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Abstract

One of the most important techniques in data hiding is

(Metaferography) covert channel, which recently has shown potential

impacts on network and data security. Encryption can only protect

communication from being decoded, meanwhile, covert channel is the

art of hiding information in an overt communication as a carrier of

information. Covert channels are normally used for transferring

information stealthily. They are used to leak information across the

network and to ex/in�ltrate classi�ed information from legitimate

targets. These hidden channels violate network security and privacy

polices, it is easy to embed but unlikely and almost impossible to be

detected.

Despite of the obvious improvements in IPv6 components and

functionality enhancements, there exist intrinsic security

vulnerabilities. These vulnerabilities have ongoing implications on

network security and tra�c performance. Hence, they will create

insecure environments in business and banking network, information

security management and IT security. ICMPv6 is vital integral part

in IPv6, as well as IPsec protocol, to mitigate and eliminate covert

channels, the RFC standards and controls should be investigated

intensively. Furthermore, incomplete implementation of IPv6

nowadays on all Operating Systems has not exposed the realm of this

security protocol performance explicitly.

In this thesis, we present a novel Hybrid Heuristic Intelligent

Algorithm coupled with enhanced Polynomial Naïve Bayes machine

Learning algorithm. The framework is implemented in a supervised

learning model to detect and classify covert channels in IPv6. The



proposed multi-threaded framework acts as an active security warden

processing intelligent information gain and optimized decision trees

technique to improve the security vulnerabilities in this new network

generation protocol.

This new approach develops intelligent heuristic techniques for in

depth packet inspection to analyse and examine the header �elds of

IPv6 protocol. Some of these �elds are designated by the designer for

quality of service (QoS), future performance diagnostic analysis,

unfortunately, they are misused by "bad guys and black hats" to

perform various network security attacks against vulnerable targets.

These attacks cause immediate and ongoing damage to classi�ed

data. In order to prevent and mitigate these types of breaches and

threat risks, a multi-security prevention model was created.

Furthermore, advanced machine learning technique was implemented

to detect, classify and document all current and future unknown

anomaly attacks. The suggested HeuBNet6 classi�er obtained highly

signi�cant results of 98% detection rate and showed better

performance and accuracy with good True Positive Rate (TPR) and

low False Positive Rate (FPR).

Keywords: covert channel, hybrid, heuristic, IPv6, ICMPv6,

Multinomial, Naïve Bayes.
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Chapter 1

Introduction

1.1 Background and Motivation

Any wired or wireless communication channel should be subject to security

policies that comply with most international restriction rules and acts. These

rules apply on all types of information transmitted by these channels which may

contain sensitive data; however, it is vital for the data to be refrained from

unauthorized access. Given that fact, these transferred messages are again

subject to compromise through some sort of powerful penetration "hacking"

communication techniques which operate stealthily, known as covert channel. We

can categorize these communication channels into two main types: overt

communication channel and covert communication channel. Overt channels are

o�cial and basically acknowledged, and comply with all network security policies

and privacy acts. Meanwhile covert communication channels unintentionally

exist in such a way that any type of information would be transmitted and

accessed in unrestricted way and unnoticed by network wardens, violating

standard system security policies and privacies.

The United States Department of Defence in 1985 presented a de�nition for

covert channels [12] as " A communication channel that allows a process to transfer

information in a manner that violates the system's security policy". Lampson [13]

also de�ned covert channels as a monolithic system works in such a mechanism that

leaks information from a high security level to low security level which is meant to
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1. Introduction

be disallowed to access the systems if this mechanism was not used. Essentially,

these channels have not been explored or designed by researchers to be used for

transferring information purpose. Hence, Murdoch and Lewis [14] claimed that

covert channels can leak information intentionally by using a single channel which

basically has not been created for the purpose of violating access control policy.

On the other hand, side channel unintentionally can perform the same function in

leaking information. Internet Protocol version 6 (IPv6) is a new generation and

the successor of the networking protocol version 4. It enables Windows, Linux

and any other operating system users to communicate with other users over the

internet [15]. IPv6 was introduced in 1998 by the Internet Engineering Task Force

(IETF) in order to replace IPv4, technically based on the standard speci�cation

on Request for Comments RFC 2460 draft project [16].

Covert channel modi�es existing overt tra�c protocols' formats and structure

targeting either entirely the protocol's �elds, or any vulnerable components of

the protocol that may not be obvious for warden or network administrators. The

security impacts of IPv6 storage covert channel are not less e�ective than an

immediate security threat such as Denial of Service (DoS) or Distributed Denial

of Service (DDoS). Furthermore, the damage that this type of technique causes

in a short period of time through controlling compromised PC's on legitimate

secure network upgrades the threat level to a higher security scheme. In this

context, an attacker may steal classi�ed information over a long time which will

cause multiple unwanted implications of security breach [17].

An obvious example of using covert channel as a security threat causing

catastrophic results is the signi�cant attacks performed by covert codes hidden in

a sensitive hardware that was purchased by a victim [18]. The codes were

activated to disrupt the functioning of the hardware to perform an attack against

Syrian surveillance radar over-watching the Israeli's bombing raid in 2007. This

type of achievement depends on the e�ective stealthy method and its activation

mechanism to make covert channel attack a good implementation choice [17].

The taxonomy of covert channel is a challenge due to the complexity of the

protocol design and techniques used to tackle these new security vulnerabilities.

Packet headers might not contain su�cient information to allow such detection

methodology. Researchers have found that implementing some machine learning

2
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algorithms merely such as Naive Bayes would o�er a limited detection rate

reaching 71% [19, 20]. However, using an additional sophisticated algorithm

which combines supervised Machine Learning techniques such as Naive Bayes or

Multinomial Naive Bayes and heuristic analysis to classify and detect covert

channels in IPv6 is an innovation for this problem domain. Heuristics are mental

short cut or "rule of thumbs" that give some guidance on how to do a tasks, but

it does not guarantee solutions consistently [21]. Heuristics may be used to

determine the speci�c rules for solution generation. The algorithm is coined in

this research as an Intelligent Heuristic Algorithm which analyses the �ltered

headers, creates the attack instances and label them with the class type, �nally

makes the decision whether each packet contains covert or not. None of the

previous researchers attempted to detect almost all types of covert channels in

IPv6 header; rather, the attempts followed the general pattern of detection

techniques implemented in traditional �rewalls, IDS and IPS. Furthermore, it

was hard to �nd models and frameworks that speci�cally implemented Machine

Learning methodology such as Naive Bayes or Multinomial Naive Bayes to detect

covert channels in IPv6 which o�ers a distinctively accurate detection rate. This

fact is according to the latest research on hybrid AI techniques used in IPv6

covert channel detection [21].

Additionally, Lucena et al [5] suggested the detection of covert channels using

active warden in various complex scenarios which resulted in large consumption

of time and resources [7] as a consequence of not employing machine learning

techniques. Therefore, the need for more research to implement Machine Learning

techniques in this problem domain is considerable. This sort of approach carries a

clear multi-layer security model which will add a shared knowledge framework as

a di�erent way to tackle such sophisticated covert channels in IPv6.

Despite the fact that overt and covert channels are important to be

considered in computer security analysis, this project aimed at designing a

hybrid framework to detect only covert channel behaviour. In overt channels the

data transmission is performed and complied with the existence of security

policies, whereas in covert channels the communication path allows an

unauthorized process to transfer information in such a way that violates the

system security policy and privacy. Storage covert channels characteristics in

3
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IPv6 and ICMPv6 header �elds were investigated.

1.2 Research Questions

To survive with the ever-increasing network security threats utilizing the

inherited Internet Protocol vulnerability in IPv6 by embedding storage covert

channel, innovative detection and elimination techniques are vital to stop

security attacks such as embedded metaferography techniques (covert channel)

against this protocol. The primary hypotheses and questions are:

• Hypotheses

1. Using information hiding techniques has been a driving force behind privacy

and network security policy violation in IPv6.

2. Attackers can use di�erent data hiding techniques apart from steganography

in IPv6 to in�ltrate classi�ed data or ex-�ltrate sensitive information from

legitimate targets.

3. Intruders can communicate using IPv6 vulnerabilities to embed data and

send it to their targets. Covert channels are used to perform network attacks

against vulnerable targets.

• Research Questions

1. What is the feasibility of a new prevention model to detect and eliminate

covert channel attacks in IPv6?

2. What e�ective countermeasure methods can be used to mitigate security

implications and the associated risks in IPv6?

After examination of the above questions, the process led to potential sub

questions which may enrich the approach to using di�erent techniques to

mitigate such security threats on IPv6. The sub questions are:

(a) Is it possible to develop a classi�er to categorize an arbitrarily sized

database of labelled attack instances and test the conditional

independence status of the attributes?
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(b) Can a supervised Machine Learning technique be developed to create

a knowledge based framework in order to detect and classify covert

channels in IPv6?

(c) Is it possible to optimize the accuracy of covert channels classi�cation

using advanced feature selection technique?

A new approach to detecting these hidden communication channels in IPv6

header �elds will be proposed. This approach consists of Intelligent Heuristic

Algorithm coupled by an advanced Multinomial Naïve Bayes Classi�er using

enhanced �eld selection techniques.

1.3 Aim and Objectives

This research aims to create a new knowledge-based framework to analyse IPv6

security vulnerabilities, and to detect behavioural hidden communication channels

within this network layer. This framework will mitigate and eliminate the security

threats against IPv6. It will create primary data which represents covert channel

characteristics of IPv6. The empirical process will be performed through enhancing

advanced Machine Learning techniques to solve such problem in network security.

Suggested Multinomial Naïve Bayesian classi�er (MNBC) is adding a new direction

of thinking to create network security systems towards mitigation of future complex

security problems and unknown attacks.

The attack hypothesis behind the project is that intruders can use di�erent

data hiding methods to communicate over open data channels [22]. TCP/IP covert

channel is one of the techniques mimicking di�erent attacks to ex-�ltrate/in�ltrate

sensitive data from machines, routers or classi�ed data storage servers. This action

violates security policies and the three essential Information security principles:

Con�dentiality, Integrity and Availability (CIA) of any targeted organization

with no regards to any privacy legislations [23, 24].

The objectives of this research are as follows:

1. Explore the trade-o� between channel type, size and the ease of detection

by investigating the performance of selected covert channels and their

countermeasures.
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2. Propose a new and di�erent countermeasure to detect storage hidden

channels that are used to ex/in�ltrate classi�ed information from legitimate

targets.

3. Suggest and develop a Machine Learning Algorithm such as Multinomial

Naive Bayes to improve the detection probability process of covert channels

in IPv6.

1.4 Research Methodology

In order to achieve the aim and objectives mentioned in Section 1.3 for this

research, a clear understanding is needed of the problem domain and the research

questions clarifying the scope of the project. Furthermore the following

methodology and investigations will be conducted:

1. Study and understand the IPv6 protocol architecture and investigate the

security implications of TCP/IPv6 suite protocols.

2. Study and examine the IPv6 security vulnerabilities to identify IPv6 covert

channels and their characteristics via related RFC's standards.

3. Analyse di�erent security attacks and threats caused by covert channels

against legitimate targets.

4. Design an essential network topology and security tool to simulate the

hypothesised network attacks. Using qualitative method to create primary

data for experimental examination.

5. Investigate current di�erent detection and prevention approaches in IPv4

and IPv6, then analyse their security implications.

6. Investigate Machine Learning Algorithms in network Security.

7. Investigate di�erent feature selection techniques such as C45, Info Gain to

di�erentiate, categorize and customize the optimal value of the pre-processed

data based on testing and performance results.
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8. Investigate the performance of MLA accuracy and false rate used in the

suggested security model.

9. Design and implement a reliable and e�ective security framework to detect

and classify covert channels in IPv6 protocol.

10. Evaluate and validate the suggested detection Model via using a parallel

software with di�erent mechanism and test plan.

1.5 Thesis Contributions

The contributions of the proposed framework in this thesis are the guidelines for

analysing, classifying and detecting IPv6 protocol security vulnerabilities. Due to

the lack of IPv6 covert channels benchmark data, primary attack instances will be

created through simulation of local attacks tool on a separated LAN topology.

As a clari�cation for the primary contribution of this research, to the best

of our knowledge, this is the �rst e�ort that suggests a multi-threaded security

system for IPv6 to mitigate such complicated security threats created by covert

channels attacks. Furthermore, to the best of our knowledge, in a part of the

attempts performed [5, 17, 25, 26, 27], there is no su�cient data (known and

unknown attack) of using covert channels in IPv6 similar to what was achieved

in this thesis. This contribution elaborates the novel covert channel's model that

implements Intelligent Heuristic Algorithm creating the necessary primary data.

This data consists of nearly 6 millions multi instances attributes which represent

various types of covert channel attacks and can be in future research.

The major contributions presented in this thesis are provided in Sections 1.5.1-

1.5.4.

1.5.1 A New Structure for Security Detection Model

A multi-threaded security structure is designed for IPv6 to detect covert channels

(information carrier) attacks and threats. The �exibility of this structure is o�ering

a new attempt to deal with high speed tra�c �ow and throughput. This part will

be seen in Section 3.5.2.

7



1. Introduction

The model uses advanced data mining techniques as a supervised machine

learning algorithm in an enhanced mode of Multinomial Naive Bayes classi�er

(MNB) coupled with a novel heuristic analysis approach. This model is an adaptive

security approach which can be used as a modern paradigm for threat detection

and classi�cation in future accumulative research. This part of contribution will

be seen in Section 3.6.

1.5.2 A Novel Intelligent Heuristic Algorithm

The research contributes a novel Network Intelligent Heuristic Algorithm (NIHA)

as an essential security system model to analyse, assess and create covert channel

characteristics in IPv6 and ICMPv6 packets. This will optimise the weight and

value of each attack instance. This part of the contribution will be seen in Section

3.7.

This algorithm is the core element of the security detection model as it provides

the means to specify and manage detection policies and speci�cations that are used

to detect covert channels in IPv6.

1.5.3 A New Primary Dataset for Covert Channel Attacks

in IPv6

The creation of new primary data through the use of NIHA is a leap into ground

breaking areas of IPv6 covert channels. New attack instances are created as an

outcome of the empirical research progress. The primary data for the initial

development of the project are potentially impressive to the testing and

evaluation phases. Furthermore, this data can be used for future research and

similar models evaluation particularly in TCP/IPv6 security problem domain.

This part will be seen in Section 3.7.

1.5.4 A New Shared Knowledge Framework

A new shared knowledge framework is presented and implemented in this research

supported by the developed security model and a new sample research dataset

produced by NIHA. The knowledge base can be redeployed at all critical points of
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an organisation's network topology. It is envisaged that further research emanating

from this work will produce the amalgamation of newly discovered attacks due to

changes IPv6 speci�cations acquired through the wider research community.

1.6 Thesis Organization

The organization of thesis will be as follows:

Chapter Two illustrates an extensive study about the security

vulnerabilities in TCP/IPv4 and IPv6. An in-depth investigation and

examination of the security protocol structure, Request for Comments (RFCs)

and Internet Assigned Numbers Authority (IANA) rules are performed in

relation to the information security and covert channels that cause serious

violations in privacy and network security policy. The main characteristics of the

covert channels in IPv4 and IPv6 are discussed. The potential threats caused by

IPv6 and ICMPv6 headers which are the core of the issue will be discussed.

Additionally, the di�erent approaches proposed by academic researchers and

professionals to solve this particular problem in network security are discussed.

Finally the need for such detection approach is discussed and justi�ed.

Chapter Three presents the proposed architecture of the covert channel

detection and classi�cation system. The main modules of the framework are

elaborated, including packet �lterer and data analyser, covert channels analyser

and detector, characteristic classi�er, verdict issuer and exporter. The proposed

network intelligent algorithm is explained theoretically and technically. The

technical details behind the new suggested algorithm are explained intensively.

The enhanced Multinomial Naive Bayes classi�cation is presented and discussed

along with the feature selection methodology.

Chapter Four demonstrates the empirical steps in the system design and

implementation. Furthermore, the experimental software development platform

and environment are explained and discussed. The creation of primary data

which is a vital part for the project with regards to the current cutting edge

technology is elaborated. Behavioural covert channels are tested and examined
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thoroughly using the di�erentiation of targeted parameters and attributes in

ICMPv6 and IPv6 header �elds. The tools used to create and simulate attack

instances are discussed. The results produced are highlighted. Validation and

evaluation of the framework were performed using Weka system.

Chapter Five discusses the results, outcomes and analysis from the testing

phases of the framework. An evaluation of the results is performed through the

assessment and testing plan analysis. Association analysis is used to evaluate the

framework performance. The overall critical analysis, drawbacks and limitations

of the project are highlighted and discussed. The distinctive parts of the project

are discussed in comparison to current and relevant projects in network security.

Chapter Six summarises the major contributions of this research work.

Furthermore, the potential impacts on the IPv6 security vulnerabilities are

highlighted. A brief explanation of the achieved aims and objectives of the

project is presented. Future work and planned stages for the project are

discussed. Finally, potential future directions of the relevant areas of the project

are highlighted.
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Chapter 2

Literature Review

In Sections 1.1, 1.2 and 1.3, a brief overview has been given on covert channels,

their security implications, and the research questions have been discussed.

Network covert channel has a mechanism that could be used to leak data across

network protocols. Many studies have described covert channels in network

protocols such as TCP/IP version 4 and ICMPv4 systematically, but not IPv6.

This chapter discusses some other network protocols covet channels, then

describes some elements and properties used in this research. Finally, it presents

an in-depth clari�cation of relevant covert channels in IPv6.

This chapter is organised as follows: Section 2.1 describes the information

hiding techniques for embedding covert channel. Section 2.2 discusses TCP/IP

covert channels generally. Section 2.3 discusses the related work of covert

channels detection . Section 2.4 explains some technical speci�cations of IPv6

and its potential modi�ed �elds. Section 2.5 explains a list of IPv6 security

vulnerabilities. Section 2.6 discusses the speci�c security threats posed by covert

channels. Section 2.7 argues about the need for new covert channel detection

approach in IPv6. Section 2.8 presents the state of the art of using Machine

Learning in Intrusion Detection Systems. Section 2.9 explains Machine Learning

technique types used in anomaly detection. Finally, Section 2.10 is the summary.

In Chapter 3 more addressed covert channels in IPv6 and its implementation will

be discussed in details, although this chapter comes prior to the suggested

security approach to tackle covert channels in IPv6. It is important to
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understand the methodology used in the project.

2.1 Information Hiding Techniques

Information Hiding was presented by Parnas [28] stating that the critical design

of any system should not be disclosed to end users who bene�t from the system

and no underlying details of an internal program functions should be revealed. An

example of information hiding is a calculator which hides the calculation process

from the user. There is a �exibility in information hiding for a programmer to

modify a program in order to gain the opportunity of secretly inserting source

code into modules. This �exibility makes the access and development easier in the

future for the programmer. This is one of the many advantages in information

hiding.

