximately 1.8 

ng.mL-1. Rehrer et al. (2010) measured energy intakes in the same cyclists during the same race and 

showed that there was a decrease in energy intakes from day 2 to day 3 of the tour, which coincided 

with the increase in CTX in the Hinton et al. (2010) paper. This suggests that the total amount of 

energy consumed on each day may have an acute effect on resting bone turnover on the subsequent 

morning. Elite triathletes, whose sport involves cycling as well as swimming and running, do not 

have a rest day each week, and although they may not cycle every day, they will swim, cycle or run 

every day, therefore investigating the effect of multiple exercise bouts on consecutive days is also 

pertinent as well as measuring energy intakes during these training days.    

 

Some sports such as football, have a clear beginning and end to a season, with large reductions in 

training once the season has finished. In football players, markers of bone turnover decreased after 

2 weeks of reduced training, but increased again after only 10 days of resumed normal training, 

indicating that bone turnover markers are sensitive to changes in activity levels throughout a sports 

season (Karlsson et al., 2003a; Karlsson et al., 2003b). Although triathletes have a competitive 

season lasting from May until September, they will train all year round with only a few weeks of 

reduced volumes of training in September/October. This warrants investigations that study athletes 

throughout a season, to enable any changes in bone turnover due to changes in training loads to be 

observed. 

 

2.10.3 Bone turnover throughout a competitive season 

There are very few studies investigating variations in bone turnover markers in athletes over a season. 

Maïmoun et al. (2004b) studied 7 male sub-elite triathletes, at the start of the season and 32 weeks 

later. At 32 weeks, BMD increased at the lumbar spine and skull, but not at any other sites or for the 

whole body. The authors attribute this lack of change in BMD to the participants training for an 
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average of 5 years and therefore their bone mass and architecture had already adapted to the 

mechanical loading exerted by triathlon training, with the bone adaptation threshold subsequently 

rising (Casez et al., 1995; Bennell et al., 1997). BALP decreased after 32 weeks but there was no 

difference in OC or u-CTX, and the authors suggest that there is a suppression of bone formation 

during a triathlon season. However, drawing this conclusion from a decrease in only one bone 

turnover marker at one time point is dubious as the singular measurements were too isolated to detect 

dynamic changes in bone turnover throughout a season. It is likely that perturbations in bone turnover 

occurred in the 32 weeks between the two samples, as the training load and intensity is likely to have 

changed, particularly if this coincided with important races. Therefore a singular follow-up 

measurement is not adequate when monitoring bone turnover, especially in elite athletes.  

 

Jürimäe et al. (2006) examined the effect of a 6-month heavy training period in elite and sub-elite 

rowers, on BMD, BMC, markers of bone turnover and related hormones. However, these authors 

also made only 2 measurements; one after a relative rest period where the training volume was 11.6 

± 0.4 h per week and one after a 6-month heavy volume period where the training volume was 16.8 

± 0.6 h per week. The authors showed an increase in OC, which was the only bone turnover marker 

measured. OC may not be specifically related to changes in bone formation, but could potentially be 

an adaptation to the altering energy requirements of the rowers (Confavreux et al., 2009), which is 

likely to have increased due to a 5 h increase in training each week. However, there were no measures 

of energy intakes or energy expenditures reported to help elucidate whether this was the case. IGF-

1 and the IGF-1 index increased significantly after the 6 months of high volume training and they 

were significantly correlated. The apparent relationship between OC and IGF-1 is supported by 

Canalis (1996) and Zanker and Cooke (2004), who advocate the link between energy balance, IGF-

1 and bone formation in athletes and females with anorexia nervosa. Whole body BMD remained 

unchanged in the rowers, with only arm BMD increasing. This increase in arm BMD, without 

alteration of whole body BMD supports the notion that increased bone formation occurred at the 

specific skeletal site that was subject to mechanical loading, but that this was not great enough to 

transfer to whole body increases in bone formation. Again the main limitation of this study is the 

two isolated measures of only one bone turnover marker. 
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Lombardi et al. (2011) measured BALP, OC, β-CTX and TRAP5b in 14 elite female skiers, at 3 

different phases of training; after a relative rest period (T1), after the pre-competition season (T2) 

and after the competition season (T3). BALP, OC and TRAP5b increased from T2 to T3. Increased 

concentrations of both bone resorption and formation markers demonstrated higher bone turnover 

during an intensive competition period. This increased bone turnover may be due to increased 

mechanical loading, caused by a demanding competition schedule. Lombardi et al. (2011) describe 

the limitations of measuring bone turnover markers in athletes and comparing the values to 

established ‘normal’ ranges. The constant physiological stress and high level of mechanical loading 

experienced by athletes induces greater perturbations in bone turnover and other physiological 

responses, compared to the non-active population. However, normal ranges of bone turnover markers 

have not yet been established in athletes for specific sports. This would be advantageous, as every 

sport exerts a unique amount of mechanical loading and stress on the athletes’ skeletal system. If a 

universal assessment schedule was implemented, a similar assessment schedule to this investigation 

would be ideal to establish normal ranges of bone turnover markers in specific athletes. This would 

allow investigators to assess changes over time in relation to different training phases and would 

allow for the comparison between athletes of different sports.   

  

2.11 Calcium 

It is well known that calcium is important for bone health and the skeletal system. In bone, calcium 

exists as hydroxyapatite, which influences bone strength and mass. Calcium intake is considered a 

major modifiable environmental factor in maximising peak bone mass during growth and reducing 

bone loss during later life (Specker, 1996; Zhu and Prince, 2012). Specker (1996) concluded that 

there is only a beneficial effect of physical activity on bone health if calcium intakes exceed 1000 

mg.d-1, and that the benefits of a high calcium diet only exist when an individual performs physical 

activity, i.e. the two factors do not work independently of each other. The benefits of calcium and 

vitamin D intake are well documented in elderly populations, with regards to preventing bone loss 
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and fractures and there is increasing evidence of this in athletes (Medelli et al., 2009a; Nieves et al., 

2010; Tenforde et al., 2010; Sonneville et al., 2012).  

 

The recommended daily allowance of calcium is 700 mg for healthy adults, 800 mg for adolescent 

females and 1000 mg for adolescent males, females in the menopause and those with osteoporosis 

(British Dietetics Association and the National Health Service). There are no specific recommended 

intakes for athletes, but due to the large amounts of physical activity performed by athletes, the 

requirement for calcium in athletes is likely to be higher than that for non-active healthy adults 

(Kunstel, 2005).  

 

Calcium intake may modulate the circadian rhythm of bone resorption markers. Blumsholn et al. 

(1994a) showed that when premenopausal women ingested 1000 mg of calcium at 23:00, the night 

time increase in PTH was abolished and the circadian rhythm of bone resorption (DPD and NTX) 

was attenuated, but this effect did not transcend into the next day. When the same amount of calcium 

was given at 08:00, there was no change in the circadian rhythm of the bone resorption markers and 

PTH was only suppressed in the day but not at night time. The results of this study suggest that the 

daily rhythm of bone resorption may be determined in part by calcium intake and PTH secretion. 

 

It is well established that an acute ingestion of calcium rapidly suppresses bone resorption (Reid et 

al., 1986; Reginster et al., 1993; Blumsholn et al., 1994a; Horowitz et al., 1994; Yang et al., 1994; 

Rubinacci et al., 1996), however these studies used calcium salts rather than dairy products. Dairy 

products contain additional micro- and macronutrients that may slow down calcium absorption and 

digestion rates. However, Haakonssen et al. (2014) showed that a dairy based, pre-exercise meal did 

not affect gut comfort or performance in cyclists, thus consuming real dairy products may be 

preferred to calcium salts in athletes as they provide other essential micro- and macronutrients.  

 

Green et al. (2003) tested skimmed milk vs calcium phosphate and showed that the skimmed milk 

caused a decrease in CTX, despite no significant changes in serum calcium or PTH. Calcium 

phosphate caused significant changes in serum calcium and PTH, as well as a decrease in CTX in 
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the first few hours after ingestion. The authors attribute this to the calcium phosphate having a faster 

transit time through the gut, whereas milk clots in the stomach and gastrointestinal tract meaning its 

digestion is slower. The authors failed to discuss the addition of PO4 to the calcium salt which would 

affect PTH, or the reason why the skimmed milk caused a decrease in CTX concentrations but did 

not affect serum calcium or PTH concentrations. This could be due to the lactose, protein or fat 

contained in the milk causing the release of post-prandial and gastrointestinal hormones that may 

contribute to CTX suppression (Clowes et al., 2003).  

 

Guillemant et al. (2004) studied 12 trained triathletes and demonstrated that when 60 minutes of 

cycling was performed at 80% VO2max, without a calcium load before or during the exercise, CTX 

concentrations increased progressively 30 minutes after the start of the exercise and two hours after 

the exercise, concentrations were still significantly elevated by 45 – 50%. Similarly, PTH 

concentrations increased 2.5 – 3 fold during the exercise but returned to baseline concentrations 30 

minutes after the completion of the exercise. The authors attribute this PTH response to the loss of 

calcium in sweat; dermal calcium losses may cause a decrease in serum calcium, which means PTH 

is secreted to rectify this decrease. In contrast, when participants consumed a total of 972 mg of 

calcium, in fractionated amounts every 15 minutes, from 2 hours before exercise until the end of 

exercise, the increase in CTX concentrations was completely suppressed and the increase in PTH 

was partially suppressed. BALP concentrations fluctuated and showed no significant changes with 

or without calcium intake. The authors concluded that fractionating the intake of high calcium water 

may be a method to prevent deviations from calcium homeostasis and that the burst of osteoclastic 

activity that is induced by an acute bout of cycling can be suppressed by the previous intake of a 

calcium load.  

 

Barry et al. (2011) hypothesised that disruption of calcium homeostasis is a potential mediator of 

bone loss, which is illustrated in Figure 6. This hypothesis is based on the findings that sweating 

during exercise can cause large dermal calcium losses (Klesges et al., 1996; Barry and Kohrt 2007; 

Barry and Khort 2008); Chinevere et al. (2008) suggested that mineral losses in sweat could 

contribute up to 40% of the daily recommended intake of calcium. Dermal calcium loss may cause 
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a decrease in Ca2+ concentrations, leading to increased PTH and increased in bone resorption. If 

dermal calcium losses are replaced by oral calcium supplementation this may attenuate the increase 

in bone resorption. 

 

 

 

 

 

 

 

 

Figure 6. Reproduced with permission from Lippincott Williams and Wilkins and the American 

College of Sports Medicine; Barry et al. (2011). This figure shows how dermal calcium loss may 

cause increased bone resorption, mediated by decreased Ca2+ and increased PTH concentrations. If 

dermal calcium losses are replaced by oral calcium supplementation this may attenuate the increase 

in bone resorption. Ca2+ (ionised calcium) PTH (parathyroid hormone), CTX (carboxyterminal cross-

linking telopeptide of type 1 collagen).  

 

Barry et al. (2011) tested this hypothesis by supplementing 20 male endurance athletes during 35 

km cycling time trials, with differing calcium supplementation conditions. The three trials consisited 

of; 1) ingesting 1000 mg of calcium before exercise and ingesting placebo during exercise; 2) 

ingesting placebo before exercise and 1000 mg throughout exercise; 3) ingesting placebo both before 

and during exercise. The authors showed that compared to the placebo condition, calcium ingestion 

before exercise significantly attenuated the increase in PTH during exercise and there was a similar 

trend for calcium ingestion during exercise; however there was no change in CTX, BALP or Ca2+. 

Measurements of Ca2+ every 15 minutes may not have been regular enough to observe changes, as 

PTH is secreted within seconds of a change in Ca2+ and concentrations are therefore quickly 

normalised (Brown, 2000). The authors assume that calcium supplementation attenuates the increase 

in PTH due to the increased availability of non-skeletal calcium to be absorbed from the gut, 
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minimising the extent to which skeletal stores need to be mobilised. Haakonssen et al. (2014) also 

showed that consuming a calcium rich breakfast (1,350 mg) 90 minutes before a prolonged and high 

intensity bout of cycling attenuates the increase in PTH and CTX and maintains Ca2+ in elite female 

cyclists.  

 

The amount of sweat and dermal calcium loss is probably dissimilar across sports due to differing 

environmental conditions, heat acclimation and individual differences (Chinevere et al., 2008), 

which has never been investigated in elite athletes. Chronic and profuse sweating may increase the 

chance of mineral deficiencies when intakes are not sufficient to replace the mineral losses in sweat 

(Chinevere et al., 2008) and in accordance with this, some studies have shown lower levels of plasma 

minerals in athletes compared to controls (Haralambie, 1981; Campbell and Anderson, 1987; 

Nishiyama et al., 1996).  

 

2.12 Parathyroid hormone 

PTH is a calciotropic hormone that is secreted by the parathyroid gland to defend against a low serum 

calcium concentration. PTH secretory activity is regulated by the presence of Ca2+ in the serum, 

which is detected by the calcium-sensing receptor on the parathyroid gland (Brown, 1983; Brent et 

al., 1988; Brown, 2000). 1,25(OH)2D3 is the second major Ca2+ elevating hormone (Brown, 2013). 

Vital functions of Ca2+ involve maintaining plasma membrane integrity, it is present in adhesion 

molecules, clotting factors and enzymes (Brown and MacLeod, 2001), it activates exocytosis, action 

potentials and the contraction of muscles (Hofer and Brown, 2003), it is also critical, along with PO4, 

to the mineral component of the skeleton (Bringhurst et al., 1998; Pietrobon et al., 1990). Therefore, 

maintaining adequate serum concentrations of Ca2+ is vital.  

 

When serum calcium levels drop in resting humans, PTH is secreted within seconds and acts to 

increase serum calcium levels by mobilising calcium from bone reservoirs, by stimulating osteoclasts 

via a cascade of signals within the bone to induce bone resorption and by increasing renal and 

intestinal absorption of calcium, mediated by 1,25(OH)2D3 (McSheehy and Chambers, 1986; 
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Thorsen et al., 1997; Brown 2000; Zitterman et al., 2002; DeLuca, 2004; Brown, 2013). When Ca2+ 

decreases rapidly, as it may do during intense exercise, there is a more vigorous PTH response than 

when Ca2+ falls slowly (Diaz et al., 1999). PTH and calcitonin, which works in the opposite way to 

PTH, are regulatory hormones that are involved in a self-limiting, negative feedback loop, that sets 

the homeostatic level of Ca2+ (Brown, 2000).  

 

PTH exerts its effects on bone resorption indirectly via the osteoblast (Qin et al., 2004). Studies have 

shown that various modes of PTH administration regulate the RANKL:OPG ratio differently, which 

determines the degree of osteoclast differentiation and activation (Lacey et al., 1998; Yasuda et al., 

1998), therefore affecting the amount of bone resorption. Ma et al. (2001) showed that continuous 

infusion of PTH in rats caused a decrease in messenger ribonucleic acid (mRNA) for OPG and an 

increase in mRNA for RANKL, suggesting that this favours activation of osteoclasts. In contrast, 

when PTH was administered intermittently, changes in osteoclast activity and bone resorption were 

not observed. Therefore, PTH has the potential to have both anabolic and catabolic effects on the 

skeletal system and the twofold effects of PTH seem to be primarily reliant on the duration of 

elevation above baseline levels, and secondly the concentration of PTH (Tam et al., 1982; Frolik et 

al., 2003).  

 

Frolik et al. (2003) suggested that in order to create an anabolic bone response, the duration of PTH 

exposure should be kept to a minimum, but the absolute concentration of PTH may be less important. 

Furthermore, when PTH is administered, prolonged elevation as a result of continuous infusion has 

been shown to cause bone loss (Tam et al., 1982; Hock and Gera, 1992; Uzawa et al., 1995) and 

transient spikes as a result of repeated injections or a daily injection result in a net gain in bone mass 

(Reeve et al., 1981; Tam et al., 1982; Dempster et al., 1993; Riond et al., 1998; Dempster et al., 

2001). Tam et al. (1982) attribute the anabolic effect to the 1-34 region of the PTH molecule and 

suggest that PTH stimulates the formation of bone independently of the resorptive effects of PTH. 

Dempster et al. (2001) showed that the anabolic actions of PTH injections affect both cortical and 

trabecular bone of the iliac crest and that daily injections caused an increase in BMD and parameters 

related to bone strength, in osteoporotic men and women.  
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Chronic elevation of PTH concentrations, caused by prolonged strenuous exercise such as endurance 

training, can lead to a state of moderate secondary hyperparathyroidism (Ljunghall et al., 1986; 

Ljunghall et al., 1988). This can cause an increase in bone resorption, bone loss and a loss of the 

circadian rhythm of PTH (Tsai et al., 1984; Chappard et al., 2001). On the other hand, Vainionpää 

et al. (2009) has shown that exercise training can decrease basal PTH levels, which would have the 

effect of increasing the difference between PTH levels when at rest and when they are increased 

during exercise. This greater relative increase in PTH has been shown to have the maximum anabolic 

effect on bone (Brahm et al., 1997a; Brahm et al., 1997b) and this anabolic environment may be 

induced with short bouts of high-intensity exercise.   

 

Estepa et al. (1999) showed that an acute elevation in PO4 stimulated PTH secretion even when Ca2+ 

concentrations were maintained at baseline, but the increase in PTH was not rapid and took 30 

minutes to respond. The PO4 concentrations needed to stimulate PTH exceeded the range of normal 

diurnal variation, but it is unknown whether the increased PO4 concentrations reached during 

exercise will also stimulate PTH secretion, independent of Ca2+. In contrast, Martin et al. (2005) 

showed that stimulation of PTH release from the parathyroid glands by PO4 occurred rapidly within 

10 minutes and was independent of changes in calcium. As transient spikes in PTH concentrations 

can have anabolic effects on bone, manipulating the PTH circadian rhythm could be a possible 

method to improve bone health; with PO4 used to stimulate an increase in PTH at night-time and 

calcium used to decrease PTH secretion in the morning, thus exaggerating the transient peaks in the 

endogenous PTH rhythm (Fraser et al., 2004; Martin et al., 2005). If this was implemented around 

exercise it could amplify anabolic conditions for bone, but it is not known whether the exercise 

induced increases in PTH will have the same anabolic effect as exogenous PTH injections. The 

injections cause an increase in PTH when serum calcium is likely to be stable with no need for 

increased bone resorption. Alternatively, if an increase in PTH during exercise is triggered due to a 

decrease in serum calcium, calcium is therefore unstable and there is a metabolic need for increased 

bone resorption. Further studies are needed to elucidate the effect of exercise-mediated increases in 

PTH on bone health (Barry and Khort, 2007).  
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2.12.1 Parathyroid hormone in response to exercise  

Studies examining the effects of exercise on serum calcium and PTH are inconsistent; some studies 

show an increase in serum calcium with exercise (Zerath et al., 1997; Crespo et al., 1999, Takada et 

al., 1998; Scott et al., 2010; Scott et al., 2011; Scott et al., 2013) and others have shown a decrease 

(Barry and Khort, 2007; Boussida et al., 2003; Maïmoun et al., 2005; Thorsen et al., 1997) or no 

change (Maïmoun et al., 2006; Scott et al., 2012; Scott et al., 2014). It is therefore not clear whether 

the increase in PTH in response to exercise is controlled by a decrease in serum calcium 

concentrations and this requires clarification (Barry and Khort, 2007).  

 

High or moderate exercise intensities induce significant increases in PTH and lower exercise 

intensities do not induce any significant changes (Maïmoun et al., 2006; Barry and Khort, 2007; 

Herrmann et al., 2007; Scott et al., 2011). Maïmoun et al. (2006) showed that 50 minutes of cycling 

at 15% above the ventilatory threshold transiently increased PTH secretion, along with total calcium, 

PO4, BALP, OC and CTX, but 50 minutes of cycling at 15% below the ventilatory threshold did not 

cause an increase in PTH. Similarly, Scott et al. (2011) showed that 60 minutes of running at 55% 

and 65%VO2max did not induce any significant changes in PTH during exercise. Conversely, running 

at 75%VO2max induced a significant increase in PTH concentrations during exercise, with a maximum 

increase of 84% from baseline concentrations at 60 minutes. The reason for these different responses 

and what controls them is unknown, but it may be due to different changes in serum calcium and 

PO4 concentrations, as these control changes in PTH at rest (Brown, 2000; Tfelt-Hansen, 2005). It 

should be noted that these studies used different types of exercise (cycling and running), which 

should be acknowledged when interpreting the results of different studies due to differences in 

mechanical loading between activities.  

 

Scott et al. (2010, 2011 and 2013) monitored PTH levels for 3 hours following endurance exercise, 

and decreases in PTH concentrations below baseline were observed, which was also shown by 

Guillemant et al. (2004). These post-exercise changes in PTH may be related to its circadian rhythm; 

there is a nadir between 08:00 and 10:00 (Jubiz et al., 1972; Logue et al., 1989; Kitamura et al., 
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1990; Calvo et al., 1991; Fuleihan et al., 1997) and the rapid decreases shown after exercise coincide 

with this nadir in the late morning (Fuleihan et al., 1997; Scott et al., 2010; Scott et al., 2011; Scott 

et al., 2014). However, Scott et al. (2014) recently showed that post-exercise PTH concentrations 

were lower than those in a non-exercising control group, suggesting a genuine role of exercise in 

reducing PTH concentrations below pre-exercise levels. 

 

Scott et al. (2013) showed that when two exercise bouts are performed 3 hours apart, the PTH 

response in the second bout is not altered by the first bout; PTH concentrations increased from 

baseline by approximately 69% in both bouts. Conversely, Bouassida et al. (2003) showed that when 

a second exercise bout was performed 40 minutes after a first exercise bout (protocol 2), there was 

no increase in PTH in the second bout. This is surprising as the relative exercise intensities of the 

first and second exercise bouts were 70% and 85% of VO2max and it has been shown that higher 

exercise intensities cause greater increases in PTH concentrations (Maïmoun et al., 2006; Scott et 

al., 2011). When the exercise bouts were combined and were performed with no recovery in between 

(protocol 1), the second half of the exercise caused an 85% increase in PTH concentrations compared 

to only a 15% increase in the first half. These results suggest that there may be a minimal time for 

recovery in between exercise bouts (between 40 minutes and 3 hours) that allows the parathyroid 

gland to ‘reset’ and respond to the second exercise bout (Scott et al., 2013).  

 

The discrepancy between the results of the two studies could be due to the duration of the exercise 

bouts. In the investigation by Scott et al. (2011) the exercise bouts consisted of 60 minutes of running 

at 65%VO2max, whereas in the investigation by Bouassida et al. (2003) the exercise bouts were 21 

minutes of running at 70% and 85%VO2max. The lack of studies using similar exercise bouts makes 

it difficult to accurately compare the PTH response to exercise. However, the conclusions of the 

study by Bouassida et al. (2003) should be interpreted with caution. Participants ate breakfast before 

each exercise trial but there is no mention of whether this was controlled or repeated in each trial. 

The sampling protocol used is also questionable; there was a blood sample at the end of the exercise 

bout in protocol 1 (42 min) but there wasn’t an equivalent sample at the same time in protocol 2, nor 

was there a sample at 82 minutes in protocol 1. As the PTH and Ca2+ responses followed a similar 
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pattern in both protocols in the samples that were taken, it is feasible that if samples were taken at 

those missing time points, the PTH and Ca2+ responses could actually follow a very similar pattern 

in both protocols. Further, the authors compared samples at the end of exercise in both protocols, but 

these were at 42 minutes or 82 minutes into the trials and were therefore at different times of the day.  

 

The PTH response to exercise may also be different depending on the training status of individuals, 

however Scott et al. (2010) showed no differences between endurance trained and recreationally 

active males for any variable, including PTH, ACa, PO4, OPG, BALP, P1NP or β-CTX. Likewise, 

Nishiyama et al. (1988) showed no effect of training status on the PTH response to exercise, but the 

authors speculated that athletes have a higher overall bone turnover compared to non-active 

individuals.  

 

2.13 Nutrient ingestion and bone  

Human bone collagen synthesis has been described as a rapid, nutritionally modulated process that 

occurs at the same rate as muscle protein turnover. Intravenous feeding with glucose, lipids and 

amino acids can increase bone collagen synthesis by approximately 66% (Babraj et al., 2005). Diet 

plays a dual role in regulating bone turnover; not only does nutrient ingestion provide the substrates 

for bone collagen synthesis, it also causes the release of crucial hormones that play a part in the 

regulation of bone turnover. The response of bone turnover to feeding and the endocrine mediators 

of this response will be discussed in this section.  

 

2.13.1 Mixed nutrient ingestion  

It is well documented that fasting reduces the circadian variation of β-CTX (Schlemmer and 

Hassager, 1999; Christgau et al., 2000). Schlemmer and Hassager (1999) investigated a 33 hour fast 

on the circadian variation in markers of bone turnover in 11 premenopausal women, compared to a 

control period where regular meals were consumed. The authors showed that there was a 

significantly less pronounced variation in u-CTX and PTH in the fasting condition compared to the 

control condition, however there was no change observed in OC by fasting. Similarly, Christgau et 



69 

 

al. (2000) showed that fasting in 15 postmenopausal women significantly reduced average circadian 

variation of CTX from 36% to 8.7%. These results suggest that circadian rhythms of bone resorption 

markers are not completely endogenous but are partly controlled by food intake.  

 

Feeding with a mixed meal, calcium, glucose, protein or fat transiently supresses bone resorption at 

rest (Blumsohn et al., 1994a; Bjarnason et al., 2002; Clowes et al., 2002a; Clowes et al., 2003; 

Henriksen et al., 2003). Clowes et al. (2002a) observed a 19% decrease in β-CTX following a mixed 

meal, Bjarnson et al. (2000) showed a 55% decrease in β-CTX concentrations after a 75g oral glucose 

load and Henriksen et al. (2003) showed a 52% decrease in β-CTX concentrations after a 75g oral 

glucose load. Bjarnson et al. (2002) showed that separate intakes of glucose, protein and fat all led 

to a similar decreases in β-CTX concentrations, suggesting that a factor other than insulin that is 

secreted in the postprandial phase may cause or contribute to the decrease in β-CTX. This could be 

a number of gastrointestinal hormones, as the suppression of β-CTX is greater after oral intakes of 

nutrients compared to intravenous feeding (Bjarnson et al., 2002; Clowes et al., 2003). 

 

2.13.2 Endocrine mediators  

It is likely that there are several mediators of the acute bone turnover response to feeding, but the 

mechanism of the nutrient-induced suppression of bone resorption is unknown (Clowes et al., 2003; 

Walsh and Henriksen, 2010). Calcitropic hormones (PTH and calcitonin), GH, IGF-1, cortisol and 

insulin are not likely mediators of the acute response to feeding, but intestinal and pancreatic peptides 

such as glucagon-like peptide-2 (GLP-2) could be potential mediators of the post-prandial regulation 

of bone turnover (Clowes et al., 2003; Henriksen et al., 2003; Walsh and Henriksen, 2010). 

 

Clowes et al. (2003) used octreotide, an analog of somatostatin that inhibits the postprandial 

secretion of intestinal and pancreatic peptides, including insulin, glucagon, gastrin, calcitonin, 

glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), GLP-2 and 

pancreatic polypeptides (Lamberts, 1988), to clarify the mechanism of nutrient induced suppression 

of bone resorption. The authors showed that octreotide completely abolished the suppression of bone 

resorption from an oral glucose intake. The mechanism mediating this effect remains unclear, but 
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the authors suggest that there may be an entero-osseous interaction between gastrointestinal 

hormones and bone turnover. Enteroendocrine hormone receptors have been identified on 

osteoblasts and osteoclasts and have been shown to modulate their activity in vitro and in vivo at 

pharmacological doses (Cornish et al., 1998; Haderslev et al., 2002). Likewise, Li and Mühlbauer 

(1999) showed that food fractionation increased BMD and reduced bone resorption in rats, 

suggesting that increased secretion or increased frequency of secretion of enteroendocrine hormones 

may have a positive effect on bone turnover.  

 

Henriksen et al. (2003) studied the release of GIP and GLP-2 after ingestion of glucose, fat, protein 

and fructose. The authors further investigated parenteral administration of GIP and GLP-1 and GLP-

2 at different doses. The results of the study showed that only GLP-2 was secreted with glucose and 

protein ingestion and was in parallel with the suppression of β-CTX. This excluded GIP and GLP-1 

as key mediators of the acute bone turnover response to feeding. Additionally, subcutaneous 

injections of GLP-2 caused a significant and dose-dependent reduction in β-CTX. The authors 

advocate that GLP-2 could be the link in the entero-osseous axis. The link may be related to afferent 

nerve fibres in the myenteric ganglia (Bjerknes and Cheng, 2001), could have a direct effect on 

osteoblasts and osteoclasts or it could be related to cytokines that inhibit osteoclast function 

(Henriksen et al., 2003). Furthermore, Henriksen et al. (2004, 2007 and 2009) showed that 

subcutaneous injections of GLP-2 caused dose-related reductions in β-CTX and increased or 

unchanged OC and P1NP levels, suggesting that GLP-2 can alter bone turnover in favour of bone 

formation. However, studies that have measured GLP-2 in relation to feeding and exercise have 

shown that GLP-2, as well as leptin and ghrelin are unlikely mediators of the effect of feeding on 

bone turnover when this is combined with exercise (Scott et al., 2012; Sale et al., 2015).  

 

Fat and protein have been shown to have little effect on insulin secretion (Collier and O’Dea, 1983; 

Nuttall et al., 1984; Bjarnson et al., 2002), but still cause a decrease in β-CTX, which excludes 

insulin as a key mediator of the acute regulation of bone turnover. Clowes et al. (2002b) showed that 

hyperinsulinemia did not result in a significant change in bone turnover. Despite this, insulin could 

have longer term effects on bone formation and mass (Walsh and Henriksen, 2010). Cortisol 
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secretion does not change in response to an oral glucose load at rest (Tse et al., 1983) or with exercise 

(Sale et al., 2015), so is unlikely to mediate the bone turnover response to feeding. Due to time 

courses of changes in GH and IGF-1 after feeding, it is unlikely that they are mediators of the acute 

postprandial response of bone turnover, but are likely to be medium-term regulators of bone turnover, 

especially when individuals are in an energy balance (Tse et al., 1983; Thissen et al., 1994; Walsh 

and Henriksen, 2010). Similarly, ghrelin is likely to be a medium to long-term mediator of bone 

turnover, via its actions on sympathetic tone (Yasuda et al., 2003).  

 

2.14 Exercise related feeding practices  

Scott et al. (2012) compared the effect of an overnight fast with feeding of a mixed meal on the bone 

turnover response to 60 minutes of treadmill running at 65%VO2max. Feeding in the morning before 

the exercise bout reduced β-CTX concentrations prior to exercise below those in the fasted condition, 

but by 1 hour post exercise β-CTX concentrations had risen and were similar in both conditions. By 

3 hours post exercise β-CTX concentrations had significantly reduced in the fasted condition below 

baseline and concentrations in the fed condition. Concentrations of β-CTX were elevated above 

baseline in the fed condition for 4 days post exercise. There was no change in bone formation markers 

throughout both trials. Scott et al. (2012) suggest that the failure of pre-exercise feeding to prevent 

the subsequent increase in β-CTX may have been the result of the stimulatory response of PTH on 

β-CTX overriding the effect of feeding, as PTH concentrations increased by 70 – 90%. The increase 

in β-CTX post-exercise may be the early phase of a PTH-mediated anabolic effect on bone (Zikan 

and Stepan, 2008), which needs to be elucidated with more follow-up samples over subsequent days 

to see if there was a subsequent increase in bone formation.  Unfortunately long follow-up periods 

are usually difficult to obtain in free-living populations. The mechanical loading performed could 

have also overridden any effect of the pre-exercise feeding, therefore consuming the nutrients after 

exercise when the mechanical loading has already been performed, may be a better way to examine 

the effects of feeding on the bone turnover response. The response showed by Scott et al. (2012) 

may be specific to endurance running, as there are no studies that have compared different modes of 

exercise, with the same intensity, duration, or using the same bone turnover markers, there may be 
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sport or mode specific responses to exercise and feeding that need to be investigated (Banfi et al., 

2010; Rogers et al., 2011).  

 

De Souza et al. (2014) investigated the effects of CHO supplementation on markers of bone turnover 

in runners who performed an overload training programme for 8 days (13 sessions in total) and an 

intermittent high intensity running protocol (10 x 800m) on day 9, compared to a control group that 

consumed placebo solutions throughout. The CHO beverage consisted of 1 g.kg.-1BM-1 of 

maltodextrin per hour and was ingested during the running sessions on days 1 – 8 and a 7% 

maltodextrin solution was consumed during the intermittent running protocol on day 9 in the CHO 

group. Blood samples were taken on day 1, before the start of the 10 x 800m, immediately after the 

10 x 800m and then after 80 minutes of recovery. In the control group, β-CTX concentrations 

increased from the start of the 10 x 800m to 80 minutes of recovery. The CHO beverage significantly 

reduced β-CTX compared to the control group. P1NP, OC and PTH increased significantly after the 

10 x 800m in both groups. This suggests that CHO ingestion during high intensity, intermittent 

running, shifts bone turnover in a positive direction towards increased formation and decreased 

resorption. Although this investigation was not a cross-over design it is one of the first studies to 

report the impact of CHO supplementation during intensive training on bone turnover.  

 

Finally, a study by Sale et al. (2015) compared the effect of feeding an 8% CHO drink (glucose) 

immediately before, every 20 minutes during and immediately after 120 minutes of running at 

70%VO2max, with consumption of a placebo drink at the same time points. The authors showed that 

ingestion of the CHO before, during and after exercise attenuated the β-CTX and P1NP responses 2 

hours post-exercise compared to the placebo trial, but this response was not maintained during the 

72 hours following exercise, where β-CTX and P1NP increased. Suppressing bone turnover needs 

to be considered alongside the requirements for bone adaptation to mechanical loading, as it may 

mean that the ability of the bone to adapt to the mechanical stimulus is blunted. Suppressed bone 

turnover is observed during bisphosphonate treatment which can lead to microdamage accumulation 

or unmineralised bone accumulation (Hirano et al., 2000; Allen and Burr, 2011). This suppression 

of bone turnover may be detrimental in sub-elite populations where training is performed only once 
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per day or even less, and where the singular acute bouts may have an anabolic effect on bone. 

However, in elite endurance athletes training multiple times a day, the repetitive mechanical stimuli 

placed on the skeleton could have a more catabolic effect on bone (Nishiyama et al., 1988; Hinton 

et al., 2010; Oosthuyse et al., 2013; Haakonssen et al., 2014). This may mean that suppression of 

bone turnover or just bone resorption is only desired at some points of an athletic season or only after 

certain training sessions.  

 

Further investigations are needed to establish the effect of suppressing post-exercise bone turnover 

on long-term bone remodelling and whether it translates to anabolic or catabolic bone adaptation in 

athletes. Sale et al. (2015) attribute the effects of the CHO drink to changes in IL-6, as ingestion of 

the CHO drink attenuated the rise in circulating IL-6, which is usually associated with exercise 

(Kwan et al., 2004; Nieman et al., 1998) and has been shown to activate osteoclastogenesis, 

osteoclast activity and bone resorption (Kotake et al., 1996). Neither de Sousa et al. (2014) or Sale 

et al. (2015) investigated the effect of CHO ingestion during exercise on gastrointestinal discomfort, 

despite this commonly causing gastrointestinal symptoms in athletes (Rehrer et al., 1992; Cox et al., 

2010; Pfieffer et al., 2012).  

 

2.15 Summary 

Stress fracture injuries are common and debilitating injuries amongst track and field athletes and 

endurance athletes, but the extent of these injuries amongst triathletes, is unknown. In addition, how 

the bones respond to the extreme training loads performed by triathletes and other endurance athletes 

necessitates further investigation. Triathletes often train three or four times a day, meaning that the 

amount of nutrients that they can consume around these sessions is limited. This often leads to poor 

fuelling and recovery and low energy availabilities, which are risk factors for stress fracture injuries.  

 

Calcium homeostasis is an important mechanism in regulating the bone turnover response, and is 

controlled by PTH at rest. It has been hypothesised that high dermal calcium losses contribute to a 
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disruption in calcium homeostasis, but to date, the mechanism by which PTH is controlled during 

and after exercise has not been investigated.  