There are three types of techniques [29] that information hiding can be used:

cryptography, steganography and covert channels (metaferography). Wendzel

[30] agreed with Petitcolas to call covert channels formally as "metaferography"

which is a part of information hiding discipline and should be harmonized with

the naming convention for cryptography and steganography. The basic idea was

presented by P�tzmann [31] when informally he was engaged in a workshop

meeting in 1996 to demonstrate that information hiding was a concept of

embedding <datatype> into an embedded <datatype> called covert data in

which a steganographic key could be a part of this embedding process despite of

whatever data type was hidden into the nested or embedded <datatype>. The

three types of information hiding techniques [31] are as follows:

1. Cryptography: This term came from an ancient Greek word κρυπτo

(kryptos) which means "hidden" writing, as any type of disorganised text

messages would be indecipherable without using a secret key. Plaintext was

transformed into cipher text using a key phrase [32]. The writing was there

but it was unreadable. This type of technique was used during wartime

when the American Civil War by the Southern Confederacy implemented a

confederate Cipher Disc to protect battle communication details from

unauthorised access by the enemy [31].
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2. Steganography: This term is also derived from a Greek word στεγανo

(steganos), which means "covered" writing, particularly hiding a message

within another message. The existence of the message is hidden so it could

be called "security through obscurity" in order to protect the message from

unauthorised access [29, 31]. This type of technique was also used during the

American Revolutionary War against the invasion of British army. There are

some types of stego implementation using content rich media, such as photo,

image, audio or video, to conceal a message.

3. Metaferography (Covert Channel): This term is originated from the

Greek word µεταϕερo (metaferos), which means "carried" writing.

Metaferography is used to hide the actual message, meanwhile

steganography hides the message. Metaferography conceals the message

within the carrier or transferring mechanism. Covert Channel is a vital

part among metaferography techniques, relating to modern data

communication electronically [24].

Metaferography was used by ancient Greek to protect messages by writing

them on surfaces of wooden tablets then covering them with wax in order

to make them look like normal wax tablets [29]. According to Savacool [24]

metaferography brings consistency to the nomenclature and can be used

alongside with other types of information hiding such as cryptography and

steganography. Metaferography could describe the pitch (extend) of

domain concerning covert channels while a covert channel describes the

actual implementation of information hiding.

Due to repetitive work of cryptographic and steganographic techniques in

TCT/IP [5, 33, 11], the problem domain of this research needs to be narrowed

down. Eventually, it will focus on detection of information carrier techniques

(metaferography) in IPv6 only.

2.2 Covert Channels in TCP/IP Protocol Suite

The diversity of network protocol �elds and their implementation has given a

clear opportunity to embed covert information. Jankowski et al. [34] presented a
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method using Ethernet, ARP and TCP to create covert data. A similar method

performed by David et al. [35] used IP and Ethernet frames to insert encoded

covert data into the payload header. The essential technical aspects of TCP/IP

protocol suite is described in RFC793 [36] as shown in Figure 2.1. There are

some extensions of the TCP [37] which has additional header options as other

researchers [15, 23, 38, 39] claimed that these extension headers have been

identi�ed to hold stenographic coding. TCP/IP headers can serve as carrier of

stenographic covert channels according to its RFC's presuming the possibility of

taking one set of values as these values could be detected by passive warden

[7, 20, 40, 41]. TCP does not provide a reliable channel, however as a

connection-oriented protocol it preserves its reliability properties if a network

shows packet loss, recording and duplication [42]. This particular aspect gives

TCP an advanced reliability in implementation and �ow control which o�ered

scope to stenographic coding. Meanwhile, IP protocol itself has no capabilities to

provide any type of assured stream reliability [14, 43].

A covert channel is used to ex-�ltrate or in�ltrate con�dential data of a higher

level system to a lower level system or vice verse and can be used in steganography.

It deals with network issues which are not explicitly applied to multi-level security

(MLS). One of the characteristics of network covert channel is that it enables the

transferring of data without drawing any attention of being detected, thus violating

network security policies [14].

In system security analysis process, some vital steps should be done in regards

to evaluation of both overt and covert communication channels. Covert channels

can be categorized into two main groups: storage covert channels and timing covert

channels [12, 44]. A storage covert channel is used to transfer data through altering

the storage attribute of an object such as a value of a �eld or a �le's contents in

a speci�c directory in IPv4 or IPv6. Timing covert channel functions by altering

timing attributes (i.e. the timing interval of a network packet) or the sequence of

an event (i.e. network packet sorting time) [45].

Other types of covert channel exist which are neither timing nor storage types

called behavioural covert channels as they depend on the receiver and sender's

behaviours. Furthermore, Anthony and Sabelfeld [35, 44] argue that other types

of covert channels based on probability distributions, resource exhaustion, and
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power consumption are also available. Some researchers [20, 44, 46] think that

covert channels are dual-purposed as they could create potential security threats

such as Trojan horses or botnets.

Figure 2.1: TCP/IP Protocol Suite Architecture [1]

2.3 Related Work

Previous researchers [23, 39, 47] in network covert channels focused on IPv4

while fewer researchers concerned about security vulnerabilities of the new

generation protocol IPv6 [5, 17, 48, 49, 50] due to its incomplete implementation.

Furthermore, most of the investigated covert channels were the storage type

rather than the timing channels [42, 51, 52, 53, 54].

A few tools exist for setting up network covert channels using di�erent protocols

such as TCP, HTTP and ICMP [55, 56, 57]. The section packet of the protocol can

hold large portions of data which makes it easy to hide information and facilitate

the transfer due to the unorganised structure if compared to the headers. These

headers are designed for protocol improvement in the future, therefore it is easy to

encode covert channels in the unused bits or the reserved part of the packet frame.

Lack of intensive values in the protocol standards and RFC's drives Intrusion
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Detection Systems (IDS) and Firewalls to dismiss or grant exception to these

headers [58] during inspection.

Handel and Sandford [59] detected that using the unused �eld of type of service

(TOS) header or the �ag �eld can create covert channel in TCP/IP header [60].

Ahsan et al. [45] used Flag �eld header "Don't Fragment" (DF) bit as a covert

channel. He proposed �ve methods to use TCP, IGMP and ICMPv4, as one of

these approaches meant to sort data in IPsec protocol. The DF bit can be set to

arbitrary values if the attacker knows the Maximum Transfer Unit (MTU) size in

case fewer packets of the MTU size are sent.

Hintz [61] suggested to manipulate TCP's urgent pointer to send hidden data

deceiving the system to obtain high priority data in case the URG bit is not set.

Trabelsi [62] and Lucena et al. [5] proposed numerous covert channels in the new

generation protocol header �elds such as tra�c class, �ow label, hop by hop and

other �elds.

Rowland [52] proposed a covert channel technique through multiplying each

byte of the hidden data in TCP/IPv4 protocol suite header �elds by number 256

to be used instantly as IP ID. There is a major requirement by RFC 0791 for IP

standard which considers IP ID to unambiguously identify IP packet for a short

time interval [63]. Furthermore, Rutkowska [64] suggested an advanced hidden

channel using ISN of TCP in Linux by encrypting the data in ISN �elds giving

an identical random. Dunigan [65] presented the same example as Rowland did

implement the covert channels in the header �elds of the OSI network model [17, 5].

Murdoch and Lewis [14] criticised previously proposed hidden channel

technique using ISN, expecting to get a di�erent outcome of implementation

than any OS gives. This is done through tailoring the developed covert channels

for Linux and Open BSD in order to make the ISN covert channels distribution

more real and normal. Qu et al. [66] used Time to Live and hop limit �elds to

embed hidden information so as Lucena [5] but unfortunately neither scheme

took into account that initial TTL values will be chosen by the sender whereas

normal TTL changes in network [58].

Zander et al. [33] suggested converted covert channel after analysing techniques

proposed by Qu and Lucena. This technique was more di�cult to detect. Dyatlov,

Castro, Kwecka and Van Horenbeeck proposed a variety of techniques to embed
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covert channels in HTTP protocol headers [56, 67, 68]. Sohn et al. [12] suggested

passive warden technique using Support Vector Machine (SVM) to detect Ahsan's

and Rutkowska's covert channels.

However, this approach is not desirable for unambiguous features as he

proposed steganography in ISN. Additionally, SVM is unable to detect complex

and embedded aspect without additional advanced technique to understand

TCP's mutuality [55]. ICMPv4 tunnelling technique also has been suggested by

Loki [46] to embed covert data into the payload �eld holding ICMP_echo

request and echo_reply packets. The receiver unwraps the transmitted packets

to execute the commands and send them back to repeat the process with ICMP

packets.

2.4 Internet Protocol Version 6 (IPv6)

Vital changes in IPv6 need to be addressed. These modi�cations have been

designed and provided in such a way that will enrich our investigation and

protocol security analysis. As mentioned above, IPv4 has some well-known

limitations which do not comply with the current growth of the internet: address

space depletion, large routing tables and lack of security. Consequently, IETF

has decided to develop IPv6 in order to eliminate some of these limitations [61],

focusing on quality performance, ease of con�guration as well as solving network

management issues. The IPv6 core speci�cations have been de�ned in di�erent

Request of Comments (RFC's), mostly in RFC 2460 [9, 2]. IPv6 provides a range

of improvement over IPv4 such as simplicity, big address space, easier

auto-con�guration, simple routing header, �ow labelling capability, and enhanced

security through a compulsory use of IPsec protocol.

The changes and removed �elds in IPv4 indicate some major key di�erences

between IPv4 and IPv6 [53, 58, 69]. During the transformation of the Internet in

the 1990's from a research network to a commercialised network, concerns were

raised about the ability of IPv4 to accommodate emerging demand. In 1993 the

Internet Engineering Task Forces (IETF) began the design and standardisation

process to develop the next generation of Internet Protocol that would address

among other issues the predicted exhaustion of available IPv4 addresses. A new

17



2. Literature Review

standard collection resulted out of this research is called IPv6. This was developed

over several years as many aspects of this solution would be evolved within IETF.

Finally, in 1998 a new version of IPv6 was built [16, 49].

The functionalities and components of IPv6 architecture will be discussed next,

but a brief comparison between IPv4 and IPv6 headers can provide some answers.

The changed and removed components of IPv4 are explained as follows [2, 70, 71,

72]:

1. The header length �eld is eliminated in IPv6 because the length is �xed in

IPv6.

2. The service type �eld is eliminated in IPv6. The tra�c class and �ow label

�elds together take over the function of the service type �eld.

3. The total length �eld is eliminated in IPv6 and replaced by the payload

length �led.

4. The identi�cation, �ag, and o�set �elds are eliminated from the base header

in IPv6; instead they are included in fragmentation extension header.

5. The Time to Live (TTL) �eld is called hop limit in IPv6.

6. The protocol �eld is replaced by the next header �eld.

7. The header checksum is eliminated because the checksum is provided by

upper layer protocols.

8. The option �elds in IPv4 are implemented as extension headers in IPv6.

2.4.1 IPv6 Header Format

The IPv6 header format as shown in Figure 2.2 re�ects the address size and the

ultimate number of o�ered IP addresses is shown in Figure 2.3. The features which

IPv6 protocol brings to plate are described in several RFC's. The packet headers

�elds in IPv6 are similar to IPv4 except some removed and changed �eld. The

header has no other header extensions as carried out in frames and consists of 8

�elds, as detailed below [1, 16]:
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Figure 2.2: The header format of IPv6 [2]

• Version: consist of 4 bits (0.5 byte). It identi�es the protocol version which
has the value of 6 in binary system.

• Tra�c Class: consists of 8 bits (1 byte), used by the sources and routers

to identify the packets belonging to the same tra�c class, so it distinguishes

between packets and di�erent classes based on priorities.

• Flow Label: consists of 20 bits (2.5 bytes) and is used as a label of data

�ow.

• Payload Length: consists of 16 bits (2 bytes) and indicates the length of

packet data �eld which is a balance of IPv6 packet following header.

• Next header: consists of 8 bits (1 byte) and indicates the extension header

immediately following the IPv6 packet header.

• Hop Limit: consists of 8 bits (1 byte), and is decremented by one by each

node which forwards the packet. This is the maximum number of hops that

an IPv6 packet can perform, similar to IPv4's Time to Live (TTL). When

the hop limit reaches zero, the packet is discarded.

• Source Address: consists of 128 bits (16 bytes) and indicates the original

source of the packet.
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• Destination Address: consists of 128 bits (16 bytes) and indicates the

original destination of the packet.

Figure 2.3: The IPv6 128 bit address calculation

Table 2.1 shows the most distinguished comparison between IPv4 and IPv6.

Table 2.1: Technical Comparison between IPv4 and IPv6 [9]

Feature IPv4 IPv6
Address �eld space 23 bit 128 bit

Address Con�guration Static DHCP
Auto, DHCPv6,
Static

Address for each Interface Single
Unlimited,
Link Local Address

Subnetting Inconsistent
Node's IDs
have 264 bits

Extension Headers No Yes
Broadcast Yes No
Fragmentation Routers & Hosts Only Hosts
ICMP Optional Mandatory
Link Layer ARP ND for ICMPv6
NAT Mandatory Not Applicable
IPsec Optional Mandatory

2.5 IPv6 Security Vulnerabilities

To create an interoperable protocol the Internet Engineering Task Force (IETF)

presented IPv6 speci�cation's details that should be followed by implementers

[73]. This fact has changed the security equation in dealing with the protocol
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ambiguities in some areas. Additionally, some unforeseen security issues, which

have not been considered when the protocol was designed, contribute in these

new vulnerabilities [5, 74]. Hackers and security researchers can easily explore the

reasonable hints between speci�cations and practical deployment. An important

issue should be highlighted that IETF sometimes performs technical revisions of

protocols, but somehow for speci�c protocol types, IETF o�ers the IP system

developers to correct protocol de�ciencies [73].

There are some vulnerabilities within the IPv6 packet header �elds, thus

security issues arise once new network software and hardware implementation

tolerate manipulation of these vulnerabilities. Therefore, a network administrator

must be aware and understand the security issues in IPv6 and should know how

to detect them. The security threat issues of IPv4 are outside the scope of this

project and will not be discussed.

There are three main types of vulnerabilities in IPv6 according to RFC 4942

classi�cation [75, 73]: the inherited vulnerabilities in the design, the transition

vulnerabilities, and the deployment vulnerabilities. This research will focus on

some of the inherited security vulnerabilities in the header. There are some other

issues [16, 76] which can not be �xed unless the scratch design of IPv6 itself is

changed. In this section, the major security issues are discussed.

2.5.1 Extension Header Threats

Unlike IPv4 which uses Options �eld [62], IPv6 as shown in Figure 2.4 uses

extension headers. This is either to present the packet information related to

transport layer of TCP and UDP or to maximize the protocol functionality. Next

Header (NH) �eld has the ability to identify the extension headers within an

IPv6 header. Speci�cally, 8 bits are the carrier of NH data starting from bit 48

within the IPv6 header [9]. Extension header is used to indicate the next header

in an IPv6 packet. Furthermore, this header is designed to be placed after

destination address �led, and before the upper layer, which is considered as a

part of IPv6 payload. Despite the fact that a packet can have more than one

extension header, these headers are not required for processing in routers except

hop-by-hop option header. These headers as shown in Figure 2.4 are usually
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presented in the following order [9]:

• Hop-by-Hop options headers.

• Routing headers.

• Fragment header.

• Destination option header.

• Authentication Header (AH).

• Encapsulation Security Payload (ESP) header.

Figure 2.4: TCP/IPv6 Extension Headers' types and format [1]

These headers [77, 78] support IPv6 protocol and provide some advantages such

as security, Jumbo-gram and mobility. The security architecture of this Internet

protocol is explained in RFC 2460. The last two headers AH and ESP also have

been described in RFC's 2401, 2402 and 2406 to ensure that both headers could

be used in two di�erent modes: transport mode and tunnel mode. In end-to-end

connection all existed payload in IP packets require encryption or authentication

in transport and tunnel mode. Techniques such as authentication and encryption

exist between two gateways like �rewall using IPsec to mount the packet data (the

IP header and the payload) with a "wrapper" IP packet [40, 79].
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Initial analysis of the protocol was performed on potential covert channels in

IPv6 beside the Internet Assigned Number Authority (IANA) rules and

standards. In this analysis, speci�ed covert channels have been identi�ed due to

lack of speci�c limitations. However, the mandatory IPsec protocol in IPv6

created an obvious impact on the discovered covert channels. Each extension

header has a unique identi�cation number ID which enables it to determine the

next header's value. This ID [2, 9] contains the header's type that informs the

receiver to parse the header to follow as shown in Table 2.2. These numbers have

been set up by IANA and synchronised with IPv4 protocol numbers [2]. Despite

each type of these header's own vulnerability, the most distinctive vulnerability

in the extension headers is that an attacker can craft an IPv6 packet with

extension header manipulation to create a Denial of Service attack [5, 9, 62].

2.5.2 Hop by Hop Extension Header Attack

Hop by hop header is one of the six extension headers in IPv6 header speci�ed

in RFC 2460 [80]. It is the only header that its packets are processed by routers

along from source to destination and should be checked by every node through

the packet journey. The �exibility of its de�ned and unde�ned option types, as

well as its variable length [9, 49] o�ers an opportunity that covert channels can

be created. Using the inconsistency of the options to deliver information through

modifying the packet �elds creates this type of covert channel. Attackers can

misuse this extension header option when it contains more than one option and is

set to various sizes. Eventually, di�erent types of DoS attacks can be performed.

Routers are responsible to check the options in the header as it is unlikely easy to

control [5, 81]. This attack could degrade the routers' or node's CPU performance.

Furthermore, padding options Pad1 and PadN are used to ensure the standard 8

octet boundaries size. In this case, altering the default value of the padding option

with a non-zero value creates covert channels communication [5, 26].

This extension header should be the �rst one in header sequential extensions;

misusing this extension will create a security issue in packet data transmission.

All of these security issues have been investigated and analysed by researchers

[5, 9, 17] and some detection mechanisms have been proposed. However, no �nal
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Table 2.2: IPv6 Option Headers [2]
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resolution has been found to this particular problem. Krishnan et al. [82, 83]

suggested to deprecate this extension header from the protocol or stop it from

creating new option de�nition which means that IPv6 should skip this header's

processing. Zander et al. [26] suggested to limit the bandwidth rate of the packet

with hop-by-hop extension header. Unfortunately, his suggestion will lead to drop

the packet whenever the CPU signalled very high [20].