 

Bone turnover can be measured via biochemical markers in the blood and urine. β-CTX and P1NP 

are the most reliable biochemical markers of bone turnover and can provide a cross-sectional view 

of bone turnover, which is particularly important for investigating the effects of exercise and feeding 

on bone turnover. Bone turnover markers are highly responsive to feeding and exercise; bone 

resorption increases with exercise and decreases with feeding at rest. Whilst there are studies that 

have investigated pre-exercise feeding and feeding during exercise, there are no studies that have 

investigated the effect of post-exercise feeding on bone turnover. This thesis reports four studies that 

extend the previous body of research into bone metabolism in endurance athletes. 
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CHAPTER 3: GENERAL METHODS 
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 3.1 Participants 

Male and female elite triathletes, male endurance trained runners and triathletes and male 

recreational runners volunteered for the studies in this thesis. All participants were informed of any 

risks associated with participation in the studies and experimental procedures were explained 

thoroughly to each participant. Participants were non-smokers and were not taking any medication 

or experiencing any condition known to affect bone metabolism. Compliance with these inclusion 

criteria was confirmed during the first visit to the laboratory or first encounter with the participants, 

where health screening (Appendix B) was also completed and written informed consent provided. 

All participants completed the ARTD Lifestyle questionnaire (Appendix C) which included 

recording any dietary supplementation. Participants were asked if supplementation changed at any 

point during participation in the studies and were asked to maintain normal training and activity 

levels. All studies were approved by the Ethical Advisory Committee at Nottingham Trent 

University.  

 

3.2 Experimental protocols 

3.2.1 Speed lactate and maximal oxygen uptake (VO2max) test 

In the studies reported in Chapters 6 and 7, participants performed an incremental test on a motorised 

treadmill (Pulsar, HP Cosmos, Germany) to determine their lactate threshold, followed by a ramp 

test to determine their VO2max. The incremental test was continuous in nature and consisted of graded 

exercise steps of 3 minutes. Participants commenced running at 8 – 9 km·h-1 and the speed increased 

by 1 km·h-1 every 3 minutes thereafter. Participants had capillary blood samples taken via finger 

prick (Section 3.3.2.1) at the end of each incremental stage, to determine blood lactate concentrations 

(YSI 2300 Stat, YSI Incorporated, USA). The test was terminated when a significant change (over 1 

mmol·L-1) in blood lactate compared to the previous stage measurement was recorded. After the 

incremental exercise test participants rested for 10 minutes before undertaking the ramp test. The 

ramp test was continuous in nature; with speed remaining constant and the gradient of the treadmill 

increasing by 1% every 1 minute until volitional exhaustion. During the test, participants wore a 

standard heart rate monitoring device (Polar Electro, Finland) strapped around their chest, which 
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provided a continuous recording of heart rate. Expired gas was continuously analysed and recorded 

by a ZAN 600 USB OXI breath-by-breath gas analyser (nSpire Health, Colorado, USA). These tests 

were used to determine the running velocities corresponding to 55%, 65% and 75% of VO2max during 

level running based on the regression of VO2 and velocity.  

 

3.3 Measurements  

3.3.1 Height and body mass 

Height and body mass were recorded during the first visits to the laboratory or first encounter with 

the participants in each study and pre- and post-exercise body mass was recorded in the studies 

reported in Chapters 6 and 7. Height was measured using a stadiometer (Seca GmbH, Hamburg, 

Germany) and body mass was recorded using digital scales (Seca GmbH, Hamburg, Germany) to 

the nearest 0.1 kg. Body mass was recorded with no shoes and minimal clothing.  

 

3.3.2 Blood sampling  

3.3.2.1 Finger prick capillary sampling 

In the studies reported in Chapters 6 and 7, blood samples were obtained during the speed lactate 

tests, using the finger prick capillary technique. This involved cleaning the fingertip with an alcohol 

wipe and allowing to air dry before puncturing the skin with a spring propelled lancet (Unistik3, 

Owen Mumford, UK) and collecting the blood in a small heparin/EDTA coated tube. The 

participants’ hands were warmed in a water bath prior to the first sample to ensure continuous blood 

flow when sampling. All needles, sharps, biological samples and contaminated materials were 

disposed of in appropriate bins.  

3.3.2.2 Venepuncture 

Blood samples were taken via venepuncture in the studies reported in Chapters 4, 5 and 7. 

Participants adopted a semi-recumbent position and rested for 5 – 10 minutes. A tourniquet was 

applied to the upper arm and a prominent forearm vein identified. The area was cleaned with an 

alcohol wipe and allowed to air dry before using a butterfly needle (Becton Dickinson, Valu-Set, 
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USA) to puncture the skin and draw blood. Between 10 – 20 mL of blood was drawn using syringes 

and subsequently dispensed into either pre-cooled K3E EDTA tubes (15%, 0.12 mL) (Becton 

Dickinson, Vacutainer System, USA), gently inverted 5 – 8 times and then centrifuged immediately 

at 3000 rev.min-1, for 10 minutes at 5°c, to generate plasma, or into standard serum tubes (Becton 

Dickinson, Vacutainer System, USA), gently inverted 5 – 8 times, left to clot at room temperature 

for 60 minutes before being centrifuged at 2000 rev.min-1, for 10 minutes at 5°c, to generate serum. 

Plasma and serum was subsequently transferred into 0.5 mL Eppendorf tubes and stored at -80°c 

until analysis.  

3.3.2.3 Cannulation  

Blood samples were taken via a cannula in the studies reported in Chapters 6 and 7. Participants 

adopted a semi-recumbent position and rested for 5 – 10 minutes. The same procedure as Section 

3.3.2.2 was employed before inserting a cannula (Becton Dickinson, Venflon, USA). The cannula 

was secured and flushed with saline solution (0.9% Sodium Chloride) (Becton Dickinson, PosiFlush, 

SP Syringe, USA) between samples and at regular intervals. Between 5 – 20 mL of blood was drawn 

using syringes and subsequently dispensed as reported in Section 3.3.2.2.  

 

3.3.3 Sweat collection  

Sweat was collected in the studies reported in Chapters 4 and 5, during 4 training sessions that 

represented a range of the different training sessions performed by the participants; a long steady run 

(easy run; ER), a long steady cycle (easy bike; EB), a high-intensity run (hard run; HR) and a high-

intensity cycle (hard bike; HB) (sweat collection was not possible during swimming sessions). 

Ambient conditions were recorded throughout these training sessions (Appendix D). Participants 

emptied their bladders and body mass was measured using digital electronic scales readable to 0.01 

kg, whilst wearing minimal clothing. Empty drinks bottles were weighed using the same scales, then 

filled and weighed again, any food or gels that were taken (mainly during long rides) were also 

weighed. Participants were instructed to only drink the fluid provided and to retain empty food 

wrappers. Absorbent patches for sweat collection (Tegaderm +Pads, 3M, Loughborough, UK) were 

applied to three sites (forearm, chest and back). The skin was thoroughly cleaned with distilled, de-
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ionised water and dried thoroughly with sterile gauze before the patches were applied. Participants 

collected any urine passed during sessions in a container, which was subsequently weighed. At the 

end of the training sessions, sweat patches were removed using sterile tweezers and immediately 

placed into sealed containers (Salivette, Sarstedt AG & Co, Germany). Participants towelled dry and 

were weighed again wearing the same clothing as the previous occasion. Drinks bottles and any food 

wrappers were weighed again. Sweat loss was calculated from the change in body mass after 

correction for the mass of ingested fluid/food and for any urine passed during the training session. 

Mass loss due to substrate exchange and to respiratory water loss was ignored, as this would have 

been a small component of the total mass loss. The sealed containers containing the sweat patches 

were subsequently centrifuged and the sample removed for the measurement of Ca2+. 

 

3.4 Blood analysis  

3.4.1 Blood lactate 

A YSI lactate analyser (YSI Life Sciences 2300 STAT Plus) was used to measure blood lactate 

during the incremental exercise test performed in Chapters 6 and 7. Blood was collected into small 

heparin/EDTA coated tubes via finger prick after each 3 minute stage, and was immediately sampled 

by the YSI. The YSI aspirates 25 µL of blood to obtain a measurement within 65 seconds. The 

measurement range for lactate is 0 – 30 mmol.L-1 and has a precision of 0.1 mmol.L-1.  

 

3.4.2 Ca2+ and pH  

Ca2+ and pH were measured in whole blood using a blood gas analyser (Radiometer ABL90 FLEX, 

Copenhagen, Denmark) during experimental trials reported in Chapters 6 and 7. After drawing, 

blood was immediately transferred to 65 µL capillary tubes and sampled by the blood gas analyser. 

Ca2+ is estimated directly between pH 7.2 – 7.6 with no pH correction applied. The inter- and intra-

assay CV for Ca2+ was ≤3% between 0.2 – 9.99 mmol.L-1 and for pH was ≤1% between 4.000 – 

11.000. 
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To confirm the manufacturer’s reported CVs and stability of measurements made by the blood gas 

analyser, repeated measurements were briefly tested in our laboratory prior to the commencement of 

any studies reported in this thesis. Table 2 shows the CV of Ca2+ measured in 3 samples of blood 

over 4 minutes. Table 3 shows the CVs of Ca2+ and pH measured in 12 consecutive samples from 

the same participant at rest. The CVs measured in our laboratory were all smaller than those reported 

by the manufacturer, which were calculated using a minimum of 786 samples.  

 Table 2. CV for Ca2+ in repeated measurements of 3 blood samples. 

 

 

 

 

 

 

  

Repeat measure Sample 1 Ca2+ 

(mmol.L-1) 

Sample 2 Ca2+  

(mmol.L-1) 

Sample 3 Ca2+  

(mmol.L-1) 

1 min post blood draw 1.21 1.20 1.19 

2 min post blood draw 1.21 1.19 1.21 

3 min post blood draw 1.20 1.19 1.19 

4 min post blood draw 1.20 1.19 1.19 

Mean 1.21 1.19 1.20 

SD 0.01 0.01 0.01 

CV (%) 0.48 0.42 0.84 
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Table 3. CVs for Ca2+ and pH in 12 consecutive blood samples at rest.  

Sample Ca2+ (mmol.L-1) pH 

1 1.28 7.368 

2 1.29 7.377 

3 1.26 7.375 

4 1.27 7.393 

5 1.27 7.386 

6 1.27 7.392 

7 1.26 7.389 

8 1.27 7.388 

9 1.26 7.383 

10 1.25 7.400 

11 1.24 7.399 

12 1.26 7.417 

Mean 1.27 7.39 

SD 0.01 0.01 

CV (%) 1.04 0.18 

 

3.4.3 β-CTX, P1NP and PTH  

β-CTX, P1NP and PTH were measured by ECLIA on a fully automated COBAS c501 system (Roche 

Diagnostics, Mannheim, Germany) in blood plasma, in the studies reported in Chapters 4, 5, 6 and 

7 and were measured in singlet. The inter-assay CV for β-CTX was ≤3% between 0.2 – 1.5 µg.L-1, 

with sensitivity of 0.01 µg.L-1. The inter-assay CV for P1NP was ≤3% between 20 – 600 µg.L-1, with 

sensitivity of 8 µg.L-1. The inter-assay CV for PTH was ≤4% between 1 – 30 pmol.L-1, with 

sensitivity of 0.8 pmol.L-1.  

The β-CTX assay is specific for crosslinked isomerised type 1 collagen fragments, independent of 

the nature of the crosslink. The assay specificity is guaranteed through the use of two monoclonal 

antibodies each recognising linear β-8AA octapeptides and the assay therefore quantifies all type 1 
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collagen degradation fragments that contain the isomerised octapeptide β-8AA twice (β-CTX) 

(Christgau et al., 1998; Rosenquist et al., 1998). The β-CTX ECLIA uses a sandwich test principle 

involving two incubations. The P1NP assay detects both trimeric P1NP (derived from the trimeric 

collagen structure) and monomeric P1NP (the trimeric P1NP is broken down due to thermal 

degradation) (Jensen et al., 1998; Brandt et al., 1999). The P1NP assay measures total P1NP 

concentrations by a sandwich test principle involving two incubations. The intact PTH assay 

employs a sandwich test principle in which a biotnylated monoclonal antibody reacts with the N-

terminal fragment (1-37) and a labelled monoclonal antibody reacts with the C-terminal fragment 

(38-84).  

Analyses performed on the COBAS c501 system were carried out at the University of East Anglia 

(UEA) by either a trained laboratory technician or the principle investigator whilst visiting UEA.  

 

3.4.4 Albumin, total calcium and PO4 

Albumin, total calcium and PO4 were measured in serum with standard commercial assays supplied 

by Roche Diagnostics, performed on a fully automated COBAS c501 system (Roche Diagnostics, 

Mannheim, Germany) in the studies reported in Chapters 4 and 5. The inter- and intra-assay CV for 

total calcium was ≤2.5% between 0.20 – 5.00 mmol.L-1. The inter- and intra-assay CV for albumin 

was ≤1.3% between 0.20 – 10.00 g.dL-1. The inter- and intra-assay CV for PO4 was ≤1.8% between 

0.10 – 6.46 mmol.L-1. Albumin, total calcium and PO4 were all measured photometrically and were 

measured in singlet.  

Albumin, total calcium and PO4 were measured using the ABX Pentra 400 (Horiba ABX, 

Montpellier, France) in the studies reported in Chapters 6 and 7. PO4, total calcium and albumin 

were measured in serum, using standard colorimetric assays and spectrophotometric methods and 

were measured in duplicate. PO4 was measured using phosphomolybdate, with an inter- and intra-

assay CV of ≤3.6% between 0.09 – 7.80 mmol.L-1. Total calcium was measured using ortho-

cresolphtalein complexone, with an inter- and intra-assay CV of ≤1.7% between 0.04 – 5.00 mmol.L-

1. Albumin was measured using bromocresol green, with an inter- and intra-assay CV of ≤1.9% 

between 0.02 – 5.99 g.dL-1. Because fluctuations in protein, particularly albumin, may cause total 
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calcium levels to change independently of the Ca2+ concentration, total calcium concentrations were 

corrected to give an albumin-adjusted calcium (ACa) value: 0.8 mg.dL-1 was subtracted from the 

total calcium concentration for every 1.0 g.dL-1 by which the serum albumin concentration was 

greater than 4 g.dL-1 or 0.8 mg.dL-1 was added to the total calcium concentration for every 1.0 mg.dL-

1 by which the serum albumin concentration was less than 4 mg.dL-1; (([Albumin] − 4) ∗ −0.8) +

[Total Ca].  

Analyses performed on the COBAS c501 system were carried out at UEA by either a trained 

laboratory technician or the principle investigator whilst visiting UEA. Analyses performed on the 

ABX Pentra 400 were carried out at Nottingham Trent University by the principle investigator.  

 

3.4.5 Vitamin D 

Total 25(OH)D (the sum of the 25-hydroxy metabolites of D2 and D3) in serum was determined using 

a high-performance liquid chromatography–tandem mass spectrometer (Waters Acuity, Manchester, 

UK) as described by Owens et al. (2014). Measurements were performed in a laboratory meeting the 

performance target set by the Vitamin D External Quality Assessment Scheme Advisory Panel for 

25(OH)D assays and the assay was validated against published acceptance criteria (Food and Drug 

Administration, 2001). Assay sensitivity was determined by the lower limit of quantification: 

25(OH)D2 = 2.5 nmol.L−1 and 25(OH)D3 = 2.5 nmol.L−1. CVs for the assay were 10% across a 

working range of 2.5 – 625 nmol.L−1 for both 25(OH)D2 and 25(OH)D3. All vitamin D analyses were 

performed at UEA by a trained laboratory technician.  

 

3.5 Sweat analysis  

The sweat samples collected in the studies reported in Chapters 4 and 5 were analysed for calcium 

concentrations. Sweat samples (0.5 mL) were mixed thoroughly with an equal volume of calcium 

chloride of known concentration (1 mmol.L-1) to ensure that the resulting samples had a calcium 

concentration above the detectable limit of 0.2 mmol.L-1. Ca2+ was subsequently analysed using a 

blood gas analyser (Radiometer ABL90 FLEX, Copenhagen, Denmark). The Ca2+ concentration of 
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the resulting sample was subtracted from the known calcium chloride concentration to give an 

estimated Ca2+ concentration of the sweat sample. The dermal calcium losses during training sessions 

were estimated from the measured Ca2+ concentrations and the estimated volume of sweat loss.  

 

3.6 Dietary analysis  

Nutritics Dietary Software (Nutritics Professional Nutrition Analysis Software, Dublin, Ireland) was 

used to assess habitual dietary intake for energy content, macronutrient content (percentages of 

carbohydrate, fat and protein), and micronutrient content in the studies reported in Chapters 4, 5, 6 

and 7. Nutritics was also used to create specific, individualised diets that were followed during the 

lead in periods to experimental trials and on experimental trial days in the study reported in Chapter 

7. The Nutritics database contains 258 different nutrients and over 125,000 foods. Where certain 

foods were not already in the database, they were added individually from packaging and internet 

information. Where portion sizes were not recorded on habitual diet diaries, demographic average 

portion sizes within the Nutritics database were used, which are available for over 5,500 foods.  

 

3.7 Urine osmolality  

Urine osmolality was measured using a handheld Osmometer (Osmocheck, Vitech Scientific, 

Horsham, UK) in the studies reported in Chapters 4, 5 and 7, which was used as an index of hydration 

status. Participants collected their first void of the day into a clean container. After using doubly 

distilled water to clean and calibrate the Osmometer, a small amount of urine was dropped onto the 

Osmometer using a pipette and was subsequently measured. Measurements were made in triplicate.  

 

3.8 Statistical analysis  

Statistical significance was accepted at an alpha level of P≤0.05. All statistical analyses were 

performed on raw data. Baseline concentrations were compared using one-way analysis of variance 

(ANOVA). Parametric assumptions of normality and sphericity were confirmed using the Shapiro-
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Wilks test and Maulchy’s test of Sphericity and where assumptions were violated, a transformation 

was applied to the data so that the assumptions were satisfied. Where parametric assumptions of 

normality and sphericity were violated and not satisfied after a transformation was applied to the 

data, a Mann-Whitney U test was performed. Data presented in Chapters 6 and 7 were subsequently 

analysed using a repeated measures ANOVA, with Trial and Time (of sampling) as within participant 

factors. Tukey’s HSD post-hoc test was used to compare each time point against baseline and to 

compare trials at each time point, where appropriate. Post-hoc comparisons are reported with 

Cohen’s d effect sizes, with d=0.2 considered as a small effect, d=0.5 considered as a medium effect 

and d=0.8 considered as a large effect (Cohen, 1988). Other statistical analyses were performed in 

Chapters 5 and 6. These statistical analyses were performed with Statistica (StatSoft, Tulsa, OK) and 

SPSS (IBM SPSS Statistics 22, Armonk, NY).  
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CHAPTER 4: INVESTIGATING BONE 

METABOLISM IN ELITE TRIATHLETES 

DURING OFF-SEASON TRAINING  
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4.1 Introduction 

Triathletes have amongst the highest training volumes of all elite athletes. Due to the three disciplines 

involved; they will train between two and four times a day and only rest briefly when injured or 

during a tapering period prior to an important competition. This large volume of training (Oosthuyse 

et al., 2013) combined with high intensity sessions (Scott et al., 2010) and minimal rest days, creates 

ideal conditions to induce an increase in bone resorption and cause an imbalance in the bone turnover 

response, which has been implicated in the development of stress fracture injuries (Schaffler et al., 

1990). In addition, non-weight-bearing swimming and cycling followed by weight-bearing running, 

may further increase the risk for the development of stress fracture injury; the swim and bike may 

cause a hormonally mediated increase in bone remodelling (Primary Remodelling Hypothesis; 

Bennell et al., 1996a), and the subsequent run may accelerate microdamage accumulation at sites of 

repetitive loading (Rector et al., 2008) (Primary Microdamage Hypothesis; Bennell et al., 1996a).  

 

Bone health of triathletes is currently under-investigated. The cross training performed by triathletes 

may be more osteogenic compared to competing in a single discipline (Scofield and Hecht, 2012). 

Although this may be true in terms of higher BMD, which is likely to protect triathletes from 

osteoporosis in later life, the risk of stress fracture injury remains higher in triathletes compared to 

cyclists and swimmers, as triathletes also experience low-strain repetitive mechanical loading of the 

lower limbs during running, which cyclists and swimmers do not (Maïmoun et al., 2004b; Scofield 

and Hecht, 2012). Anecdotally, triathletes suffer from a high number of stress fractures and some 

high profile athlete cases have been highlighted in the British media at critical phases of the triathlon 

season. Despite this, there is no published research into bone turnover and bone health in elite 

triathletes, which may be due to the limited availability to study this population.  

 

Combining a triathlete’s high volume, high intensity training regime with poor nutritional practices 

such as; inadequate fuelling and recovery with carbohydrate and protein, low calcium and vitamin 

D intakes and low energy availability, all of which are common in endurance athletes, considerably 

increases the risk of bone injuries (Bennell et al., 1996b; Bennell et al, 1999; Zanker and Swaine, 

2000; Ihle and Loucks, 2004; Lappe et al., 2008; Miller et al., 2016). Elite endurance athletes expend 
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large amounts of energy due to the amount of training performed; Fudge et al. (2006) used the DLW 

method to calculate that elite Kenyan runners expended 3,492 kcal.d-1 during normal training, 

however the athletes consumed 3,170 kcal.d-1, resulting in a negative energy balance. Energy intakes 

should match energy expenditures to ensure weight maintenance and to reduce the chance of an 

athlete suffering from the symptoms of RED-S, over-training, injury and illness (Mountjoy et al., 

2014). However, in reality, this is often difficult for endurance athletes to attain and compensatory 

energy intakes are uncommon, particularly in short-term, high-volume training periods (Stubbs et 

al., 2004; Drenowatz et al., 2012).  

 

The disruption of calcium homeostasis with exercise is a potential mediator of bone loss, which is 

based on the findings and the hypothesis that sweating during exercise can cause large dermal 

calcium losses, leading to an increase in PTH, which can subsequently cause an increase in bone 

resorption (Klesges et al., 1996; Barry and Khort, 2007; Barry and Khort, 2008; Barry et al., 2011). 

Scott et al. (2014) showed that exercise causes an increase in PTH concentrations at the end of 

exercise and a decrease in PTH concentrations below baseline levels during recovery from exercise. 

Large dermal calcium losses have been measured during cycling, so when cycling is followed by a 

prolonged running bout, encompassing low-strain repetitive loading, this may increase the chance of 

accelerated remodelling and microdamage accumulation. There are currently no studies that have 

investigated the difference in dermal calcium losses between cycling and running (Klesges et al., 

1996; Guillemant et al., 2004; Barry and Khort, 2007; Martin et al., 2007; Rector et al., 2008; Barry 

et al., 2011; Oosthuyse et al., 2013). Klesges et al. (1996) showed a decrease in BMC over a 

basketball season and attributed this to high dermal calcium losses and insufficient calcium intakes 

to replace the dermal losses. The authors suggested that this may consequently cause disrupted bone 

turnover and amplified bone loss.  

 

The aim of this study was to investigate what is influencing bone metabolism and bone health in elite 

British triathletes, by measuring resting bone turnover across a training week. Retrospective stress 

fracture injury occurrence throughout an athletes’ lifetime, energy expenditures, nutritional practices 

and dermal calcium losses were also measured. This was done in an attempt to establish behaviours 
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that may contribute to the high risk of stress fracture injury in this athletic population and to identify 

possible areas for intervention and further study.  
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4.2 Methodology  

4.2.1 Participants  

16 elite triathletes (Table 4) participated in this study that was approved by the Ethical Advisory 

Committee at Nottingham Trent University (Application numbers 398, 409 and 413). Participants 

were Olympic distance triathletes on the British Triathlon World Class Performance Programme and 

were based at three different sites throughout the UK. There were 6 participants at site 1 (Leeds – 3 

males and 3 females; participants 01 – 06), 8 participants at site 2 (Loughborough – 6 males and 2 

females; participants 07 – 14) and 2 participants at site 3 (Stirling – 2 males; participants 15 – 16). 

The results for male and female triathletes are presented together throughout Chapters 4 and 5. Male 

and female triathletes have similar training schedules, perform similar training sessions and 

experience the same demands of the sport, so it is appropriate to make recommendations for 

triathletes as a whole group.  

 

Table 4. Participant characteristics. Data are mean ± 1SD.  

 Males (n = 11) Females (n = 5) 

Age (y) 24 ± 4 24 ± 4 

Height (m) 1.79 ± 0.06 1.66 ± 0.02 

Body mass (kg) 68.8 ± 4.9 59.5 ± 2.3 

 

 

4.2.2 Experimental design  

In this cross-sectional study, participants performed their usual training load and maintained normal 

behaviours for the entirety of the testing period. Prior to testing, participants provided written 

informed consent and completed health, injury and menstrual status (females only) questionnaires 

(Appendix E). The testing period lasted 7 – 10 days and was completed during off-season training 

in November and December 2015. Fasted morning blood samples were taken between 06:30 and 

07:30 prior to morning training sessions. Participants at sites 2 and 3 collected their first void for the 

measurement of urine osmolality. Dermal calcium losses were measured in cycling and running 
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training sessions in 10 participants (sites 2 and 3). Participants completed daily diet and training logs 

and coaches recorded training sessions using Training Peaks (https://www.trainingpeaks.com/) 

(Appendix F). Energy expenditure was measured using DLW in 5 participants (site 1).  

 

4.2.3 Testing procedures 

4.2.3.1 Morning blood and urine collection 

On four (site 1) or five days (sites 2 and 3), participants arrived at the training facility between 06:30 

and 07:00 following an overnight fast (from 22:00 the previous evening). Participants at sites 2 and 

3 collected their first void for the measurement of osmolality (Section 3.7) and participants at site 1 

collected their second void for the measurement of energy expenditure (Section 4.2.4). Participants 

adopted a semi-recumbent position on a bed and a blood sample (20 mL) was obtained via 

venepuncture from a prominent forearm vein (Section 3.3.2.2). Blood samples were taken at 

precisely the same time for each participant on each occasion.  

 

4.2.3.2 Sweat collection  

Sweat was collected from participants at sites 2 and 3 during four different training sessions (easy 

run, ER; easy bike, EB; hard run, HR; hard bike, HB) (Section 3.3.3).  

 

4.2.3.4 Stress fracture history 

History of stress fracture, stress response and impact fracture was assessed by a questionnaire 

(Appendix C; Questions 16 and 17). Participants recorded the age when the fracture/response 

occurred, the location and whether it was confirmed with a bone scan (MRI, CT or X-ray).  

 

4.2.3.5 Dietary information  

Diet logs were recorded for a minimum of 5 days (Appendix G). Participants used weighing scales 

and measuring cups to improve accuracy of recording. Recorded diet logs were analysed using 

https://www.trainingpeaks.com/
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dietary analysis software (Nutritics Professional Nutrition Analysis Software, Dublin, Ireland) 

(Appendix H) (Section 3.6).  

 

4.2.4 Energy expenditure by Doubly Labelled Water 

4.2.4.1 Isotope dosing and sampling 

Five participants from site 1 provided baseline urine samples before receiving a weighed oral dose 

of 2H2
18O (day 0). The dose was equivalent to 70 mg.kgBM-1 deuterium oxide (DLM-2259, 

Deuterium Oxide 99.8At%, Sterility Tested, Goss Scientific Ltd., Nantwich, Cheshire, UK) and 200 

mg.kgBM-1 of H2
18O (Taiyo Nippon Sanso Water-18O Normalized 10 atom% 18O, Sercon Ltd., 

Crewe, UK).  Post-dose urine samples; the second void of the day, were collected daily for 10 days 

and the time of day noted. Urine samples were stored at -20 °C until analysis in singlet using isotope-

ratio mass spectrometry (IRMS). 

 

4.2.4.2 Isotopic analyses 

Measurements of 2H/1H ratios were made by dual inlet IRMS (Isoprime, GV Instruments Ltd, 

Wythenshawe, Manchester, UK). Samples of 0.4 mL were placed in 3.7 mL glass bottles with rubber 

septa (50 x 12.5 mm, non-evacuated vials, Labco Ltd, Lampeter, UK) flush filled with hydrogen 

(Gilson GX271 Autosampler, a1envirosciences, Düsseldorf, Germany) in the presence of a platinum 

catalyst and equilibrated at 22°C for 6 hours. All measurements were corrected for interference of 

H3
+ ion in the ratio measurements and made relative to laboratory standards calibrated with values 

of -49.48, 182.05, 413.58, 876.64 ‰ relative to Vienna-standard mean ocean water (V-SMOW) 

(International Atomic Energy Agency, Vienna, Austria), before being expressed relative to V-

SMOW. Measurements of 18O/16O ratios were made using continuous flow IRMS (AP2003, 

Analytical Precision Ltd, Northwich, Cheshire, UK).  Samples of 0.5 mL were placed in 12 mL 

vacutainers (Labco Ltd, Lampeter, UK), flush filled with 5% CO2 in nitrogen and then equilibrated 

by rotating overnight at room temperature. Sample enrichments were expressed relative to V-SMOW, 

first being made relative to laboratory standards calibrated with values of -6.99, 45.90, 98.79, 204.56 ‰ 

relative to V-SMOW.    



93 

 

 

4.2.4.3 Energy expenditure calculations 

Total energy expenditure (TEE) was calculated as described by Schoeller et al. (1986) from slopes 

and intercepts of the isotope disappearance curves. Respiratory quotient was assumed to have a value 

of 0.85, based on the consumption of a standard Western diet (Ainslie et al., 2003). Resting metabolic 

rate (RMR) was estimated using the Scofield equations (1985). Activity energy expenditure was 

calculated as (TEE x 0.9) – RMR, assuming that diet-induced thermogenesis was 10% of TEE 

(Plasqui et al., 2005). Physical activity level was expressed using TEE as a multiple of RMR 

(Ekelund et al., 2001). 

 

4.2.5 Blood sample analysis  

Blood was treated and stored according to Section 3.3.2.2. β -CTX, P1NP and PTH were measured 

by ECLIA on a fully automated COBAS c501 system (Roche Diagnostics, Mannheim, Germany)  

(Section 3.4.3). Albumin, total calcium and PO4 were measured with standard commercial assays 

supplied by Roche Diagnostics performed on the COBAS c501 system (Section 3.4.4) and total 

25(OH)D (the sum of the 25-hydroxy metabolites of D2 and D3) in serum was measured using a high-

performance liquid chromatography–tandem mass spectrometer (Section 3.4.5).  

 

4.2.6 Sweat analysis  

Sweat was analysed for calcium concentrations and the dermal calcium losses during training 

sessions were estimated from the measured calcium concentrations and the estimated volume of 

sweat loss (Section 3.5).  

 

4.2.7 Bone turnover markers and metabolites  

Due to there being no reference ranges for resting bone turnover markers and related metabolites 

available for elite athletes, the results in the present study were compared to resting concentrations 

for recreationally active individuals (RA) that have been collected by the Musculoskeletal 

Physiology Research group at Nottingham Trent University (Appendix A). Average concentrations, 
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+1 SD and -1 SD were plotted on each graph for comparison and are referred to as ‘RA’ 

concentrations throughout Sections 4.3 and 4.4. To give a numerical value to the difference between 

bone formation and bone resorption, the bone turnover marker ratio was calculated using the 

following equation: [P1NP]/([β-CTX]*100), with a value above 1 indicating that bone turnover 

favours bone formation and a value below 1 indicating that bone turnover favours bone resorption. 

This equation was used in Lombardi et al. (2012) but for different bone turnover markers.  
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4.3 Results  

4.3.1 Stress fracture history 

Participants self-reported that all stress fractures were confirmed by a bone scan (MRI, CT or X-ray). 

There were 15 incidences of stress fracture injury amongst the 16 triathletes throughout their 

lifetimes. Nine triathletes had suffered 1 stress fracture and 3 triathletes had suffered 2 stress fractures.   

 

Table 5. Stress fracture history of participants. The first stress fracture injury occurred at an average 

age of 22 ± 3 years, with a range of 19 to 27 years.  

Fracture history 

Males (n = 

11) 

Females (n = 

5) 

Stress fracture incidence  9 6 

Multiple stress fracture incidence  1 2 

Stress response incidence  3 0 

Impact fracture incidence  8 3 

Percentage of athletes that have suffered a stress fracture  73% 80% 

Total percentage of athletes that have suffered a stress fracture 75% 

Participant Stress fracture incidence Stress fracture site(s) 

01 1 Femur 

02 1 Femur 

03 1 Third metatarsal 

04 2 Both navicular 

05 1 Fibula 

06 2 Navicular and 4th metatarsal 

07 0 N/A 

08 1 Sacrum 

09 1  Tibia  

10 1 Sacrum 

11 1 Tibia 

12 1 Navicular 

13 0 N/A 

14 0 N/A 

15 2 Metatarsal and tibia 

16 0 N/A 

 

 

 

 



96 

 

4.3.2 Menstrual status  

Three of the female participants were using combined oral contraception (2 Levest and 1 Loestrin 

20) and one participant was using an implant. One participant was not using any hormonal 

contraception and had a regular menstrual cycle, which was between 28 and 35 days. Prior to using 

hormonal contraception, two of the participants had suffered from secondary amenorrhea.  
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4.3.3 Bone turnover markers  

4.3.3.1 β-CTX 

β-CTX concentrations were higher than average (RA) concentrations in 13 out of 16 participants in 

all samples and did not increase or decrease in any sample. The minimum concentration was 0.38 

ng.mL-1 and the maximum concentration was 1.76 ng.mL-1. Participant 13 (site 2) had average β-

CTX concentrations that were more than 3 times the average (RA) concentration (Figure 7A).  

 

4.3.3.2 P1NP 

P1NP concentrations were higher than average (RA) concentrations in 13 out of 16 participants in 

all samples and did not increase or decrease in any sample. The minimum concentration was 42.5 

ng.mL-1 and the maximum concentration was 178.0 ng.mL-1. Participants 13 (site 2) and 15 (site 3) 

had average P1NP concentrations that were more than 2 times the average (RA) concentration 

(Figure 7B).  
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4.3.3.3 Bone turnover marker ratios 

Table 6. Average bone turnover marker ratios. 

Participant Bone turnover marker ratio 

01 1.40 

02 1.37 

03 1.23 

04 1.66 

05 1.28 

06 1.15 

07 1.23 

08 1.44 

09 0.82 

10 1.11 

11 1.04 

12 1.07 

13 1.04 

14 1.17 

15 1.56 

16 1.36 
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Figure 7. Resting concentrations of β-CTX (A) and P1NP (B) for all participants in all blood 

samples over 7 – 10 days during off-season training.  

(RA) 

(RA) 

(RA) 
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4.3.4 Calcium metabolism  

4.3.4.1 PTH 

PTH concentrations were lower than average (RA) concentrations in 9 out of 16 participants in all 

samples. Concentrations increased in sample 3 in 4 out of 6 participants from site 1 (sample 3 is 

missing from participant 05 due to injury), which was the morning after a hard/long training day. 

The minimum concentration was 1.8 pmol.L-1and the maximum concentration was 5.4 pmol.L-1. The 

PTH concentration in sample 4 was almost 2 times the average (RA) concentration in participant 04 

(site 1). The PTH concentration in samples 1 and 2 was almost 1.5 times the average (RA) 

concentration in participant 05 (site 1) (Figure 8A).  

 

4.3.4.2 ACa 

ACa concentrations were lower than average (RA) concentrations in 13 out of 16 participants in all 

samples. ACa concentrations increased in sample 3 for participants 01 and 16 (site 1 and 3) and 

decreased in sample 3 for participant 04 (site 1), which coincided with an increased PTH 

concentration. The minimum concentration was 2.21 mmol.L-1 and the maximum concentration was 

2.49 mmol.L-1 (Figure 8B).  