2.5.3 Flow Label Threats

As shown in Figure 2.2, IPv6 header consists of 40 bytes. Compared with IPv4

header, seven header �elds have been removed and �ve �elds have been changed. A

new �eld was added called �ow label which obviously has some good functionalities

such as indication to Quality of Service (QoS) and also can be used as a load

balancing signal by inserting a pseudo-random value to protect against spoo�ng

attacks [78, 84]. This �eld's speci�cation was altered continuously despite the

argument mentioned in RFC 6294 and some other updated speci�cations in two

standards RFC 3697 and RFC 6437. The IPv6 group [49, 58] has received some

proposals to deal with such issue. Flow label has three major vulnerabilities:

• The �ow label exists only theoretically but is hardly used. This �eld is

ignored or passed unchanged in packet forwarding and it is hardly used in

practice in IPv6 implementation. However, once its value is set to Zero

[77, 78, 85] it causes two types of DoS attacks: forging large number of

IPv6 packets holding various values, and recording the forged packet

header. Consequently, this will give a failure to accept legitimate host for

not including the same extension header like the counterfeited packet.

• Possible covert channels implementation through zero value set of �ow label.

This can be done by setting a false value which will impose the intermediate

device to perform wrong services, assuming that it has a default behaviour

such as not modifying �ow label value [23, 86].

• Flow label is neither protected nor included in transport pseudo-header

checksums, thus, when malicious code changes it, it is di�cult to be

detected [5, 78]. Obviously, information leakage could be performed if the

25



2. Literature Review

�ow label value is predicted by the attacker, hence altering the value will

engage the router to deny services [74, 78, 87].

More details about this type of covert channel will be explained and discussed

in the suggested algorithm in Section 3.7.4.

2.5.4 Routing Header Threat

IPv6 has an optional extension header and there are six types speci�ed in RFC

2460. Using these headers introduces some security vulnerabilities: routing header

is one of these headers with a value of 43 as shown in Table 2.2. This value is

used to list one or more intermediate nodes which will be visited on its way to

destination [5, 7]. This header has two types of routing headers: type 0 (RH0)

for source routing indication and type 2 for mobile IPv6. Multiple addresses of

the intermediate nodes could be found in a single RH0. As a result of this, each

destination of any packet will be replaced passing any network layer hop which

processes the router header [20]. Possibly, a packet with intermediate node will be

dealt with as a source and it is considered as a security vulnerability.

On the other hand, when packet �ltering can not process routing headers, an

attacker can easily do one of the following: generate malicious packet with

routing header containing a victim address as covert channel, publicly access

addresses bypassing �rewall which basically does not check an existing routing

header extension, build a packet with a multiple processing possibility between

two RH0 within the packet, and use the ampli�cation ability of the packet

between two remote routers [50]. This will apparently lead to network tra�c

congestion which is caused by a legitimate packet [3, 20]. Abley et al. [88]

discussed that no legitimate packet will be transferred in this way and it is

unlikely to prove the possibility of the exploitation of RH0 in IPv6 packet

transmission.

2.5.5 ICMPv6 Threats and Multicast

Internet Control Message Protocol (ICMP) in IPv4 could be blocked mostly to

improve security and eliminate threats. It is an optional component within IPv4
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and all ICMP messages should be �ltered. However, in IPv6, ICMPv6 as shown

in Figure 2.5 is an integral part and it can not be blocked [2, 87]. Routers and

hosts depend on this protocol; it performs the fault-isolation function in order to

handle various error messages such as destination unreachable, packet too big,

time exceeded, source quench, redirect and parameter problems [9, 89]. Another

set of message exchange techniques used in ICMPv6 by routers and hosts are

called Multicast Listener Discovery (MLD) and Neighbour Discovery (ND)

Protocol. MLD mechanism enables routers to learn about other multicast

addresses on the same link, which ultimately leads to security threats and enable

attackers to easily gain access into the addresses. This action can be performed

by sending forge packets to routers, then in response the router will send back a

list of addresses [90, 91].

Figure 2.5: ICMPv6 Header Format [3]

Despite the fact that ICMPv6 must be fully implemented by every node

according to RFC 4443 [5, 92], it can not do anything if the protocol itself

commits an error. It reports error encountered in processing packets in addition

to other inter-layer functions such as diagnostics. It produces two types of

messages: error noti�cation and information noti�cation messages using two

main elements in the protocol: Type and Code �elds to distinguish between

services [9, 26, 81]. Possible security attacks are likely to occur through these two

�elds such as Denial of Service (DoS), Man-in-the-Middle (MITM), and spoo�ng

attacks [26, 49, 93]. Each of these messages carries a next header value of 58 as

shown in Table 2.2. The Type value for message speci�cation in a range of 1-127

is set for error messages, and 128-255 for noti�cation messages.
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The arbitrary content of the ICMPv6 payload may carry di�erent type of

data according to these messages and the operating system types. However,

sometimes ICMPv6 packets carry insigni�cant or null values that indicate

existence of potential covert channel [57, 71, 84].

2.5.6 Auto con�guration and Neighbour Discovery Threats

Neighbour Discovery Protocol is based on ICMPv6 type messages [94, 95, 96] and

provides a number of functions that are discussed later:

• Type 133, Router Solicitation (RS).

• Type 134, Router Advertisement (RA).

• Type 135, Neighbour Solicitation (NS).

• Type 136, Neighbour Advertisement (NA).

• Type 137, Redirect message.

IPv6 has two types of auto-con�guration: stateful and stateless, stateless

auto-con�guration has several mechanisms to obtain an IPv6 address: First,

generating an interface ID of IPv6 address from the 48 bits of the node's MAC

address by using EUI-64 mechanism; second, using privacy extension address

mechanism by generating the interface ID randomly; third, generating the

interface ID using Cryptographically Generated Address (CGA) method [40, 85].

Stateful auto-con�guration is used through DHCPv6, which should either

support or provide general information (i.e. gateway DNS server, etc.), then only

addresses should be auto-con�gured or DHCP should provide all details

including address information [20, 57]. Neighbour Discovery Protocol (NDP) is

an important part in IPv6 which is used to discover any neighbour in LAN

network. Any live node in IPv6 network can perform this function. RFC 3756

[96] has speci�ed some threats and vulnerabilities on NDP [96]. This protocol

[63, 97] has a vital status within IPv6 functionalities and deals with three types

of DoS threats [5, 20, 57].
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The �rst type of DoS threats are:

• Non router/routing threats.

• Exploited messages including NS Neighbour Solicitation/NA Neighbour

Advertisement spoo�ng.

• Neighbour Unreachability Detection Failure (NUDF) and Duplicate Address

Detection (DAD).

The second type of DoS threats are:

• Router and routing in such form of malicious to last hop router.

• Default router is 'down or killed'; good router is considered as a 'bad' router.

• Redirect message spoo�ng, bogus on link pre�x and parameter spoo�ng.

The third type of DoS threats are:

• The remotely exploitable attacks which include reply attack and NDP DoS

attacks.

2.5.7 Fragmentation Threats

In IPv6 the source node is responsible of packet fragmentation and not the

destination node. The Minimum Transfer Unit (MTU) should not be less than

1280 octets; thus, the intermediate nodes can not handle this in IPv4 [20, 51].

RFC 2460 rules [92] state that any packet less than 1280 octets will be discarded.

Attackers can misuse this chance to achieve the DoS attack against the victims

hosts [34]. This type of threat can be performed by exploiting datagrams break

down to overbear the target networks, or transmitting fake UDP or ICMP

packets [49].
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2.5.8 IPsec Security Issues

The enhancement of IPsec in IPv6 is seen in providing three functions:

Authentication Header (AH), Encapsulation Security Payload (ESP), and the

Internet Key Exchange (IKE). This enhancement is used as a plug-in the IPsec

framework [84]. This protocol is standard, strong and has extensive mechanisms

through providing security for upper layers. It combines three elements to

achieve this target: secret key protect service, security associate and mobile

secret key management [12, 98]. IPsec is not able to provide secure support

between applications, particularly in enterprise networks [98]. Security issues

arise with this protocol because it does not solve all security issues such as DoS

and Distributed Denial of Service (DDoS) through password and secret key

attacks. In transport and tunnelling mode, a secret key exchange is needed,

where both sender and receiver are vulnerable due to unawareness of what has

been transmitted [95, 98].

2.5.9 Mobile IP Security Issues

Mobility is complicated due to complex design of IPv6. There is a security

concern about the normal operations in mobile IPv6 such as authentication and

authorization of the mobile host in a foreign network [95, 98]. The option header

is used in mobility to store the 'original' address of a mobile host, meanwhile it

uses the mobile address in the IPv6 header, which eventually allows spoo�ng

attack. This is because providing false information to the legitimate target on

the home agent diverts legitimate tra�c. This drawback occurs when mobility is

not used by default in normal networking, therefore there is no previous solution

to mitigate this [95].

2.6 Security Threats Posed by Covert Channel

The primarily objectives of covert communication channels are summarised below:

• Theft of proprietary information in a stealthy way. This will lead to violate

security policies of an organization or government through leaking sensitive
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and intellectual property. This occurs to existing portable and non-portable

storage media in or out of an organizational computer network. It will result

in an increase in hidden network transmission activity and cause serious harm

[37, 99].

• Delivery of malicious executable program code through the mechanism of

installed covert channel with a system level privileges on a legitimate target.

This will cause DoS against wide range of systems [5, 84].

• Signalling/Control mechanism for executable program code (Botnet). This

type of program consists of distributed network computers with malicious

codes established on all members of Botnet. Once activation time is due a

signal or a control channel mechanism will activate the remote system which

called "robot". Examples include Tribunal Flood Network (TFN) and Loki

[100, 101].

The impact of data loss or misuse of network resources is signi�cant through

covert channels and other malware or physical theft. The loss of corporate secrets

and client personal information, as well as other types of saved corporate data can

be devastating to an organization �nancially and legally, especially when client

trust is lost [53].

2.6.1 IPv6 Covert Channels Characteristics

The protocol dimension and �elds values in network simulation language or

PCAP data according to RFC 2460 [9] are shown in Figure 2.6. Covert channels

exist in each �led through modifying its value. These channels can be classi�ed

to two taxonomy types: variable and predictable, according to the speci�cations

given in RFCs [41, 78, 84]. A detectable hidden channel �ags an existing

variation. Meanwhile, if there is a variable channel, signal is given for indicating

a limited modi�cation [26]. Covert channels' characteristic in IPv6 are explained

in Table 2.3.
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Figure 2.6: IPv6 header �eld values in pcap data

Table 2.3: Identi�ed Covert Channels in IPV6 Header Fields [5]

ID Field Covert Channel Bandwidth
1 Tra�c Class Set a false Tra�c Class 8 bits/packet

2 Flow Label Set a false Flow Label 20 bits/packet

3 Paylaod Length Increase value to insert extra data Various

4 Next Header
Set a valid value to add
an extra extension header

Various

5 Hop limit Increase/decrease value ∼1 bit/packet

6 Source Address Set a false address 16 bits/packet

7 ICMPV6_Type Set false Type value 8 bits/packet

8 UCMPv6_Code Set false Code value 8 bits/packet

Figure 2.6 is a screen shot of IPv6 PCAP data captured by Wireshark

application. The headers are explained as follows:

1. Tra�c Class: A false set tra�c class �eld value [49] as the bandwidth is 8

bits per packet indicates that the �eld is modi�ed and used as covert channel.

This allows an intermediate node to change values when forwarding packets.

Reusing this �eld as covert channel will create noise as the attacker should

be aware about this issue. An error correction mechanism must be created

to reduce the available bandwidth [84].

2. Flow Label: This �eld can be fabricated through sending 20 bits of data
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per packet by the attacker. The authentic �ow labels are pseudo-randomly

and uniformly selected numbers, ranging from 1 to 0XFFFFF. The receiver

should preserve the same condition once this fake �ow label is created [5, 7].

3. Payload Length: Extra data can be appended in the end of payload packet

and its value can be increased. Its bandwidth depends on the original size

of the packet, but the modi�ed packet cannot be larger than 65,535 bytes.

The Maximum Transfer Unit (MTU) should not be exceeded when tra�c is

modi�ed, because the intermediate nodes of IPv6 do not fragment packets.

If exceeded, the packet will be dropped [5, 77]. If encryption is used in

payload packets without authentication, stego-techniques [25] are suitable to

be used. If authentication is used, extra steps will be needed by the attacker

to maintain the covertness of the channel because the payload length will be

included in the AH Integrity Check Value (ICV).

4. Extension Header: These extension headers are not examined or

processed by the intermediate nodes in a communication path. An attacker

can change the next header content to insert a whole extension header

covertly. Accordingly, the payload needs to be increased by the attacker.

5. Hop Limit: Setting an initial hop limit value "h" can manipulate the hop

limit value of sub sequence packets. By checking the variation of the hop

limit values of packet traversing the attacker, covert massage location can

be interpreted.

6. Source Address: An attacker can forge the source address �eld to send 16

bytes of hidden data. However, this type of misusing the �eld will be detected

quickly due to the existing mechanism of spoo�ng detection. Consequently,

packets will be discarded.

7. Hop-by-Hop Option Header: Every transmitted packet needs to be

checked by every node. Hop-by-hop options header carries optional

information such as option types, de�ned and unde�ned, and its variable

length. Furthermore, the extension header o�ers the opportunity for high

bandwidth covert channels [17, 25].
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Figure 2.7: Covert Channels in Routing Extension Header [4]

8. Routing Header: Any packet while transmitting should pass by a list of

intermediate nodes heading to its destination. There are two types of routing

headers: Type 0 (RH0) as shown in Figure 2.7, it is used for source routing

indication and type 2 as shown in Table 2.4 is used for mobile IPv6. An

attacker can easily generate malicious packet with routing header containing

a victim address as covert channel [95].

Table 2.4: Possible Covert Channels in Routing Header [10]

ID Field Covert Channel Bandwidth
1 Routing Type: 0 Reserved Hidden Data 4 bytes/packet

2 Routing Type: 0 Set one or more false addresses ∼2048 bytes/packet

The protocol speci�cations [84] clarify that option type �eld is an octet

structure. This type has three sub-�elds: the �rst two bits specify which action

should be taken once an unrecognised option is received, the next bit determines

the possibility of the option data which can changed and can hold a covert attack

with the Jumbo-gram size between 0-65,535 bytes, and the last �ve bits represent

the option number when the entire octet is used.

Figure 2.8: Identi�ed storage Covert Channels in the Hop-by-Hop Options
Extension Headers [5]
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Table 2.5: Format of Covert Channel in the Hop-by-Hop Options Extension
Headers [11]

ID Field Covert Channel Bandwidth

a
Option Type:
Jumbogram

Insert or create
a jumbogram

Various

b
Option Type:
Router Alert

Set a false
router alert

2 bytes/packet

c Option Type: PadN
Set a false

padding value
Up to 256 bytes/packet

d Option Type: Unknown
Fabricate one
or more options

Up to 2038 bytes/packets

2.6.2 ICMPv6 Covert Channels Characteristics

In this section, covert channel as security vulnerability in ICMPv6 will be analysed.

ICMPv6 as shown in Figure 2.9 is a vital component and an integral part of IPv6

communication process and must be fully implemented by every IPv6 node. The

command ping6 was used to see the captured data in various formats. A dissected

format of integral ICMPv6 in IPv6 is shown in Figure 2.9. The encoded format of

these messages from a performed packet inspection is shown in Figure 2.10. The

decoded PCAP data format of the same message is shown in Figure 2.11.
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Figure 2.9: Integral ICMPv6 packet header format in IPv6 [2]

ICMPv6 creates two types of messages: Information Noti�cation and Error

Noti�cation using �elds Type and Code to di�erentiate services, which can be

manipulate for Denial of Service (DoS) and spoo�ng attacks [2, 90].

Figure 2.10: The encoded ICMPv6 message format in JPCAP

Figure 2.11 shows the ICMPv6 header message format. These messages have

a next header value of 58 which includes the following Type values for message

speci�cation: the range 1-127 for error messages and 128-255 for information

messages. The Internet Assigned Number Authority (IANA) list of ICMPv6 type

numbers gives more details [102, 103].

An ICMPv6 message contains: Type �eld as shown in Figure 2.11 with one byte

and the Code is one byte as well, and the Checksum �eld designated (2 bytes).

The payload has a variable size ICMPv6 error messages which could partially

contain the original ICMPv6 header [87, 89]. This is vulnerable to covert channel
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Figure 2.11: The decoded ICMPv6 message format

Table 2.6: ICMPv6 Type network permitted messages [2]

Message Type Value Sequence

Unallocated Error Messages
5-99,
102-126

Unallocated Information Messages
155-199,
202-254

Experimental Messages 100,101,200,201
Extension Type Numbers 127,255

use therefore the source and destination addresses of an ICMPv6 packet should

be checked. Messages types 130, 131, 132, 143 for Multicast Listener Discovery

must have link-local source addresses otherwise should be dropped. IANA has

categorized ICMPv6 messages into two categories: Blocked and Permitted, see

Table 2.6 for the permitted and Table 2.7 for the blocked messages [9].

Finally, Sohn et al. and Ulrich [12, 60] indicated that the unorganised content of

the payload data in ICMPv6 may have di�erent data type based on the messages

types mentioned above. Additionally, the OS used also has its potential role.

However, sometimes ICMPv6 packet transfers insigni�cant values or null values

which can be an indication of existence of potential covert channels [37, 97].

Table 2.7: ICMPv6 Network dropped messages [2]

Message Type Value Sequence
Destination Unreachable Messages 1
Packet Too Big Messages 2
Time Exceeded Messages 3
Parameter Problem Messages 4
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2.7 The Need for New Detection Approach

Against IPv6 Attacks

An intrusion detection system (IDS) monitors network tra�c, looking for

suspicious activity that could represent an attack or unauthorized access. They

most commonly detect known threats based on de�ned rules or behavioural

analysis through base-lining the network. A sophisticated attacker can bypass

these techniques, so the need for more intelligent intrusion detection is increasing

by the day. Researchers are attempting to apply machine learning techniques to

this area [104].

Security management systems are developing continuously to protect networks

and computers in all business sites physically and virtually. Current IDSs inspect

all inbound and outbound network. However, one of the major challenges for any

IDS or Intrusion Prevention System (IPS) is the detection of suspicious anomalies

in fast network tra�c. This is due to the variation of the pattern categories

and because of the active threats such as Distributed Denial of Service (DDoS)

attacks. One of the main objectives of a typical IDS or IPS system is to protect

the three main essential elements of information security: Data Con�dentiality,

Data Integrity, and Data Availability [105].

Traditional applications can not fully protect networks and systems from

increasingly sophisticated attacks like covert channels as well as DoS, speci�cally

in IPv6 [106, 107]. Moreover, most of these traditional systems have been built

based on such techniques su�ering from high false positive and high false

negative detection rates, in addition to the lack of continuously adapting to

changing malicious behaviours in the past decade. Several Machine Learning

(ML) techniques have been applied to the problem of intrusion detection in

TCP/IPv4 in order to improve the accuracy and adaptability of detection. These

techniques are often used to keep the attack knowledge bases up-to-date and

comprehensive [107].

Wendzel and Zander et al. [74] investigated more than 109 covert channel

techniques. They suggested the reduction of all techniques into 11 di�erent

patterns stating that 69.7% could be categorized into four di�erent patterns due

to the similarities of the attempted approaches. Wendzel et al. stated that using
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tra�c normalization against storage covert channel, as a technique to remove the

ambiguities and breaking the policy in network tra�c, could have side e�ects

because these techniques are not e�ective any more [108]. Lewandowski et al.

[17] used aggressive normalization to present a network-aware active warden

against covert channels without creating an audit source of the attack instances.

The research community is aware about covert channel issue and considers it

as a challenging task [109]. Due to the large amount of existing covert channel

techniques, it is impossible to counter all covert channels in practise. Hence, in

parallel to the amount of new developed techniques needed to tackle and counter

such network security threats, implementing new approaches and techniques are

necessary to mitigate some of these covert channels. This necessity is an aftermath

of the incomplete implementation of IPv6.

2.8 State of the Art of Machine Learning

Application in Intrusion Detection Systems

Machine Learning (ML), also known as Computational Learning Theory, is to

understand the essence and principles of learning as a computational process that

merges tools from computer science and statistics [110, 111]. It is a powerful tool

used in search engines, medical diagnostics, face recognition, marketing, image

recognition, tra�c �ow, and IP classi�cation [112].

Researchers have been using two types of machine learning classi�ers, single

and hybrid, to promote anomaly intrusion systems [106, 113, 114, 115]. In this

section, an overview about the state of the art of ML techniques implementation

in IDS is highlighted.

(ML) algorithms optimize a performance criterion using sample data or past

experience [111]. ML algorithms used in cryptography to develop algorithms for

the eavesdropper [105], as its techniques can be used for boosting through

creating a mechanism to extract an ultimate power out of a given algorithm.

Recent studies argued that through signi�cant work the impact of ML algorithms

can have the ability to alter their input representation automatically using kernel

functions, which are learned from data [21, 74, 105]. Therefore, a clear
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understanding about the state of the art of ML techniques in Intrusion Detection

Systems IDS is necessary.

In the early 1980's, James Anderson suggested the concept of intrusion

detection in his seminal paper [116]. He presented a model to classify threats

which could develop a security monitoring surveillance system. This model was

based on anomaly detection in user behaviour. Later in 1986, Anderson

presented several commercial IDS models based on statistics such as Markov

chains, time-series, etc. [117]. Stanford Research Institute (SRI) added a few

functions to the latest detection approach through monitoring user behaviour

and detecting suspicious events [117]. Samha and Haystack [118] proposed

another statistical anomaly-based IDS which targeted user and group based

anomaly strategies. Forrest et al. [106] suggested an analogy between the

immune system of a human and an intrusion detection system to analyse a

program system called "sequences" in order to build a normal pro�le.

Debra Anderson et al. [119] and Cabrera et al. [120] suggested the same

statistical methods for intrusion detection, both having used the same methods but

deployed them in di�erent way. Anderson et al.[119] suggested a comprehensive

technique for intrusion detection system to perform real-time monitoring of any

user on multiple on-line targeted computer. Meanwhile, the approach that Cabrera

et al. suggested was a statistical tra�c modelling to detect new attacks against

computer networks.

Valdes et al. [121] suggested a developed version of an anomaly based IDS

deploying Bayesian network to detect intrusion on tra�c bursts. Kruegel et al.

[117] suggested a novel multi-sensory fusion approached using Bayesian classi�er in

order to classify and suppress false alarm. Essentially, this classi�er was result of an

aggregated group of sensors to produce single alarm. Shyu et la [117] proposed an

IDS anomaly based detection using principal components analysis (PCA), which

was e�ective enough to reduce dimensionality of audited data.

Yeung et al. [122] implemented hidden Markov model in an anomaly based

detection method to compute the possible likelihood of an observed sequence by

using forward or backward algorithm to identify the anomalous.

Dickerson et al. [123] suggested a development of the Fuzzy Intrusion

Recognition Engine (FIRE) using fuzzy logic in such a way that it generates the
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fuzzy sets of data for each feature then use them to detect network attacks. Salih

et al. [21] suggested a new hybrid approach using fuzzy logic and genetic

algorithm to detect network storage covert channels in IPv6. This process

analysed IPv6 and ICMPv6 header �elds values and explains the viability of

transferring strange instances which consequently indicate abnormal behaviours

and possible covert channels.

Wenke and Xiang [124] proposed theoretical measures used in anomaly

detection implementing examples of theoretic measures such as entropy,

conditional entropy, information gain and information cost for anomaly

detection. Ryan et al. [125] suggested a novel framework called Neural Network

Intrusion Detector (NNID) using arti�cial neural network with supervised

learning. The process was based on back propagation neural network; meanwhile,

the supervised learning was trained in tasks to identify each instance. Most of

anomaly detection methods with unsupervised features can create appropriate

labels for all given instances automatically [79, 114, 121, 126, 127].

John and Langley [128] proposed a method to analyse the relationship

between independent and dependent instances using conditional probability.

They implemented Naïve Bayes classi�er (NBC), based on a strong independence

assumption with a quite simple structure [113]. Amor et al. [129] proved that

Naïve Bayes classi�ers o�er more reasonable results, even with a simple

structure. Strayer et al. [130] introduced a detection approach based on network

behaviour and machine learning. They deployed in their framework several

machine learning approaches: C4.5 decision tree, Naïve Bayes (NB) and Bayesian

network classi�er. These ML approaches were used in order to classify Internet

Relay Chat (IRC) tra�c �ows as malicious or normal. The results were valued

but the botnet still needed more development to include other types of attacks

[131].

Experiments show that NB is very competent in classi�cation tasks, but not so

good in classifying User-to-Root (U2R) and Remote-to-Local (R2L) based attacks

correctly. Apart from the network attacks against TCP/IP suite protocol, most

studies have not covered covert channels attacks and security implications in IPv6

[21, 74, 113]. New attempts are needed to tackle and investigate covert channels

using ML techniques in a integrated hybrid system in order to overcome most of
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the limitations [21, 132].

2.9 Machine Learning Techniques

Machine Learning is used generally to �nd patterns in sample datasets through

input of instances of individual sample of dataset with similar features. Hence,

the output of ML will be the patterns and rules that ML learns from the sample

dataset depending on the approach implemented. ML has a few types of techniques

such as classi�cation, clustering, association, numeric prediction [133]. However,

it mainly handles regression and classi�cation implementing multiple dependent

and independent variables. In their statistical methods, ML uses various types of

algorithms.

The most used ML techniques to classify intrusive and non-intrusive

behaviours are shown in Figure 2.12. Machine learning is a particular branch of

arti�cial intelligence that acquires knowledge from training data based on

previously known facts. Machine learning mainly focuses on prediction and its

techniques are classi�ed into three broad categories [106, 134, 135]:

• Supervised Learning: It is known as classi�cation. In supervised learning

data, instances are labelled in the training phase which is needed to create

testing data [134].

• Unsupervised Learning: This process deals with unlabelled instance of

data. A prominent way for this learning technique is clustering. [134].

• Reinforcement Learning: In reinforcement learning process computer

interacts with an environment to achieve a certain objective. A

reinforcement approach can ask a user such as a domain expert to label an

instance, which may be from a set of unlabelled instances [134].

2.9.1 Naïve Bayes Algorithm (NB)

NB was designed to be used for classi�cation [129, 136]. It is a robust algorithm

and deals with complex data, both symbolic and numeric. It is known to be
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Figure 2.12: Machine Learning Techniques Classi�cation [6]

reliable, fast, and easy to use, and interpret needs to be run only once. Naïve

Bayes is speci�cally appropriate when dealing with the dimensionality of the high

independent space (i.e., number of input variables). Naïve Bayes can perform more

sophisticated classi�cation along with other methods which models conditional

distributions of the inputs however, other data mining techniques exist and perform

di�erently to what NB does [137, 138].

NB classi�ers consider any attribute of value given to a class as an independent

value. This is called class-conditional independence which makes the computation

very simple, elegant, and robustness [26, 55].

Naïve Bayes is a simple probabilistic classi�er applying Bayes' theorem.This is

accompanied with a level of powerful independence assumptions called conditional

status of class independence, because it assumes any attribute's value of a class

could be a�ected independently. NB is one of the fastest learning techniques and

is able to check and examine almost all inputs during training [139, 140]. formula
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2.1 explains the NB theorem, the standard Naïve Bayesian rule is:

P (c | x) =
P (x | c)P (c)

P (x)
(2.1)

Where P (c|x) = the posterior probability of class (target) given predictor

(attribute), and P (c) = is the prior probability of class. P (x|c) = is the

likelihood which is the probability of predictor given class and P (x) = the prior

probability of predictor.

The probability is calculated according to Bayes' rule as shown in formula 2.1.

More explanations about data mining techniques and Naïve Theorem [133, 141]

can be read.

2.9.2 Multinomial Naïve Bayes (MNB)

Multinomial Naïve Bayes implements the Naïve Bayes algorithm for

multi-nomially distributed data. It is one of the two classic naive Bayes variants

which can be used in text classi�cation. Naïve Bayes classi�er uses conditional

independence of each of the features in the model, while Multinomial Naïve

Bayes classi�er is a speci�c instance of a Naïve Bayes classi�er which uses a

multinomial distribution for each of the features [112, 142].

Vectors can be used to set parameters of the distribution θy = (θy1, . . . , θyn) for

each class y, where n is the number of features and θyi is the conditional probability

P (xi | y) of feature i appearing in a sample belonging to class y. The parameter θ̂y
can be estimated by a smoothing version of maximum likelihood such as relative

frequency counting:

θ̂yi =
Nyi + α

Ny + αn
(2.2)

where Nyi =
∑

x∈T X1 is the times that the feature i appears in the class

sample y in the training dataset T , and Ny =
|T |∑
i=1

Nyi is the total count of all

features for class y. Then, if the smoothing prior is used so α ≥ 1 will account

the absent features in the learning instances and prevent zero probability in
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further computations. If α = 1 was set it will be called Laplace smoothing. If

α < 1 is used, it will be called Lidstone smoothing [135, 139]. Simply, in order to

train Naïve Bayes for n-dimensional data with k classes, it needs to estimate

P (Xi|Cj)P (Xi|Cj) for each 1 ≤ i ≤ n, 1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ j ≤ k.

We can assume any probability distribution for any pair (i, j)(i, j). It is

better to assume variant attributes in the case P (Xi|Cj1)P (Xi|Cj1) and

continuous for P (Xi|Cj2)P (Xi|Cj2). The multinomial distribution normally

requires integer feature counts. Multinomial Naïve Bayes assumes multinomial

distribution for all the pairs, which is a reasonable assumption in some cases

[111, 138].

2.9.3 Decision Trees C4.5 and Feature Selection

Decision trees (DT) are among the well known machine learning techniques.

C4.5 is a single classi�er technique used to create a classi�er for predicting the

value of a target class for an unknown test instance, based on several already

known instances. Through a sequence of decisions, a predicted instance is being

classi�ed by a decision tree [143]. A decision tree is a k-ary tree where each of

the internal nodes speci�es a test on some attributes from the input feature set

used to represent the data. The basic algorithm for decision tree induction is the

greedy algorithm which constructs decision tree in some sort of top-down

recursive divide-and-conquer manner [136]. Decision tree is very popular as a

single classi�er because of its simplicity and easy implementation [134]. There

are two types of decision trees: classi�cation tree, with a range of symbolic class

labels, and regression tree, with a range of numerically valued class labels

[134, 143]. In decision trees C4.5, two essential phases should be ensured. First,

based on a given training set, a decision tree is built which will consist of

selecting the appropriate test attribute for each decision node and de�ning the

class labelling for each leaf [134]. Second, in order to classify a new instance, the

classi�cation process starts from the root of the decision tree, then test an

attribute speci�ed by this node. The result of this test allows to move down the
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tree branch relative to the attribute value of the given instance. This process will

be repeated until a leaf is encountered. The instance will be classi�ed in the

same class as the one characterizing the reached leaf.

Quinlan has developed ID3 and C4.5 algorithms in order to ensure the

construction of decision trees and their use for classi�cation tasks [144]. Those

are among the most popular ones. There are also some other types of decision

trees [134, 143]. Feature selection is an attribute reduction process di�erent from

feature extraction, which ranks the existing attributes according to their

predictive signi�cance. [138, 145].

In network intrusion detection process feature extraction is processed by

using advanced technique to ex-�ltrate targeted features such as �elds and their

values, from the captured packets. Some applications of feature extraction are

latent semantic analysis, data compression, data decomposition and projection,

and pattern recognition [6]. Feature extraction can also be used to enhance the

speed and e�ectiveness of supervised learning. Feature extraction can be used to

extract the themes of a document collection, where documents are represented by

a set of key words and their frequencies. Each theme (feature) is represented by a

combination of keywords. The documents in the collection can then be expressed

in terms of the discovered theme. [110, 146]. The accuracy of a classi�cation

model depends directly on the set of features provided in the training data.

There are other various ML techniques used in network anomaly detection

such as Genetic algorithm [21, 126, 134] and Support Vector Machine (SVM)

[6, 112, 147] that have optimal results in some cases. However, Multinomial Naïve

Bayes is more suitable for text based classi�cation.

2.10 Summary

In this chapter, a brief comparison between IPv4 and IPv6 has been presented.

The security issues of the IPv6 also have been explained. The occurrences of

various security attacks exploiting the design vulnerabilities have also been

discussed. Most of the IPv6 security issues have been addressed. The security

status of IPv6 protocol is quite unstable and exploitable according to the

previous facts analysis and technical investigation. IPv6 has not solved all IPv4
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inherited security vulnerabilities. There are still many ongoing processes to

mitigate these security vulnerabilities, running focusing on the recent threat

incidents against legitimate targets in the business and o�cial networks.

Covert channel is one of the embedded or encrypted techniques used in data

hiding to perform attacks or in/ex�ltrate classi�ed information from victims'

vulnerable systems. Exploiting header �elds and payloads of IPv6 is not obvious

due to the complexity of the protocol design and its incomplete implementation

on current operating systems.Few researchers have successfully analysed and

investigated the behavioural storage covert channel in terms of security

vulnerabilities to eliminate the violations of privacy and network security. The

state of the art in covert channel detection frameworks has been discussed.

Di�erent ML techniques have been highlighted in terms of their implementations

in IDS and network security systems. Furthermore, an overview about the state

of the art in ML application in IDS has been discussed as well. The

unavailability of similar approach to what is suggested in this thesis has been

elaborated and other di�erent approaches in the domain problem have been

discussed. ML has been used to tackle some issues of network security, whereas,

hybrid approaches to tackling and eliminating hidden communication attacks

have not been recorded yet in IPv6.
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Proposed Detection Framework

3.1 Introduction

One of the most signi�cant limitations in IPv4 is the address depletion due to

the massive growth of Internet users in the past decade [2, 3]. In addition to this

fact, there are other security vulnerabilities as mentioned in Chapter 2. Basically,

the security threats and vulnerabilities in IPv4 and IPv6 are the aftermath of

restrictions parameters limitations of its design infrastructure; in other words,

the inherited weaknesses in TCP/IPv4 protocol design led to less development

and limited modi�cations in IPv6 [17, 26]. Covert channel phenomena are caused

by two categories: design oversights and inherent weaknesses from the previous

system, as discussed in Sections 1.1 and 2.4. Most researchers [11, 26, 74] agreed

and explained that covert channels should be identi�ed and con�rmed prior to

initiate any detection or prevention process. When a covert channel has been

identi�ed, the basic countermeasures will be taken into account. Despite the fact

that previous researchers have identi�ed them in their approaches, the

continuous changing of the protocol �elds in the Request for Comments (RFCs)

implementation has produced nearly more than 35 RFCs and standards until

preparing this thesis (for a list of investigated RFCs see Appendix A.2).

In order to obtain robust and constant results from the research domain and

the suggested hypothesis, a controlled network environment with simulation

network design needs to be created. This will be explained in the experiment
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part in Section 4.2. Using covert communication is considered a sensitive subject

in security threats against IPv4 and IPv6. The existing frameworks

[20, 30, 148, 149] have categorized abnormal and unknown attack detection

methods into three main categories:

• Signature based detection: is done through building and updating a

signature database, informing the network administrator about any

recognized signatures.

• Protocol based detection: focuses on protocol anomalies and violations of

privacy and security policies; the operator will be noti�ed.

• Behavioural based detection: is done through creating a behaviour user

pro�le and using statistical method to detect if the data stream has a

suspicious status.

In this thesis, a suggested security system which handles large data �ow

volume will be presented and discussed. Detecting suspicious and hidden data

carrier using the new advanced technology against legitimate targets is a vital

demand. However, the current security system demands throughout building the

conceptual framework have been considered. New approaches are needed to

tackle and eliminate such advanced security threats against IPv6. A novel

Network Intelligent Heuristic Algorithm (NIHA) is suggested into a security

system to detect and classify covert channels. This approach has been hybridized

with an enhanced Multinomial Naïve Bayes classi�er in order to improve

detection performance, giving a higher accuracy positive rate and a low false

negative rate.

The proposed framework consists of �ve modules as follows:

1. Capturing raw data module.

2. Packet �ltering module.

3. Data pre-processing module.

4. Detection and classi�cation module (Covert channel analyser).
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5. Issue verdict module.

Hierarchically, full details of all modules can be organized and discussed in

three integrated phases:

• Phase One: provides an overview of each module and its functionality

starting from Section 3.5. This part gives the basic details of the approach

through discussing details about each stage accordingly with some examples.

• Phase Two: provides an explanation of building the classi�er module and

its algorithms, starting from Section 3.6.

• Phase Three: provides in-depth details about the implementation of all

modules through creation of the overall algorithms and its engines for each

stage, starting from Section 3.7. This part provides detailed algorithmic

expression of each stage in an interrelated order with explicit examples for

each attribute.

This chapter will be organized as follows: Section 3.2 explains the main

scenario; Section 3.3 discusses the probabilistic model; Section 3.4 discusses the

main issues in data aggregation process and data collection methods; Section 3.5

explains the stages of the new suggested model; Section 3.6 discusses building the

classi�er; Section 3.7 presents the implementation of the new algorithm

"HeuBNet6", its modes and detection engines. Finally, Section 3.8 summarizes

the chapter.