 

4.3.4.3 PO4 

PO4 concentrations were higher than average (RA) concentrations in 7 out of 16 participants in all 

samples. Concentrations increased in sample 3 in participants 01 and 02 (site 1) and in sample 4 in 

participant 09 (site 2). The minimum concentration was 0.82 mmol.L-1 and the maximum 

concentration was 1.66 mmol.L-1. The PO4 concentration in sample 1 was almost 1.5 times the 

average (RA) concentration in participant 03 (site 1) (Figure 8C). 
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Figure 8. Resting concentrations of PTH (A), ACa (B) and PO4 (C) for all participants in all blood 

samples over 7 – 10 days during off-season training.   
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4.3.5 Vitamin D 

All participants had sufficient total 25(OH)D concentrations. Deficient concentrations are 50 nmol.L-

1 or less, low optimal concentrations are 75 nmol.L-1 and high optimal concentrations are 125 nmol.L-

1, according to the English Institute of Sport’s and British Triathlon’s recommended guidelines for 

athletes. Eleven out of 16 participants supplemented with 1,000 IU of vitamin D3 per day (see Table 

9). The minimum concentration was 70.6 nmol.L-1 and the maximum concentration was 172.0 

nmol.L-1 (Figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Resting concentrations of total 25(OH)D for all participants in all blood samples over 7 – 

10 days during off-season training. 
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4.3.6 Total energy expenditure  

Table 7. Average daily energy expenditure for participants 01 – 05 (site 1) during 10 days of off-

season training, as measured by DLW.  

 

Participant Age (y) Sex Body mass 

(kg) 

Height (m) Average daily energy expenditure 

(kcal) 

01 25 M 69.8 1.78 5,877 

02 27 M 73.0 1.85 5,906 

03 24 M 64.0 1.71 5,506 

04 26 F 63.0 1.69 4,381 

05 29 F 59.0 1.68 2,877 (sustained injury on day 2) 

Mean ± SD 26 ± 2  65.8 ± 5.6 1.74 ± 0.07 4,909 ± 1,294 
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4.3.7 Energy intakes and hydration status  

 Table 8. Average daily energy, CHO, PRO and calcium intakes and average urine osmolality for all 

participants during off-season training. Data are averaged from a minimum of 5 day diet logs and 5 

urine samples. Diet logs are missing for participants 02 and 03. The first void was not collected for 

participants at site 1. Participants were classed as hydrated at ≤500 mOsm.L-1, dehydrated at 501 – 

999 mOsm.L-1 and severely dehydrated at ≥1000 mOsm.L-1.  

Participant Sex 

Body 

mass 

(kg) 

Average 

daily 

energy 

intake 

(kcal) 

Average 

daily 

carbohydrate 

intake (g) 

 Average 

daily 

carbohydrate 

intake (% of 

total intake) 

Average 

daily 

protein 

intake 

(g) 

Average 

daily 

protein 

intake 

(% of 

total 

intake) 

Average 

daily 

calcium 

intake 

(mg) 

Average 

urine 

osmolality 

(mOsm.L-

1) 

01 M 69.8 3,198 499 62 126 16 1,321 N/A 

02 M 73.0 N/A N/A N/A N/A N/A N/A N/A 

03 M 64.0 N/A N/A N/A N/A N/A N/A N/A 

04 F 63.0 3,540 457 52 153 17 1,665 N/A 

05 (injured) F 59.0 3,381 441 52 138 16 2,428 N/A 

06 F 57.0 3,448 426 49 112 13 1,302 N/A 

07 (injured) F 60.4 1,904 231 49 88 18 967 875 

08 M 71.5 2,524 276 44 127 20 1,352 826 

09 M 70.7 2,378 265 45 127 21 1,451 968 

10 M 73.0 3,231 363 45 144 18 1,480 880 

11 M 65.0 2,235 296 53 84 15 748 974 

12 F 58.0 2,709 347 51 109 16 1,220 454 

13 M 73.5 2,417 336 56 99 16 1,036 970 

14 M 66.5 2,176 276 51 100 18 978 944 

15 M 58.0 3,020 634 84 76 10 1,029 480 

16 M 72.0 2,893 418 58 137 19 1,987 910 

Mean ± SD 65.9 ± 6.1 2,790±528 376 ± 111 54 ± 10  116 ± 24 17 ± 3 1,355±444 828 ± 196 
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4.3.8 Supplementation  

Table 9. Supplements consumed for all participants during off-season training.  

Participant Supplementation 

01 Vitamin D and calcium 

02 Vitamin D, calcium, multivitamin, vitamin B12, omega 3 

03 Multivitamin and vitamin B12 

04 Vitamin D and omega 3 

05 Vitamin D 

06 Vitamin D and calcium 

07 Vitamin D 

08 Vitamin D and calcium 

09 None 

10 Vitamin D and calcium 

11 Vitamin D, calcium and omega 3 

12 None 

13 Vitamin D, calcium and multivitamin 

14 None 

15 Vitamin D and iron 

16 Iron 

Vitamin D = 1,000 IU (25 µg) vitamin D3; calcium = 267 mg; multivitamin contained 5 µg of vitamin 

D3 and 200 mg of calcium; omega 3 = 200 mg DHA and 300 mg EPA; vitamin B12 = 500 mg; iron 

= 14 mg.  
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4.3.9 Training loads 

Table 10. Total training time, minutes of swimming, cycling, running and strength and conditioning 

(S&C) sessions for all participants during 7 days of off-season training.   

 

  

Participant Total swim 

time over 7 

days (mins) 

Total cycling 

time over 7 

days (mins) 

Total run time 

over 7 days 

(mins) 

S&C over 7 

days (mins) 

Total over 7 

days (mins) 

01 390 1,085 430 90 1,995 

02 390 1,170 245 90 1,895 

03 530 950 200 90 1,770 

04 465 620 255 90 1,430 

05 (injured) 225 210 60 45 540 

06 390 570 60 45 1,065 

07 (injured) 240 420 0 180 840 

08 525 660 470 225 1,880 

09 405 720 455 225 1,805 

10 405 780 425 225 1,835 

11 405 780 425 225 1,835 

12 405 720 440 225 1,790 

13 405 740 400 225 1,770 

14 405 740 400 225 1,770 

15 497 730 384 110 1,721 

16 400 525 355 105 1,385 

Mean ± SD 405 ± 83 714 ± 234 313 ± 157 151 ± 73 1,583 ± 422 
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4.3.10 Sweat losses and dermal calcium losses  

Table 11. Total sweat and calcium losses and rates of sweat and calcium losses for participants at 

sites 2 and 3. Easy run (ER), easy bike (EB), hard run (HR) and hard bike (HB). The average 

concentration of calcium in sweat was 0.54 ± 0.09 mmol.L-1. Data are mean ± 1SD.  

 Training session 

 ER EB HR HB 

Total sweat loss 

(L) 

0.77 ± 0.30 1.09 ± 0.31 0.50 ± 0.38 0.87 ± 0.31 

Total calcium loss 

(mg) 

75 ± 25 108 ± 35 51 ± 34 85 ± 32 

Rate of sweat loss 

(L.h-1) 

0.67 ± 0.23 0.43 ± 0.16 0.76 ± 0.51 0.51 ± 0.22 

Rate of calcium 

loss (mg.h-1) 

68 ± 34 43 ± 21 82 ± 59 48 ± 18 
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4.4 Discussion  

The main findings of the study are: 1) concentrations of both β-CTX and P1NP were higher than 

average (RA) concentrations in 13 out of 16 participants; 2) PTH concentrations were consistently 

lower than average (RA) concentrations in 9 out of 16 participants, but concentrations tended to 

increase the morning after hard/long training days; 3) ACa concentrations were consistently lower 

than average (RA) concentrations in 13 out of 16 participants; 4) PO4 concentrations were higher 

than average (RA) concentrations in 7 out of 16 participants; 5) participants 01 – 05 expended large 

amounts of energy and did not have sufficient energy intakes to match; 6) dermal calcium losses 

were high during running and cycling sessions and hard running sessions induced the highest rates 

of calcium and sweat loss.  

 

This is the first study that has investigated bone metabolism in elite triathletes. Few studies have 

investigated the prevalence of overuse injuries in elite or sub-elite triathletes (Vleck and Garbutt, 

1998; Duckham et al., 2012) and to our knowledge only one study has measured bone turnover 

markers at the start and end of a triathlon season in sub-elite triathletes (Maïmoun et al., 2004a). 

Consequently, there are no reference ranges for bone turnover markers and related metabolites 

available for triathletes or other elite athletes (Lombardi et al., 2011). Further, due to this group of 

triathletes not having a rest day from training, it was impossible to obtain a baseline sample for each 

participant, therefore the results of the present study are compared to resting concentrations of 

recreationally active individuals that have been collected by the Musculoskeletal Physiology 

Research group at Nottingham Trent University during numerous studies (Appendix A). However, 

this comparison should be interpreted with caution, as the data from the recreationally active 

individuals are from resting blood samples, where the individuals refrained from exercise for a 

minimum of 24 hours prior to the blood sample, whereas, the triathletes’ blood samples were taken 

after consecutive days of exercise.  

 

We have shown that recreationally active individuals have mean resting bone turnover marker 

concentrations that are higher than the non-active, healthy population (Appendix A). The average 

concentrations of β-CTX (0.69 ± 0.29 ng.mL-1) and P1NP (81.14 ± 33.31 ng.mL-1) in the present 
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study were high compared to the non-active population (β-CTX; 0.23 – 0.32 ng.mL-1 and P1NP; 

31.00 – 49.40 ng.mL-1) and recreationally active individuals (β-CTX; 0.51 ± 0.22 ng.mL-1 and P1NP; 

61.40 ± 25.89 ng.mL-1). The fact that concentrations of both bone turnover markers are high suggests 

that overall bone turnover is elevated compared to non-active and recreationally active individuals. 

This may lead to accelerated microdamage accumulation (Martin, 1992; Bennell et al., 1996a), 

increased bone fragility (Burr et al., 1997), increased trabecular resorption depth, increased 

intracortical porosity and decreased stiffness of the bone (Eriksen et al., 1999), all of which will 

increase the risk of stress fracture injury (Parfitt, 1982; Schaffler et al., 1990; Burr, 2002; Schaffler, 

2003; Parfitt, 2004).  

 

 It should be noted that the majority of the triathletes had urine osmolality measures that reflected a 

dehydrated state at the time of blood sampling; this could mean that haemoconcentration produced 

artificially high concentrations of bone turnover markers and metabolites. Participants 12 and 15 

were the only triathletes that were in a hydrated state. Participant 12 had the lowest bone turnover 

marker concentrations, but participant 15 had amongst the highest concentrations, suggesting that 

plasma volume did not influence bone turnover marker concentrations.  

 

Participant 13 had β-CTX and P1NP concentrations that were 2 – 3 times higher than average (RA) 

concentrations, with a peak β-CTX concentration of 1.76 ng.mL-1 and a peak P1NP concentration of 

178.00 ng.mL-1. This participant was relatively young (20 years old) and may still have been in the 

later stages of growth (Tanner, 1975), where high bone turnover is present due to bone modelling, 

however, this subsides as bone growth slows and the newly formed osteoid undergoes mineralisation 

(Weaver et al., 1997; Weaver, 2000; Bachrach, 2001; Eastell et al., 2005). Therefore, these high 

concentrations may require further investigation.  

 

Participant 13 also had one of the lower bone turnover marker ratios (1.04) compared to other 

participants. Only participant 9 had a bone turnover marker ratio below 1, suggesting that for all 

other participants, bone turnover favours bone formation rather than bone resorption. However, the 

accelerated bone turnover that is present in these athletes may override the positive effect of this 
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bone turnover balance. Bone remodelling may be occurring too quickly for the processes of 

osteoclastic bone resorption, reversal and osteoblastic bone formation to be completed properly. 

Although the amount of bone formation may exceed the amount of bone resorption at rest, if the 

osteoblasts do not entirely fill the resorption pits created on the bones surface (Salo et al., 1997; 

Teitelbaum and Ross, 2003; Stenbeck and Horton, 2004) and the osteoid is not yet mineralised before 

another training session is performed, which induces an acute increase in bone resorption (Scott et 

al., 2010), osteoclasts may resorb the same newly deposited bone. This may create localised 

weakened areas on the bones surface where microdamage accumulation is more likely to occur 

(Martin, 1992; Bennell et al., 1996a; Eriksen et al., 1999). Considering that complete new bone 

mineralisation can take up to 4 months (Stewart and Hannon, 2000; Hadjidakis and Androulakis, 

2006; Crockett et al., 2011), there could be numerous weakened areas on an athlete’s bone.    

 

The higher than average (RA) bone turnover marker concentrations are in agreement with the 

findings of Waldron-Lynch et al. (2010), who showed that professional jockeys had NTX and P1NP 

concentrations that were more than 2 times higher than control participants. The authors attribute the 

high bone turnover to low calcium intakes and energy deficiencies, with average energy and calcium 

intakes of 1,760 ± 283 kcal.d-1 and 541 ± 106 mg.d-1. In the present study β-CTX and P1NP 

concentrations were higher than average (RA) in all samples in 13 out of 16 participants; there are 

no increases and decreases on certain mornings. This suggests that either the effects of training 

sessions performed did not persist to the following morning, or that all training sessions had the 

effect of elevating bone turnover the following mornings. Oosthuyse et al. (2013) showed that β-

CTX and BALP concentrations remained elevated the mornings after 3 h of cycling on 4 consecutive 

days. Without a true baseline sample in the present study, this is difficult to interpret. With different 

training schedules each day it may be expected for bone turnover to be more elevated on certain 

mornings than others, due to different mechanical loading and different hormonal responses to 

different training sessions.  

 

One of the reasons for the high concentrations of bone turnover markers could be the high amounts 

of energy expended on a daily basis. Hinton et al. (2010) and Rehrer et al. (2010) showed that CTX 
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concentrations increased mid-way through a 6 day cycling tour, which coincided with decreased 

energy intakes. Westerterp et al. (1986) measured energy expenditure in 4 cyclists during the Tour 

de France and showed that the average daily energy expenditure was 8,054 kcal.d-1 when covering 

3,500 km over 23 days. In contrast, Schulz et al. (1992) and Edwards et al. (1993) calculated that 9 

female distance runners expended only 2,768 kcal.d-1 and 2,990 kcal.d-1. All of these studies measured 

energy expenditure by DLW. The 3 male participants in the present study expended between 5,506 

and 5,906 kcal.d-1 and the female participant that was not injured expended 4,381 kcal.d-1. These 

energy expenditures are high in comparison to athletes of other sports, other than cyclists competing 

in cycling tours (Westerterp et al., 1986; Rherer et al., 2010), which are extreme endurance events. 

As the phase of training changes, volumes and intensities of training sessions will change, and with 

the addition of races and training camps, it is likely that energy expenditures will change accordingly. 

This group of triathletes often spend time training at altitude, which itself increases energy 

expenditure due to increases in RMR and diet-induced energy expenditure (Pulfrey and Jones, 1996; 

Reynolds et al., 1999; Westerterp-Plantenga et al., 1999), therefore energy expenditures are likely 

to exceed the values reported here at other phases of the season.  

 

Participants did not match energy intakes with energy expenditures, meaning that they are likely to 

be in a negative energy balance, and this may contribute to the high bone turnover. As we only 

measured energy expenditure in 5 participants, we can only assume that as the total volume of 

training is similar between participants, it is likely that the male triathletes would expend between 

5,000 and 6,500 kcal.d-1 and the females between 4,000 and 5,000 kcal.d-1 during off-season training. 

It should be noted that this can vary drastically between individuals due to differences in RMR 

(Harris and Benedict, 1918; Thompson and Manore, 1996; Speakman et al., 2004), which means 

that these guideline energy expenditures may not be relevant to every triathlete.  

 

A negative energy balance is detrimental for bone health and can cause symptoms of RED-S or the 

triad (Nattiv et al., 2007; De Souza et al., 2014; Mountjoy et al., 2014). Inadequate energy intakes 

are common in endurance athletes (Edwards et al., 1993; Thompson et al., 1995; Burke et al., 2003; 

Melin et al., 2015), and athletes have regularly been shown to have low energy availabilities (Fudge 
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et al., 2006; Loucks, 2007; Drenowatz et al., 2012; VanHeest et al., 2014). Average energy intakes 

reported in the present study are 2,675 ± 414 kcal.d-1 for the male triathletes and 3,070 ± 780 kcal.d-

1 for the female triathletes. These low energy intakes could be occurring due to the appetite 

suppressing effect of endurance training (King et al., 1994; King et al., 1997; Hubert et al., 1998) 

and the lack of a strong biological drive to match energy intakes with energy expenditures, or due to 

purposeful restriction with the aim of reducing body weight, which is common in endurance and 

aesthetic sports (Truswell, 2001; Nattiv et al., 2007). Perhaps a more likely reason for inadequate 

energy intakes in this group of triathletes is the lack of time available to consume food in between 

training sessions. The (non-injured) triathletes trained on average for 4 – 5 hours each day during 

this training phase, with sessions being spread out throughout the day, meaning that the time that 

they have to consume food and digest it prior to the next training session is limited, as eating prior 

to training can cause gastrointestinal discomfort (Rehrer et al., 1992; Cox et al., 2010; Pfieffer et al., 

2012). Therefore, consuming the necessary energy in large meals throughout the day is not practical 

and other feeding practices that allow the consumption of appropriate energy and macronutrients in 

between training sessions need to be explored.  

 

Under reporting of diet logs may have occurred in the present study, which is one of the limitations 

of using self-report to measure energy intakes (Schoeller, 1995; MacDiarmid and Blundell, 1998; 

Ebine et al., 2002; Burke et al., 2005; Drenowatz et al., 2012). The lower intakes reported by the 

males compared to the females may be due to greater underreporting by the males. For example, 

according to the self-reported diet logs of participant 01, this male triathlete has an energy balance 

of -2,679 kcal.d-1. This would have extreme negative health and performance implications if this was 

maintained on a daily basis and would also cause drastic weight loss, which did not occur throughout 

the study period, suggesting that 3,198 kcal.d-1 was not the full energy intake of participant 01. 

Similarly, Silva et al. (2012) showed that elite basketball players under reported dietary intakes by 

38% and Trappe et al. (1997) showed an energy availability of -2,457 kcal.d-1 in female swimmers, 

despite stable body weights. It is difficult to accurately assess energy intakes amongst participants 

in a field setting as methods generally rely on self-report and participant motivation to record food 
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intake in sufficient detail. This is discordant with the DLW method of measuring energy expenditure, 

meaning that it is difficult to accurately measure energy balance.  

 

Amenorrhea is one of the entities of the triad and 2 of the female participants from site 1 had 

previously suffered from secondary amenorrhea, prior to hormonal contraceptive use, which is often 

caused by low energy availability (Nattiv et al., 2007; De Souza et al., 2014; Mountjoy et al., 2014). 

Hormonal contraceptive use can mask amenorrhea, due to the decrease in oestradiol which inhibits 

ovulation (Baird and Glasier, 1993; Grinspoon et al., 2003). Despite differences in oestradiol 

concentrations between the female participants, they have a similar bone turnover response to the 

training performed, which may suggest that the mechanical loading experienced during triathlon 

training could override the effect of reproductive hormones on bone metabolism. There has been 

acknowledgement of similar reproductive hormone deficiencies occurring in male athletes (Hackney, 

2008; Tenforde et al., 2015), which has contributed to the development of RED-S. Due to RED-S 

being a recent development (Mountjoy et al., 2014), evidence for the symptoms for RED-S occurring 

in male athletes is limited. This is one of the first studies that has shown that elite male endurance 

athletes have both high bone turnover and low energy intakes, that are likely to mean the athletes 

have low energy availabilities.  

 

As well as overall energy intake, macronutrient composition of the diet is also important for 

maintaining normal bone turnover. A low CHO intake has been shown to cause increased osteoclast 

activity and poor bone mineralisation, leading to decreases in BMD and bone quality (Hou et al., 

1990; Li et al., 1990; Zernicke et al., 1995; Wohl et al., 1998; Kettler, 2001; Bielohuby et al., 2010). 

Low CHO diets may be deficient in calcium (Freedman et al., 2001) and cause metabolic acidosis 

that promotes calcium mobilisation from the bone (Barzel and Massey, 1998; Lemann, 1998). Low 

CHO diets may also increase stress hormone and cytokine responses to exercise, including 

adrenaline, cortisol and IL-6 (Bishop and Clarke, 1998; Mitchell et al., 1998; Bishop et al., 2001), 

which have been shown to be stimulators of osteoclastogenesis and bone resorption (Kotake et al., 

1996; Kwan et al., 2004). In the present study, PRO intakes exceeded the guideline intake for 

endurance athletes, whereas CHO intakes were generally lower than guideline intakes for endurance 
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athletes. Guideline intakes are 7 – 12 g.kgBM-1.d-1 for CHO and 1.6 g.kgBM-1.d-1 for PRO (Burke et 

al., 2001; Tarnopolsky et al., 2004; Burke et al., 2011); the average intakes reported in the present 

study are 6 g.kgBM-1.d-1 for CHO and 1.8 g.kgBM-1.d-1 for PRO. In a study of 25 elite Australian 

triathletes, the average energy intake was 4,095 kcal.d-1, 609 g.d-1 of CHO and 133 g.d-1 of PRO 

(Burke and Read, 1987). Taking an average body mass of 69 kg for a male triathlete, this equates to 

8.8 g.kgBM-1.d-1 of CHO and 1.9 g.kgBM-1.d-1 of PRO, both of which are higher than intakes in the 

elite British triathletes that participated in the present study.   

 

Micronutrient intakes are also very important for bone health, particularly calcium and vitamin D, 

which are related to stress fracture injury (Lappe et al., 2008; Medelli et al., 2009a; Nieves et al., 

2010; Tenforde et al., 2010; Sonneville et al., 2012; Wentz et al., 2012; Miller et al., 2016). There 

is no relationship between supplementation of calcium and vitamin D and bone turnover in the 

present study, although the two participants with the highest PTH concentrations did not supplement 

with calcium. In the present study, calcium intakes averaged 1,359 ± 447 mg.d-1, which is higher 

than the recommended intake for healthy adults (700 mg) (British Dietetics Association and the 

National Health Service). However, due to the large dermal calcium losses experienced by the 

participants during training sessions, this calcium intake is likely to be insufficient to maintain a 

positive calcium balance. A non-active individual will lose 15 – 60 mg in the sweat each day 

(National Research Council, Food and Nutrition Board; Allen, 1982; Charles et al., 1983) and often 

dermal calcium losses are not included when calculating calcium balance and recommended intakes 

(Nordin and Heaney, 1990).  

 

Taking the average calcium intake of 1,359 mg.d-1 in the present study, given that approximately 30% 

will be absorbed in the body (Brine and Johnston, 1955; Nordin et al., 1979), leaves 408 mg available, 

approximately 280 mg of that is excreted in faeces and urine (Heaney and Skillman, 1964; Nordin 

et al., 1979), leaving 128 mg. The average total dermal calcium loss during a training session was 

77 mg and given that these triathletes will both run and cycle at least once each day (as well as 

swimming) (77 * 2 = 154 mg), leaves a calcium balance of -26 mg. A negative calcium balance can 

cause increased bone resorption as bone is mobilised to maintain adequate serum calcium 
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concentrations (Brown, 1983; Brown, 2000), which may cause amplified BMC losses and contribute 

to low BMDs in athletes (Klesges et al., 1996). Therefore, this suggests that athletes that train 

multiple times each day should have calcium intakes exceeding 1,400 mg.d-1.  

 

Calcium concentrations in the sweat do not vary largely between participants as sodium does 

(Shirreffs and Maughan, 1997). The concentration remains similar between participants (0.54 ± 0.09 

mmol.L-1), but the volume of sweat lost between participants varies more largely (0.79 ± 0.38 L). 

Therefore, an individual with higher sweat rates will lose more dermal calcium than an individual 

with lower sweat rates and individuals with higher sweat rates may require larger calcium intakes to 

replace the dermal losses. As total sweat losses and therefore total calcium losses varied depending 

on the type of training session performed, for example 108 ± 35 mg was lost during a long easy cycle 

(EB) compared to 51 ± 34 mg lost during a short but hard run (HR), calcium requirements may also 

vary depending on the type of training that is performed on each day. Therefore, when athletes train 

in environments that encourage higher sweat rates and when training volumes or intensities change, 

dermal calcium losses will also change. This warrants further investigation of calcium losses during 

different training schedules.  

 

The rate of calcium loss also varied depending on the type of session performed; running induced a 

higher rate of calcium loss compared to cycling, and the more intense running sessions induced the 

greatest rate of calcium loss. The rate of loss may be more important than the total amount of calcium 

lost because of the rate dependence of the PTH response to decreased Ca2+ concentrations. When 

Ca2+ decreases rapidly, there is a more vigorous secretory response than when it decreases slowly 

(Brown, 2000). Therefore, the timing of calcium ingestion around training may be more important 

than the overall calcium intake across the day. However, whether the rate of dermal calcium loss 

causes Ca2+ concentrations to decrease at a similar rate requires exploration.  

 

A negative calcium balance may contribute to the lower than average (RA) concentrations of ACa 

across all samples. However, serum concentrations of calcium should be tightly regulated via the 

actions of PTH; when Ca2+ decreases from the homeostatic set point, PTH is synthesised and secreted, 
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increasing serum calcium back to normal levels (Stuart and Broadus, 1987; Brown, 2000). This 

suggests that the homeostatic set point of serum calcium is lower in elite triathletes compared to 

recreationally active individuals. An explanation could be that maintaining a negative calcium 

balance over a prolonged period could reduce the homeostatic set point of serum calcium, so 

deviations are less likely to occur and PTH is therefore less likely to increase. This is similar to a 

consistent negative energy balance that suppresses metabolic processes so the body’s physiological 

systems require less energy (Stubbs et al., 2004; Loucks, 2007). 

 

PTH is responsive to exercise and has been shown to increase by up to 84% after an acute bout of 

exercise, although, PTH has not been previously shown to remain elevated the morning after exercise 

(Scott et al., 2011). In comparison, participants from site 1 showed an increase in PTH concentrations 

in sample 3, which was the morning after a particularly long and hard training day involving 6 – 7 

hours of training. This coincided with increased PO4 concentrations in 2 participants and a decreased 

ACa concentration in 1 participant. As we did not take blood samples throughout the training day 

we do not know whether PTH concentrations were increased after training sessions, and if so, for 

how long. Morning samples alone, without a baseline concentration for comparison, make it difficult 

to interpret the lower than average (RA) PTH concentrations in 9 out of 16 participants. The large 

dermal calcium losses that were likely to have occurred during this long training day could have 

contributed to the increase in PTH concentrations the next day (Barry et al., 2011). Despite this, 

there was no coinciding increase in β-CTX concentrations in sample 3, suggesting that this increased 

PTH was not sufficient to increase bone resorption the following morning. It is possible that the 

lower than average resting concentrations of PTH would mean that the difference between PTH 

concentrations when at rest and when they are increased during exercise is greater, and this greater 

relative increase in PTH is likely to have the maximum anabolic effect on bone (Dempster et al., 

1993; Brahm et al., 1997a; Brahm et al., 1997b; Vainionpää et al., 2009). This could contribute to 

the positive bone turnover marker ratios in 15 out of the 16 triathletes. However, there are no studies 

that have examined relative exercise-induced increases in PTH and the subsequent effect on bone 

turnover and structural bone adaptation, so the increase with exercise required to cause an anabolic 

effect is unknown. The required increase may be large, considering that therapeutic doses of PTH 
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are required to significantly increase bone formation in rats (Turner et al., 2007) and improve BMD 

and fracture risk in osteoporotic men and women (Finkelstein et al., 1993; Finkelstein et al., 1998; 

Kurland et al., 2000; Neer et al., 2001; Orwoll et al., 2003).  

 

As well as calcium, PTH also responds to PO4 and vitamin D. 1,25(OH)2D3 is the second major Ca2+ 

elevating hormone (Brown, 2013) and it mediates renal and intestinal absorption of calcium. The 

range of total 25(OH)D concentrations in the present study was 73 to 165 nmol.L-1; therefore there 

were no deficiencies present and this is unlikely to have had a negative effect on calcium metabolism 

throughout the study period. Although, it should be stressed that there are currently no widely 

accepted guidelines for optimum vitamin D concentrations, especially in athletic populations (Close 

et al., 2013). Across all samples, PO4 concentrations were higher than average (RA) concentrations 

in 7 out of 16 participants and there are large variations for participants at site 1. Elevation of PO4 

concentrations, via dietary PO4, has been shown to rapidly stimulate PTH secretion, independent of 

calcium or 1,25(OH)2D3 concentrations (Lopez-Hilker et al., 1990; Estepa et al., 1999; Ritter et al., 

2002; Martin et al., 2005) and elevated PTH concentrations act to increase PO4 resorption from the 

bone and decrease reabsorption in the proximal tubule (Penido and Alon, 2012). For 4 participants 

at site 1, higher PO4 concentrations coincided with higher PTH concentrations in sample 3, 

suggesting that increased bone resorption and demineralisation could have led to higher plasma PO4 

concentrations (Berndt et al., 2005; Penido and Alon, 2012). Alternatively, the higher plasma PO4 

concentrations could have stimulated the higher PTH concentrations. This highlights the need for 

more conclusive research concerning PTH, calcium and PO4 regulation surrounding exercise.   

 

The incidence of stress fracture injury, assessed by a retrospective questionnaire, was high in this 

group of triathletes. Twelve out of the 16 participants had suffered at least 1 stress fracture injury 

and 3 of these 12 participants had suffered 2 stress fractures. This is higher than the 4 to 37% of 

runners having suffered from a stress fracture that is reported in other studies (Hulkko and Orava 

1987; Barrow and Saha, 1988; Johnson et al., 1994; Bennell et al., 1995; Bennell et al., 1996a; 

Bennell et al., 1996b; Bennell et al., 1998; Jones et al., 2002; Kelsey et al., 2007; Iwamoto et al., 

2011; Duckham et al., 2012; Tenforde et al., 2013; Yagi et al., 2013). These studies all evaluated 
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stress fracture injury using different methods. Some of these studies prospectively evaluated athletes 

over a short time period, such as 12 months (Zernicke et al., 1993; Johnson et al., 1994; Bennell et 

al., 1996b), and this method has a tendency to show lower incidences than studies that retrospectively 

report stress fracture injuries, such as the present study that reported incidences throughout 

participants’ athletic careers. It is therefore difficult to compare results of different studies in detail. 

  

In conclusion, elite triathletes have accelerated bone turnover during this off-season phase of training, 

characterised by resting β-CTX and P1NP concentrations that are higher than average concentrations 

in recreationally active individuals and non-active individuals. Although cause and effect cannot be 

established from the results of this study, high energy expenditures, insufficient energy intakes and 

high rates of dermal calcium loss, may contribute to this accelerated bone turnover. However, further 

research is needed to investigate whether this accelerated bone turnover is always present or if it is 

characteristic of the training phase and is related to training volume/intensity, dietary intakes and 

environmental conditions. Similarly, as dermal calcium losses in this group of triathletes are much 

higher than losses in the normal population, further research around calcium metabolism is warranted. 

It should be noted that the main limitation of the study is the lack of a baseline sample, which was 

impossible to obtain due to participants’ training schedules not incorporating any rest periods and 

the lack of even a single rest day. However, consideration should be given to the fact that the 

participants in this study compete at World Triathlon Series level or above and represent 50% of the 

British Triathlon World Class Performance squad. Therefore, this study sample truly represents the 

elite triathlete population,  the results are ecologically valid and can be directly used by triathletes 

and coaches.  
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CHAPTER 5: INVESTIGATING BONE 

METABOLISM IN A SUBSET OF ELITE 

TRIATHLETES DURING PRE-

COMPETITION TRAINING  
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5.1 Introduction  

The study presented in Chapter 4 showed that elite triathletes have accelerated bone turnover during 

off-season training compared to recreationally active and non-active individuals. This may be caused 

by high training loads, high energy expenditures and high dermal calcium losses, alongside low 

energy intakes. All of which may contribute to the high incidence of stress fracture injuries in this 

group of elite triathletes. These factors will differ throughout a triathlon season, due to racing 

schedules and environmental conditions, for example in the 2016 season there were 9 World Series 

races over 7 months as well as the Olympic final, where temperatures ranged from 4°C to 30°C. 

Therefore, the accelerated bone turnover that was shown in the study reported in Chapter 4 may not 

always be present to the same extent but may be related to the training load performed during off-

season training or other external factors.  

 

Training load changes throughout the triathlon season; off-season training often involves high 

volume, low intensity work as the athletes return to training after a short break and work on 

increasing overall fitness levels and endurance. As the season progresses towards competition 

preparation, the volume of training starts to decrease but the intensity of training increases (anecdotal 

information from British Triathlon coaches). Ideally, energy intakes should also change to match the 

demands of the changing training schedule, but in reality this is often difficult for athletes to attain 

(Stubbs et al., 2004; Drenowatz et al., 2012), meaning that energy availability may vary throughout 

a triathlon season.  

 

 Environmental conditions, such as levels of sunlight and the quantity and quality of solar radiation, 

also change throughout the season, which influences cutaneous previtamin D3 synthesis and 

therefore total 25(OH)D concentrations (Webb et al., 1988). Subsequently, vitamin D concentrations 

have been shown to change throughout an athletic season (Close et al., 2013; Wolman et al., 2013; 

Owens et al., 2015; Miller et al., 2016). Additionally, differing ambient temperatures and humidity 

levels will alter sweat rates. As the study in Chapter 4 showed that dermal calcium losses are related 

to sweat losses, dermal calcium losses will increase as sweat losses increase. This may mean that 
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calcium intake requirements and timings will also change throughout a season and will vary 

depending on the type of training sessions performed.  

 

The aim of this study was to investigate whether there are changes in resting bone turnover during 

pre-competition training compared to off-season training in elite triathletes. Nutritional practices and 

dermal calcium losses were also investigated during pre-competition training and compared to off-

season training to explore whether changes in these variable factors may contribute to changes in 

bone turnover at different phases of the season.  
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5.2 Methodology 

5.2.1 Participants  

Participants 07 – 14 (Loughborough – site 2) from Chapter 4 also participated in a second testing 

period (Table 12). This study was approved by the Ethical Advisory Committee at Nottingham Trent 

University (Application numbers 398, 409 and 413)..  

 

Table 12. Participant characteristics. Data are mean ± 1SD. 

 Males (n = 6) Females (n = 2) 

Age (y) 24 ± 5 23 ± 4 

Height (m) 1.80 ± 0.07 1.66 ± 0.02 

Body mass (kg) 70.2 ± 3.4 59.4 ± 0.6 

 

5.2.2 Experimental design 

In this longitudinal study, participants performed their usual training load and maintained normal 

behaviours for the entirety of the testing period. Prior to testing, participants provided written 

informed consent and completed health, injury and menstrual status (females only) questionnaires 

(Appendix E). The testing period lasted 7 – 10 days and was completed during pre-competition 

training in May 2016. Fasted morning blood samples were taken between 06:30 and 07:00 prior to 

morning training sessions along with the collection of the first void for the measurement of urine 

osmolality. Blood samples were taken at precisely the same time for each participant on each 

occasion and were also taken at the same time to samples in the previous study reported in Chapter 

4. Dermal calcium losses were measured in cycling and running training sessions. Participants 

completed daily diet and training logs and coaches recorded training sessions using Training Peaks 

(https://www.trainingpeaks.com/) (Appendix F). The results of the present study were compared to 

the results of Chapter 4.  

 

5.2.3 Testing procedures 

https://www.trainingpeaks.com/
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The study design and testing procedures were identical to those described in Section 4.2, with the 

exception of DLW and the stress fracture history questionnaire. The following measures were 

performed: morning blood and urine collection (Section 4.2.3.1), sweat collection (Section 4.2.3.2) 

and diet logs (Section 4.2.3.5). 

 

5.2.4 Bone turnover markers and metabolites  

Due to there being no reference ranges for resting bone turnover markers and related metabolites 

available for elite athletes, the results in the present study were compared to resting concentrations 

for recreationally active individuals (RA) that have been collected by the Musculoskeletal 

Physiology Research group at Nottingham Trent University (Appendix A). Average concentrations, 

+1 SD and -1 SD were plotted on each graph for comparison and are referred to as ‘RA’ 

concentrations throughout Sections 5.3 and 5.4. To give a numerical value to the difference between 

bone formation and bone resorption, the bone turnover marker ratio was calculated using the 

following equation: [P1NP]/([β-CTX]*100), with a value above 1 indicating that bone turnover 

favours bone formation and a value below 1 indicating that bone turnover favours bone resorption. 