3.2 The Main Scenario

In consideration of the di�erent attacks and vulnerabilities mentioned in the

previous chapter, a further step was taken to identify main scenario used for the

overall design which is the de-facto standard model for covert channel

communication. It is the classical prisoners' problem [26, 150]. Two people have

been thrown into prison and intend to escape. In order to let this happen, they

should agree to a plan and need to communicate. However, all their

communication messages are monitored by the warden. To extend this scenario
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Figure 3.1: The prisoners' problem with communication monitored by warden [7]

as shown in Figure 3.1, the two prisoners called Bob and Alice are two agents

who wish to communicate covertly. Exploiting the existing communication path

corresponds to two random communicating processes: the sender and the

receiver. Wendy is a warden located somewhere on the communication path

hence monitoring all possible messages exchanged by Alice and Bob.

The dotted double arrows indicate that Alice and Bob could either act as

sender and receiver, or could modify messages in transit. Wendy thinks that these

situations are indistinguishable. Meanwhile, she must approve all communication

messages between both. In order that plan to succeed they need to embed some

details in the protocol header and exploit the vulnerable design format such as

Tra�c class, �ow label, and the unused spaces along with the reserved �elds and

pass it to each other.

Wendy has few options. As an active warden, she can modify the network

packets between them which is not our case here. As a passive warden, she should

monitor the communication messages, analyse the attacks in the tra�c, detect the

anomaly behaviour behind the header �elds of the protocol, create instances of

each attack and log them in order to detect future unknown similar attacks. This

is to mitigate the security vulnerabilities.

In the suggested model, it is assumed that the prisoners are communicating

together in an unreliable environment with a passive warden. Some packets will

be lost or duplicated. Hence, in our hypothesis TCP protocol will be partially

included due to the minimization of the domain problem and research question

criteria. The covert channels need to be:

• Indistinguishable: Wendy (a passive warden) will not be able to detect the
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existence of the data hidden in the packets sent by Bob from Alice.

• Reliable: Alice needs some indications or signs to state that Bob's packets

have arrived.

3.3 Probabilistic Approach

Deep packet inspection through layers 2 to 7 in Open System Interconnection (OSI)

reference model o�ered a promising level for new methods to classify network

tra�c. The approach depends on signature based comparison of packet �ows,

heuristic, statistical, or anomaly-based techniques. The motivation was to develop

packet data inspection in the same application layer that performs the �ltering

instead of using di�erent systems to achieve a faster detection process. Apparently,

this development has solved some issues and left other new unsolved issues behind,

because it considered many complex tasks in order to be e�ectively successful.

Lewandowski [11] implemented aggressive normalization in his research,

where audit data and the original attack instances were normalized in such a way

when attack instances were detected, their features and attributes were

normalized to the idle value (i.e. from 0 − FFFFF ). Active warden approach

has a few limitations which will be discussed in Section 5.6. Conversely, in this

thesis, we suggest a hybrid active warden presented as a multi-threaded process

for the classi�cation model using NIHA. Furthermore, enhanced Multinomial

Naïve Bayes Algorithm application is suggested. This is a novel approach as

previously no attempt has been referenced to storage covert channel detection in

IPv6 [46, 132]. Potentially, new approaches are needed to detect storage covert

channels in IPv6, particularly using a machine learning technique such as MNB

in response to the novel vulnerabilities arising every day. Using supervised

machine learning techniques to tackle such anomaly in IPv6 will add a new route

of cutting edge solutions for security systems. Most of the existing methods

[5, 17, 20, 74] have the following drawbacks:

• Using complicated algorithms to detect encrypted covert channels.

• Creating tra�c congestion while processing.
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• Time consuming in on-line detection.

• Few parameters are considered in dealing with covert channels.

According to previous investigations in Sections 2.5 and 2.6 the following �elds'

values have the highest indication tuples to identify IPv6 and ICMPv6 covert

channel attacks: Tra�c Class, Flow Label, Hop Limit, Payload Length, Next

Header, Source Address, ICMPv6 Type and Code.

These types of covert channels could be discovered using probabilistic approach

for the occurrence of covert channels in the ip tuples. A probabilistic model was

used to distinguish between scanning sources and normal users [33]. When it is

operated, it gives a particular class membership. The probabilistic approach in

modelling network security systems is e�ective and �exible to capture relevant

aspects of the problem domain, and �exibility can be achieved by allowing models

to have su�cient parameters [151]. The fundamental idea in Bayesian modelling is

to use the mathematics of probability theory to represent and manipulate all forms

of uncertainty in the model. This is a surprisingly simple yet powerful idea. The

feature that distinguishes NBA from other algorithms in classi�cation is that there

are only two rules of probability theory needed to be remembered: the sum rule

and the product rule. In this case, MNBC will predict the covert channel class type

(Yes/No) as a given class for calculating the posterior probability together with the

attributes existing in the received packet. However, the MNBC expects numeric

values for the attributes in order to calculate the probabilities. Therefore, a lookup

table depending on every possible set up value in the targeted �eld according to

RFC 2460 will be created to map the possible states of the attributes (see Table

3.1). This look up table will start with Zero if the attribute is not present in the

captured packet, to N, the total number of values or categorisations the attribute

can hold. Furthermore, the continuous development with the RFCs versions did

create some technical problems during model implementation.

3.4 Data Aggregation Process

Researchers [5, 17, 145, 147, 152, 153] have suggested various approaches and

frameworks to detect di�erent attacks against IPv4 and IPv6. Some of them have
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Table 3.1: ARFF Header format for Validation Process

@Relation NIHATest
@Attribute Class {1, 2}
@Data Packet String

dealt with covert channel problems as discussed in Section 2.3 and 2.8. This thesis

suggests a di�erent approach to what Lucena et al [10] and Lewandowski [11] et

al have suggested to eliminate and mitigate covert channels in IPv6. A discussion

about the di�erences between similar approaches [5, 17, 153] to the suggested

method in this thesis will be presented in Section 5.6.

To capture streaming data in an active operation mode containing unknown

attacks or covert channels is a challenging task. This is because of the ever-

increasing tra�c throughput of the heterogeneous and non-stationary data and the

mass communications in the network interconnections paradigm. Most of the IDS

mechanisms depend on o�-line captured data and the evaluation part stimulated

from certain amount of data taken out from the training dataset.

The accuracy of such detection methods is quite high [26] depending on the

quality of o�-line stored data. Meanwhile, the on-line accuracy has been

improved relatively to limited targeted attacks in some of the application layer

protocols. There are some "micro" attacks using the protocol's header �elds to

perform sensitive and complicated attacks. These incidents can not be detected

unless a combination of techniques is deployed and e�ectively used against such

attacks [17]. On the other hand, the massive data also contributes to the

complicated real-time detection process. Furthermore, the apparent reason of

this drawback is that the IDSs focus only on the network packets rather than

analysing host events. This vital issue has caused low performance and limited

accessibility into the protected system domain [26].

IPv6 �rewalls and IDS have not been fully implemented on the current

operating systems yet. Most of the current web servers use dual stack

mechanism, tunnelling IPv6 through IPv4 and other techniques [103]. Hence, the

latest statistical IPv6 usage has barely reached 16.04%. These issues have been

discussed in Sections 2.5 and 2.6, in addition to the details of characteristics of
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such attacks in Sections 3.1 and 3.2. The distinctive issues of IPv6 are the

incomplete process and the inherited security vulnerabilities in its design. This

current status of the protocol potentially needs new approaches to protect the

network from harmful attacks. The encapsulation protocols and the dual stack

are su�ering from such security issues as well [5].

Not all IDS models are trained to be deployed over computer networks deceiving

high performance in o�-line mode. In on-line mode operation, latest IDS models

function perfectly to classify network tra�c. However, this was not ideal for limited

targets in application layer within TCP/IP version 4. This issue persists for IPv6

with the current relevant anomaly detection and anti spy tools. Substantially,

most of the IDS models face di�culties with massive data �ow which leads to

sophisticated and non-stationary network security problems [103, 153, 154].

Massive data stream is the major inevitable issue against professional

performance for IDS and similar security system such as covert channel

detection. In order to overcome these unsolved problems in IDSs, new techniques

and approaches should be used to convert huge data �ow to connection

attributes. In real-time analysis, all attack instances and data types should be

dealt with to create testing and training data.

3.4.1 Data Collection Method

Numerous network security tools have been used to study IPv4 covert channel

instances. However, not so many tools exist to analyse and study covert channels

in IPv6 [17, 74]. Most of them depend on generated benchmark data such as

Network Simulation Language Knowledge Discovery Dataset (NSL-KDD). Due to

important ethical regulations, controls and acts compliance with Data Protection

Act 1998, it is illegal to perform live attack simulation on our university network

systems. Instead, a controlled computer network will be created on Oracle virtual

application GNS3.

Dealing with massive data is vital for this approach to tackle covert channel.

For this necessity, Net�lter was used for real-time data capture. Net�lter/IpTables

is the kernel extension of Linux which hooks the Ip6tables �rewall functionalities.

The method to capture data from the suggested network design depends on the
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speci�ed mode of the testing plan. Linux based �rewall Net�lter is used to forward

the tra�c prior to the routing state as shown in Figures 3.2 and 3.3.

The data was collected using the main attack simulation method for di�erent

attacks with the help of the following tools:

• The Hacker Choice (THC): An IPv6 vulnerability security testing tool [50].

• Scapy client/server: An attack simulation tool created to perform some types

of network attacks on a suggested testing environment [46].

• Modi�cation of Buchanan's [27] tool which is written in C Language.

• Modi�ed Socket Programming Tools [46].

• IPv6ToolKit [50].

3.5 Suggested Model Stages

This section discusses the suggested framework modules: raw data capturing

module, �ltering and data analysis module, data pre-processing, detection and

classi�cation module, and decision module. Each module is labelled in a

sequence order. The modules are divided into two main activity spaces as shown

in th Figure 3.2. The raw data capturing module is in the kernel space and the

rest modules are in the user space.

3.5.1 Raw Data Stage Capturing

This is the �rst stage to monitor and capture raw data from the network tra�c

simulated attacks. There are di�erent techniques to capture tra�cs, either by

attack simulation which creates raw packets sent over the wired or wireless

network, or capturing live data using sni�er tools. Most of them depend on

generated benchmark data such as Network Simulation Language Knowledge

Discovery Dataset (NSL-KDD) which is a newer version of KDD'99. This version

of NSL-KDD data is modi�ed and altered after certain operations as discussed

below [153], therefore, this benchmark data will not be used in any sort of
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Figure 3.2: Proposed Covert Channel Behavioural Detection Model

evaluation of validation process. Moreover, it is not compatible with the

suggested model.

With regards to NSL-KDD benchmark data, the following elements have been

considered during the initial steps in raw data capturing phase:

1. There will be no secondary synthetic data to evaluate or verify this approach;

instead, the primary data will be created during the development process.

This data is essential and vital to be validated on other applications and

validation techniques later.

2. In order to verify the preliminary results data types in this project using

NSL-KDD, previously this benchmark data was tested and evaluated with

similar format in the primary stages of the project [46, 132].

3. The benchmark data NSL-KDD is a result of testing on IPv4 and not

compatible with IPv6.

Furthermore, the data format presented in this thesis is di�erent. This is due

to the fact that researchers at the University of New Brunswick with Canadian
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Figure 3.3: Linux Net�lter tra�c net�ow

Institute for Information Technology presented two main issues in KDD'99. These

problems a�ected the evaluated systems' performance in addition to the very poor

evaluation of anomaly detection approaches [145, 153].

Net�lter1 as shown in Figure 3.3 was chosen after thorough investigation on

similar network capturing tools. With respect to capturing tools, there exist a

number of tools such as Hping3, Netcat, and WinPcap. However, due to some

performance considerations and inherent problems, the idea to select these tools

as capturing tools in the proposed system was weak due to some serious issues:

the application layer sni�ng tools are used for analysis purposes only and they

possess high volume processing problems etc., according to the suggested network

topology.

Initially, in the Kernel Space, the blue long box represents the network stream

and the black arrow presents data �ow which contains the simulated attack raw

1Net�lter is a packet �ltering software framework for Linux 2.4.x and later kernel series.
The Iptables �rewall is used together with this tool. Iptables enables packet �ltering, network
address [and port] translation (NA[P]T) and mangling of packets. It is the re-designed and heavily
improved successor of the previous Linux 2.2.x ipchains and Linux 2.0.x ipfwadm systems [155].
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packets. Raw data was captured out of attack simulation. This is done on Linux

OS based Net�lter and Libnet�lter API. Multiple arrows are used to represent

the packets' queues. This process is vital due to the tra�c speed holding large

size throughput bu�er reaching between 10 Gbits to 40 Gbits. NFQUEUE is

used in IP6table rule chain to queue (e.g. q0, q1, q2,..qn) packets in the kernel.

Additionally, it deals with such speed by the suggested multi-threaded capability

which is represented in multiple black arrows in sequence starting from 0, 1, 2,..,n.

Each arrow as shown in Figure 3.3 represents a thread which uses a core of the CPU

and 1GB RAM in the computer. The arrows are directing towards the Libnet�lter

API to process the data �ow in order to deal with voluminous incoming packets

simultaneously. The details are implemented in Algorithm 6.

3.5.2 Filtering and Data Analysis Stage

In the second stage, the input data is �ltered by performing �eld selection to

choose the targeted �elds and their values. The data �ow is represented in a

long black arrow headed towards the packet �lter process as shown in Figure 3.2.

Packet data from the IPv6, ICMPv6 headers and the TCP upper layer protocol

is shown in the box between the user space and the kernel space by a dotted line

holding to the header �elds that will be �ltered. TCP was partially examined for

analysing covert channel fragmented packets in the extension header whereas UDP

was not considered within the scope of this thesis due to the unreliability features

in the protocol [1]. In this stage, network packet data (in bytes or Hexadecimal

format) is transformed into human-readable format such as ASCII using Network-

to-Host translation (NTOHL) script for �eld values and INET_NTOP script for

IPv6 address �elds. An example is given below and the details of technical and

implementation process are explained in Algorithm 3.

Figure 3.4 is an initial example which explains converting between binary to

ASCII format using 7 bits code with either odd or even parity bit such as

X6X5X4X3X2X1X0, where Xi is either 0 or 1, i = 0, 1, ..., 6.
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Figure 3.4: Filtering Data Type from Captured Packets

3.5.3 Data Pre-processing Stage

In the third stage, the input raw network data went through �eld selection,

dissected and normalized to remove data complexity. This stage is vital due to

the sensitivity of the feature selection process prior to detection and classi�cation

process since data redundancies, unwanted protocols and header �elds should be

removed from each captured and �ltered packet. Practically, only the relevant

and selected data needs to be handled. The minimised captured data should �ow

into the covert channel analyser, which is called Network Intelligent Heuristic

Algorithm (NIHA). An example is shown in Figure 3.5 and it will be explained in

Section 3.7. All �elds in IPv6 packets must be checked for covert channels during

the process of converting nominal values to Naïve Bayes frequency table for

HeuBNet6 in live capturing mode. NIHA transforms the nominal values to pairs

of numeric-ID representation and frequency of occurrence such as 253:3 or

{620:3 34:1 16435:2 67343:1} as expected by the HeuBNet6 MNB Engine. All

known features' nominal values have their NB feature IDs recorded in a class

map with the following format:

1. Nominal ID: is a nominal value representing a known feature (IPv6 Packet

�eld value).

2. NB ID: is a numeric Naïve Bayes ID of the feature.

3. Class ID: is a classi�cation ID of the feature's value (1 means anomaly and
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2 means normal).

Figure 3.5: Example of Header Field Conversion to NB-Class Instances

Table 3.2: ARFF Header format for Validation Process

@Relation NIHATest
@Attribute Class {1, 2}
@Data Packet String

3.5.4 Data Training Stage

The captured input packets are �ltered, transformed and discretised then

streamed into the pre-processing module NIHA in order to create the datasets.

NIHA then saves the datasets (training, audit and testing datasets) into an SQL

database as shown by two double headed green arrows from and to the detection

and classi�cation module in Figure 3.3. The output header sample data as shown

in Table 3.2 is taken from the database will form several Attribute-Relation File

Format (ARFF) �les which will be used in WEKA 3.7. Packet data as shown in

Table 3.4 will be processed through Discretization and Transformation processes

to form a dual type of var_char format as shown in Table 3.3. This is by using

actual-value to nominal-value conversion during a feature's covert channel

detection process. The nominal value of the resultant string will be converted to
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NB format afterwards as shown in Figure 3.5 as an input into the suggested

enhanced Multinomial Naïve Bayes classi�er. A further advantage gained in

dealing with massive data size issues in the use of Naïve Bayes classi�er is that it

deals with symbolic and numeric data and considers these attributes as

independent values in classifying process. The expected e�ect will be the

reduction of datasets size which will be processed, as these datasets are

represented in a more convenient and economical format. Details of how

captured massive data is dealt with are presented in Section 4.3.

Table 3.3: Feature Nominal-NB-Class Map

Attributes Occurrence Class
HopL_INC 1 1
HopL_DEC 2 1
HopL_UNC 3 2
PLen_INC 4 1
PLen_DEC 5 1
PLen_UNC 6 2
Extra_CovHdr 7 1
No_Extra_CovHdr, 8 2
Type1_Code0 9 2
Type1_Code1 10 1
....
Word_10306 75605 1

3.5.5 Detection and Classi�cation Stage

In the fourth stage, after the conversion and transformation process of the data,

this module receives a set of data in order to label and process them into covert

channel's analyser. Detection methods su�er from incapability to depict

unknown (new) attacks carrying new updated signatures due to the o�ine

focused training dataset. Furthermore, one of the vital elements causing an

obvious degradation to most IDSs is that these IDSs are not targeting the

network packets headers values rather than focusing on the payloads or the

packets contents transferred from one node to another. Eventually, an issue of

incompatibility in most IDSs for the IPv6 protocol raises. Moreover, IDSs su�er
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Table 3.4: Nominal values to Naïve Bayes Format

Header Selected Field Input Value Nominal Values NB Format

Pseudo Tra�c Class
89
90

T_TC,
F_TC

1233:1
1234:1

Psuedo Flow Label
src,port,dst,port,�ow label

2000::3
2001::19

T_FL
F_FL

65:1
66:1

Pseudo Hop Limit
456
457
458

HopL_INC,
HopL_DEC,
HopL_UNC

345:1
346:1
347:1

Pseudo Payload Length
433
434
435

PLen_INC,
PLen_DEC,
PLen_UNC

100:1
101:1
102:1

Pseudo Next Header
6 (frag)
22(telnet)

Extra_CovHdr,
No_ Extra_CovHdr

85:1
86:1

Pseudo Source Address
2001::7 ,
2001::13,
2001::15

Node_1,
Node_2,
Node_3

233:1
234:1
235:1

ICMPv6 Type & Code
1,0
255,255

Type 1_Code0
Type 255_Code255

45.1
65.378:1

from struggling to adapt and cope with heterogeneous networks [153]. The

implementation process and examples are given in Algorithm 3. This fourth

module can be divided into two sub-processes.