This equation was used in Lombardi et al. (2012) but for different bone turnover markers.  

 

5.2.5 Statistical analysis  

Once parametric assumptions were confirmed (Section 3.8), paired sample t-tests were performed to 

compare the results of the pre-competition testing period with those of the off-season testing period 

for participants 07 – 14. Cohen’s d effect sizes were subsequently calculated for significant 

differences (Section 3.8).  
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5.3 Results 

5.3.1 Bone turnover markers  

5.3.1.1 β-CTX 

β-CTX concentrations were higher than average (RA) concentrations in 5 out of 8 participants in all 

samples and did not increase or decrease in any sample. The minimum concentration was 0.34 ng.mL-

1 and the maximum concentration was 1.55 ng.mL-1. Participant 13 had average β-CTX 

concentrations that were more than 2.5 times the average (RA) concentration (Figure 10A). Average 

concentrations were significantly higher during off-season training compared to pre-competition 

training (P=0.020, d=0.40) (Figure 12A).  

 

5.3.1.2 P1NP 

P1NP concentrations were higher than average (RA) concentrations in 4 out of 8 participants in all 

samples and did not increase or decrease in any sample. The minimum concentration was 42.8 ng.mL-

1 and the maximum concentration was 158.8 ng.mL-1. Participant 13 had average P1NP 

concentrations that were 2.5 times the average (RA) concentration (Figure 10B). Average 

concentrations were significantly higher during off-season training compared to pre-competition 

training (P=0.012, d=0.40) (Figure 12B).  

 

5.3.1.3 Bone turnover marker ratios  

Although 5 out of the 8 participants showed an increase in the bone turnover marker ratio from off-

season to pre-competition training, the increase was not significant (Table 13). 
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Table 13. Average bone turnover marker ratios. 

Participant 

Bone turnover 

marker ratio 

Off-season  

Bone turnover 

marker ratio 

Pre-competition  

Percentage 

change in the 

bone turnover 

marker ratio 

07 1.23 1.29 4.87 

08 1.44 1.03 -28.47 

09 0.82 0.92 12.19 

10 1.11 1.11 0.00 

11 1.04 0.93 -10.57 

12 1.07 1.12 4.67 

13 1.04 1.19 14.42 

14 1.17 1.20 2.56 
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Figure 10. Resting concentrations of β-CTX (A) and P1NP (B) for all participants in all blood 

samples over 7 – 10 days during pre-competition training. See Figure 12 for comparisons between 

off-season training and pre-competition training.   
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5.3.2 Calcium metabolism  

5.3.2.1 PTH 

PTH concentrations were lower than average (RA) concentrations in 5 out of 8 participants and 

higher than average (RA) concentrations in 3 out of 8 participants in all samples. Concentrations 

increased in sample 2 in 5 out of 8 participants, which was the morning after an evening track running 

session. Concentrations also increased in sample 5 in 2 out of 8 participants. The minimum 

concentration was 2.10 pmol.L-1and the maximum concentration was 4.80 pmol.L-1. The PTH 

concentration in sample 2 was almost 1.5 times the average (RA) concentration in participant 07 

(Figure 11A). Average concentrations were not significantly different between off-season training 

and pre-competition training (P=0.404) (Figure 12C).  

 

5.3.2.2 ACa 

ACa concentrations were lower than average (RA) concentrations in 8 out of 8 participants in all 

samples. The minimum concentration was 2.18 mmol.L-1 and the maximum concentration was 2.37 

mmol.L-1 (Figure 11B). Average concentrations were significantly higher during off-season training 

compared to pre-competition training (P≤0.001, d=2.60) (Figure 12D).  

 

5.3.2.3 PO4 

PO4 concentrations were lower than average (RA) concentrations in 5 out of 8 participants in all 

samples. Concentrations decreased in sample 2 and increased in sample 4 in participant 09 and 

increased in sample 4 in participant 14. The minimum concentration was 0.87 mmol.L-1 and the 

maximum concentration was 1.35 mmol.L-1 (Figure 11C). Average concentrations were significantly 

higher during off-season training compared to pre-competition training (P=0.050, d=0.82) (Figure 

12E).  
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Figure 11. Resting concentrations of PTH (A), ACa (B) and PO4 (C) for all participants in all blood 

samples over 7 – 10 days during pre-competition training. See Figure 12 for comparisons between 

off-season training and pre-competition training.   
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Figure 12. Average concentrations of β-CTX (A), P1NP (B), PTH (C), ACa (D), PO4 (E) and total 

25(OH)D (F) during off-season and pre-competition training. Each coloured circle represents 

average concentrations over all samples for each participant and the horizontal bars represent the 

average concentrations for all participants. Significant differences are presented on each graph.   
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5.3.3 Vitamin D 

All participants had sufficient total 25(OH)D concentrations, despite cessation of supplementation. 

Deficient concentrations are 50 nmol.L-1 or less, low optimal concentrations are 75 nmol.L-1 and high 

optimal concentrations are 125 nmol.L-1, according to the English Institute of Sport’s and British 

Triathlon’s recommended guidelines for athletes. The minimum concentration was 73.6 nmol.L-1 and 

the maximum concentration was 140.3 nmol.L-1 (Figure 13). Average concentrations were not 

significantly different between off-season and pre-competition training (P=0.417) (Figure 12F).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Resting concentrations of total 25(OH)D for all participants in all blood samples over 7 – 

10 days during pre-competition training. See Figure 12 for comparisons between off-season training 

and pre-competition training. 
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5.3.4 Energy intakes 

Average daily energy (kcal), CHO (g), PRO (g) and calcium (mg) intakes were significantly higher 

during pre-competition training compared to off-season training (P≤0.005, d=2.70 to 3.80) (Table 

14) (Figure 14A – D).  Average daily CHO intakes, expressed as a percentage of total intake, were 

significantly higher during pre-competition training compared to off-season training (P≤0.05, 

d=1.50), PRO intakes, expressed as a percentage of total intake, were not significantly different 

between training phases (P=0.44, d=1.00).  

 

Table 14. Average daily energy, CHO, PRO and calcium intakes and urine osmolality for all 

participants during pre-competition training. Data are averaged from a minimum of 5 day diet logs 

and 5 urine samples. Diet logs are missing for participants 09 and 13. Participants were classed as 

hydrated at ≤500 mOsm.L-1, dehydrated at 501 – 999 mOsm.L-1 and severely dehydrated at ≥1000 

mOsm.L-1.  

Participant Sex 

Body 

mass 

(kg) 

Average 

daily 

energy 

intake 

(kcal) 

Average 

daily 

carbohydrate 

intake (g) 

Average 

daily 

carbohydrate 

intake (% of 

total intake) 

Average 

daily 

protein 

intake 

(g) 

Average 

daily 

protein 

intake 

(% of 

total 

intake) 

Average 

daily 

calcium 

intake 

(mg) 

Average 

urine 

osmolality 

(mOsm.L-

1) 

07 F 59.9 2,824 423 60 150 21 1,850 670 

08 M 74.1 3,926 543 55 193 20 2,077 735 

09 M 71.3 N/A N/A N/A N/A N/A N/A 1075 

10 M 70.8 3,756 467 50 175 19 2,171 1018 

11 M 65.2 3,823 529 55 190 20 1,406 743 

12 F 59.0 4,118 591 57 169 16 2,587 520 

13 M 73.0 N/A N/A N/A N/A N/A N/A 990 

14 M 67.1 3,808 501 53 148 16 2,130 956 

Mean ± SD  67.6 

± 5.8 

3,709 ± 

452 

509 ± 59 55 ± 4 171 ± 19 19 ± 2 2,037 ± 

391 

838 ± 198 
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Figure 14. Average daily intakes of total energy (A), calcium (B), CHO (C), and PRO (D) during 

off-season and pre-competition training. Each coloured circle represents average intakes from a 

minimum of 5 day diet logs for each participant and the horizontal bars represent the average intakes 

for all participants. Significant differences are presented on each graph. Diet logs are missing for 

participants 09 and 13 in pre-competition training and have therefore been excluded from the 

statistical analysis. 

  

5.3.5 Supplementation 

Other than participant 07, who was taking 534 mg of calcium 3 times per week, no other participants 

were taking any supplements.  
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5.3.6 Training loads 

Average time spent swimming, cycling, running and strength and conditioning was not significantly 

different between off-season and pre-competition training (P=0.058 to 0.461). Participants 08, 11 

and 13 had a forthcoming World Series race, so had started to taper towards the end of the week 

(Table 15).  

 

Table 15. Total training time, minutes of swimming, cycling, running and strength and conditioning 

(S&C) for all participants during 7 days of pre-competition training.  

 

 

 

 

 

 

 

 

Participant Total swim 

time over 7 

days (mins) 

Total cycling 

time over 7 

days (mins) 

Total run 

time over 7 

days (mins) 

S&C over 7 

days (mins) 

Total over 7 

days (mins) 

07 405 810 360 225 1,800 

08 315 720 300 225 1,560 

09 405 810 360 225 1,800 

10 405 810 360 225 1,800 

11 315 720 300 225 1,560 

12 405 810 360 225 1,800 

13 315 720 300 225 1,560 

14 405 810 360 225 1,800 

Mean ± SD 317 ± 47 776 ± 47 338 ± 31 225 ± 0  1,710 ± 124 
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5.3.7 Sweat losses and dermal calcium losses  

Table 16. Total sweat and calcium losses and rates of sweat and calcium losses for all participants. 

The average concentration of calcium in sweat was 0.56 ± 0.06 mmol.L-1. Data are mean ± 1SD.  

 Training session 

 ER EB HR HB 

Total sweat loss 

(L) 

1.0 ± 0.3 1.4 ± 0.7 1.0 ± 0.5 1.1 ± 0.3 

Total calcium loss 

(mg) 

90 ± 33 147 ± 60 109 ± 59 108 ± 42 

Rate of sweat loss 

(L.h-1) 

0.79 ± 0.22 0.49 ± 0.15 1.47 ± 0.51 0.80 ± 0.18 

Rate of calcium 

loss (mg.h-1) 

75 ± 24 47 ± 16 155 ± 59 82 ± 26 

 

Average total calcium loss, total sweat loss, rate of calcium loss and rate of sweat loss were 

significantly higher during pre-competition training compared to off-season training (P≤0.01, d=1.25 

to 1.60) (Figure 15A – D).   
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Figure 15. Average total calcium loss (A), average total sweat loss (B), average rate of calcium loss 

(C) and average rate of sweat loss (D) during off-season and pre-competition training. Each coloured 

circle represents average total losses or rate for each participant and the horizontal bars represent the 

average losses or rate for all participants. Significant differences are presented on each graph. 

 

5.2.8 Menstrual status  

The two female participants were using combined oral contraception (both Levest).   
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5.4 Discussion  

The main findings of the study are: 1) β-CTX concentrations were consistently higher than average 

(RA) concentrations in 5 out of 8 participants and average β-CTX concentrations were higher during 

off-season training compared to pre-competition training; 2) P1NP concentrations were consistently 

higher than average (RA) concentrations in 4 out of 8 participants and average P1NP concentrations 

were higher during off-season training compared to pre-competition training; 3) PTH concentrations 

were lower than average (RA) concentrations in 5 out of 8 participants and higher than average in 3 

out of 8 participants; 4) ACa concentrations were consistently lower than average (RA) 

concentrations in 8 out of 8 participants and average ACa concentrations were higher during off-

season training compared to pre-competition training; 5) PO4 concentrations were lower than average 

(RA) concentrations in 5 out of 8 participants and average PO4 concentrations were higher during 

off-season training compared to pre-competition training; 6) Average daily energy, calcium, CHO 

and PRO intakes were higher during pre-competition training compared to off-season training; 7) 

Average total calcium loss, total sweat loss, rate of calcium loss and rate of sweat loss were higher 

during pre-competition training compared to off-season training.  

  

To our knowledge this is the first study that has investigated bone turnover in elite triathletes at two 

phases of the season. Maïmoun et al. (2004b) studied 7 male sub-elite triathletes, at the start of the 

season and 32 weeks later, taking measures of BALP, OC and u-CTX. There was a decrease in BALP 

concentrations, but no other differences. Two isolated measurements are unlikely to capture the 

dynamic nature of bone turnover throughout a triathlon season, whereas, in the present study, we 

made 5 measurements in each training phase. In the present study, the average concentrations of β-

CTX (0.64 ± 0.26 ng.mL-1) and P1NP (70.64 ± 30.44 ng.mL-1) were high compared to non-active (β-

CTX; 0.23 – 0.32 ng.mL-1 and P1NP; 31.00 – 49.40 ng.mL-1) and recreationally active individuals 

(β-CTX; 0.51 ± 0.22 ng.mL-1 and P1NP; 61.40 ± 25.89 ng.mL-1) but were not as high as average 

concentrations during off season training (β-CTX; 0.80 ± 0.36 ng.mL-1 and P1NP; 86.43 ± 36.11 

ng.mL-1 in participants 07 – 14).  
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Similarly to off-season training, bone turnover marker concentrations were higher than average (RA) 

in all samples in 4 out of 8 participants; there were no increases and decreases on certain mornings. 

The significantly lower concentrations of both β-CTX and P1NP during pre-competition training 

compared to off-season training suggests that bone turnover is not accelerated to the same extent.  

Lombardi et al. (2011) showed that bone formation markers BALP and OC and marker of osteoclast 

activity TRAP5b, were significantly increased from the end of the pre-competitive season to the end 

of the competitive season in 14 female elite slalom skiers. This was attributed to the competitive 

season being more physically demanding because of higher loads of weight bearing activity. 

Likewise, the results of the study reported in Chapter 4 and the present study also showed that bone 

turnover is higher after high volumes of training. Although we were unable to adequately measure 

training intensity due to a lack of detail provided by coaches and athletes, anecdotal information 

from British Triathlon coaches and support staff shows that the number of high volume, low intensity 

sessions decreases and the number of low volume, high intensity sessions increases as triathletes 

move from off-season to pre-competition training. Shorter bouts of higher intensity training are 

anabolic for bone, compared to lower intensity, prolonged training (O’Connor et al., 1982; Rubbin 

and Lanyon, 1984; Rubin and Lanyon, 1985; Raab-Cullen et al., 1994). 

 

Similarly to the off-season testing period, participant 13 had β-CTX and P1NP concentrations that 

were 2.5 times higher than the average (RA) concentrations, with peak β-CTX concentrations of 1.55 

ng.mL-1 and peak P1NP concentrations of 158.80 ng.mL-1. However participant 13 showed an 

increase in the bone turnover marker ratio from 1.04 to 1.19. Likewise, in 5 of the 8 participants, the 

bone turnover marker ratio increased from off-season training to pre-competition, suggesting that 

bone turnover is favouring bone formation more during pre-competition training. 

 

Different sports induce different patterns of mechanical loading and different physiological 

responses (Maïmoun et al., 2004b; Hermann et al., 2007; Mouzopoulos et al., 2007; Lippi et al., 

2008; Lombardi et al., 2011), some of which will be more osteogenic than others. Further, study 

protocols vary widely even in the limited studies that have investigated the variations of bone 

turnover markers in elite athletes during a season. This means that the results of different studies 
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cannot be directly compared and highlights the need for a standard study protocol to be developed 

to allow for better comparison between different athletes and sports.  

 

Total energy, CHO (g) and PRO (g) intakes were significantly higher during pre-competition training 

compared to off-season training. Intakes of CHO as a percentage of total intake, were significantly 

higher in pre-competition training compared to off-season training (55 ± 4% vs 49 ± 4%), however, 

intakes of PRO as a percentage of total intake, were not different between training phases (19 ± 2% 

vs 17 ± 2%). The relative increase in CHO and relative decrease in fat intake during the pre-

competition training phase, could have contributed to a more anabolic environment for bone, as a 

low CHO intake can increase osteoclast activity and bone resorption and increase stress hormone 

and cytokine responses to exercise (Hou et al., 1990; Li et al., 1990; Zernicke et al., 1995; Bishop 

and Clarke, 1998; Mitchell et al., 1998; Wohl et al., 1998; Bishop et al., 2001; Kettler, 2001; 

Bielohuby et al., 2010). The increased CHO intakes could have also meant that the triathletes were 

more optimally fuelled to perform the high intensity training sessions, as CHO (muscle glycogen 

and plasma glucose) is the main fuel source for high intensity exercise (van Loon et al., 2001).  

 

The difference in average energy intakes between off-season and pre-competition training was 1,334 

± 312 kcal.d-1 for the male triathletes and 1,164 ± 346 kcal.d-1 for the female triathletes. This makes 

it more likely that energy intakes were more closely matched to energy expenditures, providing more 

energy to adequately support training and improving training fuelling and recovery. Despite this, if 

energy expenditures were still in the region of 5,500 – 6,000 kcal.d-1 for males and 4,000 – 5,000 

kcal.d-1 for females, the triathletes may still be in negative energy balance during pre-competition 

training. Even a small energy deficit has been shown to affect bone turnover; Ihle and Loucks (2004) 

have shown that bone formation is suppressed when energy availability is reduced to only 30 

kcal.kgLBM-1.d-1, which is common even in regularly menstruating female athletes (Thong et al., 

2000). Because of the implications of a negative energy balance, but the apparent inability of 

triathletes to consume sufficient food throughout the day, alternative nutritional practices that 

favourably affect bone turnover need to be investigated. It should be noted that participants were 



139 

 

briefed on the issues with under-reporting of diet logs prior to participating in the present study, 

making under-reporting less likely in this second testing period. 

 

The present study adds to the evidence of RED-S occurring in male athletes, as the results show that 

elite male endurance athletes have high bone turnover and low energy intakes at two phases of the 

season. Studies at other phases of the season, such as during and after the competition period are 

now required to determine whether this high bone turnover and low energy intakes are maintained 

all year round, and should also be linked to changes in indices of bone health, such as BMD or bone 

structure. One of the female participants (participant 07) is likely to have low energy availability, 

considering that her average energy intake was only 2,828 kcal.d-1. Further, this participant had an 

average BMD of 1.0805 g.cm-2 and a Z-score of 0.2, taken from two DXA scans in April and July. 

Considering that athletes involved in weight-bearing sports should have a 5 – 30% greater BMD than 

non-athletes, due to positive adaptation to mechanical loading, the BMD of participant 07 is low and 

should be between 1.134 and 1.404 g.cm-2 (Fehling et al., 1995; Bennell et al., 1997; Nichols et al., 

2000; Nichols et al., 2007; Tenforde et al., 2015). This potentially low energy availability and low 

BMD suggest that the triad may be present in this female triathlete. Although both female 

participants were using hormonal contraception which can mask amenorrhea (Baird and Glasier, 

1993; Grinspoon et al., 2003), so natural oestradiol concentrations and menstrual status are unknown.  

 

Calcium intakes significantly increased during pre-competition training, from 1,155 mg.d-1 to 2,037 

mg.d-1, which primarily came from an increase in dairy foods such as milk and yoghurt, although 

participant 07 did also start to supplement with calcium. These intakes should provide an adequate 

supply of calcium, which should allow serum calcium levels to be maintained without the need for 

mobilising bone stores to raise serum calcium concentrations (McSheehy and Chambers, 1986; 

Thorsen et al., 1997; Brown 2000; Zitterman et al., 2002; DeLuca, 2004; Barry et al., 2011; Brown, 

2013). Resting concentrations of ACa are significantly lower during pre-competition training 

compared to off-season training, suggesting that the homeostatic set point of serum calcium has 

decreased. Average rates of dermal calcium loss and total dermal calcium losses increased 

significantly from off-season training to pre-competition training, which could be related to the 
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higher sweat rates or the higher dietary calcium intakes. There is a limit to how much calcium the 

body can absorb, before the rest is excreted from the body (Nordin and Heaney, 1990) and with 

lower intakes, calcium absorption becomes more efficient and urinary losses decrease (Weaver and 

Heaney, 2006). However, Martin et al. (2007) showed that although urinary and faecal calcium 

excretion increased when individuals supplemented with calcium, overall calcium retention was 

higher and resulted in a positive calcium balance, whereas, with low calcium intakes, retention was 

poor and calcium balance was negative. This suggests that the triathletes were more likely to be in a 

positive calcium balance during pre-competition training, but the larger total dermal calcium losses 

and higher rates of dermal calcium loss outweigh the higher dietary calcium intakes. It may also 

mean that the timing of calcium intakes around certain training sessions (e.g. hard run) may be more 

important for maintaining acute calcium homeostasis, compared to total dietary calcium intakes 

across the day.  

 

All participants had the highest rates of calcium loss during the hard run, which may be related to 

the highest rates of sweat loss. This confirms the findings of Consolazio et al. (1962), who showed 

that the daily total calcium in sweat increased as the sweat rate increased in men, and the authors 

concluded that calcium requirements may therefore increase under profuse sweating conditions. The 

rates of dermal calcium loss reported in Chapter 4 and the present study are similar to rates reported 

in studies that collected sweat during 2 hours of indoor cycling; 69 ± 36 mg.h-1 (Barry and Khort, 

2007) and 68 ± 30 mg.h-1 (Barry and Khort, 2008). Only the hard run induced rates similar to rates 

reported during an indoor 35 km cycling time trial (120 – 147 mg.h-1) (Barry et al., 2011). 

Considering these studies were performed indoors, the ambient temperatures were likely to be higher 

than in the study reported in Chapter 4 and the present study (7.1°C and 15.6°C on average – 

Appendix D) and they would also have no air flow, although ambient conditions are not reported in 

these studies. This should mean that the sweat rates and therefore the rates of dermal calcium loss 

would be higher during the indoor cycling compared to real-life, outdoor training sessions. It is 

important to explore the significance of the greater rate of loss during a hard-running session 

compared to other training sessions, because this could cause a much greater perturbation in calcium 

homeostasis and therefore a greater PTH and bone resorption response (Brown, 2000).  
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Despite the lower ACa concentrations, there was no significant difference in average PTH 

concentrations between off-season and pre-competition training, however, there was more variation 

in the concentrations throughout the pre-competition testing period. PTH concentrations increased 

in sample 2 in 5 out of 8 participants, which was the morning after an evening track running session. 

As we did not take blood samples throughout the training day we do not know whether PTH 

concentrations were increased after this track session. It was a 30 – 35 minutes, high intensity running 

session, which has previously been shown to cause transient spikes in PTH concentrations (Scott et 

al., 2011) that are likely to be anabolic for bone (Tam et al., 1982; Dempster et al., 1993; Frolik et 

al., 2003). These potential transient increases in PTH concentrations caused by the high intensity 

training sessions could contribute to the increased bone turnover marker ratios in pre-competition 

training; however, further research is needed to confirm this.  

 

In conclusion, bone turnover is accelerated in elite triathletes during pre-competition training, 

characterised by resting β-CTX and P1NP concentrations that are higher than average concentrations 

in recreationally active individuals and non-active individuals. However, bone turnover is not as high 

as it is during off-season training. This is not likely to be influenced by rest, as the participants did 

not have any rest periods in between the testing periods. Therefore the lower bone turnover during 

pre-competition training may be due to increased total energy, calcium, CHO and PRO intakes in 

pre-competition training compared to off-season training. The rate of calcium loss is highest during 

hard running sessions in both phases of the season, which suggests that the timing of calcium 

ingestion around this type of training session may be more important than overall calcium intakes. 

However, there is still limited data surrounding PTH regulation during exercise, the timeframe of 

the response and whether this is solely mediated by changes in calcium.  
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CHAPTER 6: EXPLORING THE 

MECHANISM OF PARATHYROID 

REGULATION DURING EXERCISE AND 

RECOVERY IN RECREATIONAL RUNNERS 

 

This study has been published in the Journal of Clinical Endocrinology and Metabolism and has been 

presented at the American College of Sports Medicine Annual Conference: 

 

Townsend, R., Elliott-Sale, K. J., Pinto, A. J., Thomas, C., Scott, J. P., Currell, K., Fraser, W. D., & 

Sale, C. (2016). Parathyroid Hormone Secretion Is Controlled by Both Ionized Calcium and 

Phosphate During Exercise and Recovery in Men. The Journal of Clinical Endocrinology & 

Metabolism, 101(8), 3231-3239. (Appendix N).  

 

Townsend, R., Elliott-Sale, K. J., Pinto, A. J., Currell, K., Fraser, W. D., & Sale, C. (2016). 

Parathyroid Hormone (PTH) Secretion is Controlled by Both Ionised Calcium and Phosphate During 

Exercise and Recovery: 691 Board #7 June 1, 3: 30 PM-5: 00 PM. Medicine and Science in Sports 

and Exercise, 48(5 Suppl 1), 184. 
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6.1 Introduction 

The results of the studies reported in Chapters 4 and 5 showed that elite triathletes lose large amounts 

of calcium in sweat, that are higher than the normal population and similar to trained cyclists 

(National Research Council, Food and Nutrition Board; Consolazio et al., 1962; Allen, 1982; Charles 

et al., 1983; O’Toole et al., 2000; Barry and Khort, 2007; Barry and Khort, 2008; Barry et al., 2011). 

The rate of calcium lost in the sweat was highest during hard running sessions (155 ± 59 mg.h-1) and 

this may cause a rapid PTH response, due to the rate dependence of the PTH response to decreased 

Ca2+ concentrations (Brown, 2000). Furthermore, negative calcium balances may be prevalent at 

some phases of the triathlon season due to these large dermal calcium losses, which are exacerbated 

by insufficient calcium intakes to replace the losses (Chapter 4) (Waldron-Lynch et al., 2010). A 

positive calcium balance is necessary for bone adaptation to mechanical loading (Lappe et al., 2008).  

 

Barry et al. (2011) hypothesised that the disruption of calcium homeostasis is a potential mediator 

of bone loss, based on the findings that sweating during exercise causes large dermal calcium losses, 

leading to an increase in PTH, which can subsequently cause an increase in bone resorption (Klesges 

et al., 1996; Barry and Kohrt, 2007; Barry and Khort, 2008). Given the potential negative 

consequences of an imbalance in bone turnover and constant deviations from calcium homeostasis, 

which may be in part caused by large dermal calcium losses, it is pertinent that interventions around 

serum calcium maintenance during exercise are investigated in elite triathletes, similar to previous 

studies by Guillemant et al. (2004) and Barry et al. (2011).  

 

Guillemant et al. (2004) investigated the effect of calcium ingestion in 12 trained triathletes. The 

authors demonstrated that when 60 minutes of cycling was performed without a calcium load before 

or during the exercise, β-CTX concentrations increased progressively 30 minutes after the start of 

the exercise and that concentrations were still significantly elevated by 45 – 50%, 2 hours after the 

exercise. PTH concentrations increased 2.5 – 3 fold during the exercise. In contrast, when 

participants consumed a total of 972 mg of calcium, in fractionated amounts every 15 minutes from 

2 hours prior to exercise until the end of exercise, the increase in β-CTX concentrations was 

completely suppressed. The increase in PTH was only partially suppressed, therefore the regulation 
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of PTH during exercise and recovery could also involve other metabolites such as PO4 (Martin et al., 

2005; Scott et al., 2011; Scott et al., 2012; Scott et al., 2014). However, the mechanism and 

timeframe of calcium and PTH regulation during exercise and recovery is still not fully understood 

and needs to be explored in detail before any interventions are implemented in elite athletes.  

 

At rest, PTH secretory activity is regulated by serum Ca2+, which is detected by the calcium-sensing 

receptor on the chief cells of the parathyroid gland (Brown, 2000). When Ca2+ decreases from the 

homeostatic set point, PTH is synthesised and secreted, increasing serum calcium through 

mobilisation of the bone reservoir via bone resorption, and by increasing renal tubular reabsorption 

and intestinal calcium absorption (McSheehy and Chambers, 1986; Thorsen et al., 1997; Zitterman 

et al., 2002). PTH has a dual effect on bone that appears to be primarily determined by the signalling 

mechanism and the length of time that concentrations remain elevated above baseline and 

secondarily by the maximum PTH concentration (Frolik et al., 2003). Prolonged elevations above 

baseline (approximately 2-fold), that can be induced by continuous infusion of PTH (Frolik et al., 

2003) or by endurance type exercise (Ljunghall et al., 1986; Ljunghall et al., 1988), can result in the 

loss of the circadian rhythm of PTH (Tsai et al., 1984; Chappard et al., 2001) and cause an increase 

in bone resorption (Tam et al., 1982; Hock and Gera, 1992; Uzawa et al., 1995). Whereas, transient 

spikes in PTH, that can be induced by intermittent administration of PTH, high intensity interval 

type training or acute bouts of exercise (Scott et al., 2010; Scott et al., 2011; Scott et al., 2012; Scott 

et al., 2013; Scott et al., 2014), can cause an increase in bone formation (Tam et al., 1982; Hock and 

Gera, 1992; Uzawa et al., 1995). Chronic elevations in PTH concentrations have been associated 

with increased fracture risk (Sakuma et al., 2006; Vӓlimӓki et al., 2005), which are debilitating 

injuries for elite athletes (Ranson et al., 2010). Therefore, understanding how PTH is regulated 

during exercise and recovery may have implications for endurance athletes that are at risk of 

chronically elevated PTH concentrations.  

 

Exercise increases PTH concentrations (Bouassida et al., 2003; Maïmoun et al., 2006; Barry and 

Khort 2007; Herrmann et al., 2007; Scott et al., 2010; Barry et al., 2011 Scott et al., 2011; Scott et 

al., 2012; Scott et al., 2013; Scott et al., 2014), although studies have used different exercise modes, 
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durations and intensities.  Exercise intensity is important, given that Scott et al. (2011) has shown 

that 60 minutes of running at 55%, 65% and 75% of VO2max results in different PTH responses during 

and after exercise. Therefore, any study investigating the underlying mechanisms responsible for the 

changes in PTH during exercise and recovery should examine the effects of exercise intensity. There 

may also be a different PTH response to different types of exercise, such as cycling and running, due 

to the different physiological responses and differences in mechanical loading. To date, this has not 

been investigated, but running was chosen in the present study due to the higher rate of dermal 

calcium loss shown during running (Chapters 4 and 5) and the higher risk of stress fracture injury in 

runners than cyclists (Maïmoun et al., 2004b; Rector et al., 2008; Scofield and Hecht, 2012).  

 

During exercise, reductions in circulating calcium do not explain the increase in PTH, as the 

concentration of ACa – a surrogate for Ca2+ – is either increased (Maïmoun et al., 2006; Scott et al., 

2010; Scott et al., 2011) or unchanged (Barry and Khort, 2007; Scott et al., 2012; Scott et al., 2013) 

concomitantly with PTH. Barry et al. (2011) showed that calcium ingestion before exercise 

attenuated, but did not prevent the increase in PTH, suggesting that some other mechanism 

contributed to the increase. This could involve PO4, as an increase in PO4 increases PTH in rested 

individuals (Martin et al., 2005). Following exercise, PO4 concentrations decrease and the timing 

and magnitude of these decreases reflect those in PTH (Scott et al., 2011, Scott et al., 2012, Scott et 

al., 2014), also suggesting that PO4 may be involved in PTH regulation during exercise.  

 

The hypothesis that decreased Ca2+ triggers increased PTH during exercise has not yet been proven 

(Barry et al., 2011). PTH is secreted within seconds of a decrease in Ca2+ and subsequent increases 

in Ca2+ take only minutes to occur in response to increased PTH, highlighting a dynamic relationship 

(Brown, 1983; Brown, 2000). Despite this, no studies have measured PTH and other markers of 

calcium metabolism until 20 minutes of exercise has been completed, by which time PTH is elevated. 

Most studies have started taking measurements at 30 minutes post-exercise, by which time PTH has 

returned to near pre-exercise levels (Guillemant et al., 2004; Scott et al., 2010; Barry et al., 2011; 

Scott et al., 2011; Scott et al., 2012; Scott et al., 2013). Single or infrequent measurements of PTH, 

ACa and PO4 during and after exercise might fail to capture the dynamic nature of calcium regulation 
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with exercise (Barry et al., 2011). The aim of this study was to use repeated measurements with a 

high frequency to examine the temporal pattern of PTH, PO4, ACa and Ca2+ during and after 30 

minutes of treadmill running at three exercise intensities.   
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6.2 Methodology 

6.2.1 Participants 

Ten healthy, recreational male runners ([mean ± 1SD] age 23 ± 1 y, height 1.82 ± 0.07 m, body mass 

77.0 ± 7.5 kg) volunteered for the study, which was approved the Ethical Advisory Committee at 

Nottingham Trent University (Application number 338). Participants were non-smokers, had not 

suffered a fracture in the past 12 months, were free from musculoskeletal injury and were not taking 

any medication or experiencing any problems known to affect calcium or bone metabolism. 

Eligibility was confirmed during the initial session, when participants provided written informed 

consent.  

 

6.2.2 Experimental design 

This was a randomised, counterbalanced, crossover study. Participants completed a preliminary visit 

for health screening, habituation and measurement of VO2max. Participants then completed three 

randomised (Latin Square Design), three-day experimental trials, each separated by one week. On 

days 1 – 2, participants refrained from exercise, caffeine and alcohol. On day 2, participants 

consumed a self-selected diet that was repeated before each trial. On day 3, participants performed 

a 30 minute bout of running at 55%, 65% and 75%VO2max, followed by 2.5 h of recovery.  

 

6.2.3 Trial procedures 

6.2.3.1 Assessment of VO2max  

Participants performed an incremental treadmill test to determine lactate threshold, followed by a 

ramp test to determine VO2max (Section 3.2.1). The level running velocities corresponding to 55% 

(8.7 ± 0.6 km.h-1), 65% (10.1 ± 0.8 km.h-1) and 75%VO2max (11.9 ± 0.9 km.h-1) were calculated based 

on the regression of VO2 and velocity.  

 

6.2.4 Main trials 

Participants arrived in the laboratory at 08:30 following an overnight fast from 20:00 the previous 
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evening and after consuming 500 mL of water upon awakening. After voiding, participants had their 

body mass measured before adopting a semi-recumbent position and having a cannula inserted into 

a forearm vein (Section 3.3.2.3). After 10 minutes rest, a baseline blood sample (5 mL) was collected 

for measurement of PTH, PO4, ACa and Ca2+. Thirty minutes of treadmill running at 55%, 65% or 

75%VO2max commenced thereafter. Additional blood was collected after 2.5, 5, 7.5, 10, 15, 20, 25 

and 30 minutes of exercise. After exercise, participants adopted a semi-recumbent position and blood 

was collected at 32.5, 35, 37.5, 40, 45, 50, 55, 60, 90, 120 and 180 minutes. Ca2+ was measured 

immediately but due to equipment availability Ca2+ was only measured in participants 5 – 10. Blood 

was treated and stored according to Section 3.3.2.2. Following the last blood sample, the cannula 

was removed and body mass measured. Participants were given 3 mL·kgBM-1·h-1 of water to 

consume throughout the trials. The timings of blood samples and exercise were identical in each trial 

to ensure that circadian rhythms of the metabolites were controlled for. 

 

6.2.5 Biochemical analysis 

PTH, PO4, total calcium, albumin, Ca2+ and pH were measured according to Sections 3.4.2, 3.4.3 

and 3.4.4.  

 

6.2.6 Statistical analysis  

As well as the analysis performed as reported in Section 3.8, Pearson’s correlation coefficients were 

calculated for PO4, ACa and Ca2+ with PTH. Cross-correlational analyses were also performed to 

determine the temporal relationships between PTH and PO4, ACa and Ca2+. Cubic interpolation was 

performed to adjust for unevenly spaced data points and cross-correlational analyses were 

subsequently performed using R (version 3.2.2, Vienna, Austria). To determine whether one time 

series led another, cross-correlation functions were computed at seven lag time points for ‘PEAK’ 

(data points between baseline and peak PTH concentrations [5 minutes of recovery]), where each lag 

represented 3.5 minutes, and six lag time points for ‘DEC’ (all data points during the decrease in 

PTH concentrations [5 to 90 minutes of recovery]), where each lag represented 8 minutes. The cross-

correlation analysis allowed for a set number of intervals, based on the sampling frequencies i.e. a 
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maximum of 20 intervals, as there were 20 blood samples taken. The number of intervals chosen 

was related to the total amount of time in each phase of the protocol (‘PEAK’ and ‘DEC’). Lag times 

were determined by the time in ‘PEAK’ and ‘DEC’ and the number of samples, to allow for evenly 

distributed samples across the two time periods. 
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6.3 Results 

6.3.1 Baseline biochemistry 

Baseline PTH, PO4, ACa and albumin were not significantly different between trials (P=0.339 to 

0.982). Baseline Ca2+ at 55%VO2max was significantly (P≤0.05) higher than at 65%VO2max (d=0.66) 

and 75%VO2max (d=1.00) (Table 17).  