3.5.5.1 Covert Channel Analyser

This module is the �rst part of the fourth stage. It receives the packet data from

the previous process in string format @Data �eld as shown in Table 3.2. The

module is the main part of the multi-security detection system Network Intelligent

Heuristic Algorithm (NIHA, the covert channel analyser). This algorithm will

process to:

1. Analyse, detect and classify covert channels in header features.

2. Transform the values of each attributes and its subset values to nominal

value after detecting the existence of a covert channel in the attribute.

3. Create novel primary training dataset for IPv6 (attack instances) and label

them.
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4. Store new attack types into the database in order to be used for live

classi�cation by the MNBC and validation stage later.

5. Make decisions upon the current and previous instances to detect new

(unknown) attacks in the future.

3.5.5.2 Multinominal Naïve Bayes Classi�er (MNBC)

This module is the second part of the fourth stage of the approach. This part

operates as an extra security process along with NIHA. It serves to provide a

multi-layer security system which o�ers high detection rates by using a proven

probabilistic approach classi�er. The training dataset for this stage consists of

decoded packets transformed into ARFF format. The �ow is processed by a feature

selection technique using C4.5 decision trees and information gain. This is shown

in black dotted line between covert channel analyser and the MNBC process in

Figure 3.2. This is to minimize the redundancies and the least wanted features

are taken o�. In this stage, the most informative attributes in the projected data

will be introduced into Naïve classi�er to create the data model of covert channels

and allowing this model to predict future anomalies in IPv6 network tra�c.

3.5.6 Issue Verdict Stage

In the �fth stage of the framework, the decision process is activated as far as the

labelling packets have been dealt with by the covert channels analyser. The data

�ow is represented in a black arrow pointed to the issue verdict process as well as

the decision process in the system as shown in Figure 3.2. The following actions

will be taken:

1. Rising a message of an anomaly detection by the classi�ers to decide whether

to allow the packet through or to drop it.

2. Generating alarm log entries and statistical report out of received data,

represented in a dotted red arrow pointing downward to the alarm entity as

shown in Figure 3.2. This message includes:

• Predicting attack behaviours.

64



3.Proposed Detection Framework

• Recording to a log of the anomalies.

• O�ering auditing and event documentation procedures.

• Alerting the system administrator by creating an alarm, o�ering a full set of

rules to deal with any unknown attacks which will be identi�ed in the future.

• Accepting or rejecting packets through setting a �ag in the message passed

to the Libnet�lter API.

As shown in Figure 3.2, the long black arrow heading back to Libnet�lter API

indicates the acceptance of the packet, and the long red arrow next to the black

arrow indicates the rejected packet sent back to the �ow. The blue line across

both arrows indicates that only one of the processes will occur at a time. Thus, a

packet can not be accepted and rejected simultaneously.

3.5.7 Exporter and Validation Stage

This is the last step of the proposed model. In this step, verifying the accuracy

of the classi�ers is performed by using a new format of training and testing data

ARFF �les for cross validation against WEKA (the industrial standard tool for

packet classi�cation and data mining). This process is represented in an orange

arrow pointed to the Cross Validation process as shown in Figure 3.2.

The ARFF format �le consists of three headers: relation, attribute and data.

Each word has the pre�x of @ as shown in Table 3.5. The header section of

the ARFF �le contains a list of the attributes (data in columns), and their types.

Thus, Table 3.5 has the @Relation asNIHATest, the @attribute Class represents

the detection classes (1 for Normal and 2 for Anomaly), and @attribute Packet

represents the nominal representation of values in the IPv6 header �elds, ICMPv6

header and extension headers. The @data section in Table 3.6 is the normal

transformed data from the network simulation language.

The Exporter produces two types of reports: statistical and analytical reports.

The reports �ow is represented in orange arrows as outcome from the system as

shown in Figure 3.2. Details about these two reports' contents are explained in

Section 5.6.
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Table 3.5: ARFF Header format for Validation process

@Relation NIHATest
@Attribute Class {1, 2}
@Data Packet String

Table 3.6: Data format in ARFF output �le prior to detection process

@Data
2 F_TC F_FC HopL_INC Plen_INC No_Extra_CovHdr ...
2 F_TC F_FC HopL_UNC Plen_DEC Extra_CovHdr ...
1 F_TC F_FC HopL_UNC Plen_UNC No_Extra_CovHdr ...

3.6 Naïve Bayes Classi�er

NBC is intended to improve the performance of the classi�cation process. The

Posterior Probability equation 2.1 and the conditional independence assumption

of Naïve Bayes classi�cation is used to �nd the class of each variable. This process

uses the set of IPv6 �elds in Table 3.7 as inputs to the classi�er using information

gain to measure the quality of the classi�ed data.

3.6.1 Information Gain and Gain Ratio

Information gain (IG) [156] measures the amount of information in bits about

the class prediction, when the existed attribute is the only information available

Table 3.7: Identi�ed Covert Channels in IPV6 Header Fields [5]

ID Field Covert Channel Bandwidth
1 Tra�c Class Set a false Tra�c Class 8 bits/packet

2 Flow Label Set a false Flow Label 20 bits/packet

3 Paylaod Length Increase value to insert extra data Various

4 Next Header
Set a valid value to add
an extra extension header

Various

5 Hop limit Increase/decrease value ∼1 bit/packet

6 Source Address Set a false address 16 bits/packet

7 ICMPV6_Type Set false Type value 8 bits/packet

8 UCMPv6_Code Set false Code value 8 bits/packet
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about a feature which corresponds to class distribution. Concretely, it measures

the expected reduction in entropy (uncertainty associated with a random feature).

In order to select the best test attributes, the entropy measurement needs to be

worked out to calculate the purity in an arbitrary collection of examples. Let S be

a set of training set samples with their corresponding labels. Suppose they are m

classes and the training set contains si of class I and s is the total number of the

samples in the training set. The expected information needed in order to classify

a given attribute is calculated by:

I(S1, S2, ..., Sm) = −
m∑
k=1

Si

S
log2

Si

S
(3.1)

A feature A with values (a1, a2, ..., av) can divide the training set into v subsets

containing the samples S into (S1, S2, ..., Sv) subsets where Sj is the subset which

has the value aj for feature A. Sj contain sij samples of class i. The entropy of

the feature A is

E(A) =
v∑

j=1

(S1j + ...+ Smj )

S
× I(S1j, ..., Smj) (3.2)

Then the information gain for A would be calculated by:

InformationGain(A) = I(S1, S2, ..., Sm)− E(A) (3.3)

In the given assumptions, information gain is calculated for class labels by

employing a numerical discrimination for each class [157]. If the class has the

same label in a speci�ed dataset instance, it is considered as in-class instance and

if the class has a di�erent label, it will be considered as an out-class instance.

Eventually, information gain for each class should be calculated; therefore, this

will denote how well the feature can discriminate the given class such as normal

or anomaly from other classes [136].

To work out the information ratio, the information held by any attribute

needs to be split into its supposed many values. The attribute with the highest

information gain is chosen to test the current node. However, information gain

approach has some problems: it is biased towards tests with many outcomes
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speci�cally when an attribute has a large number of values; it produces a large

number of partitions (1 tuple per partition) with each resulting partition S

having Info (S) = 0, and lastly, the information gain is maximized. C4.5

techniques need to be maximized with another alternative measurement called

Information Gain Ratio (IGR), which maximizes the probabilities of considering

each value of any attribute no matter how many values there are. Gain ratio

applies a kind of normalization to information gain using a split information

value. The split of the information takes into account any attribute having many

values as shown below:

SplitInformation(A) = −
v∑

j=1

Sj

S
log2

Sj

S
(3.4)

As explained in 3.1, the gain ratio can be worked out as below:

GainRatio(A) =
InformationGain(A)

SplitInformation(A)
(3.5)

A ranking table is created for the gain ratios calculated for each of the attributes

in the packet which determines which attributes are more prone to covert attacks.

The attributes with the least gain ratio could be disregarded to obtain a smaller

set of attributes to perform the packets classi�cation.

Tra�c Class is one of the critical �elds in IPv6 due to holding false and true

values which indicates either an anomaly packet or a normal packet. In the

following example, this header �eld's attribute will be computed applying the

techniques above to �nd the gain ratio and the class type. For Tra�c Class

category "True Class" distribution there are four Yes and three No. For "False

Class" category there are three Yes and zero No, using equation 3.4.

SplitInfoTrafficClass(S) =
3

10
∗

(
− 3

3
log2(

3

3
)

)

+
7

10
∗

(
− 4

7
log2(

4

7
)− 3

7
log2(

3

7
)

)
= 0.846

(3.6)
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The Gain ratio of Tra�c Class is 0.846.

3.7 The Novel HeuBNet6 System Algorithms

This is the third phase to implement the suggested approach. The HeuMNB6-

Net has been shown in Figure 3.2. In order to have a unique name introducing

a novel technique to IPv6 covert channel detection mechanisms it will be called

HeuBNet6. HeuBNet6 features two integrated active classi�ers for high detection

accuracy. The �rst is called IHA or adding a pre�x "Network" to IHA making it

NIHA as a novel extensible mechanism for IPv6-RFC based benchmark dataset

creator doubling as a covert channel detector. The second one is called Multinomial

Naïve Bayes Classi�er (MNBC) for near-real time probabilistic covert channel

classi�cation.

The HeuBNet6 is modelled on the IPv6 RFC's 2460 to 6294 [36] (a list of

all investigated RFCs is presented in Appendix A.2). HeuBNet6 is designed to

achieve the highest detection rate for covert channels in network packets. A semi-

high level algorithm for the HeuBNet6 system is described below. This algorithm

discusses the artefacts of the system starting from data creation stage through to

the cross validation stage of results. For cross validation stage, hold out method

is prescribed using WEKA [158] in Section 5.1.

The algorithms focus on presenting a novel modus apparandi for creating new

datasets for IPv6 storage covert channel detection. When writing this thesis,

there does not exist a benchmark dataset for IPv6 similar to NSL-KDD Datasets

which is merely for IPv4. HeuBNet6 is designed to incorporate data acquisition

for new training datasets as described in Section 3.5 and to o�er a high rate of

detection accuracy through an enhanced version of Naïve Bayes Classi�er using

ML techniques such as C4.5 and Information Gain techniques. In this approach,

primary data is created through simulation of di�erent covert channel attacks on

the suggested IPv6 LAN design. This is performed through using vulnerability

security tools written in C, Python and C++ programming languages to simulate

these attacks. Di�erent attacks are simulated using di�erent covert data in the

IPv6 headers. Table 3.4 shows the pre-processed output data format used for NB
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classi�cation and Table 3.8 shows the classi�cation classes format.

The new approach presented through this research avoids complex and time

consuming methods such as Support Vector Machines (SVM) [12] or other

algorithms. The development occurs through utilising Multinomial Naïve Bayes

coupled with C4.5 to achieve fast detection rates for high volume training data

and bandwidth. The algorithm actively transforms discrete and nominal IPv6

packet �eld represented in values to nominal IDs for text based classi�cation of

the packet's data as shown is Tables 3.4 and Table 3.8.

The approach automatically provides smoothing through applying the

Multinomial techniques, where �eld values are not available in the packet.

The core elements of the algorithms are:

1. Data Creation Tools.

2. HeuBNet6 Main.

3. HeuBNet6 Running Modes.

4. Covert Detection Engines.

5. Anomaly Detection Reporting.

3.7.1 Attack Simulation Process to Create Datasets

This is one of the critical parts of the HeuBNet6 System in compliance to RFCs

which is utmost important for producing valid data for testing real world covert

channel attacks. A series of testing and attack tools were used to mimic as many

types of IPv6 packets as possible. These types can contain covert data or can be

used to trigger a covert response for the victimised host. The suite of attack tools

used for both creating training and testing data ran on a virtualized environment.

The tools needed to be comprehensive enough to cover most of the selected attacks

against IPv6 header, ICMPv6 header and a number of extensions headers within

the scope of this project.

It was impossible to re-enact the exact scenario in which an attacker would

create covert attacks on an internal system in this research. However, various

70



3.Proposed Detection Framework

Table 3.8: Original Nominal Values and NB formats for Selected Fields with
Example Values

Header Selected Field Input Value Nominal Values

Pseudo Tra�c Class
89
90

T_TC,
F_TC

Pseudo Flow Label
src,port,dst,port,�ow label
2000::3
2001::19

T_FL
F_FL

Pseudo Hop Limit
456
457
458

HopL_INC,
HopL_DEC,
HopL_UNC

Pseudo Payload Length
433
434
435

PLen_INC,
PLen_DEC,
PLen_UNC

Pseudo Next Header
6 (frag)
22(telnet)

Extra_CovHdr,
No_ Extra_CovHdr

Pseudo Source Address
2001::7,
2001::13,
2001::15

Node_1,
Node_2,
Node_3

ICMPv6 Type & Code
1,0
255,255

Type 1_Code0
Type 255_Code255

ethical hacking attack tools are available to enable researchers to simulate

attacks in controlled environments. The suggested tool and the developed tool in

this thesis were used for the task of creating a novel IPv6 covert detection

dataset and running live tests on the proposed system's prototype. The tools

included some industry standard open source library such as IPv6 ToolKit [50].

Several other tools including customized samples were also used to streamline the

process of creating speci�c attacks vectors which were not covered by the hacking

tools aforementioned [46]. It was imperative to note that THC and the IPv6

ToolKit tools are more versed in performing intrusion and penetration tests than

creating packets that contain covert attacks. This warranted further development

or customisation of the currently available tools, other simple libraries or

speci�cally written tools for covert channel attack.
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3.7.1.1 Create Training DataSet

Algorithm 1 - Create_Training_DataSets shows the process of creating packets

to enable the system to learn how to classify covert attacks. This was from an

attacker's point of view. The attacking tools were fed with the right con�gurations

and data to create speci�c attacks for covert channel attacks. The actual numbers

of the parameters taken into account in this stage were 8 attributes. Each attribute

has various subset values from single range to multiple range type (between 1 and

10,752) giving a �gure of 346,816,512 combinations of all possible instances. It was

envisaged that the training data will be around 18.5 million instances from roughly

10,788 attributes. Section 3.7.3 presents the calculations of these estimates.

Algorithm 1 Create_Training_DataSet
INPUT: IPv6 Packet± AttributeIDs P ,

1: attacktools← {THC, Scapy, PBuchanCLib, IPv6ToolKit}
2: for each attack tool at ∈ attacktools do
3: config ← setup_parameters()

4: at.create_send_packets(config)

5: at.display_responses(config)

6: end for

3.7.1.2 Create Testing DataSet

Algorithm 2 Create Testing DataSet
Same As Create Training DataSet with di�erent INPUT data

Algorithm 2 - Create_Testing_DataSets mirrors the operations performed with

the previous training algorithm. This will have far less testing packets to verify

the correctness and performance of the system preparing for the holdout validation

method. This process involves the choosing of a percentage of the afore-produced

training dataset as to form the testing dataset. For instance, for the 38.18 GB

training dataset produced 3.8 GB (10%) would be selected as the testing dataset.

In this case a personal computer with 3.1 GHz Inter core i5 CPU 3450 and 8 GB

RAM would be able to tolerate this amount of testing and training data. Almost
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all settings and con�gurations will be identical but some values may be altered to

allow for probabilistic detection during live tests. Thus, a variability in the testing

data to simulate live attacks is introduced.

3.7.2 HeuBNet6 Main

This is the entry point into HeuBNet6 responsible for directing the internal

processes of the system. These include starting the system in a speci�ed mode,

starting worker threads, establishing database connections, controlling and

consolidating the covert detection process by routing packets to the right

modules and interfacing with Net�lter Application Program Interface (API).

HeuBNet6 will be initially developed as command line program running on a

Proxy Server in an internal network. Thus, all ingress and egress1 tra�c on the

network passes through the server. Several instances of the program can run on

the server to accomplish di�erent tasks excluding running multiple instances in live

mode. However, it is advisable to limit overhauling the server while the system is

performing live packet classi�cation. The running modes referred in this algorithm

are described after this section.

1Ingress tra�c is the data originating outside the local network that is transmitted to a
station within the network. Egress tra�c is the data originating within the local network that
is transmitted to a station outside the network.
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Algorithm 3 HeuBNet6_Main

1: function Capture_And_Process_Ingress_Packet(ThreadiQueue)

2: while PData← Receive_Network_Traffic do . recv

3: ThreadiQueue← Queue_Ingress_Packet(PData)

4: Callback(PData, ThreadiQueue)

5: end while

6: end function

7:

8: function Callback(PData,ThreadQueue)

9: P ′ ← Filter_Packet_From_Queue(PData) . PsuedoHdr &

ICMPv6Hdr

10: P”← Preprocess_Packet(P ′)

11: Result← Intelligent_Heuristic_Algorithm(Mode, P”)

12: if Mode = mode_live and ResultState 6= blocked then

13: Result←MNBC(ResultNBInput)

14: end if

15: _Verdict(Result)

16: return r

17: end function

18:

19: function Issue_Verdict(Result)

20: if ResultClass = normal or ResultState = allow then

21: allow_packet(ResultPacketID)

22: else

23: drop_packet(ResultPacketID, ErrorMsg)

24: return 1

25: end if

26: return 0

27: end function

Algorithm 3 - HeuBNet6_Main shows the controller portion of the system

which will be invoked during the initialisation of the system depicted by

Algorithms 4, 5 and 6. Basically, each of the initialising algorithms will start an

75



3.Proposed Detection Framework

independent process in the CPU using the function start_new_thread(cap

ture_and_process_ingress_packets,Queue_i) informing the process to

run the main controlling module function. The packet capture function is

responsible for setting up network interfacing routine, receiving packets from the

kernel and routing packets to and from the correct detection engine. This is done

by the callback routine callback (PData,ThreadQueue) which receives an IPv6

packet as a series of bytes from a speci�ed kernel queue. The packet must be

preprocessed before it is sent to the Intelligent Heuristic Algorithm Engine in

Algorithms 7 and 12 followed by live classi�cation if the system is in live mode.

The �nal task of the controller is issue a verdict whether or not to allow the

packet into the network based on its classi�cation. Normal packets will be

released into the network while blocked or anomalous packets will be discarded,

and an appropriate message will be sent to the sender. The message should be in

the form that will stop re-transmission in the case of TCP packets or making the

attacker to believe that there is no end-point if necessary.

3.7.3 HeuBNet6 Running Modes

There are three modes in which HeuBNet6 will be operated, namely

HeuBNet6_Data_Training_Mode,HeuBNet_MNB_Training_Mode and

HeuBNet6_Live_Mode.

3.7.3.1 Data Training Mode

Algorithm 4 HeuBNet6_Data_Training_Mode
INPUT: Run Mode - Mode, Number Of Threads - NumThreads

OUTPUT: NominalValue Nomfl, Class Classc.

Mode←MODE_CREATE_TRAINING_DATA

NumThreads← NUMBER_OF_CPU_CORES

for i← 0 to NumThreads− 1 do

Start_New_Thread(capture_and_process_ingress_packet

s,Queue_i)

end for
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Algorithm 4 - HeuBNet6_Data_Training_Mode depicts the �rst mode for

initialising HeuBNet6 system to use all incoming packets to create training data.

The Mode variable will be used to inform all modules the state of the system

and will thus be used to guide database operations and classi�cation tasks. For

this task, the mode is set to mode_create_training_data and will attempt

to create the 6 million training instances using the attack tools in Algorithm 1.

NumThread must be set to the number of cores of the computer on which the

HeuBNet6 System is running to enable e�cient multi-threading operations.

Table 3.10: Feature Groups and Combination Estimations

HL PL NH TYCD TC FL SA DA CLS Total

Groups 3 3 2 10752 8 14 8 8 2 10788
Combination 1 1 1 1 1 1 1 1 1 8

• Computation of data size estimation using feature combinations

All �elds in the IPv6 Pseudo header and ICMPv6 header in Table 3.10 can

hold only one of its nominal values at a time. The minimum number of ways

to select values such that one from each attribute nominal value group and

the arrangement does not matter is given by the combination:

8∏
i=1

Cni
1 (3.7)

Thus, γ = C3
1 · C3

1 · C2
1 · C10752

1 · C2
1 · C2

1 · C14
1 · C2

1

= 3 · 3 · 2 · 10752 · 8 · 8 · 14 · 2

= 346,816,512

(3.8)

where 10,752 is the number of combinations of Type and Code for the 42

ICMPv6 Type numbers currently assigned by IANA [159], and γ is

346, 816, 512.
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In order to calculate the estimated size of the training data we needed to

obtain the number of characters per packet header by using the average

length of all features' nominal values multiplied by the total number of

features in a packet:

Avg. characters per featureµ =
10788∑
n=1

len(Feature_Nominal_Name)/10788

= 14

Characters per packet, λ = µ · 8

= 14 x 8

= 112

Hence, estimated training data size = γ · λ

= 346,816,512 x 112

= 38,843,449,344 characters ≈ 36.18 GB

(3.9)

In summary, the training data is estimated to be in excess of 346,816,512

instances occupying 36.18 GB database space.

3.7.3.2 MNB Training Mode

In Algorithm 5 - HeuBNet6_MNB_Training_Mode Mode was set to

mode_train_nb to train the MNB classi�er before commencing live

packet classi�cation. Unequivocally, NumThreads was required to be set

to the number of cores the computer has as in the previous algorithm.

Three more variables were introduced to capture the administrator's

preference using OvrwrMod to overwrite the current model �le being used

by the classi�er, a �le containing the list of new nominal �les

TrainF ileList with training instances shown in Figure 3.6 and the pre�x

of the new model �les ModFile to be created during this training process.
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data\nom-training-0001.dat 280869
data\nom-training-0002.dat 280865
data\nom-training-0003.dat 280867
data\nom-training-0004.dat 280868

...
data\nom-training-0033.dat 280822

Figure 3.6: Nominal File List for Training MNB Model

All users' input values are symbolised by a question mark (?). See Section

3.7 on conversion of nominal-values to NB format.

Algorithm 5 HeuBNet6_MNB_Training_Mode
INPUT: Run Mode - Mode, Number Of Threads - NumThreads

OUTPUT: NominalValue Nomfl, Class Classc.

Mode←MODE_TRAIN_NB

NumThreads← NUMBER_OF_CPU_CORES

OvrwrMod← ?

TrainF ileList← ?

ModFile← ?

for i← 0 to NumThreads− 1 do

Start_New_Thread(capture_and_process_ingress_packet

s,Queue_i)

end for
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Algorithm 6 HeuBNet6_Live_Mode
INPUT: Run Mode - Mode, Number Of Threads - NumThreads

OUTPUT: NominalValue Nomfl, Class Classc.

Mode←MODE_CREATE_TRAINING_DATA

NumThreads← NUMBER_OF_CPU_CORES

for i← 0 to NumThreads− 1 do

Start_New_Thread(capture_and_process_ingress_packet

s,Queue_i)

end for

3.7.3.3 Live Mode

Algorithm 6 - HeuBNet6_Live_Mode used the model �les created using

Algorithm 5 and Heuristic Algorithm in passive mode. Thus, NIHA's live

classi�cation should not be taken into account since live mode is designed to

perform a probabilistic classi�cation using a probability model �le as opposed to

the deterministic approach NIHA uses.

For each packet received, a multinomial classi�cation was performed to keep

a count of unknown features which have been smoothed. The count of smoothed

features indicated whether the training data was su�cient enough to classify new

unknown attacks. If the count was beyond a preferred threshold, the classi�cation

by NIHA was used and an entry was created in the log �le to allow analysis of the

instance.

3.7.4 Covert Channel Detection Engines

This section presents algorithms for the proposed HeuBNet6 system and discusses

the classi�ers that are built using the algorithms. The two classi�ers are presented

as detection engines for abstraction purposes and easy functional extensibility.

The HeuBNet6 Intelligent Heuristic Engine (HIHE) is presented �rst, followed by

the HeuBNet MNBC Engine. An outline of how Decision Trees C4.5 was used

to prune the training data is presented then information of generating statistical

reports and analytics is presented. The section concludes by pointing out some of

the issues that impeded the system's performance and accuracy.
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3.7.4.1 HeuBNet6 Intelligent Heuristic Engine (HIHE)

This covert channel detection engine is the backbone of HeuBNet6 System. It is

responsible for the creation of classi�cation datasets and transforming packet's

data between di�erent formats. The engine is built using the Intelligent Heuristic

Algorithm created in this research. The engine is a fully functional heuristic

classi�er which will provide application integration interfaces to allow di�erent

type of input sources for loading training and testing datasets. This will make

the engine Operating System-independent and attract further research on the

novel framework.

NIHA performed two tasks within the HeuBNet6 system. Firstly, NIHA did

feature covert channel detection as shown in the functions of Algorithms 7 and 3.

Each of the detection functions converted a feature's value or values within an

IPv6 packet from either continuous format or string to a nominal value or set of

normal values. Secondly, if the IPv6 packet must also be classi�ed by the

HeuBNet6_MNB Engine which will be discussed in Algorithm 8, NIHA would

further transform the nominal values to pairs of numeric-id representation and

frequency of occurrence in the packet's �eld such as 253:3 or {620:3 34:1 16435:2

67343:1} as expected by the engine. Having all features in the same numeric

representation have improved the performance of the MNB classi�er and

eliminated the ambiguity of attributes. Furthermore, the size of the text to be

analysed by the classi�er was reduced due to the short length of the IDs. The

value formats are shown with example data in Tables 3.8, 3.4 and 3.9.

Algorithm 7 HeuBNet6_Intelligent_Heuristic_Algorithm
INPUT: Run Mode - Mode, IPv6 Packet - IPv6_PKT ′ .

OUTPUT: NominalValue Nomfl, Class Classc. .

1: TC← []

2: FC← []

3: NC← []

4: classc ← NULL

5: ipv6_hdr← NULL

6: icmpv6_hdr← NULL
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7: hbh_xhdr← NULL

8: frag_xhdr← NULL

9: function Initialise_Engine(mode, ipv6_hdr,)

10: TC← load_trafficclass_corpus(tcfile)

11: FC← load_flowlabel_corpus(flfile)

12: NC← load_topology_corpus(tpfile)

13: BL← load_blacklist_corpus(blfile)

14: classc ← normal

15: end function

16: function

Check_IANA_Rules_Run_Anomaly_Detection(mode, ipv6_pkt,)

17: ipv6_hdr← get_ipv6_hdr(ipv6_pkt)

18: icmpv6_hdr← get_icmpv6_hdr(ipv6_pkt)

19: detect_traffic_class_anomaly(TC, IPv6_Hdr,classc)

20: detect_flow_label_anomaly(FC, IPv6_Hdr,classc)

21: detect_hop_limit_anomaly(FC, ipv6_hdr,classc)

22: detect_next_header_anomaly(ipv6_hdr,classc)

23: detect_payload_length_anomaly(ipv6_hdr,classc)

24: detect_source_address_anomaly(NC,BL, ipv6_hdr,classc)

25: check_type_code_pair(ipv6_pkt,classc)

26: end function

27: function Detect_Traffic_Class_Anomaly(TC,IPv6_Hdr,classc)

28: if IPv6_Hdrtc ∈ TC then{

29: cnom ← t_tc

30: }

31: else{

32: classc ← anomaly

33: cnom ← f_tc

34: }

35: end if

36: return cnom,classc

37: end function

38: function Flow_Label_Anomaly(FC,IPv6_Hdr,classc)

82



3.Proposed Detection Framework

39: if

 FC 63 fourtuple(ipv6_hdrsrc_addr, ipv6_hdrs_port,

ipv6_hdrdst_addr, ipv6_hdrdst_port, ipv6

_hdrprotocol, ipv6_hdrfl)

 then

40: classc ← anomaly

41: flnom ← f_fl

42: }

43: else{

44: flnom ← t_fl

45: }

46: end if

47: return flnom,classc

48: end function

49: function Detect_Hop_Limit_Anomaly(FC, ipv6_hdr,classc)

50: if not_current_hop_limit_packet(ipv6_hdrdst_addr) then

51: prevHL← store_current_hop_limit(ipv6_hdrdst_addr)

52: else

53: prevHL← store_current_hop_limit(ipv6_hdrdst_addr)

54: end if

55: end function

56: function Detect_Next_Header_Anomaly(ipv6_hdr,classc)

57: if

ipv6_hdrnh 6∈ iana_assigned_internet_protocol_numbers then
58: classc ← anomaly

59: nhnom ← extra_covheader

60: else

61: nhnom ← no_extra_covheader

62: end if

63: FrgHdrs← check_if_packet_has_frag_header(ipv6_pkt)

64: if FrgHdrs then

65: check_frag_count_covert_anomaly(ipv6_pkt,classc)

66:

check_invalid_frag_offset_covert_anomaly(ipv6_pkt,classc)

67: end if
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68: AuthHdrs← check_if_packet_has_auth_header(ipv6_pkt)

69: if AuthHdrs then

70: check_auth_hdr_covert_anomaly(ipv6_pkt,classc)

71: end if

72: return nhnom,classc

73: end function

74: function Detect_Payload_length_Anomaly(ipv6_hdr,classc)

75: plnom ← plen_match

76: if ipv6_hdrpl 6= calculate_packet_length(ipv6_pkt) then

77: classc ← anomaly

78: plnom ← plen_unmatch

79: end if

80: return plnom,classc

81: end function

82: function

Detect_Source_Address_Anomaly(NC,BL,ipv6_hdr,classc)

83: if ipv6_hdrsa_addr ∈ NC and ipv6_hdrsa_addr 6∈ BL then{

84: sanom ← Node_nomid

85: }

86: else{

87: classc ← anomaly

88: if ipv6_hdrsa_addr 6∈ NC then{

89: sanom ← node_not_found

90: }

91: else{

92: sanom ← Node_nomid

93: }

94: end if

95: }

96: end if

97: return sanom,classc

98: end function

The HIHE Engine is described starting from the
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Check_IANA_Rules_Run_Anomaly_Detection(mode, ipv6_hdr) function

which denotes the entry point into the NIHA when a packet is routed to be

heuristically analysed for anomalies. NIHA performs a series of checks on the

selected number of IPv6 packet �elds including some extension headers and at

least one upper protocol layer header if present in the packet.

The values of the eight header �elds of the packet and their nominal equivalence

to database include whether a covert channel was found or not, and the type of

attack associated with the attempted covert channel exploit were saved to the

database after all covert channel checks had been performed. The packets values

were saved into the "Audit Table" while the nominal values were stored into either

the training or testing tables depending on the running mode. A single database

was used for simplicity at this stage.

1. Tra�c Class Attribute

The detection of covert channel based on the tra�c was performed by using

the function detect_traffic_class_anomaly(ipv6_pkt). A �le was

used to load all valid tra�c classes into the HeuBNet6 system's global Tra�c

Class Dictionary TC as shown on Line 10 -

TC← load_trafficclass_corpus(tcfile).

• Conversion to Nominal

The �rst step in detecting a covert channel is to convert the value of the

Tra�c Class attribute to a nominal value. A mathematical transformation

function was used, given by the vector:

T =

[
T_TC

F_TC

]
where T is the vector space ϕ Tra�c Class nominal values.

f :

{
N→ T

t 7→ f(t)

}
(3.10)
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where t ∈ N and t = tcval and f(t) ∈ T

The formula 3.10 shows that tmaps to a value returned by the function f(t). t

is called the image of f(t) and f is the mapping function. This means that for

every value of t there exists a nominal value in the Tra�c Class Dictionary. f

associates a y (nominal value) in the codomain with each argument x (tra�c

class value). A corresponding nominal value is modelled for each value of N
in the two-value vector space T . Thus, any given value of tra�c yields either

the nominal value T_TC representing a True Class or F_TC representing a

False Class.

(∃!t ∈ N)P (f(t)→ Tnom) ∧ t = 101 (3.11)

The transformation through predicate calculus using the formula 3.11 can be

further described as; there exists exactly one nominal value Tnom calculated

by f for any given tra�c class value t, where t has the value of 101, which

in a given corporate network could be used for provide a speci�ed quality of

service.

2. Flow Label Attribute

The �ow label's covert channel detection was performed using the Flow Label

Manager Subsystem which monitors the values of the incoming packet's source

address, destination address, the transport protocol type and the �ow label.

The �le was loaded into the HeuBNet6 system's global Flow Label Dictionary

FC as shown in Function 9 - FC← load_flowlabel_corpus(tcfile). Each

line represents a connection's �ow label from which a 4-tuple (source address,

destination address, the transport protocol type and a �ow label) is obtained.

The 4-tuple structure is the extension of the 3-tuple structure recommended in

RFC 6437.

Each Flow label Corpus line entry represents one �ow and has the following

elements:

(a) id: Flow ID
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(b) src_addr: Source Address

(c) dst_addr: Destination Address

(d) proto: Protocol

(e) f_label: Flow Label

Each element except alert is represented as follows:

(a) Element name: Name of the feature such as id.

(b) Element type: Datatype for converting the value of element for use by the

Flow Manager Utility Subsystem. The datatypes will be:

i. i: Integer

ii. s: String

iii. v: Vector or array

(c) Variable id: The resource id for the variable holding the element's value.

(d) Element value: The value of the element.

The alert element was used to specify what elements of the �ow to report when

a �ow label covert channel attack has been identi�ed. The content of the alert

element is a vector of the chosen elements separated by dollar sign ($) as shown

below:

[alert, v, 1, $msg1$dst_addr$dst_addr_port$id]

The detection of covert channel based on the �ow was performed by the function

detect_flow_label_anomaly(ipv6_pkt). The function extracted the

4-tuple structure from the incoming pack and validated it against the Flow

Label Dictionary. If there was no matching found, the packet was tagged as

covert (Classc ← anomaly ).

• Conversion to Nominal

The �rst step in detecting a covert channel was the conversion of the value

of the Flow Label attribute to a nominal value. A mathematical

transformation was used given by the Vector:
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id,i,0,1001]src_addr,s,1,::3]dst_addr,s,2,::12]proto,i,1,58]
f_label,i,2,99]alert,v,1,msg1]

...
id,i,0,4372]src_addr,s,1,::14]dst_addr,s,2,::6]proto,i,1,58]
f_label,i,2,17]alert,v,1,msg1dst_addrdst_addr_portid]

Figure 3.7: Flow Label Corpus

FC =



4− Tuple(SrcAddr,DstAddr, Protocol, F lowLabel, ID,Alert)
4− Tuple(SrcAddr,DstAddr, Protocol, F lowLabel, ID,Alert)
4− Tuple(SrcAddr,DstAddr, Protocol, F lowLabel, ID,Alert)
4− Tuple(SrcAddr,DstAddr, Protocol, F lowLabel, ID,Alert)

...

4− Tuple(SrcAddr,DstAddr, Protocol, F lowLabel, ID,Alert)


where FC is the vector space ζ Flow 4-Tuples Objects.

FCN =

[
T_FL

F_FL

]
where FCN is the vector space ϕ, of Flow Label nominal values.

f :

{
FC→ FCN
l 7→ f(FC, l)

}
(3.12)

where l← get_4-tuple(ipv6_pkt) and f(FC, l) ∈ FCN

The formula 3.12 shows that l maps to a value returned by the function

f(FC, l). l is a 4-tuple data structure created for the Source Address,

Destination Address, Protocol and Flow Label values of the incoming IPv6

packet. This means that for any combination of a 4-tuple values there must
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exist a nominal value in the Flow Label Class Dictionary. f associates a y

(nominal value) in the codomain with each argument x (4-tuple). Thus, for

any given 4-tuple, f will yield either the nominal value T_FL representing

a True Flow label or F_FL representing a False Flow Label. The values

processed in equation 3.13 are taken from Table 3.8 and Figure 3.7.

(∃!l)P (f(l)→ Lunom) ∧ l is a 4-Tuple ∧

(lsrc_addr = 2000 :: 3) ∧ (ldst_addr = 2001 :: 7) ∧ (lproto = 58) ∧ (lfl = 99)

(3.13)

We can further describe the transformation through predicate calculus using

the formula 3.13 as there exists exactly one nominal value Lnom calculated

by f for any given �ow label 4 tuple value l. In other words, a 4-tuple with

some given values such as a packet with src_add =2000::3, dst_add=2001::7,

proto_=58 and �ow label=99 maps to a nominal value T_FL (true �ow

label) or F_FL (false �ow label) in the vector space ϕ. This means that

every packet can be classi�ed based on the value of its �ow label, source

address and destination, consequently, it can be allowed or denied to access

a particular service on the network.

3. Hop Limit Attribute

The hop limit �eld can be used to pass covert data by using a scheme of

patterns in the data it carries. The algorithm presented detects a pattern that

increases or decreases the hop limit in successive packets to provide a

signaling mechanism passing bits between a pair of hosts then the packets

must be tagged as covert [149].