 

Table 17. Baseline biochemistry across all trials. 

Measure 55%VO2max 65%VO2max 75%VO2max 

PTH (pmol·L-1) 2.62 ± 0.88 2.51 ± 0.50 2.63 ± 0.60 

PO4 (mmol.L-1) 1.14 ± 0.12 1.17 ± 0.25 1.12 ± 0.16 

ACa (mmol.L-1) 2.32 ± 0.11 2.30 ± 0.11 2.31 ± 0.08 

Albumin (g.dL-1) 4.60 ± 0.14 4.63 ± 0.19 4.57 ± 0.22 

Ca2+ (mmol.L-1) 1.27 ± 0.03a 1.25 ± 0.02 1.24 ± 0.01 

Data are mean ± 1SD. a = Baseline Ca2+ at 55%VO2max was significantly (P≤0.05) higher than at 65% 

and 75%VO2max. 

 

6.3.2 PTH  

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and there was 

a significant Intensity x Time interaction (P≤0.001). PTH concentrations decreased with the onset of 

exercise and were significantly lower than baseline after 5 minutes of exercise at 55%VO2max (-23%; 

P≤0.05) and 75%VO2max (-33%; P≤0.001), but not at 65%VO2max (-21%; P=0.305) (Figure 16A all 

participants; Figure 17A participants 5–10). Thereafter, PTH increased, becoming significantly 

greater than baseline at the end of exercise (30 minutes) at 75%VO2max (+52%; P≤0.001) and after 

2.5 minutes of recovery at 55%VO2max (+43%; P≤0.001) and 65%VO2max (+52%; P≤0.001). PTH 

concentrations peaked after 5 minutes of recovery at 55%VO2max (+73%; P≤0.001) and 75%VO2max 

(+110%; P≤0.001), and after 7.5 minutes of recovery at 65%VO2max (+76; P≤0.001). PTH 

concentrations then decreased, but remained significantly higher than baseline until 15 minutes into 

recovery at 55%VO2max and until 25 minutes at 65%VO2max and 75%VO2max. PTH concentrations 
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decreased below baseline after 60 minutes of recovery in all trials (-8% to -17%). PTH concentrations 

were not significantly different at any time point between 55% and 65%VO2max trials. Exercise at 

75%VO2max resulted in significantly higher PTH concentrations than at 55%VO2max at the end of 

exercise (P≤0.001, d=0.90), and at 2.5 (P≤0.001, d=0.92), 5 (P≤0.001, d=0.84), 7.5 (P≤0.05, 

d=0.65), 10 (P≤0.05, d=0.69) and 15 (P≤0.001, d=0.94) minutes into recovery, and higher than 

exercise at 65%VO2max at the end of exercise (P≤0.001, d=0.81), and at 2.5 (P≤0.001, d=1.07) and 5 

(P≤ 0.001, d=1.25) minutes into recovery.   

 

6.3.3 PO4  

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and there was 

a significant Intensity x Time interaction (P≤0.05). PO4 concentrations increased with the onset of 

exercise at all intensities, being significantly higher than baseline from 7.5 minutes to the end of 

exercise at 55%VO2max (+16%; P≤0.001), and between 5 minutes and the end of exercise at 

65%VO2max (+22%) and 75%VO2max (+26%) (P≤0.05 to P≤0.001) (Figure 16B). PO4 concentrations 

peaked at the end of exercise, and decreased thereafter, but remained significantly higher than 

baseline until 5 minutes into recovery at 55%VO2max, 10 minutes at 65%VO2max and 15 minutes at 

75%VO2max. PO4 concentrations decreased below baseline at 60 minutes of recovery and remained 

so until 150 minutes of recovery at 65%VO2max (-5 to -10%) and 75%VO2max (-7 to -12%) (P≤0.05 

to P≤ 0.001). Concentrations did not decrease significantly below baseline at 55%VO2max. Exercise 

at 65%VO2max resulted in significantly higher PO4 concentrations than exercise at 55%VO2max at 10 

(P≤0.05, d=0.43), 20 ( P≤0.001, d=0.59) and 25 (P≤0.05, d=0.62) minutes of exercise. 

 

6.3.4 ACa  

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and there was 

a significant Intensity x Time interaction (P≤0.001). ACa concentrations increased with the onset of 

exercise and were significantly higher than baseline between 2.5 minutes and the end of exercise at 

65%VO2max and 75%VO2max (+4 to +8%; P≤0.001) (Figure 16C). ACa concentrations peaked after 

20 minutes of exercise and decreased thereafter, but remained significantly higher than baseline until 
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5 minutes into recovery at 65%VO2max and 7.5 minutes into recovery at 75%VO2max. ACa 

concentrations decreased below baseline 10 minutes into recovery and remained so until 25 min of 

recovery at 55%VO2max (-4%; P≤0.05). Concentrations decreased below baseline 25 minutes into 

recovery and remained so until 90 minutes of recovery at 65%VO2max (-2%; P≤0.05). ACa 

concentrations did not decrease significantly below baseline at 75%VO2max. Exercise at 75%VO2max 

resulted in significantly higher ACa concentrations than exercise at 55%VO2max after 20 (P≤0.05, 

d=85), 25 (P≤0.001, d=1.07) and 30 minutes of exercise (P≤0.001, d=1.05) and after 25 minutes of 

recovery (P≤0.01, d=0.73). 

 

6.3.5 Albumin 

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and there was 

a significant Intensity x Time interaction (P≤0.01). Albumin concentrations increased with the onset 

of exercise and were higher than baseline between 7.5 minutes and the end of exercise at 65%VO2max 

(+4%; P≤0.05) and between 5 minutes of exercise and the end of exercise at 75%VO2max (+6%; 

P≤0.05) (Figure 16D). Albumin concentrations peaked after 20 minutes of exercise and decreased 

thereafter, but remained higher than baseline until 5 minutes into recovery at 75%VO2max (P≤0.001). 

Albumin concentrations decreased below baseline 25 minutes into recovery and remained so until 

90 minutes of recovery at 55%VO2max (-3 to -4%; P≤0.01). Concentrations decreased below baseline 

20 minutes into recovery and remained so until 90 minutes of recovery at 65%VO2max (-3 to -5%; 

P≤0.05 to P≤0.001). Albumin concentrations did not decrease below baseline at 75%VO2max. 

Exercise at 75%VO2max resulted in significantly higher albumin concentrations than exercise at 

55%VO2max after 25 minutes of exercise (P≤0.05, d=0.82).   
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Figure 16. The percentage change in baseline concentrations of PTH (A), PO4 (B), ACa (C) and 

albumin (D) for all participants with 30 minutes of treadmill running at 55%VO2max (open circles), 

65%VO2max (filled squares), 75%VO2max (open triangles). Grey box denotes exercise. Data are mean 

± 1SD. a different (P≤0.05) from baseline (55%VO2max) b different (P≤0.05) from baseline 

(65%VO2max), c different (P≤0.05) from baseline (75%VO2max). * 55%VO2max different (P≤0.05) from 

65%VO2max, α 55%VO2max different (P≤0.05) from 75%VO2max, ● 65%VO2max different (P≤0.05) 

from 75%VO2max.  

 

6.3.6 Ca2+ 

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and there was 

a significant Intensity x Time interaction (P≤0.001). At 55%VO2max, Ca2+ concentrations decreased 

after 10 minutes of exercise, being significantly below baseline between 25 minutes and the end of 

exercise (Figure 17B) (-2%; P≤0.001). Ca2+ concentrations continued to decrease into recovery, 

remaining significantly below baseline until 90 minutes of recovery (-2 to -6%; P≤0.001). At 

65%VO2max and 75%VO2max Ca2+ concentrations increased with the onset of exercise and were 

significantly higher than baseline between 2.5 and 10 minutes of exercise at 65%VO2max (+2 to +3%; 

P≤0.001) and between 2.5 and 7.5 minutes at 75%VO2max (+2 to +3%; P≤0.001). Thereafter, Ca2+ 

concentrations decreased and were significantly below baseline between 2.5 and 30 minutes of 

recovery at 65%VO2max (-3 to -4%; P≤0.05 to P≤0.001) and 75%VO2max (-3 to -4%; P≤0.001). There 

were no significant differences between the three trials at any time point other than at baseline (Table 

17), which created the significant Intensity x Time interaction.    
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Figure 17. The percentage change in baseline concentrations of PTH (A) and Ca2+ (B) for participants 

5 – 10 with 30 minutes of treadmill running at 55%VO2max (open circles), 65%VO2max (filled squares), 

75%VO2max (open triangles). Grey box denotes exercise. Data are mean ± 1SD. a different (P≤0.05) 

from baseline (55%VO2max) b different (P≤0.05) from baseline (65%VO2max), c different (P≤0.05) 

from baseline (75%VO2max). * 55%VO2max different (P≤0.05) from 65%VO2max, α 55%VO2max 

different (P≤0.05) from 75%VO2max, ● 65%VO2max different (P≤0.05) from 75%VO2max. Statistical 

analysis not reported or denoted for the PTH response in participants 5 – 10; data plotted for the 

comparison with Ca2+ only.  
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6.3.7 pH 

There were no significant changes in pH throughout exercise at any exercise intensity and pH at 

baseline and the end of exercise was not significantly different between trials (Table 18). 

  

Table 18. pH values at baseline and at the end of exercise.  

Exercise intensity pH 

 Baseline End of exercise 

55% VO2max 7.343 ± 0.020 7.412 ± 0.044 

65% VO2max 7.355 ± 0.030 7.408 ± 0.039 

75% VO2max 7.343 ± 0.041 7.396 ± 0.026 

Data are mean ± 1SD.  

 

6.3.8 Correlation analyses 

Changes in PTH were not significantly correlated with changes in PO4 or ACa in any trial. Across 

all data points PTH was significantly (P≤0.001) negatively correlated with Ca2+ at all intensities 

(Table 19).  

 

Table 19. Pearson’s correlation coefficient values for changes in PTH, with changes in PO4, ACa 

and Ca2+. 

  r value  

Exercise intensity PO4 ACa Ca2+ 

55% VO2max 0.175 -0.216 -0.739 a 

65% VO2max 0.215 -0.174 -0.769 a 

75% VO2max 0.416 0.089 -0.790 a 

a Significant correlation with PTH (P≤0.001). 

 

Across PEAK data points, PO4 was correlated with PTH at all exercise intensities (r = 0.661 to 0.772) 

(Table 20) when the PTH series was lagged by 1 time point (3.5 minutes) behind the PO4 series, 
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suggesting that increases in PO4 precede increases in PTH by 3.5 minutes. Ca2+ was most strongly 

correlated with PTH at all exercise intensities (r = -0.902 to -0.950) when there was no time lag, 

suggesting that increases in PTH occur within 3.5 minutes of a decrease in Ca2+ (Table 20).  

 

Across DEC data points, PO4, ACa and Ca2+ were correlated with PTH at all exercise intensities. 

PO4 was most strongly correlated with PTH at all exercise intensities (r = 0.987 to 0.995) (Table 20) 

when there was no time lag, suggesting that decreases in PTH occur within 8 minutes of a decrease 

in PO4. 

 

Table 20. Maximum cross-correlation values and corresponding lag times for PTH with PO4, ACa 

and Ca2+. 

 PO4 ACa Ca2+ 

Exercise intensity Time lag r value Time lag r value Time lag r value 

PEAK data points (baseline to 5 minutes of recovery) 

55%VO2max -1 0.661 0 -0.599 0 -0.902 

65%VO2max -1 0.677 -2 0.555 0 -0.936 

75%VO2max -1 0.772 -2 0.659 0 -0.950 

DEC data points (5 to 90 minutes of recovery)  

55%VO2max 0 0.995 0 0.690 +1 -0.794 

65%VO2max 0 0.987 0 0.858 0 -0.856 

75%VO2max 0 0.994 0 0.798 +1 -0.817 
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6.4 Discussion  

The novel findings from this study are: 1) changes in PTH, PO4, ACa and Ca2+ occur within 2.5 

minutes of the onset of exercise; 2) there is an initial decrease in PTH concentrations at the start of 

exercise that coincides with a significant increase in Ca2+ concentrations at the two higher exercise 

intensities; 3) peak PTH concentrations occur within 5 – 7.5 minutes of recovery; 4) increases in PO4 

precede increases in PTH; 5) decreases in Ca2+ precede increases in PTH; 6) post-exercise decreases 

in PTH concentrations are preceded by decreases in PO4. 

 

The pattern of change in PTH in this study is comparable to previous studies, with PTH 

concentrations increasing during exercise (Scott et al., 2010; Scott et al., 2011; Scott et al., 2012; 

Scott et al., 2013; Scott et al., 2014) and peaking in the first minutes of recovery (Maïmoun et al., 

2006). The pattern of change in PTH was similar across the three exercise intensities, with an initial 

decrease from baseline to 5 minutes of exercise. This is the first study to observe this initial response 

in PTH, due to the higher temporal frequency of blood sampling at the start of exercise compared 

with previous studies. This response requires verification from further studies and the use of even 

more frequent sampling. The lack of a resting control group in the present study means that we 

cannot confirm whether this is a characteristic physiological response to the onset of exercise or 

whether this reflects the circadian rhythm of PTH at the time of sampling. The nadir in PTH occurs 

between 08:00 and 10:00 (Jubiz et al., 1972; Logue et al., 1989; Fraser et al., 1994; Fuleihan et al., 

1997) and our baseline blood was taken at 08:55, with exercise commencing at 09:02. If the initial 

decrease in PTH were due to the circadian rhythm, however, it would be expected that the decrease 

would have lasted longer than 5 minutes into exercise. Additionally, a decrease of 33% from baseline, 

followed by a rapid reversal in the direction of change, as shown here, has not been reported in 

circadian studies.  

 

Peak PTH concentrations have previously been shown to occur 15 minutes after exercise (Maïmoun 

et al., 2006), due to a lower sampling frequency, but the results of the present study show that the 

peak in PTH after exercise occurs with 5 – 7.5 minutes of recovery (+73 to +110% from baseline). 

This peak is also transient; PTH concentrations immediately start to decrease after reaching peak 
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concentrations, and these transient spikes are anabolic for bone (Frolik et al., 2003), and result in net 

bone gain (Dempster et al., 1993). Our identification of peak PTH concentrations 5 – 7.5 minutes 

after exercise could be utilised to improve bone health in individuals at risk of impact fractures, stress 

fractures or poor bone health, such as endurance athletes. This could involve the development of a 

training session involving bouts of running sufficient to cause a spike in PTH concentrations, 

followed by rest periods to ensure that the spike is transitory. Endurance athletes often train for 

prolonged periods and cover large distances, for example, distance runners can run over 200 

km.week-1 (Billat et al., 2001). This type of training involves low-strain repetitive loading, therefore 

these athletes may benefit from performing shorter, higher intensity running sessions if they do not 

already incorporate these into training schedules.  

 

Cross-correlations suggested that PTH secretion during exercise and recovery is controlled by a 

combination of changes in Ca2+ and PO4. Ca2+ is not routinely measured due to analytical difficulties; 

consequently ACa is estimated as a surrogate and has been shown clinically to be a reliable indicator 

of calcium metabolism at rest (White et al., 2010). We have shown different responses to exercise 

and recovery between ACa and Ca2+ and also different relationships with PTH; Ca2+ concentrations 

were correlated with PTH, whereas ACa was not. Albumin changes taking place during exercise will 

have a greater effect on the ACa estimation compared to the small effect that can occur on the Ca2+ 

measurement. There were no significant changes in pH throughout exercise so changes in pH were 

not likely to be sufficient to have a major effect on the Ca2+ measurement by the blood gas analyser.  

 

The results support previous data (Barry and Khort, 2007; Scott et al., 2010; Scott et al., 2011; Scott 

et al., 2012; Scott et al., 2013; Scott et al., 2014) suggesting that changes in ACa do not explain the 

changes in PTH or regulation of PTH during exercise, because, as PTH is increasing, ACa either 

also increases (Scott et al., 2010; Scott et al., 2011) or is unchanged (Barry and Khort, 2007; Scott 

et al., 2012; Scott et al., 2013). Scott et al. (2013) argued that because both PTH and ACa were 

increased after 20 minutes of exercise, a decrease in Ca2+ could have occurred in the first few minutes 

of exercise, stimulating the secretion of PTH and causing serum Ca2+ concentrations to increase as a 

result of PTH-stimulated bone resorption and Ca2+ liberation. However, through frequent sampling, 
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we have shown that ACa and Ca2+, at 65% and 75%VO2max, increase within 2.5 minutes of exercise, 

with ACa increasing and Ca2+ decreasing thereafter. Dermal calcium losses could contribute to this 

decrease in Ca2+ during exercise (Chapters 4 and 5), but this is a hypothesis that requires investigation. 

Although it is well established that PTH responds rapidly to a reduction in Ca2+ at rest (Brown, 1983; 

Brown, 2000), this is the first study to show that this rapid response also occurs during exercise. The 

lack of an initial increase in Ca2+ at 55%VO2max is surprising and the reason for this is currently 

unknown. The strong negative correlation of PTH and Ca2+ during exercise, at all three intensities, 

with a 0 time lag (r = -0.902 to -0.950), suggests that as Ca2+ decreases, PTH increases within 3.5 

minutes. This negative cross-correlation supports the findings of Bouassida et al. (2003) who showed 

that as Ca2+ decreased during 42 minutes of running, PTH increased.  

 

The significantly higher baseline concentration of Ca2+ at 55%VO2max compared to 65% and 

75%VO2max is surprising and possible reasons for this difference were explored. There were no 

spurious results and the timing of the sampling was identical in all trials within participants, so the 

difference is unlikely to due to a circadian change. All trials were completed in a randomised (Latin 

Squared Design) and counterbalanced order, so the difference is unlikely to be due to changes in 

vitamin D status or other environmental factors. The quality control and calibration reports of the 

blood gas analyser used to measure Ca2+ were checked and there were no issues reported. Participants 

did not systematically change behaviour between trials, i.e. there was no reported change in activity 

levels or dietary changes. Participants reported that they followed the same diet and restrained from 

physical activity before each trial. Despite this, the magnitude of the difference is small; 1.27 

mmol.L-1 compared to 1.25 mmol.L-1 and 1.24 mmol.L-1, with small standard deviations. This reflects 

the tightly regulated control of serum calcium concentrations. Taking this information into account, 

there is no known reason for the different baseline concentration between trials, but is something 

that needs to be investigated in future studies, as this higher initial Ca2+ concentration in the 

55%VO2max trial could be the reason for the lack of an initial increase in Ca2+ at the start of exercise.  

 

The strong negative cross-correlation of PTH and Ca2+ suggest that Ca2+ may control PTH secretion 

during exercise. The reasons for the initial increase in Ca2+ at the start of exercise in the two higher 
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exercise intensities are unknown. This is important because it is likely to explain the novel finding 

of decreased PTH concentrations with the onset of exercise. It could have been related to exercise-

induced acidosis occurring in the first few minutes of exercise, before aerobic metabolism stabilises 

(Skinner and McLellan, 1980; Bogdanis et al., 1996). This can increase Ca2+ concentrations (Beck 

and Webster, 1976) but have minimal effects on ACa. Blood pH did not, however, decrease 

significantly during exercise, suggesting that exercise-induced acidosis was not the reason for the 

initial increase in Ca2+. The initial increase could be from calcium being released from other binding 

proteins such as transferrin (Scott and Bradwell, 1983) or calcium dissociating from PO4 (Walser, 

1961; Chertow et al., 1999). The initial increase could be related to an increase in intestinal calcium 

absorption as blood flow around the body increases due to increased heart rate and vasodilation, 

which is then restricted as exercise continues and blood flow is redirected to the muscles and skin 

away from organs such as the intestine and stomach (Savard et al., 1988; Saltin et al., 1998). Other 

additional mechanisms that might explain the initial increase in Ca2+ in the two higher intensities 

could be related to the higher frequency of cross-bridge cycling, where there may be greater 

concentrations of Ca2+ in the sarcoplasm and greater levels of dissociation and reuptake in the muscle 

and greater calcium efflux out of the muscle (Allen et al., 1995; Fitts, 2008). Further, calcium is 

involved in mechanotransduction; the most obvious mechanism is the large transient increase in 

calcium that occurs with an action potential and active force generation. The accompanying 

mechanical deformation of the cell may allow calcium influx and efflux through various channels 

(Burkholder, 2007). Further mechanistic studies are needed to identify why this initial increase 

occurs. 

 

Changes in systemic PO4 can influence PTH secretion, with Ahmad et al. (2003) showing that 

circadian changes in PO4 precede changes in PTH. During the increase in PTH shown in the present 

study, PO4 and PTH were most strongly positively cross-correlated at -1 time lag, suggesting that 

increases in PO4 precede increases in PTH by less than 3.5 minutes. This cross-correlation was not 

as strong, however, as the cross-correlation between Ca2+ and PTH, which might indicate that both 

PO4 and Ca2+ are influential during the increase in PTH. Our data do not fully support that the 

exercise-induced increases in PTH are driven solely by increased PO4, as PO4 increased with the 
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onset of exercise, despite the initial decrease in PTH. The increase in PO4 might reflect release of 

PO4 from PTH-induced bone resorption (Estepa et al., 1999; Ahmad et al., 2003; Scott et al., 2010) 

towards the end of exercise, or that PO4 is being released from muscle tissue (Forrester and Lind, 

1969; Dobson et al., 1971). Taken together, these results suggest that Ca2+ is the stronger driver of 

PTH secretion and synthesis at the onset of exercise, although it is possible that the degree of 

association/dissociation between Ca2+ and PO4 varies during exercise, meaning that PTH regulation 

might change accordingly.   

 

With the decrease in PTH during recovery, the strongest positive cross-correlation between PO4 and 

PTH occurred at a 0 time lag, suggesting that PTH decreased within 8 minutes of a decrease in PO4. 

These findings support Scott et al. (Scott et al., 2010; Scott et al., 2012; Scott et al., 2013; Scott et 

al., 2014), who showed that PO4 followed the same responses as PTH after exercise. If the decrease 

in PTH during recovery is explained by renal clearance (Bouassida et al., 2003), the strong cross-

correlation may suggest that PO4 is driving PTH clearance and over-riding Ca2+ regulation in 

recovery. Alternatively, the elevated PTH concentrations could be enhancing renal PO4 excretion 

and causing a subsequent decrease in circulating PO4 (Silver et al., 2000).  

 

Small reductions in vitamin D concentrations can contribute to an increase in PTH, because 1,25, 

dihydroxyvitamin D regulates the active transport of calcium and PO4 absorption in the small 

intestine (Heaney and Barger-Lux, 1985; Heaney et al., 2003; Cashman, 2007). This is important 

because vitamin D deficiencies are common in athletes, particularly during winter months, and low 

serum vitamin D concentrations have been associated with stress fracture injuries (Lappe et al., 2008; 

Nieves et al., 2010; Sonneville et al., 2012; Close et al., 2013; Wolman et al., 2013; Miller et al., 

2016). Vitamin D status was not measured in this study so we cannot determine whether a change in 

vitamin D status occurred throughout the study. Despite this, the three trials were completed within 

one month for each participant and the order of trials was randomised, therefore although changes 

in vitamin D concentrations could have occurred, it is unlikely to have influenced the results of the 

present study. Moreover, the results of the studies reported in Chapters 4 and 5 showed that elite 
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triathletes have sufficient vitamin D concentrations in both the winter and spring and with or without 

supplementation.  

 

In conclusion, at the onset of exercise, PTH transiently decreases and then increases as exercise 

continues, peaking in the first minutes of recovery, before decreasing below the baseline 

concentration during ongoing recovery. Changes in Ca2+ and PO4 occur in close temporal relation to 

changes in PTH. Cross-correlational analysis suggests that PTH secretion during exercise and 

recovery is controlled by a combination of changes in Ca2+ and PO4 and that the mechanism might 

be different during exercise and recovery. ACa may not be a suitable surrogate for Ca2+ when 

investigating the rapid response to exercise, since ACa concentrations do not reflect temporal PTH 

responses or correlate strongly with PTH. Since we now have a more detailed understanding of the 

mechanism controlling PTH during exercise and recovery, future studies could investigate the 

response to calcium supplementation before or during training sessions in elite athletes. This may 

prevent excessive increases in PTH and bone resorption that may be caused, in part, by high rates of 

dermal calcium loss during intense training. Furthermore, the hypothesis that dermal calcium losses 

contribute to decreases in Ca2+ concentrations during exercise needs to be proven and the difference 

in the PTH response to cycling and running should also be investigated.  
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CHAPTER 7: INVESTIGATING THE 

EFFECT OF POST-EXERCISE 

CARBOHYDRATE AND PROTEIN 

INGESTION ON BONE METABOLSIM IN 

TRAINED ENDURANCE ATHLETES 

 

This study has been submitted to the Journal of Medicine and Science in Sport and Exercise and has 

been presented at the Bone Research Society Annual Meeting where it was awarded ‘Best Oral 

Poster’: 

 

Townsend, R., Elliott-Sale, K.J., Currell, K., Tang, J., Fraser, W.D. and Sale, C. (2016). The Effect 

of Post-Exercise Carbohydrate and Protein Ingestion on Bone Metabolism.  

 

Townsend, R., Elliott-Sale, K.J., Currell, K., Fraser, W.D. and Sale, C. Ingestion of Carbohydrate 

and Protein Immediately After an Exhaustive Run Suppresses Bone Resorption and Increases Bone 

Formation in Trained Male Endurance Runners. Bone Research Society Annual Meeting, June 2016, 

Liverpool, UK. 
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7.1 Introduction  

The results of the studies reported in Chapters 4 and 5 showed that elite triathletes struggle to match 

energy intakes with energy expenditures. After feedback of the results to the British triathletes, a 

commonly reported reason for energy intakes being inadequate is the minimal time between training 

sessions, leaving insufficient time for the triathletes to consume the necessary energy and nutrients 

throughout the day. It is difficult for triathletes to sufficiently increase overall energy intake and 

match this with the energy demands of such extensive training schedules. It is therefore necessary 

for other feeding practices and nutritional interventions to be implemented surrounding training 

sessions. These feeding practices should be practical and realistic for elite triathletes to adhere to, 

but should work effectively to prevent an increase in bone resorption and an imbalance in bone 

turnover that is often shown after an acute bout of intense exercise (Scott et al., 2010). As the results 

of the studies reported in Chapters 4 and 5 showed that elite triathletes have high bone turnover at 

different phases of the season, maintaining a balanced bone turnover and anabolic conditions for 

bone during and after individual training sessions is important, given that accelerated bone 

remodelling can cause microdamage accumulation and has been implicated in the formation of stress 

fracture injuries (Parfit, 1982; Schaffler et al., 1990; Martin, 1992; Burr, 2002; Schaffler, 2003; 

Warden et al., 2006).  

 

Nutritional status and dietary practices are vitally important for elite athletes as they can influence 

both acute bone turnover and long-term bone health (Babraj et al., 2005; Walsh and Henriksen, 2010) 

and acute feeding influences the diurnal rhythm of bone turnover markers at rest (Schlemmer and 

Hassager, 1999). Feeding of a mixed nutrient meal suppresses all markers of bone turnover (Clowes 

et al., 2002a) and feeding of individual nutrients; glucose, fat, protein and calcium, also suppresses 

bone resorption at rest (Blumsohn et al., 1994a; Bjarnson et al., 2002; Clowes et al., 2003; Henriksen 

et al., 2003). Previous studies have only investigated the effect of nutrient ingestion on bone turnover 

markers in resting, non-athletic participants, who have not performed any prior exercise. It is 

therefore not known whether there is a similar suppressive effect of nutrient ingestion on bone 

resorption, after exercise in athletic individuals. 
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Pre-exercise feeding has been investigated as a potential means for attenuating the bone resorption 

response to exercise. Scott et al. (2012) showed that feeding a mixed nutrient breakfast prior to 

exercise had no effect on post-exercise β-CTX concentrations compared to fasting and there were no 

changes in markers of bone formation. This implies that the mechanical loading experienced during 

exercise over-rides any responses caused by pre-exercise feeding, Scott et al. (2012) also suggested 

that the stimulatory effect of PTH on β-CTX may override the effect of pre-exercise feeding. 

Furthermore, eating in close proximity to exercise can cause gastrointestinal discomfort during the 

training session and athletes are often concerned that this will impair performance (Haakonssen et 

al., 2012), therefore other exercise feeding practices and the subsequent PTH response require 

investigation. 

 

Sale et al. (2015) showed that CHO feeding during exercise attenuated β-CTX and P1NP responses 

in the hours following exercise, indicating an acute effect of CHO feeding on bone turnover. Feeding 

during intense running might not, however, be well tolerated by athletes and could be restricted by 

opportunity and practicality (Rehrer et al., 1992; Peters et al., 1999; Peters et al., 2001; Pfeiffer et 

al., 2009; Pfeiffer et al., 2012). Post-exercise feeding provides a practical opportunity to ingest 

multiple nutrients and in sufficient amounts, thus allowing athletes to reach other sports nutrition 

goals, such as aiding muscle glycogen resynthesis, protein synthesis and maintaining adequate 

hydration status (Jentjens and Jeukendrup, 2003; Tipton et al., 2004), without the restrictions of 

gastrointestinal discomfort. Simple CHO and PRO are not likely to cause gastrointestinal complaints 

as they contain little fibre or fat, which means that digestion is quick (Rehrer et al., 1992; Jenkins et 

al., 2009). Post-exercise feeding also allows for investigation of the bone turnover response to acute 

feeding without the confounding effect of subsequent mechanical loading.  

 

It is not known whether the acute bone turnover response to post-exercise feeding is the same as at 

rest and whether this varies with different timings of post-exercise nutrient ingestion. The aim of this 

study was to investigate the effect of feeding carbohydrate and protein (CHO+PRO) immediately or 

2 h after a prolonged intense running bout, on the bone turnover response in trained endurance 
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runners and triathletes. Markers associated with exercise and bone were also measured to explore 

possible mediating and mechanistic factors.   
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7.2 Methodology 

7.2.1 Participants  

10 men ([mean ± 1SD] age 28 ± 6 y, height 1.74 ± 0.05 m, body mass 69.7 ± 6.3 kg, VO2max 63.0 ± 

5.0 mL.kgBM-1.min-1, weekly running distance 49.9 ± 12.5 km) completed this study that was 

approved by the Ethical Advisory Committee at Nottingham Trent University (Application number 

348). All participants were trained endurance runners or triathletes who had been competing and 

training consistently for a minimum of 2 years in 10,000 m, half marathon, marathon or ultra-distance 

races, without a significant break. Participants had recorded at least one of the following times in the 

past 2 years; ≤35 minutes for 10,000 m, ≤1:25:00 for half marathon or ≤3:00:00 for marathon. 

Participants were recruited at local running and triathlon clubs and local races. Participants were 

non-smokers, had not suffered a fracture in the last 12 months, were free from musculoskeletal injury 

and did not suffer from any condition known to affect bone metabolism. Compliance with these 

inclusion criteria was confirmed in the initial visit to the laboratory, where health screening was 

completed and written informed consent provided.  

 

7.2.2 Experimental design  

This was a randomised (Latin Square Design), counterbalanced, placebo-controlled and single-

blinded, crossover study. Participants completed a preliminary visit for habituation with trial 

procedures and measurement of VO2max. Participants then completed three, four-day experimental 

trials, each separated by 1 week. On days 1 and 2, participants refrained from all exercise and 

followed a prescribed diet. On day 3, participants performed a bout of treadmill running, at a speed 

equal to 75% of their previously determined VO2max, until volitional exhaustion. Blood samples (20 

mL) were collected before exercise, immediately after exercise and every hour after exercise for four 

hours. On day 4, participants returned to the laboratory for a fasted follow-up blood sample.  

 

The three trials consisted of; i) a placebo (PLA) control trial, where the PLA solution was ingested 

both immediately and 2 h post-exercise, ii) an immediate feeding (IF) trial, where the CHO+PRO 

solution was ingested immediately post-exercise and the PLA solution 2 h post-exercise, and iii) a 



169 

 

delayed feeding (DF) trial where the PLA solution was ingested immediately post-exercise and the 

CHO+PRO solution 2 h post-exercise. In the PLA trial, the CHO+PRO solution was ingested after 

the final blood sample to ensure that the energy content and the composition of the diet was identical 

between trials. This meant that a final PLA solution also needed to be ingested in the IF and DF trials 

to ensure participant blinding to the trial conditions (Figure 18).  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Experimental protocol. Exercise was treadmill running at 75%VO2max, followed by 4 

hours of rested recovery. PLA = Placebo trial, IF = Immediate feeding trial and DF = Delayed feeding 

trial. Participants departed from the laboratory at the end of the recovery period. Solid vertical arrows 

denote blood samples. Dashed vertical arrows denote recovery solution and food consumption.  

 

7.2.3 Assessment of VO2max  

Participants performed an incremental treadmill test to determine lactate threshold, followed by a 

ramp test to determine VO2max (Section 3.2.1). Level running velocities corresponding to 75%VO2max 

(13.0 ± 0.8 km.h-1) were calculated based on the regression of VO2 and velocity.  
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7.2.4 Experimental dietary provision 

Participants completed a three-day food diary for the measurement of habitual energy intake and 

macronutrient composition. A diet consisting of 55% CHO, 30% fat and 15% PRO, and isocaloric 

with habitual diets was designed using dietary analysis software (Nutritics, Dublin, Ireland) (Section 

3.6), for each participant to consume on days 1 and 2 of each trial (Appendix I). Participants provided 

their own food but were given written and verbal instructions for the preparation of meals, including 

timings of meals and snacks. Any deviations from prescribed diets were confirmed verbally on day 

3 and recorded. 

 

7.2.5 Experimental trial procedure 

Participants were asked to maintain their habitual training and record this throughout the study to 

help maintain consistency across trials. Participants refrained from all exercise on days 1 and 2. 

Participants arrived at the laboratory on day 3 at 08:30, after fasting from 20:00 the previous evening 

and consuming 500 mL of water upon awakening. Shortly after arriving, participants collected a 

urine sample for the measurement of urine osmolality (Section 3.7), body mass was measured and 

the first 20 mL blood sample was taken via venepuncture after 10 minutes of semi-recumbent rest 

(Section 3.3.2.2).  

 

Participants then ran to volitional exhaustion at 75%VO2max, which was preceded by a 5-minute 

warm-up and volitional stretching. At exhaustion a cannula was inserted into a prominent forearm 

vein (Section 3.3.2.3), which was kept patent by flushing with saline, a second 20 mL blood sample 

was taken, with further blood samples taken at 1, 2, 3 and 4 h into recovery. Exact times of exercise 

commencement, time to exhaustion and blood samples were recorded and were repeated exactly in 

each trial within-participants to reduce the impact of circadian variations on the results. Due to 

differences in individual run times to exhaustion between participants, post-exercise blood sample 

timings vary between participants, but were controlled for within-participants. The baseline blood 

sample was taken at 08:40 and exercise commenced at 08:50, the blood sample at exhaustion was 

taken at 10:10 ± 13 min and blood samples 1 – 4 hours post-exercise were taken at 11:10 ± 13 min, 

12:10 ± 13 min, 13:10 ± 13 min and 14:10 ± 13 min.  



171 

 

 

Depending on the trial, participants were given either the CHO+PRO or PLA solution to consume 

immediately after exhaustion. Two and four hours after exhaustion participants were given further 

solutions to consume. After the final solution was consumed, participants were provided with food 

and were free to leave the laboratory. Participants consumed a snack at 15:00 and an evening meal 

at 18:00 and then remained fasted from 20:00 until the next morning. On day 4 participants arrived 

in the laboratory at 08:30 after consuming 500 mL of water upon awakening and a final 20 mL blood 

sample was taken. 

 

7.2.6 Recovery solutions and evening meal composition 

The CHO+PRO solution contained 1.5 g.kgBM-1 of CHO (dextrose) and 0.5 g.kgBM-1 of PRO 

(unflavoured whey isolate) that was made up to a 12.5% CHO solution with water. The whey isolate 

and dextrose mix was tested for banned substances by LGC Supplement Screening (Cambridgeshire, 

UK), participants were made aware of this and were asked to sign a supplement disclaimer 

(Appendix J and K). Preliminary testing ensured that the PLA solution was taste matched to the 

CHO+PRO solution using artificial sweetener and flavouring; it consisted of 12 ml.kgBM-1 of water, 

making this the same volume as the CHO+PRO solution (Appendix L). Participants were blinded to 

the solutions that they were consuming throughout trials. The total volume of fluid consumed in the 

three recovery solutions was 2,509 ± 227 mL.  

 

On day 3 the overall diet composition was 2,000 kcal, 55% CHO, 30% fat and 15% PRO. The 

recovery solution contained approximately 500 kcal depending on individual body mass, therefore 

the snack and evening meal contained approximately 1,500 kcal (Appendix M). Deviations from 

prescribed diets were confirmed verbally on day 4 and recorded. Participants were allowed to ingest 

plain water on an ad libitum basis throughout the recovery periods, although none of the participants 

did this during any trial. 
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7.2.7 Treatment and storage of blood samples 

Blood was treated and stored according to Section 3.3.2.2. 

 

7.2.8 Biochemical analysis 

β-CTX, P1NP PTH, PO4, total calcium, albumin and Ca2+ were measured according to Sections 3.4.2, 

3.4.3 and 3.4.4.  

 

7.2.9 Statistical analysis  

Statistical analysis was performed as reported in Section 3.8. The study sample size was calculated 

to detect changes in β-CTX from pre- to post-exhaustive exercise, with 85% power at an alpha level 

of P≤0.05, based on the study by Scott et al. (2010). Normality and homogeneity were achieved 

following log transformations for PO4 data.  

 

To give a numerical value to the difference between bone formation and bone resorption, the bone 

turnover marker ratio was calculated using the following equation: [P1NP]/([β-CTX]*100), with a 

value above 1 indicating that bone turnover favours bone formation and a value below 1 indicating 

that bone turnover favours bone resorption. This equation was used in Lombardi et al. (2012) but for 

different bone turnover markers. 
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7.3 Results 

7.3.1 Baseline biochemistry 

Baseline concentrations of β-CTX, P1NP, PTH, ACa, albumin, total calcium, Ca2+ and PO4 were not 

different between trials (P=0.619 to 0.999) (Table 21). 

 

Table 21. Baseline biochemistry for all variables.  

Baseline concentrations 

 PLA IF DF 

β-CTX (ng.mL-1) 0.58 ± 0.27 0.52 ± 0.21 0.54 ± 0.28 

P1NP (ng.mL-1) 64.92 ± 32.92 64.35 ± 30.75 66.42 ± 32.04 

PTH (p.mol-1) 2.64 ± 0.76 2.69 ± 0.59 2.77 ± 0.72 

ACa (mmol.L-1) 2.43 ± 0.10 2.44 ± 0.09 2.44 ± 0.07 

Albumin (g.dL-1) 4.83 ± 0.15 4.85 ± 0.18 4.82 ± 0.18 

Total calcium (mmol.L-1) 2.47 ± 0.10 2.48 ± 0.09 2.48 ± 0.07 

Ca2+ (mmol.L-1) 1.26 ± 0.03 1.25 ± 0.03 1.26 ± 0.03 

PO4 (mmol.L-1) 1.11 ± 0.15 1.13 ± 0.16 1.17 ± 0.14 

Data are mean ± 1SD.  

 

7.3.2 Habitual diet and experimental dietary provision  

There were no significant differences between the diets prescribed for days 1, 2 and 3 of each trial 

and the diets that were actually consumed by participants, for overall energy content or macronutrient 

composition. Participants’ habitual diets were not different from the diet provided on day 3 of trials, 

for overall energy content, CHO content, fat content and calcium content (P=0.101 to 0.523). 

However, PRO content was significantly higher in the habitual diets compared to the experimental 

trial diet (P=0.049) (Table 22). 
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Table 22. Habitual diet and experimental diet contents.  

 Habitual diet + 48 h lead in Experimental diet (D3) 

Energy (kcal) 2,318 ± 673 2,008 ± 11 

CHO (%) 51 ± 9 55 ± 0 

PRO (%) 22 ± 10 a 15 ± 0 a 

Fat (%) 27 ± 5 30 ± 0 

Calcium (mg) 1,012 ± 302 971 ± 258 

Data are mean ± 1SD. a PRO content of the habitual diet was significantly higher than PRO content 

of the experimental diet on day 3 (P=0.049).  

 

7.3.3 Hydration status   

Pre-exercise urine osmolality was not different between trials (P=0.721) (Table 22). 

 

Table 23. Pre-exercise urine osmolality.  

Urine osmolality (mOsm.L-1) 

PLA IF DF 

493 ± 264 396 ± 274 463 ± 279 

Data are mean ± 1SD.  

 

7.3.4 Exercise variables 

The average time to exhaustion (exercise duration) was 01:15:00 ± 00:13:00, with a range of 

01:06:00 to 01:37:00. There was a significant decrease in body mass from pre-exercise (69.4 ± 6.1 

kg) to post-exercise (68.9 ± 5.9 kg) (P=0.001). 

 

7.3.5 Bone turnover markers 

7.3.5.1 β-CTX 

There was a significant main effect of Trial (P≤0.001), Time (P≤0.001) and a significant Trial x 

Time interaction (P≤0.001) for β-CTX. β-CTX concentrations were increased from baseline by the 
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end of exercise in all trials (+8 to +12%). In the PLA trial, β-CTX concentrations remained increased 

above baseline at 1 h post-exercise (+7%), before decreasing thereafter, being significantly lower 

than baseline concentrations 3 and 4 h post-exercise (-31 to -42%; P≤0.001) and 24 h later (-3%). In 

the IF trial, β-CTX concentrations were significantly lower than baseline at 1 h post-exercise and 

remained below baseline until the end of the trial (-22 to -61%; P≤0.01). In the IF trial, β-CTX 

concentrations were increased above baseline 24 h later (+8%). In the DF trial, β-CTX concentrations 

were increased above baseline at 1 h post-exercise (+15%), then began to decrease and were 

significantly lower than baseline concentrations 3 and 4 h post-exercise (-44 to -65%; P≤0.001). In 

the DF trial, β-CTX concentrations were increased above baseline 24 h later (+8%) (Figure 19A).  

 

At 1 and 2 h post-exercise, β-CTX concentrations were significantly lower in the IF trial than the DF 

(P≤0.001, d=0.76) and PLA trials (P≤0.001, d=0.84). At 3 h post-exercise, β-CTX concentrations 

were significantly higher in the PLA trial than the IF (P≤0.001, d=1.13) and DF trials (P=0.026, 

d=0.54). At 4 h post-exercise, β-CTX concentrations were significantly lower in the DF trial than 

the IF (P=0.003, d=0.82) and PLA trials (P≤0.001, d=1.09) (Figure 19A). The overall β-CTX 

response was significantly lower in the IF trial than the DF trial (P=0.019, d=0.37) and the PLA trial 

(P≤0.001, d=0.84). 

 

7.3.5.2 P1NP 

There was no main effect of Trial for P1NP, but there was a main effect of Time (P≤0.001) and there 

was a significant Trial x Time interaction (P≤0.001). P1NP concentrations were significantly 

increased from baseline by the end of exercise in all trials (+32 to +33%; P≤0.001) and by 1 h post-

exercise P1NP had decreased below baseline concentrations in all trials (-3 to -7%). In the PLA trial, 

P1NP concentrations remained below baseline until the end of the trial (-7 to -9%), but were 

increased above baseline 24 h later (+4%). In the IF trial, P1NP began to increase and reached 

concentrations above baseline at 3 and 4 h post-exercise (+1 to +3%) and 24 h later (+5%). In the 

DF trial, P1NP concentrations continued to decrease and by 3 and 4 h post-exercise were 

significantly lower than baseline (-10 to -11%; P≤0.05), but were increased above baseline 24 h later 
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(+4%) (Figure 19B). At 4 h post-exercise, P1NP was significantly higher in the IF trial than the DF 

(P=0.026, d=0.20) and PLA trials (P=0.001, d=0.25) (Figure 19B).  
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Figure 19. The percentage change in baseline concentrations of β-CTX (A) and P1NP (B), at Rest 

(Baseline), Exh (at exhaustion), 1 to 4 hours post-exercise and D4 (follow-up sample on D4), for 

PLA (filled triangles), IF (open circles) and DF (open squares). Data are mean ± 1SD. a different 

(P≤0.05) from baseline (PLA) b different (P≤0.05) from baseline (IF), c different (P≤0.05) from 

baseline (DF). * IF different (P≤0.05) from PLA, α DF different (P≤0.05) from PLA, ● IF different 

(P≤0.05) from DF.  

 

Average bone turnover marker ratios were significantly higher in the IF trial (2.03 ± 0.98) compared 

to the DF trial (1.81 ± 1.01) (P≤0.05) and the PLA trial (1.39 ± 0.53) (P≤0.001) and were 

significantly higher in the DF trial compared to the PLA trial (P≤0.001). 

 

7.3.6 Calcium metabolism 

7.3.6.1 PTH 

There was no main effect of Trial for PTH, but there was a main effect of Time (P≤0.001) and there 

was a significant Trial x Time interaction (P≤0.001). PTH concentrations were significantly 

increased from baseline by the end of exercise in all trials (+124 to +131%; P≤0.001) but by 1 h 

post-exercise had decreased significantly below baseline concentrations in all trials (-17 to -37%; 

P≤0.05). In the PLA trial, PTH concentrations remained below baseline until the end of the trial (-3 

to -15%) but were increased above baseline 24 h later (+4%). In the IF trial, PTH then began to 

increase and reached concentrations above baseline 3 and 4 h post-exercise (+2 to +7%) and 24 h 

later (+1%) (Figure 20A). In the DF trial, PTH continued to decrease and remained below baseline 

concentrations for the remainder of the trial (-13 to -27%) and 24 h later (-4%). At 3 h post-exercise, 

PTH was significantly higher in the IF trial than the DF trial (P≤0.001, d=1.33) (Figure 20A).  

 

7.3.6.2 ACa  

There was no main effect of Trial for ACa, but there was a main effect of Time (P=0.003) and there 

was a significant Trial x Time interaction (P=0.020). ACa concentrations were increased from 

baseline by the end of exercise in all trials (+2 to +3%). In the PLA trial, ACa concentrations 

remained above baseline until the end of the trial (+2 to +4%) but had decreased below baseline 24 
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h later (-1%). In the IF trial, ACa remained above baseline (+2 to +3%) until 3 h post-exercise when 

ACa decreased below baseline (-3%), ACa then increased above baseline 4 h post-exercise (+1%) 

and remained there 24 h later. In the DF trial, ACa remained above baseline until the end of the trial 

(+2 to +4%) and returned to baseline 24 h later (Figure 20B). At 3 h post-exercise, ACa was 

significantly lower in the IF trial than the DF (P=0.008, d=0.79) and PLA trials (P=0.001, d=0.98) 

(Figure 20B).  

 

7.3.6.3 Ca2+ 

There was no main effect of Trial for Ca2+, but there was a main effect of Time (P≤0.001) and there 

was a significant Trial x Time interaction (P≤0.001). Ca2+ concentrations were significantly 

decreased below baseline by the end of exercise in all trials (-5 to -7%; P≤0.001). In the PLA trial, 

Ca2+ concentrations were still significantly below baseline by 1 h post-exercise (-4%; P=0.002) and 

remained below baseline until the end of the trial and 24 h later (-3%; P=0.006). In the IF trial, Ca2+ 

concentrations had returned to baseline by 1 h post-exercise (+1%) and remained at concentrations 

similar to baseline until the end of the trial and 24 h later (-1%). In the DF trial, Ca2+ concentrations 

had almost returned to baseline by 1 h post-exercise (-1%) and remained at concentrations similar to 

baseline until the end of the trial and 24 h later (-1%) (Figure 20C). At 1 h post-exercise, Ca2+ 

concentrations were significantly lower in the PLA trial than the IF trial (P=0.010, d=1.41) (Figure 

20C).  

 

7.3.6.4 PO4  

There was no main effect of Trial for PO4, but there was a main effect of Time (P≤0.001) and there 

was a significant Trial x Time interaction (P=0.007). PO4 concentrations were significantly increased 

above baseline by the end of exercise in all trials (+21 to +26%; P≤0.001). By 1 h post-exercise, PO4 

concentrations decreased below baseline in all trials (-5 to -13%). In the PLA trial, PO4 

concentrations continued to decrease at 2 h post-exercise (-8%), then increased and returned to 

baseline 3 h post-exercise. In the PLA trial, PO4 concentrations were increased above baseline at 4 

h post-exercise (+14%) and 24 h later (+3%). In the IF trial, PO4 concentrations started to increase 

at 2 h post-exercise and increased above baseline 4 h post-exercise (+8%). In the IF trial, PO4 
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concentrations were below baseline 24 h later (-2%). In the DF trial, PO4 concentrations continued 

to decrease at 2 h post-exercise (-8%), concentrations started to increase thereafter, but remained 

below baseline until the end of the trial and 24 h later (-4%) (Figure 20D). At 1 h post-exercise, PO4 

concentrations were significantly lower in the IF trial than the DF trial (P=0.049, d=1.03) (Figure 

20D). 
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Figure 20. The percentage change in baseline concentrations of PTH (A), ACa (B), Ca2+ (C) and PO4 

(D) at Rest (Baseline), Exh (at exhaustion), 1 to 4 hours post-exercise and D4 (follow-up sample on 

D4), for PLA (filled triangles), IF (open circles) and DF (open squares). Data are mean ± 1SD. a 

different (P≤0.05) from baseline (PLA) b different (P≤0.05) from baseline (IF), c different (P≤0.05) 

from baseline (DF). * IF different (P≤0.05) from PLA, α DF different (P≤0.05) from PLA, ● IF 

different (P≤0.05) from DF. 

 

7.3.6.5 Albumin 

There was no main effect of Trial for albumin, but there was a main effect of Time (P≤0.001) and 

there was no Trial x Time interaction (P=0.054). Overall mean albumin concentrations were 

significantly increased from baseline by the end of exercise (+3 to +4%; P=0.011). There were no 

other significant changes in albumin concentrations (Figure 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. The percentage change in baseline concentrations of albumin at Rest (Baseline), Exh (at 

exhaustion), 1 to 4 hours post-exercise and D4 (follow-up sample on D4), for PLA (filled triangles), 

IF (open circles) and DF (open squares). Data are mean ± 1SD. ✝overall mean concentrations 

different from baseline (P≤0.05).  
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7.4 Discussion 

The main findings of the study are: 1) ingestion of the CHO+PRO solution containing 1.5 g.kgBM-1 

of CHO and 0.5 g.kgBM-1 of PRO suppressed β-CTX concentrations following an exhaustive run, 

with a greater overall suppression when the CHO+PRO solution was ingested immediately; 2) 

immediate ingestion of the CHO+PRO solution resulted in small increases in P1NP concentrations 

at 3 and 4 h post-exercise; 3) delayed ingestion of the CHO+PRO solution (2 h post-exercise) also 

resulted in a large suppression of β-CTX concentrations. These findings are novel and have the 

potential to directly influence an athlete’s dietary practices.  

 

The response in the PLA trial, showed that the exhaustive running bout performed caused an 

immediate increase in bone turnover at the end of exercise, indicated by increased β-CTX and P1NP 

concentrations above baseline. This was followed by suppression of bone turnover during recovery, 

indicated by decreased β-CTX and P1NP concentrations below baseline. Ingestion of the CHO+PRO 

solution immediately post-exercise caused a rapid and prolonged (at least 4 h) suppression of β-CTX 

concentrations below baseline levels (-22 to -61%), whereas ingesting the PLA solution immediately 

post-exercise meant that β-CTX concentrations were increased above baseline by between +7 and 

+15%. When ingestion of CHO+PRO was delayed by 2 h, it caused suppression of β-CTX 

concentrations below baseline (-44 to -65%), which is similar to the suppression caused by 

immediate ingestion of the CHO+PRO solution and it occurred within the same timeframe, i.e., 1 – 

2 h after ingestion.  

 

This rapid response is important because elite athletes habitually train multiple times a day, meaning 

that there are often only a few hours in between training sessions and therefore limited time for 

recovery and food consumption. Although the participants in the present study are not elite athletes, 

their trained nature means that the results are relevant and may be interpreted and used by elite 

athletes or support staff. The results indicate that post-exercise nutrient ingestion or exercise 

commencement can be timed so that the subsequent training session occurs when bone resorption is 

at its lowest and bone formation at its highest, i.e., 3 – 4 hours after the first exercise bout with 

immediate ingestion of the CHO+PRO solution. This may maximise the anabolic and minimise the 
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catabolic bone response to the subsequent training session. Further research is needed to investigate 

whether this intervention does indeed produce a more anabolic environment for bone. 

 

The significant increase in P1NP concentrations (+32 to +33%) at the end of exercise is interesting, 

as markers of bone formation are usually less responsive to acute bouts of exercise than markers of 

bone resorption (Guillemant et al., 2004; Scott et al., 2010; Scott et al., 2012). Similarly, de Sousa 

et al. (2014) reported a 77% increase in P1NP concentrations after a high-intensity, interval running 

session (10 x 800m). In the present study, P1NP concentrations then decreased to below baseline 

levels at 1 h post-exercise in all trials, but the ingestion of the CHO+PRO solution immediately post-

exercise caused P1NP to increase above baseline at 3 and 4 h post-exercise by between +1 to +3%. 

Whereas ingesting the PLA solution immediately post-exercise meant that P1NP remained below 

baseline concentrations by between -7 and -9%. When the CHO+PRO solution was ingested 2 h 

post-exercise, P1NP concentrations were suppressed further below baseline concentrations (-10 to -

11%). It is possible that P1NP could have increased after the last measurement was taken but was 

missed by the sampling protocol, therefore it would be useful for future research to examine a longer 

post-exercise period to investigate the longer term response. The significantly increased P1NP 

concentrations at 4 h post-exercise in the IF trial compared to the DF and PLA trials is novel, and 

taken together, these results advocate the feeding of a CHO+PRO solution immediately post-exercise 

in order to reduce bone resorption and increase bone formation in the short-term recovery from 

intense exercise. Further, the average bone turnover marker ratios were above 1 in all three trials, 

indicating that bone turnover favoured bone formation. The significantly higher average bone 

turnover marker ratios in the IF trial compared to DF and PLA trials, and the significantly higher 

ratios in the DF compared to the PLA trial, suggests that both immediate and delayed consumption 

of the CHO+PRO recovery solution may be more beneficial for the bone turnover balance, compared 

to ingestion of a PLA solution. However, caution must be used when interpreting these bone turnover 

marker ratios, as they are simply a numerical interpretation of the bone turnover marker 

concentrations.  
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The results of the studies reported in Chapters 4 and 5 showed that the effects of certain training 

sessions may not persist to the following mornings, as there were no large changes in β-CTX or 

P1NP concentrations in any sample despite different training schedules on each day. Alternatively, 

the effects of all training sessions could have persisted to the following mornings, which may be the 

reason for the high concentrations of β-CTX and P1NP in all samples. In the present study, the effects 

of the CHO+PRO solution did not persist to the morning following exercise and β-CTX 

concentrations were increased in the IF and DF trials (+8%) compared to suppressed β-CTX 

concentrations in the PLA trial (-3%). P1NP was increased 24 h post-exercise in all trials (+4 to 

+5%). This increased bone turnover in the IF and DF trials may reflect the bones adapting to a 

possible hormonal response that is mediated by feeding. It is unlikely that the bones are adapting to 

the mechanical loading from the running bout alone, as β-CTX concentrations were not also 

increased 24 h post-exercise in the PLA trial. The hormonal mediators of this response are currently 

unknown. Clowes et al. (2002b) showed that short-term alterations in bone turnover may be due to 

the effects of hypoglycaemia, acute changes in PTH or regulatory hormones triggered by 

hypoglycaemia, however, this study was performed in resting individuals. Scott et al. (2012) and 

Sale et al. (2015) recently showed that GLP-2, leptin, ghrelin, insulin and cortisol are unlikely 

mediators of the effect of CHO or mixed meal feeding on bone turnover with exercise. Subsequently, 

this requires further research including the measurement of several other gastro-intestinal hormones. 

The regulation of the bone turnover response to feeding is complex, even at rest, and probably has 

several mediators (Walsh and Henriksen, 2010), which may be further complicated by an exercise 

bout.  

 

Although this increased bone turnover response may be positive in sub-elite or trained athletes or 

recreationally active individuals, elite athletes that train multiple times a day with minimal recovery 

time and rest days are more likely to suffer from consistently increased bone turnover, which was 

shown in Chapters 4 and 5, and this may have detrimental effects on bone health and enhance the 

stress fracture risk (Parfit, 1982; Schaffler et al., 1990; Riggs et al., 1996; Oosthuyse et al., 2013). 

The trained runners and triathletes that participated in the present study had mean resting β-CTX 

concentrations of 0.54 ± 0.25 ng.mL-1 and P1NP concentrations of 65.23 ± 30.81 ng.mL-1, which are 
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higher than the non-active, healthy population (de Papp et al., 2007; Glover et al., 2008; Glover et 

al., 2009; Walkdron-Lynch et al., 2010; Jenkins et al., 2013; Michelsen et al., 2013) (Appendix A). 

Furthermore, Chapters 4 and 5 showed that elite triathletes have mean resting bone turnover marker 

concentrations that are even higher than the trained runners and triathletes (Appendix A). This is 

supported by Oosthuyse et al. (2013) who showed that bone resorption and bone formation markers 

were significantly elevated each morning after four successive 3 h cycling bouts in trained cyclists. 

Although it is speculative at this stage, elite athletes may experience an imbalance between whole-

body rates of resorption and formation or defective coupling (Parfit, 1982), meaning that neither 

bone resorption nor bone formation is performed adequately and the quality of the bone may be 

poorer, or they may experience accelerated remodelling, which can increase bone microdamage 

accumulation (Schaffler et al., 1990; Mori and Burr, 1993; Burr, 2002) and stress fracture risk 

(Bennell et al., 1996a; Riggs et al., 1996; Burr et al., 1997; Fredericson et al., 2006). Indeed it should 

be noted that in a normal, healthy basic multicellular unit, the suppression of bone resorption may 

not always be desired, if the function of bone resorption is to breakdown and remove damaged bone 

at areas of microdamage accumulation to allow the area to be repaired and strengthened. Therefore, 

it is crucial for future research to investigate the long-term effects of post-exercise suppression of 

bone resorption on different athletic populations. 

 

Ingestion of the CHO+PRO solution post-exercise is not sufficient to cause a prolonged suppression 

of bone resorption and/or elevation of bone formation. However, as elite athletes rarely go 24 h 

without a training session and often have a second session within four hours of finishing the first 

session, the bone turnover response 24 h post-exercise is less important than the immediate response 

as it does not reflect real life athlete practice. The more important time point is therefore, 4 h post-

exercise, as this may be around the same time that the second training session would start. As we 

have now investigated the effect of post-exercise feeding after a single acute bout of exercise, future 

studies should investigate the effect of post-exercise feeding on repeated bouts of exercise occurring 

on the same day.    
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The responses of Ca2+ and PO4 to exercise are in line with the results of the study reported in Chapter 

6. The responses are only significantly different between trials at 1 h post-exercise; Ca2+ 

concentrations were lower in the PLA trial compared to the IF trial, suggesting that IF augments the 

recovery of Ca2+ to baseline concentrations, and PO4 is lower in the IF trial compared to the DF trial. 

Transient peaks in PTH concentrations, as shown in the present study, are anabolic for bone (Tam et 

al., 1982; Frolik et al., 2003) and the study reported in Chapter 6 showed that PTH secretion during 

exercise and recovery is controlled by both Ca2+ and PO4, therefore these metabolites are likely to 

be mediating any anabolic effect of increased PTH concentrations. The fact that PTH and P1NP 

follow the same response may suggest that PTH is mediating an anabolic response in the IF trial, 

although this response needs to be confirmed.  

 

At 3 h post-exercise, PTH concentrations were greater in the IF trial than in the DF trial (+7% vs -

27%). This response coincides with significantly lower ACa concentrations at 3 h post-exercise in 

the IF trial compared to the DF and PLA trials (-3% vs +3 to +4%). The action of increased PTH 

secretion is to increase calcium through mobilisation of the bone reservoir via activation of bone 

resorption (and also by increasing renal tubular reabsorption and intestinal calcium absorption) 

(McSheehy and Chambers, 1986; Brown, 2000; Zitterman et al., 2002). β-CTX concentrations were 

at their lowest at 3 h post-exercise in the IF trial, suggesting that changes in PTH concentrations and 

calcium metabolism are unlikely to mediate the acute suppression of bone resorption by post-

exercise CHO+PRO feeding.  

 

The results of the study reported in Chapter 6 showed that ACa is unsuitable when investigating the 

rapid response of calcium metabolism to exercise, which may also be true when investigating 

CHO+PRO ingestion around exercise. Although Ca2+ (non-protein bound calcium) decreased at the 

end of exercise, because albumin concentrations increased, ACa was corrected accordingly and 

remained fairly unchanged throughout exercise, other than at 3 h post-exercise. Changes in albumin 

could have been affected by the ingestion of dietary protein throughout the recovery period, which 

has previously been shown to increase circulating albumin concentrations (Kaysen et al., 1986; 

Kirsch et al., 1995); however albumin did not change significantly throughout the recovery period 
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in the present study. The increase in albumin at the end of exercise could have been to encourage 

more calcium to be transported around the body, due to the tissues requiring additional Ca2+ to keep 

up with the demand in energy consumption, although the increase in albumin might also just reflect 

haemoconcentration as a result of the exercise to exhaustion. These data are uncorrected for plasma 

volume changes, which could influence the interpretation of the biological data obtained at the end 

of exercise and during the recovery period. 

 

In conclusion, a practical recommendation for endurance athletes training multiple times a day could 

include the ingestion of a CHO+PRO recovery solution (containing around 1.5 g.kgBM-1 of high 

glycaemic index CHO and 0.5 g.kgBM-1 of whey PRO) immediately after a prolonged and intense 

running bout, to create a more positive bone turnover balance in the acute recovery period from 

exercise. However, we do not know whether long-term consumption of the CHO+PRO recovery 

solution and suppression of bone resorption will affect structural bone adaptation. Immediate 

ingestion of a CHO+PRO recovery solution is recommended because it will also allow more time 

for digestion before the start of a subsequent training session. The mechanisms underlying the acute 

changes in bone turnover remain unknown, but a change in calcium metabolism is unlikely to fully 

mediate the response. However it should be acknowledged that these results may only apply to 

conditions where participants are in a negative energy balance; given the total energy intake of 2,000 

kcal.d-1 on day 3 combined with the exhaustive exercise bout, participants were likely to be in a 

negative energy balance. As Zanker and Swaine (2000) showed that bone turnover is only negatively 

affected with repeated running bouts when runners are in a negative energy balance, the effect of the 

CHO+PRO recovery solution could have had a more pronounced effect due to the negative energy 

balance that was likely to be present in this study.  
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CHAPTER 8: GENERAL DISCUSSION 

  



189 

 

 

The aims of this thesis were: 1) to identify what influences bone health in elite triathletes; 2) to 

identify possible areas for intervention to improve bone health and the subsequent risk of stress 

fracture injury; 3) to produce research that was applicable to elite athletes with the potential to 

directly influence athlete behaviour in relation to bone health. These aims were achieved by 

investigating bone turnover at two phases of the season in elite triathletes, along with, dietary intakes, 

energy expenditures and dermal calcium losses; by exploring the mechanism and timeframe of PTH 

and calcium regulation during exercise and recovery; and by investigating post-exercise nutrient 

ingestion on the bone turnover response.   

 

It was important to provide an overview of the bone injury problem amongst the current British 

Triathlon team. As stress fractures can cause months of missed training and restricted weight bearing 

activity (Matheson et al., 1987; Ranson et al., 2010), there would be huge negative implications if a 

member of the Olympic team sustained a stress fracture in an Olympic year. The study reported in 

Chapter 4 showed that there have been 15 stress fracture injuries and 3 stress responses amongst 16 

elite British triathletes. Twelve of the 16 triathletes had suffered at least 1 stress fracture and 3 of 

these 12 had suffered from 2 stress fractures throughout their athletic careers to date. The participants 

in the study reported in Chapter 4 represented 50% of the British Triathlon World Class Performance 

Squad. Considering the success of the British triathletes at the Rio Olympic Games – winning Gold, 

Silver and Bronze medals and a 4th place finish across the men’s and women’s races, it is reasonable 

to suggest that the group of triathletes that participated in the studies reported in this thesis truly 

represent the elite triathlete population and there are no other studies that have collected such data 

in a comparable population. 

 

It is difficult to compare the stress fracture injury results to other studies, due to authors investigating 

stress fracture incidence over different time periods, using different methods to diagnose the injuries, 

differences in using prospective and retrospective methods and recruitment bias. Bennell et al. 

(1996b) used prospective methods and reported a high incidence of stress fractures across only 12 

months in middle and long distance runners, particularly in females. The authors showed that 10 out 
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of 53 female athletes and 10 out of 58 male athletes sustained at least 1 stress fracture in the 12 

month study, 50% of them occurred during the winter and the tibia and navicular were the most 

commonly injured bones. These results were similar to that of Zernicke et al. (1993) and Johnson et 

al. (1994) and who also used prospective methods. The retrospective evaluation used in Chapter 4 is 

a limitation of the study; however, the questionnaire results recorded by participants were in line 

with the injury data held by the sports science and medicine support staff at British Triathlon. This 

injury data also showed that there were 7 reports of medial tibial stress syndrome in the previous 18 

months, and this overuse injury is often a precursor of a stress response (Detmer, 1986; Fredericson 

et al., 1995; Anderson et al., 1997; Beck, 1998; Galbraith et al., 2009). 

 

Cause and effect of stress fracture injury is almost impossible to establish, due to the multifaceted 

nature of bone remodelling and stress fracture development. The elite triathletes studied in this thesis 

suffered from a number of previously identified risk factors for stress fracture injury. As measured 

in Chapters 4 and 5, these primarily included; elevated bone turnover (Parfit, 1982; Schaffler et al., 

1990; Bennell et al., 1996a; Bennell et al., 1999; Burr, 2002; Schaffler, 2003), high training volumes 

(Rubin and Lanyon, 1984; Martin and McCulloch, 1987; Burr et al., 2002; Bergman et al., 2004; 

Robling, 2009), inadequate energy intakes that did not match the high energy expenditures, resulting 

in negative energy balances (Frusztajer et al., 1990; Bennell et al., 1995; Ihle and Loucks, 2004) and 

high dermal calcium losses (Klesges et al., 1996; Barry and Khort, 2008; Barry et al., 2011).  

 

Bennell et al. (1999) proposed that accelerated bone remodelling, resulting from excessive bone 

strain or from the influence of systemic factors, may weaken bone because bone resorption occurs 

before new bone is formed, allowing for excessive accumulation of microdamage if repetitive 

mechanical loading is present at remodelling sites. The large volumes of training performed on a 

daily basis, the negligible amount of rest days taken and the large energy expenditures measured in 

5 of the triathletes, means that repetitive mechanical loading is undoubtedly present in the triathletes. 

Average β-CTX concentrations in elite triathletes during off-season training (Chapter 4) were 2.4 

times higher than the non-active population (de Papp et al., 2007; Glover et al., 2008; Glover et al., 

2009; Waldron-Lynch et al., 2010; Jenkins et al., 2013; Michelsen et al., 2013) and 1.4 times higher 



191 

 

than recreationally active individuals (Musculoskeletal Physiology Research group; Appendix A). 

Average P1NP concentrations in elite triathletes were 2.1 times higher than the non-active population 

and 1.4 times higher than recreationally active individuals. Average PTH and ACa concentrations 

were lower in elite triathletes compared to recreationally active individuals and PO4 concentrations 

were similar. Average β-CTX concentrations in elite triathletes during pre-competition training 

(Chapter 5) were 2.1 times higher than the non-active population and 1.3 times higher than 

recreationally active individuals. Average P1NP concentrations in elite triathletes were 1.7 times 

higher than the non-active population and 1.2 times higher than recreationally active individuals. 

Average PTH, ACa and PO4 concentrations were lower in elite triathletes compared to recreationally 

active individuals. In addition, the bone turnover marker ratios were higher during pre-competition 

training compared to off-season training, indicating a shift in the bone turnover response favouring 

bone formation. The higher bone turnover shown during phases of increased training load is 

consistent with the results of other studies, although to our knowledge there are only two other 

studies that have investigated this in elite athletes (Jürimäe et al., 2006; Lombardi et al., 2011) so 

there is limited data available for comparison.  

 

A limitation of the studies reported in Chapters 4 and 5 was the lack of a resting baseline sample, 

which was not possible to obtain from the triathletes as they did not have any rest days incorporated 

into their training schedules and them abstaining from a training day was not possible at any point 

during the season due to the importance placed on high training volumes during an Olympic year. 

This meant that interpretation of the bone turnover marker concentrations and other metabolite 

concentrations was difficult. Further, there are no reference ranges for other elite athletes; hence we 

compared the concentrations to resting ranges from other populations. However, these comparisons 

should be interpreted with caution, as the data from the recreationally active individuals are from 

resting blood samples, where the individuals refrained from exercise for a minimum of 24 hours 

prior to the blood sample, whereas, the triathletes’ blood samples were taken after consecutive days 

of exercise. With this in mind, using samples taken the day after an exercise bout may have been 

more appropriate to use as a comparison, however, using this as the comparative sample would 

induce more variability. The different exercise modes, durations and intensities performed would 
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add multiple sources of variation compared to a resting sample, further, it would be difficult to match 

control participants to the extreme mechanical loading patterns performed by the triathletes. Despite 

this limitation there were numerous strengths of the studies reported in Chapters 4 and 5; primarily, 

the strict control of blood sampling and other measurements whilst in a real-life training environment 

and the elite nature of the participants, producing both reliable and ecologically valid results. Future 

studies should develop reference ranges for bone turnover marker concentrations amongst different 

elite athletes and should also develop a standard study protocol for the investigation of bone turnover 

throughout an athletic season, which will allow improved comparison of bone turnover between 

different athletes and sports. 

 

Bennell et al. (1998) evaluated baseline bone turnover markers (OC, u-Pyr and u-NTX) in 95 track 

and field athletes and showed that the 20 athletes that developed a stress fracture had similar baseline 

and monthly concentrations to those that did not sustain a stress fracture. These results suggest that 

single monthly measurements of bone turnover markers are not useful predictors of stress fracture 

injury. However, this does not mean that bone turnover markers cannot reflect whole body changes 

in bone turnover, with local bone turnover likely to be occurring at stress fracture sites or the sites 

that experience the most mechanical loading and therefore microdamage (Bennell et al., 1999). 

Assuming blood samples are taken under identically controlled conditions, monthly samples could 

show when an individual has accelerated or supressed bone turnover, both of which could lead to the 

development of a stress fracture in individuals with high training loads (Martin, 1992; Bennell et al., 

1998; Schaffler, 2003).  

 

However, simply knowing whether bone turnover is accelerated or suppressed will not predict if and 

when a stress fracture injury will develop, as there have been no threshold studies performed in 

humans in vivo (Mashiba et al., 2000; Mashiba et al., 2001; Schaffler, 2003). Therefore, the sampling 

protocol used in the studies reported in Chapters 4 and 5 would not predict if or when a stress fracture 

injury would occur, it could however identify at what phase of the season an athlete has an increased 

risk of bone injury. It may also allow certain athletes with greater bone injury risk to be identified, 

such as participant 13 in the studies reported in Chapters 4 and 5. This information is important for 
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coaches and sports science and medicine support staff as they will be able to alter an athlete’s training 

load or external environment at particular times to reduce the risk of a bone injury. Consequent to 

identifying the high bone turnover marker concentrations in participant 13, this triathlete began 

working closely with a performance nutritionist, to improve dietary practices that may help reduce 

the risk of bone injury. Considering that these injuries can cause weeks or months of missed training, 

preventing them will help maximise available training time and is of utmost importance during an 

Olympic year. 

 

Energy intakes were suboptimal compared to the energy expended, and CHO and PRO intakes were 

suboptimal compared to intakes reported in other studies of triathletes (Burke and Read, 1987; 

Nogueira and Da Costa, 2004) and compared to recommended guidelines for endurance athletes 

(Burke et al., 2011). It is vitally important that athletes match energy intakes with energy 

expenditures as closely as possible, as the bone formation and bone resorption processes are 

negatively affected even with slight deficits (Ihle and Loucks, 2004). As a result of the study reported 

in Chapter 4, 5 of the triathletes now have specific target intakes to reach during off-season training, 

which is closely monitored by a performance nutritionist and allows the triathletes to accurately 

match energy intakes with energy expenditures. Energy expenditures were not measured in all 16 

athletes, which is a limitation of the study. This means that the other 11 triathletes do not have 

individual target intakes based on energy expenditures, however, as training loads were similar 

between all athletes these data still provide useful information and a performance nutritionist can use 

the dietary information for educational purposes. Future studies should measure energy expenditures 

at different phases of the season, to provide specific target intakes for athletes throughout a whole 

season, which will allow the different training schedules to be adequately supported.  

 

Due to the suspicion that underreporting of diet logs was present in Chapter 4, the 8 triathletes that 

also participated in Chapter 5 were briefed on the issues of underreporting and were encouraged to 

record dietary intakes in more detail during the pre-competition testing period. In hindsight, this was 

a limitation of the study and made the comparison of diet logs between testing periods less reliable, 

however, it is not certain that the same extent of underreporting would have occurred in each testing 
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period regardless. The use of the diet logs for educational purposes would not have been possible if 

there was drastic underreporting in both testing periods, which was an important consideration given 

that one of the aims of the thesis was to produce research that directly influences athlete behaviour. 

This was an instance where the Fast Practitioner and Slow Researcher Model (Section 1.1) became 

apparent; it was more important to provide applicable information that could be directly used by 

athletes and coaches, than to produce a reliable comparison that would not be beneficial or useful 

for athletes and coaches. Another issue and limitation that arose from athlete or coach reporting was 

the lack of detail in training logs. There was a lack of training intensity reported; athletes and coaches 

only tend to record training duration on a daily basis for simplicity and to ensure adherence. Future 

studies should explore the use of more objective methods to record training volume and intensity in 

triathlon, such as the use of power meters, global positioning systems or heart rate monitors.  

 

The studies reported in Chapters 4 and 5 showed that the greatest total dermal calcium loss was 214 

mg during a long cycle and the greatest rate of loss was 248 mg.h-1 during a hard run, during the pre-

competition training phase (participant 08). Sweat rate and composition varies by body region 

(Sripanyakorn et al., 2009) and there are no studies that have compared dermal calcium losses via 

patch technique and whole body wash down. Further, the sweat analysis technique used in this thesis 

has not yet been validated, which will require a large population study that was outside the scope of 

this thesis. This means that the results were only gross estimates of dermal calcium losses, which is 

a limitation of the studies reported in Chapters 4 and 5. Therefore, future studies should validate and 

confirm a method for measuring dermal calcium losses in athletes. These large estimated losses are 

important because it has been shown that deviations from calcium homeostasis cause increases in 

PTH, which may subsequently increase bone resorption (Brown, 2000; Guillemant et al., 2004; 

Barry and Khort, 2007). Sherk et al. (2013) showed that dermal calcium losses and decreases in 

serum Ca2+ were greater when a calcium supplement (1000 mg) was consumed after a cycling time 

trial, compared to consuming it before. Consuming the calcium supplement before cycling attenuated 

the PTH response but had no effect on the bone resorption response. The calcium supplement may 

have provided greater calcium availability in the gut during the cycling time trial, attenuating the 

decrease in serum Ca2+ concentrations. Oosthuyse et al. (2013) showed that when sweat calcium 
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excretion was around 50 mg.h-1, this resulted in a significant decrease in Ca2+ concentrations from 

pre- to post-exercise. Although, when sweat calcium excretion was below 40 mg.h-1, Ca2+ 

concentrations did not significantly decrease, suggesting that there may be a threshold or dose 

response relationship between dermal calcium losses and serum Ca2+ concentrations, which needs to 

be investigated. Future studies that prove that dermal calcium losses cause deviations from calcium 

homeostasis are required and further research is needed to determine whether the bone resorption 

response is related to dermal calcium losses and decreased serum Ca2+ during and after exercise, if 

the decrease is not attenuated by increased calcium availability in the gut. 

 

The results of Chapter 4 showed that PTH increased in some participants at site 1, the morning after 

the longest and hardest training day of the week, compared to PTH concentrations on other days. 

This training day involved a long cycle and a hard run, which were the training sessions that caused 

the greatest total calcium loss and highest rate of calcium loss, respectively. Similarly, the results of 

Chapter 5 showed that PTH increased in some participants the morning after an evening track session, 

compared to PTH concentrations on other days. Pre-exercise calcium ingestion has been shown to 

attenuate increases in bone resorption (Guillemant et al., 2004) and PTH (Barry et al., 2011; Sherk 

et al., 2013). Although Guillemant et al. (2004) and Barry et al. (2011) showed that consuming 2 L 

of high calcium water before and during exercise was an effective strategy to minimise the activation 

of the regulatory mechanisms, this is a challenging and unrealistic practice for triathletes to adopt on 

a daily basis. Triathletes would rarely consume such large volumes of fluid during training due to 

gastrointestinal issues and limited opportunity. Given the efficacy of pre-exercise calcium 

supplementation shown in previous studies, individualised calcium supplementation may be an 

effective strategy to implement around long cycles and hard runs in triathletes. However, to be 

effective and practical this must be in the form of a calcium supplement or dairy foods. Haakonssen 

et al. (2014) showed that a calcium-rich (1,350 mg) breakfast consumed 90 minutes before a cycling 

bout attenuated the increase in PTH and β-CTX, however there are no studies that have investigated 

calcium ingestion prior to running sessions, where gastrointestinal discomfort may be a more 

important issue.  
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It was important to understand the mechanism that controls PTH and calcium regulation during 

exercise and recovery before any individualised calcium supplementation protocols can be 

implemented in elite athletes. The study reported in Chapter 6 was the first study to explore this 

mechanism in detail during running. The Ca2+ response shown in Chapter 6 supports the findings of 

other studies (Maïmoun et al. 2005; Maïmoun et al. 2009; Barry et al. 2011); intense exercise causes 

a decline in serum Ca2+ concentrations at the end of exercise. Dermal, urinary and gastrointestinal 

calcium losses may have exceeded intestinal calcium absorption during exercise (Barry et al., 2011) 

which coincided with increased PTH concentrations, to restore serum calcium levels. Future studies 

should now examine individualised pre-exercise calcium supplementation in elite triathletes to 

investigate if this prevents decreased serum Ca2+ concentrations and subsequent increases in bone 

resorption during and after an intense running session.  

 

The results of Chapter 6 showed that changes in Ca2+ and PO4 occur in close temporal relation to 

changes in PTH and are likely to control PTH secretion during exercise and recovery. This was the 

first study to show that PTH transiently decreases at the onset of exercise, then increases throughout 

exercise and peaks in the first minutes of recovery. These findings are important because identifying 

the peak in PTH concentrations shortly after the cessation of a running bout will allow specific 

training sessions to be developed. These could involve high intensity interval running bouts that will 

cause acute increases in PTH concentrations, followed by rest periods that will allow PTH 

concentrations to return to baseline. This may promote the anabolic actions of short-lived elevated 

PTH concentrations (Dempster et al., 1993; Dempster et al., 2001). To elucidate, peak PTH 

concentrations were shown to occur 5 minutes after 30 minutes of running at 75%VO2max, with PTH 

concentrations then decreasing rapidly after reaching peak concentrations, so a second running bout 

could commence when PTH concentrations are declining. This could be combined with an endurance 

athlete’s long distance, low intensity runs. However, consideration should be given to an athlete’s 

total training volume or schedule, as if these high intensity running sessions were an addition to a 

training programme they would increase total energy expenditure and may decrease energy 

availability. Therefore, the use of such training sessions should be considered for each athlete, 

against their existing training schedule and their risk of bone injury.  
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Studies investigating the effect of repeated running bouts on the PTH response are necessary before 

detailed high intensity interval training sessions, focused on bone adaptation, can be planned and 

applied by coaches and athletes, as this has not yet been thoroughly investigated. Bouassida et al. 

(2003) and Scott et al. (2011) explored the effect of two running bouts, but there were a number of 

limitations with the study by Bouassida et al. (2003). Such as, a lack of dietary control and a 

questionable sampling protocol; blood samples were taken at different points in the two trials and at 

different times of the day, making it difficult to compare the single and double running bouts. The 

effect of multiple exercise bouts, with varying exercise and recovery durations should now be 

investigated.  

 

The effect of PTH on long-term bone health in athletes is unclear due to the dual action of PTH, 

which seems to be dependent on the duration that PTH concentrations are elevated for (Frolik et al., 

2003). Two possible PTH related interventions that could have positive influences on bone, were 

highlighted in earlier paragraphs. One involved suppressing the PTH response to exercise using pre-

exercise calcium supplementation, and the other involved modulating the PTH response to exercise 

using repeated high intensity running bouts. Pre-exercise calcium supplementation may be useful 

prior to long training sessions when a prolonged increase in PTH may become catabolic for bone 

(Tam et al., 1982; Tsai et al., 1984; Ljunghall et al., 1986; Ljunghall et al., 1988; Hock and Gera 

1992; Grimston et al., 1993; Uzawa et al., 1995; Chappard et al., 2001). However, the studies 

reported in Chapters 4 and 5 showed that hard running sessions, that would be the sessions that most 

closely reflects a high intensity interval running session, caused the greatest rates of dermal calcium 

losses, potentially causing the greatest perturbation in calcium homeostasis and therefore the greatest 

increases in PTH and bone resorption (Brown, 2000; Brown, 2013). The problem with these potential 

interventions is that the resultant long-term effect on the bones is unknown. It is not known whether 

suppression of the PTH response to hard running sessions would be beneficial, or if the natural PTH 

response would have anabolic effects. This highlights the need to investigate the long-term effects 

of different types of training sessions on bone health and structural adaptation; however this would 

be difficult to do, particularly in elite athletes.   
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There are also a number of other mechanistic studies that are required before PTH regulation during 

exercise and recovery is completely understood. These include investigating the initial decrease in 

PTH from baseline to 5 minutes of exercise, as the study in Chapter 6 was the first study to observe 

this initial response. The initial increase in Ca2+ at the two higher exercise intensities but a lack of an 

increase in the lower exercise intensity was also a novel finding that requires further exploration. 

The difference in the PTH response to cycling and running should also be investigated, as this may 

vary due to different mechanical loading (non-weight-bearing vs weight-bearing exercise). 

 

The training volumes in the studies reported in Chapters 4 and 5 showed that the triathletes had 

congested training schedules and this meant that they would have had limited time to consume meals 

throughout a training day. This meant that they would often consume the majority of their energy in 

the late evenings after their last training session of the day. Because of the huge energy expenditures 

recorded, it would have taken a considerable amount of time to shop for, prepare, cook, consume 

and digest that amount of energy in normal food, which the training schedule did not allow for. This 

meant that the triathletes were often likely to perform training sessions in under-fuelled and under-

recovered states. An area for intervention that was identified in the studies reported in Chapters 4 

and 5 was the post-exercise period, which was also identified based on the results of previous studies 

investigating other exercise related nutritional interventions (Scott et al., 2012; Sale et al., 2015). 

Consuming energy dense nutrients, containing little fibre and fat in the immediate post-exercise 

period would leave enough time for digestion prior to a subsequent training session (Rehrer et al., 

1992; Jenkins et al., 2009) and would also allow other recovery goals to be met, such as glycogen 

resynthesis and protein synthesis (Jentjens and Jeukendrup, 2003; Tipton et al., 2004).  

 

The study reported in Chapter 7 showed that the ingestion of a CHO+PRO recovery solution 

immediately after a prolonged and intense running bout caused a rapid suppression of β-CTX and 

small increases in P1NP. To our knowledge this was the first study that has investigated post-exercise 

CHO+PRO ingestion on the acute bone turnover response, and the small increase in P1NP with 

immediate ingestion was a novel finding that has not been shown with pre-exercise and during 



199 

 

exercise nutrient ingestion (Scott et al., 2012; Sale et al., 2015). The increase in P1NP concentrations 

is encouraging as it means that the bone turnover balance is shifting towards increased bone 

formation, rather than simply supressing bone resorption. This is a simple and practical intervention 

that can be easily implemented by athletes and coaches after training sessions. A limitation of the 

study reported in Chapter 7 was the lack of measurement of gastrointestinal hormones, which were 

not measured due to cost implications. This means that the results of Chapter 7 do not contribute to 

the understanding of the mechanisms underlying the acute changes in bone turnover with exercise 

and nutrient ingestion. There was also no subjective measurement of gastrointestinal discomfort in 

Chapter 7, which would have been useful to assess the tolerability of the post-exercise CHO+PRO 

recovery solution. Additionally, there was no measurement of plasma volume shifts, in this study or 

any other study in this thesis, meaning that concentrations of blood parameters may have been altered 

by haemoconcentration or haemodilution, however the concentrations presented were what the tissue 

was exposed to. 

 

It is important for future studies to investigate the effect of post-exercise nutrient ingestion with 

multiple exercise bouts, as this more closely reflects training schedules of elite athletes. It is also 

important that future studies investigate the long-term effects of post-exercise suppression of bone 

resorption. The function of bone resorption is to breakdown and remove damaged bone at areas of 

microdamage accumulation to allow the area to be repaired and strengthened, therefore suppression 

of bone resorption may not be desired in all instances. This is the same issue as suppressing the PTH 

response to exercise, and it will be unknown whether suppression of the natural bone turnover 

response to exercise is beneficial in athletes until the long-term effects of different types of training 

sessions have been explored.  

 

8.1 Research impact on British Triathlon 

It is important to highlight the impact that this programme of research has had on the British 

triathletes, as one of the aims of this thesis was to produce research that is applicable to elite athletes 

and has the potential to directly influence athlete behaviour. After feedback of the results of this 
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thesis to the 16 triathletes that participated in the studies reported in Chapters 4 and 5, British 

Triathlon coaches and sports science and medicine support staff, all members have become more 

aware of the issues of poor bone health and stress fracture injury amongst the triathletes. The research 

has led to a bone health working group being established, where coaches and support staff meet to 

discuss issues relating to bone health, but also related to the female athlete triad and RED-S and how 

the current situation can be managed and improved.  

 

To date, 3 triathletes have started to supplement with calcium prior to long cycling sessions and hard 

running sessions. Total calcium intakes and the timing of ingestion in relation to training sessions 

has become a focus for the performance nutritionist, which therefore requires further research to 

individualise, validate and refine this. The energy expenditure data has been used to set individual 

target intakes during off-season training for the 5 triathletes that used DLW, and the energy intake 

data has been used to educate all triathletes and create subsequent nutrition plans based on this dietary 

information. All triathletes that were at the pre-Rio Olympics altitude camp were provided with 

immediate CHO+PRO recovery drinks after hard running sessions, all triathletes are also encouraged 

to do this on a regular basis during normal training. The recovery drinks have been well tolerated 

and do not cause any gastrointestinal discomfort in subsequent training sessions. The impact that this 

research has had on the members of the British Triathlon team was recently expressed by a coach; 

“This research has influenced their (the Loughborough based triathletes) behaviour more than any 

other nutritional intervention we have ever tried”.  
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Table 24. Table showing how this thesis has contributed and added to the research area of bone 

health in athletes.  

Bone health in athletes research prior to 

this thesis: 

This thesis has added the following 

evidence: 

Limited bone turnover measurements in 

athletes at different phases of the season 

(rowers and skiers only) 

Multiple bone turnover measurements in elite 

triathletes at different phases of the season 

(Chapters 4 and 5) 

Poorly controlled field studies around acute 

bouts of exercise (often marathons or 

ultramarathons) 

Controlled measures taken in a real-life athlete 

training environment (Chapters 4 and 5) 

Stress fracture injury prevalence data in some 

groups of athletes (mainly track and field 

athletes and middle and long distance runners) 

Stress fracture injury data in elite triathletes 

(Chapter 4) 

RED-S identified but limited research to show 

that RED-S occurs in male athletes 

Evidence of RED-S in elite male triathletes 

(high bone turnover and negative energy 

balances) (Chapters 4 and 5) 

Limited dermal calcium loss data in athletes 

(basketball players and laboratory cycling time 

trials only)  

Dermal calcium loss data in elite triathletes 

during a range of training sessions in a real-life 

athlete training environment (Chapters 4 and 

5) 

Studies confirming the mechanism of PTH 

regulation at rest only   

Evidence of the mechanism controlling PTH 

regulation during exercise and recovery 

(Chapter 6) 

Studies examining pre-exercise and during 

exercise feeding on the bone turnover response 

Evidence of the effect of post-exercise feeding 

on the bone turnover response (Chapter 7) 

BMD measurements in some groups of 

athletes (mostly acute measures) 
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8.2 Conclusions  

The studies reported in Chapters 4 and 5 showed that elite British triathletes have accelerated bone 

turnover during both off-season and pre-competition training, compared to recreationally active 

individuals and non-active, healthy individuals. Although cause and effect cannot be established 

from the current programme of work, high energy expenditures, insufficient energy intakes and high 

rates of dermal calcium loss, may contribute to this accelerated bone turnover. Bone turnover was 

lower during pre-competition training compared to off-season training, which may be due to 

increased total energy, calcium, CHO and PRO intakes in pre-competition training compared to off-

season training. Despite greater dermal calcium losses in pre-competition training, the higher energy 

intakes probably superseded this effect on bone turnover. The rate of dermal calcium loss was highest 

during running sessions in both phases of the season, which suggests that the timing of calcium 

ingestion around these training sessions may be more important than overall calcium intakes across 

a day (as long as overall intakes are sufficient to prevent a negative calcium balance). The 

participants in these studies compete at World Triathlon Series level or above and represented 50% 

of the British Triathlon World Class Performance squad, therefore the results apply directly to elite 

triathletes. 

 

The study reported in Chapter 6 was the first study to investigate the temporal pattern of PTH 

regulation during exercise and recovery. The results showed that, at the onset of exercise, PTH 

transiently decreased and then increased throughout exercise, peaking in the first minutes of recovery, 

before decreasing below baseline concentrations during ongoing recovery. Changes in Ca2+ and PO4 

occurred in close temporal relationship to changes in PTH. Cross-correlational analysis showed that 

PTH secretion during exercise and recovery is controlled by a combination of changes in Ca2+ and 

PO4 and that the mechanism might be different during exercise and recovery. These data can be used 

to inform further investigations that explore dermal calcium losses and the response to calcium 

supplementation before or during training sessions in athletes.  

 

The study reported in Chapter 7 showed that a CHO+PRO recovery drink consumed immediately 

post-exercise is beneficial for endurance athletes, to facilitate a more positive bone turnover balance 
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in the acute recovery period, by suppressing bone resorption and increasing bone formation. This 

nutritional intervention was subsequently employed by the British Triathlon squad and has become 

a routine post-exercise practice.   
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APPENDICES 

 

Appendix A Resting bone turnover marker concentrations 

Average resting concentrations for non-active, healthy premenopausal women and non-active, 

healthy men. 

 β-CTX (ng.mL-1) P1NP (ng.mL-1) 

de Papp et al.(2007) Women 0.28 39.50 

Glover et al. (2008) Women 0.30 35.90 

Glover et al. (2009) Women 0.32 38.70 

Waldron-Lynch et al. (2010) Men N/A 49.40 

Jenkins et al. (2013) Men 0.36 41.00 

Jenkins et al. (2013) Women 0.26 31.00 

Michelsen et al. (2013) Men 0.28 38.00 

Michelsen et al. (2013) Women 0.23 36.70 

 

Resting concentrations for recreationally active individuals collected by the Musculoskeletal 

Physiology Research group at Nottingham Trent University (Results from the study reported in 

Chapter 6; Sale et al., 2015; Papageorgiou et al., 2016; Unpublished thesis studies entitled; Genetic 

Associations with Bone Turnover Following 120 Minutes of Treadmill Running; The Effect of 

Reduced Energy Availability Through Diet and Exercise on Bone Turnover Markers). 

 
β-CTX 

(ng.mL-1) 

P1NP  

(ng.mL-1) 

PTH  (pmol.L-

1) 

ACa  

(mmol.L-1) 

PO4  

(mmol.L-1) 

Average 0.51 61.40 3.23 2.41 1.21 

SD 0.22 25.89 1.14 0.26 0.17 

Minimum 0.13 24.95 1.00 2.15 0.75 

Maximum 1.34 164.82 8.29 3.17 1.71 

 

Resting concentrations for elite triathletes (results from studies reported in Chapters 4 and 5). 

 
β-CTX 

(ng.mL-1) 

P1NP  

(ng.mL-1) 

PTH  (pmol.L-

1) 

ACa  

(mmol.L-1) 

PO4  

(mmol.L-1) 

Average 0.69 81.14 3.03 2.33 1.18 

SD 0.29 33.31 0.65 0.08 0.18 

Minimum 0.34 42.45 1.77 2.18 0.82 

Maximum 1.76 178.00 5.43 2.49 1.66 
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Appendix B Health screening questionnaire 

 

Name or Number   ...............……………… 

 

Please complete this brief questionnaire to confirm fitness to participate: 

 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise  Yes      No      

(b) attending your general practitioner  Yes      No      

(c) on a hospital waiting list  Yes      No      

 

2. In the past two years, have you had any illness which require you to: 

(a) consult your GP Yes      No      

(b) attend a hospital outpatient department Yes      No      

(c) be admitted to hospital  Yes      No      

 

3. Have you ever had any of the following? 

(a) Convulsions/epilepsy Yes      No      

(b) Asthma Yes      No      

(c) Eczema Yes      No      

(d) Diabetes Yes      No      

(e) A blood disorder Yes      No      

(f) Head injury Yes      No      

(g) Digestive problems Yes      No      

(h) Heart problems Yes      No      
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(i) Problems with bones or joints    Yes      No      

(j) Disturbance of balance / coordination Yes      No      

(k) Numbness in hands or feet Yes      No      

(l) Disturbance of vision Yes      No      

(m) Ear / hearing problems Yes      No      

(n) Thyroid problems Yes      No      

(o) Kidney or liver problems Yes      No      

(p) Allergy to nuts, alcohol etc. Yes      No      

(q) Any problems affecting your nose e.g. recurrent nose bleeds Yes      No       

(r) Any nasal fracture or deviated nasal septum Yes      No      

 

4. Has any, otherwise healthy, member of your family under the age of 50 

 died suddenly during or soon after exercise?  Yes       No      

5. Are there any reasons why blood sampling may be difficult?  Yes        No      

6. Have you had a blood sample taken previously? Yes        No      

7.  Have you had a cold, flu or any flu like symptoms in the last Yes        No     

Month? 

 

 

Women only  

8. Are you pregnant, trying to become pregnant or breastfeeding? Yes        No      

If YES to any question, please describe briefly if you wish (e.g. to confirm problem was/is 

short-lived, insignificant or well 

controlled.)  .........................................................................................................................................

.......................................................................................................................…….…………………

…...……………………………………………………………………………………………………

…….. 
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Appendix C ARTD Lifestyle Questionnaire (includes stress fracture injury questions*) 
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Sweat 

collection 

training 

session 

Average 

temp (°C)

Average 

humidity 

(%)

Average 

wind 

speed 

(mph) 

Sweat 

collection 

training session 

Average 

temp (°C)

Average 

humidity 

(%)

Average 

wind 

speed 

(mph) 

07 EB 24.7 27.2 In lab 07 HR 15 54 6

07 HB 24.7 27.2 In lab 08 HR 15 54 6

08 ER 1 98 3 10 HR 15 54 6

08 HR 7 91 9 11 HR 15 54 6

08 EB Data missing 12 HR 15 54 6

08 HB 2.5 85 7.5 07 EB 13 78 8.5

09 ER 1 98 3 08 EB 14 78 8.5

09 HR 7 91 9 10 EB 15 78 8.5

09 EB Data missing 11 EB 15 78 8.5

09 HB 2.5 85 7.5 12 EB 15 78 8.5

10 HR 7 91 9 14 EB 15 78 8.5

10 HB 2.5 85 7.5 07 ER 15 62 6

11 ER 1 98 3 08 ER 15 62 6

11 HR 7 91 9 10 ER 15 62 6

11 EB Data missing 12 ER 15 62 6

11 HB 2.5 85 7.5 07 HB 20 57 15

12 ER 1 98 3 10 HB 20 57 15

12 HR 7 89 11 12 HB 20 57 15

12 EB Data missing 14 HB 20 57 15

12 HB 2.5 85 7.5 09 HB 12.7 58 7

13 HR 7 91 9 13 HB 12.7 58 7

13 EB Data missing 09 HR (track) 17 51.5 11.5

14 ER 1 98 3 13 HR (track) 17 51.5 11.5

14 HR 7 91 9 13 EB 12.5 84 10

14 EB Data missing 09 EB 15.5 79.5 17

15 ER 10 82 10 Average 15.6 63.9 9.2

15 HR 7 73 12 SD 2.3 11.0 3.6

15 EB 5 90 20

15 HB 11.5 87 18.5

16 ER 17.9 67 In lab

16 HR 7 73 12

16 EB 11.5 79 7.5

Average 7.1 82.9 8.6

SD 6.6 18.3 4.4

MayNovember

Appendix D Ambient conditions during sweat collection  
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Appendix E Menstrual questionnaire 

MENSTRUAL CYCLE DETAILS 

(All information is fully confidential) 

Please circle the answer where appropriate. 

Age: 

Date of birth: 

 

1) Have you had regular periods in the last six months? YES   NO 

 

2) How long in days is your menstrual cycle, from day 1 of bleeding (period) to day 1 of the next 

period? 

    _________DAYS 

 

3) Is the above time the same between periods?  YES   NO 

 

If the answer was NO, please state the irregularity: 

_______________________________________________________________________________

_______________________________________________________________________________

_________________________________________________ 

 

4) How many days does your menstrual (blood) flow last? 

 

    __________DAYS 

 

 

5) Do you take any medication or hormones excluding contraception to regulate your menstrual 

cycle? 

 

        YES   NO 

If YES, please state what you take and how often? 

_______________________________________________________________________________

_______________________________________________________________________________

___________________ 

 

6) Do you take any other medication? 
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        YES   NO 

If YES, please state what you take and how often? 

_______________________________________________________________________________

_______________________________________________________________________________

__________________ 

 

 

7) Have you previously used any form of hormonal contraception (oral contraceptive, implant, 

injection, coil)? 

        YES   NO  

If YES, please state the type of contraception used and the date that you ceased using it? 

_______________________________________________________________________________

_______________________________________________________________________________

__________________ 

 

If YES, when did you stop using it? 

_______________________________________________________________________________

_______________________________________________________________________________

_________________________________________________ 

 

8) When did you have your last period (day 1)? 

___________________________________________________________ 
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ORAL CONTRACEPTIVE DETAILS 

 

(All information is fully confidential) 

 

Please circle the answer where appropriate. 

 

Age: 

 

Date of birth: 

 

1) What brand or oral contraceptive do you take?_______________________________ 

 

2) How long have you been using your current oral contraceptive?_____________________ 

 

3) What date did you begin taking your current pack of pills?_____________________ 

 

4) What time of day do you usually consume the pill?____________________________ 

 

5) Will you be continuing to take the oral contraceptive for the next 8 months? 

 

        YES   NO 

 

6) Do you take any other medication? 

 

        YES   NO 

If YES, please state what you take and how often? 

_______________________________________________________________________________

_______________________________________________________________________________

__________________ 
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Appendix F Example training log  

 (data taken from https://www.trainingpeaks.com/) 

 

Weeks training log Sunday 8th November – Sat 14th November 

Sunday 

• 1 hour 32 minutes steady run (17.5km) 

Monday 

• 1 hour 30 swim (4.2km) hard speed session. 

• 50 minute mobility gym (fairly easy) 

• 30 minute steady cycle 

• 1 hour run (10km) hard run with hill sprints 

Tuesday 

• 1 hour 17 minute swim (4650m, strength session) 

• 1 hour 30 minute bike steady 

• 35 minute easy run (6km) 

• 1 hour 15 minute run , easy (13km) 

Wednesday 

• 1 hour 30 swim (4.5km long steady reps relatively hard) 

• 2 hour 30 ride (steady) 

• 1 hour hilly run (10km) 

Thursday 

• 1 hour 30 swim (4.6km strength set) 

• 2 hour mountain bike (25km will have hard uphill efforts) 

• 1 hour 7 minute run (steady 14km) 

Friday 

• 1 hour easy swim (3km technique) 

• 3 hour 40 minute steady ride 

• 1 hour all round gym 

• 45 minute easy run (7km) 

Saturday 

• Hard 1 hour treadmill run (with hard efforts) 

• Easy 15 minute cool down run 

• Harder 1 hour 30 swim (4.8km) 

• 3 hours 30 minute steady ride. 

  

https://www.trainingpeaks.com/
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Appendix G Example diet log  

Thursday 5th May  

Breakfast pre-swim – 1 cup of Scottish porridge oats, 260 ml SS milk, 1 teaspoon honey (pure 

clear squeezy) 

During swim – 750 ml squash no added sugar 

Post-swim (10:40am) – 2 slices of Kingsmill thick 50/50 bread, one with Norpack slightly salted 

butter and tesco strawberry jam and one with butter and light cover of crunchy peanut butter  

11:00 – Nature valley protein bar roasted peanuts and pumpkin seeds 30g  

During ride – 750 ml orange squash with 1 maxifuel viper electrolyte tablet (drank about half) 

2:00 pm – 1 banana 237g whole (straight after ride)  

Lunch (2:20pm) – 2 slices Kingsmill 50/50 bread toasted, 2 large eggs scrambled with 50 ml of 

semi skimmed milk and teaspoon extra virgin olive oil, 1 slice tesco finest crumbed Wiltshire 

cured ham (30g), few drops of lea and Perrins Worcestershire sauce and 1 tablespoon of HP sauce, 

150 ml smooth orange juice from concentrate  

1 pot of Petit Filous fromage frais (85g) 

1 tesco finest roasted hazelnut oats and chocolate cookie 72g 

Post-run (5:40) – 1 braeburn apple (149g whole) 

2 tesco raisin and lemon pancakes toasted with butter (35g each) 

Dinner – slow cooked beef casserole with rice (easy cook long grain 117g),  

Total recipe – casserole beef steak (402 g), 2 peppers (1 yellow 1 red) 315g, tin of chunky 

chopped tomatoes (400g), 1 red onion 84g, carrots 63g, 2 tablespoons of tomato puree. 

Only half of this eaten.  

8:30 – ½ cookie (47g)  

 

Friday 6th May  

Breakfast (8:00) – 1 cup mornflake superfrost oats, 260 ml SS milk, 1 teaspoon of honey, 28g 

whole almonds, 180 ml smooth orange juice from concentrate  

Post-run (11:15am) – powerbar 30% protein plus bar 55g chocolate flavour  

11:45 – 180 ml SS milk, 2 lemon and raisin pancakes toasted with butter (35g each)  

1:20 – 96g red seedless grapes, Nature valley protein bar (30g) same flavour  

Lunch (1:30) – 2 slices Kingsmill 50/50 bread, 2 slices tesco finest crumbed Wiltshire cured ham 

(30g each). 32g aldi mature cheddar cheese, 2 teaspoons of tesco sandwhich pickle, 1 pot petit 

filous fromage frais (85g) 
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16:00 – 129g malted weaties with 240 ml SS milk, tesco thick and creamy raspverry yoghurt 

(100g), 1 tesco suntrail farms plum (78g whole) 

18:00 – 240 ml orange juice from concentrate  

Dinner (20:00) – ½ packet Schwartz spaghetti carbonara packet mix (32g whole packet), 250ml SS 

milk, 1 chicken breast (150g) fried with splash of extra virgin olive oil, 180g uncooked pasta, 82g 

courgette 

1 Mr Kipling apple and blackcurrent pie (59g) and 39g Malteasters chocolate  

20:45 – cup of tea with SS milk  

 

Saturday 7th May  

Breakfast (8:00) – 1 cup Mornflake superfrost oats, 260ml SS milk, 40g whole almonds, 1 

teaspoon of honey, 240 ml smooth orange juice from concentrate 

11:30 – Nature valley protein bar (30g) during ride, 2 Hovis crumpets with butter and strawberry 

jam (60g each), 1 tesco finest roasted hazelnut, oats and chocolate cookie (60g) 

Lunch (12:45) – sweet potato 224g cooked in microwave with 263g beef casserole from last night 

about ¼ total 

3:45pm – 1 tesco suntrail farms plus (74g), 102g red seedless grapes  

5:45pm – 71g cheerios with 240 ml SS milk, 2 slices Kingsmill 50/50 bread toasted with Norpack 

butter, one with strawberry jam and the other with crunchy peanut butter  

Dinner (20:00) – Lasagne (cooked the other night) 364g eaten and it contained Aldi lean mince 

beef, onion, carrots, courgette, curly kale, Aldi red + white sauce, mature cheddar cheese 

240 ml apple juice from concentrate 

Petit filous fromage frais (85g)  

9:15 pm – 40g Teasers chocolate  

 

Sunday 8th May  

Breakfast (7:45) – 2 slices of Kingsmill 50/50 bread with butter and tesco strawberry jam, banana 

(208g with skin), 240 ml apple juice  

Post-run (10:15) – 1 cup mornflake oats, 260 ml SS milk, 33g whole almonds, 240 ml OJ from 

concentrate  

12:15 – petit filous yog same as before  

Lunch (15:00) – banana (249g), tesco thick and creamy strawberry yoghurt (100g), 98g uncooked 

pasta with chicken breast fillet (91g) fried with a splash of extra virgin olive oil, cathedral city 

mature cheddar cheese (42g grated) 

1 mr kipling apple and blackcurrent pie (59g)  
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18:00 – 2 Hovis crumpets both with thick spread of tesco strawberry jam (60g each), cup of tea 

with SS milk 

19:00 – 88g red seedless grapes, 61g cheerios with 240 ml SS milk, 40g Teasers chocolate  

Dinner (19:45) – sweet potato (190g) peeled, chopped and mashed with a splash of SS milk, 120g 

aldi salmon fillet, 60g carrots, 40g peas  

 

Monday 9th May  

Breakfast pre-swim – 2 slices Kingsmill 50/50 bread with thick spread of tesco strawberry jam  

8:15 – 1 cup mornflake oats, 260 ml SS milk, 27g whole almonds, banana (199g), 240 ml OJ from 

concentrate 

10:40 – tesco thick and creamy strawberry yoghurt (100g), Nature valley protein bar 30g 

Lunch (13:00) – plum (80g), 2 slices normal bread with 42g cathedral city mature cheddar cheese 

and 2 teaspoons of tesco sandwich pickle  

14:30 – 57g cheerios with 180 ml SS milk, 69g red seedless grapes, braeburn apple (148g whole)  

16:00 – 2 Hovis crumpets with Bertolli spread, 3 Fox’s chocolatey milk chocolate rounds (17g 

each)  

19:00 – 400ml SS milk straight after bike session  

Dinner (20:00) – sausage and bean casserole (slow cooker) with mashed potato (197g) 

Contained 400g chunky chopped tomatoes, 400g cannellini beans in water, 2 tomato puree, 

400g tesco finest pork sausages, onion (61g). Ate about half of this.  

1 mr kipling apple and blackcurrent pie (59g)  
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Appendix H Example Nutritics analysis  
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Appendix I Example 48 h lead in diet  

Please follow this diet as closely as possible 48 hours before each main trial. Please remain fasted 

from 20:00 the night before a trial, do not consume breakfast but drink 500ml of plain water when 

you wake up before arriving at the lab.  

Consume meals and snacks at normal times (times for guidance based on your 3 day diet logs)  

Day 1 

Breakfast (7:30 am) 

Coco pops 80g 

Semi skimmed milk 200 ml 

Lunch (12:30 pm) 

English muffins toasted x 2 

Flora spread lightly  

2 large eggs 

Dinner (7:00 pm) 

White rice 110g 

Naan bread 100g  

Pepper 100g 

Red onion 80g 

Onion 80g 

Chicken breast 140g  

Lloyd Grossman Balti sauce 170g 

Snacks 

Robinsons sugar free squash – normal amount 

Wholemeal rolls x 3 

Parma ham x 5 slices 

Cheese twists 80g 

Rock cakes x 2  

 

Day 2 

Breakfast (7:30 am) 

Wholemeal toast x 2 slices 
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Flora spread lightly 

Lunch (12:30 pm) 

Wholegrain rolls x 2 

Parma ham x 2 slices 

Dinner (7:30 pm) 

Fresh pasta 200g 

Pancetta 50g 

Double cream 75ml  

3 eggs 

Snacks 

Robinsons sugar free squash – normal amount 

Wholemeal rolls x 2 

Parma ham x 2 slices 

Cheese twists 80g 

Cherry scones x 2 

Flapjack 60g 

 

 

 

 

 

 

 

 

  



265 

 

Appendix J Supplement screening certificate 
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Appendix K Supplement disclaimer  

 

As part of this study you will be consuming a supplement.  If you are an elite sportsperson i.e. 

international or national standard who may undergo either out-of and in-competition (or both) 

doping tests it is important that you consider the following: 

 

1) The supplement being studied could be contaminated with a substance that appears on the 

banned list.  There is evidence from research that around 15% of supplements can be 

contaminated accidently with prohormones of testosterone and nandrolone 1.  Even well-

known brands from the UK and USA have been found to be contaminated. 

2) You are responsible for what goes into your body and unless it can be guaranteed that what 

you take is “clean” then you should not take it. 

 

Participant Name (Please print):  _____________________________________ 

 

Signature:  _________________________  Date:  _______________ 

 

Reference: 

1) H.Geyer et al. Int J Sports Med. 2004 Feb;25(2):124-9 Analysis of non-hormonal nutritional 

supplements for anabolic-androgenic steroids - results of an international study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

javascript:AL_get(this,%20'jour',%20'Int%20J%20Sports%20Med.');
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Appendix L Standard operating procedure for the production of the CHO+PRO recovery 

solutions  

 

This SOP was prepared prior to the start of the study, to ensure that the solutions were made in the 

same way each time and were made in a clean, contamination free environment.  

Who will prepare the drinks? 

Primary responsibility will lie with the main investigator (Becky Townsend). The importance of 

avoiding contamination will be fully explained to any undergraduate students that may assist with 

the study and they will not be allowed to handle the products or equipment unless the main 

investigator sees appropriate.  

Where will the products and equipment be stored? 

Drink preparation will take place in 138 ERD which is the designated area for food preparation.  

All batch tested products including; whey protein isolate, glucose (dextrose), sweetener and 

flavouring drops and equipment including; a blender, bottles/shakers (different bottles used for active 

and placebo drinks), measuring jugs/cylinders, weighing scales, spoons/scoops, sterilising solution 

(Alcohol), washing up bowl, towels, will be kept separate from all other equipment in a secured 

cupboard to prevent use for other purposes.  

No lab coats or any lab equipment is to be taken into the kitchen.  

Preparation procedure: 

1. After thoroughly cleaning hands (especially after touching any lab equipment) and surfaces, 

appropriate amounts of products will be transferred from sealed bags into bottles using a spoon 

and weighed with electronic scales.  

2. Appropriate volumes of water (tap water) will be measured using a measuring jug/cylinder and 

transferred into the bottles.  

3. The solution will then be transferred to the blender for mixing and then back to the bottles for 

consumption. 

4. Labelled bottles will be kept in the fridge in the kitchen until the trial begins. 

Cleaning procedure: 

1. Once drink preparation is complete, all used equipment (including the blender) will be cleaned 

thoroughly in a washing up bowl with washing up liquid and sponges. 

2. Equipment will be dried using towels and placed in the secure cupboard.  

3. The same will be done for the bottles once the trial is complete.   

What happens in the case of contamination? 

1. If contamination occurs from lab equipment being brought into the kitchen or the equipment 

being used for other purposes, all surfaces will be cleaned using disinfectant and equipment 

sterilised using Milton solution (or similar).  

2. The batch tested products MUST NOT leave the kitchen or be touched/used by anyone other 

than the main investigator. As contamination of the products by potentially banned/illegal or 

harmful substances will mean the products can no longer be used.   

Taste matching: 

• Both the CHO+PRO drink and the placebo drink were taste matched using artificial 

flavourings (raspberry, vanilla or apple) and sucralose was added to the placebo drink to 

match the sweetness of the glucose added to the CHO+PRO drink. 15 flavour drops were 

added to each drink and around 1 small scoop of sucralose was needed in the placebo drink. 

Drinks were made the evening before testing to allow the protein to ‘settle’ in the CHO+PRO 
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drinks; otherwise the drink was less palatable and would not fit into a single bottle. Bottles 

were covered to ensure that participants were unaware of which drink they were consuming.  

• To test the taste matching, both drinks were given to 6 participants in the laboratory. On 3 

different occasions (to test the 3 different flavours), a CHO+PRO and a placebo drink were 

provided in covered bottles which participants consumed in any order. All 6 of the 

participants were unable to tell the difference between the CHO+PRO and the placebo drinks 

in all 3 trials.  
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Appendix M Example experimental diet  

Food Energy 

(kcal) 

CHO (g) PRO (g) Fat (g) 

Recovery solution     

PRO (whey isolate) 29 g 107 0 27 0 

CHO (dextrose) 87 g 315 78 0 0 

Sub total 422 78 27 0 

     

Evening meal and snacks     

Beef lasagne 400 g 551 47 31 25 

½ Garlic baguette 272 32 6 13 

Cheddar cheese 25 g 98 1 6 8 

Chocolate sponge pudding 261 38 3 11 

Rice Krispies square cereal bar 36 g 158 26 2 5 

Chocolate chip and nut cereal bar 91 14 1 3 

Banana (medium size) 146 39 1 0 

Sub total 1,577 197 50 65 

     

Total 1,999 276 77 65 

Diet composition (%)   55 15 30 
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Appendix N Parathyroid Hormone Secretion is Controlled by Both Ionised Calcium and 

Phosphate During Exercise and Recovery in Men 

 

Rebecca Townsend1,5, Kirsty J. Elliott-Sale1, Ana Jessica Pinto2, Craig Thomas1, Jonathan P.R. 
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Abstract  

The mechanism by which PTH is controlled during and after exercise is poorly understood due to 

insufficient temporal frequency of measurements. 

Objective 

To examine the temporal pattern of PTH, PO4, ACa and Ca2+ during and after exercise.  

Design and setting 

A laboratory-based study with a cross-over design, comparing 30 min of running at 55%, 65% and 

75%VO2max, followed by 2.5-h of recovery. Blood was obtained at baseline, after 2.5, 5, 7.5, 10, 15, 

20, 25 and 30 min of exercise and after 2.5, 5, 7.5, 10, 15, 20, 25, 30, 60, 90 and 150 min of recovery 

Participants 

Ten men (age 23±1 y, height 1.82±0.07 m, body mass 77.0±7.5 kg) participated. 

Main Outcome Measures 

PTH, PO4, ACa and Ca2+ 

Results  

Independent of intensity, PTH concentrations decreased with the onset of exercise (-21 to -33%; 

P≤0.001), increased thereafter and were higher than baseline by the end of exercise at 75%VO2max 

(+52%; P≤0.001). PTH peaked transiently after 5–7.5 min of recovery (+73 to +110%; P≤0.001). 

PO4 followed a similar temporal pattern to PTH and Ca2+ followed a similar but inverse pattern to 

PTH. PTH was negatively correlated with Ca2+ across all intensities (r=-0.739 to -0.790; P≤0.001). 

When PTH was increasing, the strongest cross-correlation was with Ca2+ at 0 lags (3.5 min) (r=-

0.902 to -0.950); during recovery, the strongest cross-correlation was with PO4 at 0 lags (8 min) 

(r=0.987 to 0.995). 

Conclusions  

PTH secretion during exercise and recovery is controlled by a combination of changes in Ca2+ and 

PO4 in men. 

 

Abbreviations 

ACa, albumin-adjusted calcium; Ca, calcium; Ca2+, ionised calcium; CV, coefficient of variation; 

PO4, phosphate; PTH, parathyroid hormone; VO2max, maximal oxygen consumption.   
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Introduction 

At rest, PTH secretory activity is regulated by serum ionised calcium (Ca2+), which is detected by 

the calcium-sensing receptor on the chief cells of the parathyroid gland (1). When Ca2+ decreases 

from the homeostatic set point, PTH is synthesised and secreted, increasing serum calcium (Ca) 

through mobilisation of the bone reservoir via bone resorption, and by increasing renal tubular 

reabsorption and intestinal Ca absorption (2–4). PTH has a dual effect on bone that appears to be 

dependent on the signalling mechanism and the length of time that concentrations remain elevated 

for (5). Prolonged elevations in PTH, that are seen with endurance type exercise, and that can also 

result in the loss of the circadian rhythm of PTH, might cause an increase in bone resorption, whereas, 

transient spikes in PTH, that are seen with high intensity interval type training, might cause an 

increase in bone formation (6), provided that the magnitude of the increase is sufficient. Chronic 

elevations in PTH concentrations have been associated with increased fracture risk (7, 8). Complete 

fractures and stress fractures are also debilitating injuries for elite athletes (9), therefore 

understanding how PTH is regulated during exercise and recovery may have implications for both 

the general population and athletes who are at risk of chronically elevated PTH concentrations, as a 

positive calcium balance is necessary for bone adaptation to mechanical loading (10).  

 

Exercise increases PTH concentrations (11–20), although studies have used different exercise modes, 

durations and intensities.  Exercise intensity is important, given that Scott et al. (17) have shown that 

60 min of running at 55%, 65% and 75% of maximal oxygen consumption (VO2max) results in 

different PTH responses during and after exercise. Any study investigating the underlying 

mechanisms responsible for the changes in PTH during exercise and recovery should examine the 

effects of exercise intensity. 

 

During exercise, reductions in circulating Ca do not explain the increase in PTH, as the concentration 

of albumin-adjusted calcium (ACa) – a surrogate for Ca2+ – is either increased (12, 15, 17) or 

unchanged (14, 18, 19) concomitantly with PTH. Barry et al. (16) showed that Ca ingestion before 

exercise attenuated, but did not abolish the increase in PTH, suggesting that some other mechanism 
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contributed to the increase. This could involve phosphate (PO4), as an increase in PO4 increases PTH 

in rested individuals (21). Following exercise, PO4 concentrations decrease and the timing and 

magnitude of these decreases reflect those in PTH (17, 18, 20), also suggesting that PO4 may be 

involved in PTH regulation with exercise.  

 

The hypothesis that decreased Ca2+ triggers increased PTH during exercise has not yet been proven 

(16). PTH is secreted within seconds of a decrease in Ca2+ and subsequent increases in Ca2+ take only 

minutes to occur in response to increased PTH, highlighting a dynamic relationship (1, 22). Despite 

this, no studies have measured PTH and other markers of Ca metabolism until 20 minutes of exercise 

has been completed, by which time PTH is elevated. Most studies have started taking measurements 

at 30 min post-exercise, by which time PTH has returned to near pre-exercise levels (15–19, 23). 

Single or infrequent measurements of PTH, ACa and PO4 during and after exercise might fail to 

capture the dynamic nature of Ca regulation with exercise (16). Using repeated measurements with 

a high frequency, we examined the temporal pattern of PTH, PO4, ACa and Ca2+ during and after 30 

minutes of treadmill running at three exercise intensities.  
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Materials and Methods 

Participants 

Ten healthy, physically active men ([mean±SD] age 23±1 y, height 1.82±0.07 m, body mass 

77.0±7.5 kg) volunteered for the study, which was approved by the Institutional Ethics Committee. 

Participants were non-smokers, had not suffered a fracture in the past 12 months, were free from 

musculoskeletal injury and were not taking any medication or experiencing any problems known to 

affect Ca or bone metabolism. Eligibility was confirmed during the initial session, when participants 

provided written informed consent.  

 

Experimental Design 

Participants completed a preliminary visit for health screening, habituation and measurement of 

VO2max. Participants then completed three randomised (Latin Square Design), three-day 

experimental trials, each separated by one week. On days 1–2, participants refrained from exercise, 

caffeine and alcohol. On day 2, participants consumed a self-selected diet that was repeated for each 

trial. On day 3, participants performed a 30 min bout of running at 55%, 65% and 75%VO2max, 

followed by 2.5 h of recovery.  

 

Trial Procedures 

VO2max  

Participants performed an incremental treadmill test to determine lactate threshold, followed by a 

ramp test to determine VO2max, as per Jones and Doust (24). The level running velocities 

corresponding to 55% (8.7±0.6 km.h-1), 65% (10.1±0.8 km.h-1) and 75%VO2max (11.9±0.9 km.h-1) 

were calculated based on the regression of VO2 and velocity.  

 

Main Trials 
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Participants arrived (09:00) following an overnight fast and after consuming 500 mL of water upon 

awakening. After voiding, participants had their body mass measured before adopting a semi-

recumbent position and having a cannula inserted into a forearm vein. After 10 min rest, a baseline 

blood sample (5 mL) was collected for measurement of PTH, PO4, ACa and Ca2+. Thirty min of 

treadmill running at 55%, 65% or 75%VO2max commenced thereafter. Additional blood was collected 

after 2.5, 5, 7.5, 10, 15, 20, 25 and 30 min of exercise. After exercise, participants adopted a semi-

recumbent position and blood was collected at 32.5, 35, 37.5, 40, 45, 50, 55, 60, 90, 120 and 180 

min. Ca2+ was measured immediately but due to equipment availability Ca2+ was only measured in 

participants 5–10. Blood samples were transferred to pre-cooled standard serum tubes (Becton 

Dickinson Vacutainer System, USA) to clot at room temperature for 60 min. Samples were 

centrifuged at 2000 rev·min-1 and 5°C for 10 min and the resulting serum was transferred into 

Eppendorf tubes and frozen at -80°C. Following the last blood sample, the cannula was removed and 

body mass measured. Participants were given 3 mL·kgBM-1·h-1 of water to consume throughout the 

trials. The timings of blood samples and exercise were identical in each trial to ensure that circadian 

rhythms of the metabolites were controlled for. 

 

Biochemical Analysis 

PTH was measured using ECLIA on a Modular Analytics E170 analyser (Roche Diagnostics, 

Burgess Hill, UK). Inter-assay CV for PTH was <4% between 1–30 pmol·L-1 and sensitivity of 0.8 

pmol·L-1. PO4, total Ca and albumin were measured using standard colorimetric assays and 

spectrophotometric methods, performed on an ABX Pentra 400 (Horiba ABX, Montpellier, 

France). Inter-assay CVs were ≤3.6% between 0.09–7.80 mmol.L-1 for PO4, ≤1.7% between 0.04–

5.00 mmol.L-1 for total Ca and ≤1.9% between 0.02–5.99 g.dL-1 for albumin.  Because fluctuations 

in protein, particularly albumin, may cause total Ca levels to change independently of the Ca2+ 

concentrations, total Ca concentrations were corrected to give albumin-adjusted Ca values: 0.8 

mg.dL-1 was subtracted from total Ca concentrations for every 1.0 g.dL-1 that albumin 

concentrations were less than 4 g.dL-1 or 0.8 mg.dL-1 was added to total Ca concentrations for every 

1.0 mg.dL-1 that albumin concentration were greater than 4 mg.dL-1. Ca2+, glucose and lactate were 
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measured in whole blood using a blood gas analyser (Radiometer ABL90 FLEX, Copenhagen, 

Denmark). Ca2+ is estimated directly between pH 7.2-7.6 with no pH correction applied. The inter- 

and intra-assay CV for Ca2+ was ≤3% between 0.2–9.99 mmol.L-1, for glucose was ≤5% between 

0–60 mmol.L-1 and for lactate was ≤26.7% between 0.1–31 mmol.L-1. 

 

 

Statistical Analysis  

Statistical significance was accepted at P≤0.05. Baseline concentrations were compared using one-

way ANOVA. All data were analysed using repeated measures ANOVA, with Intensity (55% vs 65% 

vs 75%VO2max) and Time (of sampling) as within subject factors. Parametric assumptions of 

normality and sphericity were confirmed using Shapiro-Wilks and Maulchy’s tests. Tukey’s HSD 

post-hoc test was used to compare timepoints against baseline and to compare exercise intensities at 

each timepoint, where appropriate. Pearson’s correlation coefficients were calculated for PO4, ACa 

and Ca2+ with PTH. 

 

Cross-correlational analyses were performed to determine the temporal relationships between PTH 

and PO4, ACa and Ca2+. Cubic interpolation was performed to adjust for unevenly spaced data points 

and cross-correlational analyses were subsequently performed using R (version 3.2.2, Vienna, 

Austria). To determine whether one time series led another, cross-correlation functions were 

computed at seven lag time points for ‘PEAK’ (data points between baseline and peak PTH 

concentrations [5 min of recovery]), where each lag represented 3.5 min, and six lag time points for 

‘DEC’ (all data points during the decrease in PTH concentrations [5 to 90 min of recovery]), where 

each lag represented 8 min.  
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Results 

 

Baseline biochemistry 

Baseline PTH, PO4, ACa and albumin were not significantly different between trials (P=0.339 to 

0.982). Baseline Ca2+ at 55%VO2max was significantly (P≤0.05) higher than at 65%VO2max and 

75%VO2max (Table 1).  

 

PTH  

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and an Intensity 

x Time interaction (P≤0.001). PTH concentrations decreased with the onset of exercise and were 

significantly lower than baseline after 5 min of exercise at 55%VO2max (-23%; P≤0.05) and 

75%VO2max (-33%; P≤0.001), but not at 65%VO2max (-21%; P=0.305) (Fig. 1A all participants; Fig. 

2A participants 5–10). Thereafter, PTH increased, becoming significantly greater than baseline at 

the end of exercise (30 min) at 75%VO2max (+52%; P≤0.001) and after 2.5 min of recovery at 

55%VO2max (+43%; P≤0.001) and 65%VO2max (+52%; P≤0.001). PTH concentrations peaked after 

5 min of recovery at 55%VO2max (+73%; P≤0.001) and 75%VO2max (+110%; P≤0.001), and after 7.5 

min of recovery at 65%VO2max (+76; P≤0.001). PTH concentrations then decreased, but remained 

significantly higher than baseline until 15 min into recovery at 55%VO2max and until 25 min at 

65%VO2max and 75%VO2max. PTH concentrations decreased below baseline after 60 min of recovery 

in all trials (-8% to – 17%). 

 

PTH concentrations were not significantly different at any time point between 55% and 65%VO2max 

trials. Exercise at 75%VO2max resulted in significantly higher PTH concentrations than at 55%VO2max 

at the end of exercise (P≤0.001), and at 2.5 (P≤0.001), 5 (P≤0.001), 7.5 (P≤0.05), 10 (P≤0.05) and 

15 (P≤0.001) min into recovery, and higher than exercise at 65%VO2max at the end of exercise 

(P≤0.001), and at 2.5 (P≤0.001) and 5 (P≤ 0.001) min into recovery.   
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PO4  

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and an Intensity 

x Time interaction (P≤0.05). PO4 concentrations increased with the onset of exercise at all intensities, 

being significantly higher than baseline from 7.5 min to the end of exercise at 55%VO2max (+16%; 

P≤0.001), and between 5 min and the end of exercise at 65%VO2max (+22%) and 75%VO2max (+26%) 

(P≤0.05 to P≤0.001) (Fig. 1B). PO4 concentrations peaked at the end of exercise, and decreased 

thereafter, but remained significantly higher than baseline until 5 min into recovery at 55%VO2max, 

10 min at 65%VO2max and 15 min at 75%VO2max. PO4 concentrations decreased below baseline at 60 

min of recovery and remained so until 150 minutes of recovery at 65%VO2max (-5 to -10%) and 

75%VO2max (-7 to -12%) (P≤0.05 to P≤ 0.001). Concentrations did not decrease significantly below 

baseline at 55%VO2max.  

 

Exercise at 65%VO2max resulted in significantly higher PO4 concentrations than exercise at 

55%VO2max at 10 (P≤0.05), 20 ( P≤0.001) and 25 (P≤0.05) min of exercise. 

 

ACa  

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and an Intensity 

x Time interaction (P≤0.001). ACa concentrations increased with the onset of exercise and were 

significantly higher than baseline between 7.5 min and the end of exercise at 65%VO2max (+9%; 

P≤0.001) and between 2.5 min and the end of exercise at 75%VO2max (+14%; P≤0.001) (Fig. 1C). 

ACa concentrations peaked after 20 min of exercise and decreased thereafter, but remained 

significantly higher than baseline until 5 min into recovery at 65%VO2max and 7.5 minutes at 

75%VO2max. ACa concentrations decreased below baseline 15 min into recovery and remained so 

until 30 min of recovery at 55%VO2max (-7 to -9%; P≤0.05 to P≤0.001). Concentrations decreased 

below baseline 25 min into recovery and remained so until 90 min of recovery at 65%VO2max (-6 to 
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-8%; P≤0.05 to P≤0.001). ACa concentrations did not decrease significantly below baseline at 

75%VO2max.  

 

Exercise at 75%VO2max resulted in significantly higher ACa concentrations than exercise at 

55%VO2max after 20 (P≤0.05), 25 (P≤0.001) and 30 min of exercise (P≤0.001) and after 25 min of 

recovery (P≤0.01). 

 

Albumin 

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and an Intensity 

x Time interaction (P≤0.01). Albumin concentrations increased with the onset of exercise and were 

higher than baseline between 7.5 min and the end of exercise at 65%VO2max (+4%; P≤0.05) and 

between 5 min of exercise and the end of exercise at 75%VO2max (+6%; P≤0.05) (Fig. 1D). Albumin 

concentrations peaked after 20 min of exercise and decreased thereafter, but remained higher than 

baseline until 5 min into recovery at 75%VO2max (P≤0.001). Albumin concentrations decreased 

below baseline 25 min into recovery and remained so until 90 min of recovery at 55%VO2max (-3 to 

-4%; P≤0.01). Concentrations decreased below baseline 20 min into recovery and remained so until 

90 min of recovery at 65%VO2max (-3 to -5%; P≤0.05 to P≤0.001). Albumin concentrations did not 

decrease below baseline at 75%VO2max. 

 

Exercise at 75%VO2max resulted in significantly higher albumin concentrations than exercise at 

55%VO2max after 25 min of exercise (P≤0.05).   

 

Ca2+ 

There was no main effect of Intensity, but there was a main effect of Time (P≤0.001) and an Intensity 

x Time interaction (P≤0.001). At 55%VO2max, Ca2+ concentrations decreased after 10 min of exercise, 
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being significantly below baseline between 25 minutes and the end of exercise (Fig 2B) (-2%; 

P≤0.001). Ca2+ concentrations continued to decrease into recovery, remaining significantly below 

baseline until 90 minutes of recovery (-2 to -6%; P≤0.001). At 65%VO2max and 75%VO2max Ca2+ 

concentrations increased with the onset of exercise and were significantly higher than baseline 

between 2.5 and 10 min of exercise at 65%VO2max (+2 to +3%; P≤0.001) and between 2.5 and 7.5 

min at 75%VO2max (+2 to +3%; P≤0.001). Thereafter, Ca2+ concentrations decreased and were 

significantly below baseline between 2.5 and 30 min of recovery at 65%VO2max (-3 to -4%; P≤0.05 

to P≤0.001) and 75%VO2max (-3 to -4%; P≤0.001).  

 

There were no significant differences between the three trials at any time point other than at baseline 

(Table 1), which created the significant Intensity x Time interaction.    

 

Correlation Analyses 

Changes in PTH were not correlated with changes in PO4 or ACa in any trial. Across all data points 

PTH was significantly (P≤0.001) negatively correlated with Ca2+ at all intensities (Table 2).  

 

Across PEAK data points, PO4 was correlated with PTH at all exercise intensities (r=0.661 to 0.772) 

(Table 3) when the PTH series was lagged by 1 time point (3.5 min) behind the PO4 series, suggesting 

that increases in PO4 precede increases in PTH by 3.5 min. Ca2+ was most strongly correlated with 

PTH at all exercise intensities (r=-0.902 to -0.950) when there was no time lag, suggesting that 

increases in PTH occur within 3.5 min of a decrease in Ca2+. 

 

Across DEC data points, PO4, ACa and Ca2+ were correlated with PTH at all exercise intensities. 

PO4 was most strongly correlated with PTH at all exercise intensities (r=0.987 to 0.995) (Table 3) 

when there was no time lag, suggesting that decreases in PTH occur within 8 min of a decrease in 

PO4.  
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Discussion  

The novel findings from this study are: 1) changes in PTH, PO4, ACa and Ca2+ occur within 2.5 min 

of the onset of exercise; 2) there is an initial decrease in PTH concentrations at the start of exercise 

that coincides with a significant increase in Ca2+ concentrations at the two higher exercise intensities; 

3) peak PTH concentrations occur within 5–7.5 min of recovery; 4) increases in PO4 precede 

increases in PTH; 5) decreases in Ca2+ precede increases in PTH; 6) post-exercise decreases in PTH 

concentrations are preceded by decreases in PO4. 

 

The pattern of change in PTH in this study is comparable to previous studies, with PTH 

concentrations increasing during exercise (15, 17–20) and peaking in the first minutes of recovery 

(12). The pattern of change in PTH was similar across the three exercise intensities, with an initial 

decrease from baseline to 5 min of exercise. We are the first to observe this initial response in PTH, 

due to the higher temporal frequency of blood sampling at the start of exercise compared with 

previous studies. This response requires verification from further studies and the use of even more 

frequent sampling. The lack of a resting control group in the present study means that we cannot 

confirm whether this is a characteristic physiological response to the onset of exercise or whether 

this reflects the circadian rhythm of PTH at the time of sampling. The nadir in PTH occurs between 

08:00 and 10:00 (25–28) and our baseline blood was taken at 08:55, with exercise commencing at 

09:02. If the initial decrease in PTH were due to the circadian rhythm, however, it would be expected 

that the decrease would have lasted longer than 5 min into exercise. Additionally, a decrease of 33% 

from baseline, followed by a rapid reversal in the direction of change, as shown here, has not been 

reported in circadian studies. Peak PTH concentrations have previously been shown to occur 15 min 

after exercise (12), due to a lower sampling frequency, but the results of the present study show that 

the peak in PTH after exercise occurs with 5 – 7.5 min of recovery (+73 to +110% from baseline). 

This peak is also transient; PTH concentrations start to decrease immediately after reaching peak 

concentrations.  Transient spikes in PTH have been shown to be anabolic for bone (5), resulting in 

net bone gain (29). As such, our identification of peak PTH concentrations 5 – 7.5 min after exercise 

could be utilised as a tool for improving bone health amongst individuals at risk of fractures, stress 



282 

 

fractures or poor bone health, including the development of an exercise regime involving bouts of 

running sufficient to cause a spike in PTH concentrations, followed by rest periods to ensure that the 

spike is transitory. Further work is required to determine whether the response of PTH to this type 

of exercise is consistent and whether the magnitude of the changes in PTH are sufficient to induce 

such an effect.   

 

Cross-correlations suggested that PTH secretion during exercise and recovery is controlled by a 

combination of changes in Ca2+ and PO4. Ca2+ is not routinely measured due to analytical difficulties; 

consequently ACa is estimated as a surrogate and has been shown clinically to be a reliable indicator 

of Ca metabolism at rest (30). We have shown different responses to exercise and recovery between 

ACa and Ca2+ and also different relationships with PTH; Ca2+ concentrations were correlated with 

PTH, whereas ACa was not. Albumin changes taking place during exercise will have a greater effect 

on the ACa estimation compared to the small effect that can occur on Ca2+ measurement; changes in 

pH were not sufficient to have a major effect on Ca2+ measurement by the blood gas analyser. The 

results support previous data (14, 15, 17–20) suggesting that changes in ACa do not explain the 

changes in PTH or regulation of PTH during exercise, because, as PTH is increasing, ACa either 

also increases (15, 17) or is unchanged (14, 18, 19). Scott et al. (19) argued that because both PTH 

and ACa were increased after 20 minutes of exercise, a decrease in Ca2+ could have occurred in the 

first few minutes of exercise, stimulating the secretion of PTH and causing serum Ca2+ 

concentrations to increase as a result of PTH-stimulated bone resorption and Ca2+ liberation. 

However, through frequent sampling, we have shown that ACa and Ca2+, at 65% and 75%VO2max, 

increase within 2.5 min of exercise, with ACa increasing and Ca2+ decreasing thereafter. Although 

it is well established that PTH responds rapidly to a reduction in Ca2+ at rest (1, 22), this is the first 

study to show that this rapid response also occurs during exercise. The lack of an initial increase in 

Ca2+ at 55%VO2max is surprising and the reason for this is currently unknown. The strong negative 

correlation of PTH and Ca2+ during exercise at all three intensities with a 0 time lag (r=-0.902 to -

0.950) suggests that as Ca2+ decreases, PTH increases within 3.5 min. This negative cross-correlation 
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supports the findings of Bouassida et al. (11) who showed that as Ca2+ decreased during 42 minutes 

of running, PTH increased.  

 

These findings suggest that Ca2+ may control PTH secretion during exercise. The reasons for the 

initial increase in Ca2+ at the start of exercise in the two higher exercise intensities are unknown, 

although this might be important in explaining the decreased PTH concentrations with the onset of 

exercise. It could have been related to exercise-induced acidosis occurring in the first few minutes 

of exercise, before aerobic metabolism stabilises (31, 32), which can increase Ca2+ concentrations 

(33) but have minimal effects on ACa. Blood pH did not, however, decrease significantly during 

exercise, suggesting that exercise-induced acidosis was not the reason for the initial increase in Ca2+. 

Further mechanistic studies are needed to identify why this initial increase occurs, but it could be 

from calcium being released from other binding proteins such as transferrin (34) or calcium 

dissociating from PO4 (35, 36). 

 

Changes in systemic PO4 can influence PTH secretion, with Ahmad et al. (37) showing that circadian 

changes in PO4 precede changes in PTH. During the increase in PTH in the present study, PO4 and 

PTH were most strongly positively cross-correlated at -1 time lag, suggesting that increases in PO4 

precede those in PTH by less than 3.5 min. This cross-correlation was not as strong, however, as the 

cross-correlation between Ca2+ and PTH, which might indicate that both PO4 and Ca2+ are influential 

during the increase in PTH. Our data do not fully support that the exercise-induced increases in PTH 

are driven solely by increased PO4, as PO4 increased with the onset of exercise despite the initial 

decrease in PTH. The increase in PO4 might reflect release of PO4 from PTH-induced bone resorption 

(15, 37, 38) towards the end of exercise, or that PO4 is being released from muscle tissue, although 

this is speculative (39, 40). Taken together, these results suggest that Ca2+ is the stronger driver of 

PTH secretion and synthesis at the onset of exercise, however it is possible that the degree of 

association/dissociation between Ca2+ and PO4 varies during exercise, meaning that PTH regulation 

might change accordingly.   
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With the decrease in PTH during recovery, the strongest positive cross-correlation between PO4 and 

PTH occurred at a 0 time lag, suggesting that PTH decreased within 8 min of a decrease in PO4. 

These findings support Scott et al. (15, 18–20), who showed that PO4 followed the same response as 

PTH after exercise. If the decrease in PTH during recovery is explained by renal clearance (11), the 

strong cross-correlation may suggest that PO4 is driving PTH clearance and over-riding Ca2+ 

regulation in recovery. Alternatively, the elevated PTH concentrations could be enhancing renal PO4 

excretion and causing a subsequent decrease in circulating PO4 (41).  

 

Reductions in vitamin D concentrations can contribute to an increase in PTH, as 1,25, 

dihydroxyvitamin D regulates the active transport of calcium and PO4 absorption in the small 

intestine (42). Vitamin D status was not measured so we cannot confirm whether a change occurred 

during the study. The three trials were, however, completed within one month for each participant 

and the order of trials was randomised, meaning that, although changes in vitamin D concentrations 

could have occurred, they are unlikely to have influenced the results.  

 

In conclusion, at the onset of exercise PTH transiently decreases then increases throughout exercise, 

peaking in the first minutes of recovery, before decreasing below the baseline concentration during 

ongoing recovery. Changes in Ca2+ and PO4 occur in close temporal relation to changes in PTH. 

Cross-correlational analysis suggests that PTH secretion during exercise and recovery is controlled 

by a combination of changes in Ca2+ and PO4 and that the mechanism might be different during 

exercise and recovery. ACa may not be a suitable surrogate for Ca2+ when investigating the rapid 

response to exercise, since ACa concentrations do not reflect temporal PTH responses or correlate 

strongly with PTH.  
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Table Legends 

 

Table 1. Baseline biochemistry across all trials. 

Table 2. Pearson’s correlation coefficient values for changes in PTH, with changes in PO4, ACa and 

Ca2+. 

Table 3. Maximum cross-correlation values and corresponding lag times for PTH with PO4, ACa 

and Ca2+.  
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Figure Legends 

 

Fig. 1. The percent change in baseline concentrations of PTH (A), PO4 (B), ACa (C) and albumin 

(D) for all participants with 30 min of treadmill running at 55%VO2max (open circles), 65%VO2max 

(filled squares), 75%VO2max (open triangles). Grey box denotes exercise. Data are mean±SD. a 

different (P≤0.05) from baseline (55%VO2max) b different (P≤0.05) from baseline (65%VO2max), c 

different (P≤0.05) from baseline (75%VO2max). * 55%VO2max different (P≤0.05) from 65%VO2max, α 

55%VO2max different (P≤0.05) from 75%VO2max, ● 65%VO2max different (P≤0.05) from 75%VO2max.  

 

Fig. 2. The percent change in baseline concentrations of PTH (A) and Ca2+ (B) for participants 5–10 

with 30 min of treadmill running at 55%VO2max (open circles), 65%VO2max (filled squares), 

75%VO2max (open triangles). Grey box denotes exercise. Data are mean±SD. a different (P≤0.05) 

from baseline (55%VO2max) b different (P≤0.05) from baseline (65%VO2max), c different (P≤0.05) 

from baseline (75%VO2max). * 55%VO2max different (P≤0.05) from 65%VO2max, α 55%VO2max 

different (P≤0.05) from 75%VO2max, ● 65%VO2max different (P≤0.05) from 75%VO2max. Statistical 

analysis not reported or denoted for the PTH response in participants 5–10; data plotted for the 

comparison with Ca2+ only.   
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Table 1. 

Measure 55%VO2max 65%VO2max 75%VO2max 

PTH (pmol·L-1) 2.62±0.88 2.51±0.50 2.63±0.60 

PO4 (mmol.L-1) 1.14±0.12 1.17±0.25 1.12±0.16 

ACa (mmol.L-1) 2.83±0.21 2.83±0.23 2.78±0.22 

Albumin (g.dL-1) 4.60±0.14 4.63±0.19 4.57±0.22 

Ca2+ (mmol.L-1) 1.27±0.03 a 1.25±0.02 1.24±0.01 

Data are mean±SD. a = Baseline Ca2+ at 55%VO2max was significantly (P≤0.05) higher than at 65% 

and 75%VO2max.  
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Table 2. 

  r value  

Exercise intensity PO4 ACa Ca2+ 

55% VO2max 0.175 -0.160 -0.739 a 

65% VO2max 0.215 -0.077 -0.769 a 

75% VO2max 0.416 0.078 -0.790 a 

a  = Significant correlation with PTH (P≤0.001).   
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Table 3.  

 PO4 ACa Ca2+ 

Exercise intensity Time lag r value Time lag r value Time lag r value 

PEAK data points (baseline to 5 min of recovery) 

55%VO2max -1 0.661 0 -0.431 0 -0.902 

65%VO2max -1 0.677 -2 0.550 0 -0.936 

75%VO2max -1 0.772 -2 0.669 0 -0.950 

DEC data points (5 to 90 min of recovery)  

55%VO2max 0 0.995 0 0.761 +1 -0.794 

65%VO2max 0 0.987 0 0.908 0 -0.856 

75%VO2max 0 0.994 0 0.809 +1 -0.817 
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Fig. 1.  
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Fig. 2.  

 