• Conversion to Nominal

The �rst step in detecting an anomaly in the hop limit �eld was converting

the numeric value to nominal value which clearly showed the kind of change

∆hl in the hop limit value since the last received packet. The transformation

is given by the vector:
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H =

HopL_UncHopL_Inc

HopL_Dec


where H is the vector space ϕ of Hop Limit nominal values.

f :

{
N→ H

h 7→ f(h)

}
(3.14)

where h ∈ N and h = HopLimitval and f(h) ∈ H

(∃!h ∈ N)P (f(h)→ Hnom) ∧ h = 89 (3.15)

The transformation can be further explained using the predicate P (f(h) →
Hnom) with a bounded variable h shown by formula 3.15. The predicate is

true such that there exists exactly one nominal value for a given hop limit

h value computed by f . For instance, if the transformation function f(h)

deems that given the hop limit value 89, there is no detected covert channel

then the nominal value HopLUnc will be returned, otherwise either HopLInc

or HopLDec will be returned for a detected covert channel. The packet will

be tagged as covert (Classc ← anomaly ) if either HopLInc or HopLDec is

returned.

4. Next Header Attribute

Two forms of Next Header based covert detection were suggested. First, the use

of Non Protocol Number to attach extension headers with covert channels and

second, Fragmentation Header exploits that maximise the use of the reserve

bits in the fragmentation header.

• Conversion to Nominal

During each of the covert channel detection tests discussed in the section

below, the value of the Next Header attribute was converted to one of the
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nominal values representing the attribute in the classi�cation stage. A

mathematical transformation was used given by the vector:

X =

[
No_Extra_Covert_Header

Extra_Covert_Header

]
where X is the vector space ϕ of Next Header nominal values.

f :

{
N→ X

n 7→ f(n)

}
(3.16)

where n ∈ N and n = nhval, and f(n) ∈ X

The transformation formula 3.16 associates a y (nominal value) in the

codomain with each argument x (next header value). A corresponding

nominal value was modelled for each values of N existing in the two-value

vector space X. Thus, any given value of the next header yields either the

nominal value No_Extra_Covert_Header signifying that there were no

anomalous extension headers detected or Extra_Covert_Header that at

least one extension header contained a covert channel.

(∃!n ∈ N)P (f(n)→ Xnom) ∧ n = 58 (3.17)

We can further describe the transformation through predicate proposition

using the formula 3.17 as there exists exactly one nominal value Xnom

calculated by f for any given next header value n and it can be 58, where n

maybe an IPv6 Next Header value set by IANA.

The covert detection tests explored in this research are discussed below:

• Next header covert detection tests

� Non Protocol Number Test

If the next header value was not one of the allowed protocol numbers

assigned by IANA then the packet was tagged as covert as the statement
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ipv6_hdrnh 6∈ iana_assigned_internet_protocol_numbers in

Function detect_next_header_anomaly(ipv6_hdr,classc)

� Fragmentation Exploit Test

Two types of Fragmentation Exploit were identi�ed, namely too many

Fragments Exploit and Authentication Header Exploit.

(a) Fragmentation: Too many Fragments Test

The attack was detected by counting the number of fragments for a

packet and checking if the packet could have originally �tted in 65,535

bytes of an IP packet or before exceeding the manually set MTU. This

check is shown in the statement

check_if_packet_has_frag_headeripv6_pkt and Functions

check_frag_count_covert_anomaly(ipv6_pkt,classc) and

check_invalid_frag_offset_covert_anomaly(ipv6_pkt,classc).

The packet was tagged as covert (Classc ← anomaly ) if the fragment

was anomalous.

� Fragmentation: Authentication Header Exploit Test

An invalid Authentication Header can be used by an attacker to create a

covert channel attack by ensuring that the host will get the covert data

inside it then drop it. The detection of this covert channel is shown by

statements check_if_packet_has_auth_header(ipv6_pkt) and

check_auth_hdr_covert_anomaly(ipv6_pkt,classc). If a

fragment exhibited an Authentication Header Exploit the packet was

tagged as covert (Classc ← anomaly).

5. Payload Length Attribute

If the payload length did not match the actual datagram payload after removing

extra data found or the packet was not a Jumbogram but had a length of more

than 65,535 bytes then the packet was tagged as covert.

• Conversion to Nominal

The conversion of the Payload Length attribute to nominal value can be done

by the following transformation vector:
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P =

PLen_UncPLen_Inc

PLen_Dec


where P is the vector space ϕ of Payload Length nominal values.

f :

{
N→ P

p 7→ f(p)

}
(3.18)

where p is the instantiation of f(h). p ∈ N, p = PLenval and f(p) ∈ P

The mapping function can also be shown as f(p) = len where f calculates

the size of packet and compares it against the value in the Payload Length

len. If the two values are equal then there is no covert channel and the

converse is true. This refers to Function 74 -

detect_payload_length_anomaly(ipv6_hdr,classc).

(∃!p)P (f(p)→ Pnom) ∧ ((p ≥ 1280) ∧ ((p ≤ max_MTU)) (3.19)

where 1280 bytes is the minimum MTU between links and max_MTU is the

Maximum Transmission Unit of the destination node's network.

The transformation can further be described through predicate formula 3.19

as there exists exactly one nominal value Pnom calculated by f for any given

value of payload length in the IPv6 header. If the calculated payload length

matches the payload length in the header, the nominal value PLen_Unc is

returned signifying that there is no payload length anomaly otherwise either

PLen_Inc or PLen_Dec is returned for the detected anomaly.

Further payload length based covert channels can be identi�ed from Miller's

work [160].

6. Source Address Attribute

An address corpus was loaded into the HeuBNet6 system's global Topology

(Network) Dictionary NC for all valid and enabled addresses on the network as
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shown in Function 9 - FC← load_topology_corpus(tpfile). If the source

address was not found on the network by looking up the Topology Corpus or

the source address could not be veri�ed (pinged) then the source address was

probably being used as a covert channel and was tagged as an anomaly.

• Conversion to Nominal

The conversion of the Source Address attribute to nominal value can be done

by the following transformation vector:

NC =



2001 :: 7, Node1

2001 :: 13, Node2

2001 :: 15, Node3

2001 :: 19, Node_Blacklisted

2000 :: 3, Node5

2000 :: 14, Node6

...

2000 :: 33, Node8


where NC is the vector space ϕ of node address - nominal ID mappings.

f :

{
IP→ NC
s 7→ f(s)

}
(3.20)

where s is the instantiation of f(s), s ∈ IP and s = SrcAddrval, and f(s) ∈
NC, and IP is the vector space ϕ of all possible Link-Local IPv6 Addresses

The transformation formula 3.20 models that for any source address in IP,
a corresponding nominal value in the space NC exists otherwise the nominal

value Node_Not_Found will be returned. Thus, any given source address

will either yield the nominal value administratively assigned to it (for example,
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Node_10) or return the nominal value Node_Not_Found.

(∃s ∈ IP)P (f(s)→ Snom) ∨ P (Node_Not_Found)

∧s = 2000 :: 10
(3.21)

The transformation through predicate proposition using the formula 3.21 can

be further described as there might be nominal value Snom calculated by f for

any given source address value s (2000::10) is a node in a network topology,

otherwise it is inferred that a node with the address s can not be found on

that network.

7. Type-Code Attribute Pair

ICMPv6 Type and Code �elds are not mutually independent of each other

according to the conditional independence assumption of Naïve Bayes [161]. It

is easy to show that ICMPv6 code depends on the type using the tautology

ICMPv6code > ICMPv6type. Thus, ICMPv6 Code on its own is not su�cient

to carry out a covert channel attack and must be used in context with an

ICMPv6 Type. On the other hand, certain values of ICMPv6 Types which are

independent from the value of ICMPv6 Code must be either permitted into

the network or blocked as discussed in Section 3.3.

A series of detection tests were be created for every known Type-Code covert

channel attack. This is shown in Function 3 -

Check_Type_Code_Pair(ThreadiQueue) of Algorithm 12. The Type-Code

value pair was converted to a nominal representation using the concatenation

process dst_return_result at the bottom of the algorithm after all covert

channel tests were performed on the pair.

• Conversion to Nominal

The conversion of the Type and Code numeric values to a composite nominal

value can be done by the following transformation vector
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T =



Type0_Code0

Type0_Code1

...

T ype0_Code255

Type1_Code0

...

T ype255_Code255



f :

{
N→ T

t 7→ f(Type+ ICMPv6type + _ + Code+ ICMPv6code)

}
(3.22)

where

ICMPv6type ∈ {0..4, 100, 101, 127..159, 200, 201, 255}

and

lim
0→255

ICMPv6code ∈ N

and Type and Code are string literals.

The function yielded nominal values belonging to the vector space ϕ for all

values of Type and Code attributes. It should be noted that only the 42

ICMPv6 Types in use were analysed. Further Types can be added into the

system as they get assigned by IANA but the system will require to re-train

the models for the MNBC classi�er.

(∃!{t, c} ∈ N)P (f(t, c)→ Tnom)∧

(t ≥ 0) ∧ (t ≤ 255) ∧ (c ≥ 0) ∧ (c ≤ 255)
(3.23)

The transformation through predicate formula 3.23 can be further described

as there exists exactly one nominal value Tnom calculated by f for any given

value pair of type and code {t, c} whose values are within the range 0 to 255.

• Type and Code detection tests

Seventeen covert channel attacks based on the received type and code values
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were identi�ed. If a covert attack was identi�ed in a test, the packet was

classi�ed as covert with the statement Classc ← anomaly and the control

jumped to the dst_return_result label in the algorithm. This is to

stop processing Type and Code covert detection since only one of the

Type-Code covert detection errors can exist for each pair of type and code

values.

� Echo Request and Reply Tests

In the �rst test, it should be checked whether a packet's ICMPv6type is

icmp6_echo_request (128) and ICMPv6code is not

allowed_echo_request_code (0). Similarly in the second test for

icmp6_echo_reply (129), it should be checked whether ICMPv6code is

not allowed_echo_reply_code (0). If these are the case jump to

dst_return_result to stop processing Type and Code covert

detection.

� Destination Unreachable Message (DUM) Test

Tests three to seven were for ensuring that the blocked code as speci�ed

by IANA were marked to be dropped during the issue_verdict stage. If

the ICMPv6type was icmp6_dst_unreach and ICMPv6code was in the

range from 0 to 4, these are Destination Unreachable Message, Packet Too

Big Message, Time Exceeded Message and Parameter Problem Message.

The DUMs were checked using the following tests:

(a) Destination Unreachable Test 1: Route to destination does not exist

If the ICMPv6code was 0, a route to the destination would be checked,

for example, using a traceroute technique. The test

check_route_exists(icmpv6_hdrdst_addr) tagged the packet to be

dropped by setting Resultstate = drop if a route to the destination

could not be found. Program control jumped to

dst_return_result to stop processing Type and Code covert

detection.

(b) Destination Unreachable Test 2: Access Denied

If the ICMPv6code was 1, the destination address was checked whether it
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had been administratively set not to be accessed by a �rewall �lter or

proactively deny any access attempts. The test

check_dst_addr_accessible(icmpv6_hdrdst_addr) tagged the

packet to be dropped by setting Resultstate = drop if the address could

not be accessed. Program control jumped to dst_return_result

to stop processing Type and Code covert detection.

(c) Destination Unreachable Test 3: Address not assigned

If the destination address existed on the internal network by looking up

the Managed Network Address Directory used by the system as shown

in the test

check_dst_addr_in_topology_corpus(icmpv6_hdrdst_addr)

attempted to �nd if the address was active. When ICMPv6code was 2,

the packet was tagged to be dropped by setting Resultstate = drop if

the address was not assigned by the DHCPv6 by listening to neighbour

solicitation messages or tracking the addresses using DHCPv6-Stateful

server. Program control jumped to dst_return_result to stop

processing Type and Code covert detection.

(d) Destination Unreachable Test 4: Address unreachable

As in test 3, the destination address could exist on the network but it

could not be reachable for some reason, for example the node was down.

If the ICMPv6code was 3, it was checked whether the destination address

was active by using a ping message or active connection tracking. The test

check_dst_addr_reach(icmpv6_hdrdst_addr) tagged the packet to

be dropped by setting Resultstate = drop if the address could not be

reached. Program control jumped to dst_return_result to stop

processing Type and Code covert detection.

(e) Destination Unreachable Test 5: Port unreachable

The �nal test was when ICMPv6code equaled 4 for checking whether the

incoming port for receiving packets was open.

check_dst_addr_port_reach(icmpv6_hdrdst_addr) tagged the

packet to be dropped by setting Resultstate = drop if connection to the

destination port was unreachable or prohibited. Program control
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jumped to dst_return_result to stop processing Type and Code

covert detection.

� Packet Too Big Message (PTBM) Test

The eighth test was when ICMPv6code was PTBM. The size of the packet

was checked by sizeof(ipv6_pkt) to be larger than the MTU of the

destination network in test packet_exceeds_mtu(ipv6_pkt). The

packet was tagged to be dropped by setting Resultstate = drop if its size

exceeded the MTU and an entry was made in the log �le for diagnostic

purposes. It was envisaged that the information in the log �le would be

vital in con�guring the right MTU for a specialised network other than

just silently dropping the over-sized packets.

� Time Exceeded Message (TEM) Test

The ninth and tenth tests ware when ICMPv6code was one of TEM numbers.

(a) Time Exceeded Message Test 1: Hop Limit Exceeded

When ICMPv6code was 0 the test hop_limit_exceeded(ipv6_pkt)

checked whether the packet's hop limit indicated that the packet had been

forwarded through the routers too many times in search of its destination.

In IPv6 the hop limit �eld is decremented when the packet passes a router.

When the hop limit reaches zero, a router must drop th packet. Equally,

the HeuBNet6 system dropped the packet by setting Resultstate = drop.

This meant there was a routing loop or the initial hop limit value was too

small for the packet to reach its destination.

(b) Time Exceeded Message Test 2: Fragment reassembly time exceeded

When ICMPv6code was 1 the test

reassembly_time_exceeded(ipv6_pktfxhdr) checked whether the

fragmented packet's reassembly time had exceeded a certain time. The

HeuBNet6 system dropped the packet by setting Resultstate = drop

when the packet could not be reassembled in time.

� Parameter Problem Message (PPM) Test

The eleventh and thirteenth tests were when ICMPv6code was one of PPM.

Attackers can intentionally send a malformed packet to syphon data out of

the network using the payload of a parameter problem message returned.
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(a) Parameter Problem Test 1: Erroneous header �eld

When ICMPv6code was 0 the test

unkown_header_field_found(ipv6_pkt) checked that the �elds

in the packet were authentic and in a valid format. If a �eld was found

to be erroneous the packet was dropped by setting Resultstate = drop.

(b) Parameter Problem Test 2: Fake next header

When ICMPv6code was 1 the test

unkown_header_type(ipv6_pkt)(ipv6_pkt) checked that the

next header �eld of the packet was a legitimate number as assigned by

IANA. If a header type was not between 0 to 255 then the packet was

dropped by setting Resultstate = drop.

(c) Parameter Problem Test 3: Unknown option

When ICMPv6code was 2 the test

unkown_ipv6_option(ipv6_pkt)(ipv6_pkt) checked that for the

type of the packet received, all �eld names were valid. If an unknown

option was found the packet was dropped by setting Resultstate = drop.

� Multicast Listener Discovery Test

The fourteenth test was when ICMPv6code was one of MLD numbers. If

ICMPv6type was one of MLD numbers and either one or both

ipv6_pktsrc_addr and ipv6_pktdst_addr were not part of the network by

looking up the Managed Network Address Directory (MNAD) or link-local

addresses then the packet was dropped by setting Resultstate = drop.

� Permitted Messages Test

On the contrary, the �fteenth test in function

allow_permitted_message(ipv6_pkt) checked for packets carrying

permitted error messages belonging to the sets UIM, EM and ETN and do

not have any covert attack detected in any of the packet's �elds. IANA

has speci�ed a set of ICMPv6 types which are either reserved for future

use or to be allowed for experimentation and these are the types UIM, EM

and ETN. UEM were not permitted in this research due to large number

of Type-Code combinations (255 x 255) when UEM were not included

since they are not currently in use by the IPv6 protocol. This decision
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yielded only 42 x 42 Type-Code combinations for our research. A normal

UIM, EM and ETN packet was allowed into the network by setting

Resultstate = allow.

� Neighbour Discover (ND) Test

The sixteenth and seventh tests checked if ICMPv6type was Neighbour

Discovery Solicitation ICMPv6 Messages (133 - 137) or Advertisement

Messages (141, 142, 148, 149). For both tests, the ICMPv6code was

checked to be zero otherwise the packet was tagged as anomalous by

setting Classc = anomaly.

� Conversion of Nominal Values to NB Format

According to the HeuBNet6 Live Mode, once all �elds of the IPv6 packet

had been checked for covert channels, NIHA further transformed the

nominal values to pairs of numeric-ID representation and frequency of

occurrence such as 253:3 or {620:3 34:1 16435:2 67343:1} as expected by

the HeuBNet6 MNB Engine.

All known features' nominal value had their NB feature IDs recorded in a

Class Map with the format:

(a) Nominal ID: The nominal value representing a known feature (IPv6

packet �eld value)

(b) NB ID: The numeric Naïve Bayes ID of the feature.

(c) Class ID: The classi�cation ID of the feature's value (1 means anomaly

and 2 means normal)

The Class Map was loaded into the HeuBNet6 System in function

load_attr_id_class_map(clsfile). A sample of the �le is given in

Figure 3.8.

The get_attribute_id(nom_id) function retrieved the NB ID and

Class ID of a feature or token given the nominal value of the feature. All

the retrieved NB IDs together with their frequencies in the packet were

concatenated into a space-separated string with the eventual packet

classi�cation ID at the beginning of the string. The resultant string was

passed back to HeuBNet6 Main before being passed to HeuBNet6 MNBC

Engine for a probabilistic covert channel detection. The �nal NB formated
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HopL_INC, 1, 1
HopL_DEC, 2, 1
HopL_UNC, 3, 2
PLen_INC, 4, 1
PLen_DEC, 5, 1
PLen_UNC, 6, 2

Extra_CovHdr, 7, 1
No_Extra_CovHdr, 8, 2

Type1_Code0, 9, 2
Type1_Code1, 10, 2

...
Word_10306, 75605, 1

Figure 3.8: Feature Nominal-NB-Class Map

2 3:1 2:1 6:1 25:2 5151:1 561:1 73:1 64345:1 74257:5 ... 1042:1
...

1 1:1 3:1 6:1 25:2 5152:1 560:1 72:1 17235:1 69235:2 67623:1 ...

Figure 3.9: Feature Nominal-NB-Class Instances

string lookED is shown in Figure 3.9.

3.7.4.2 HeuBNet6 MNB Engine

The second covert detection engine employed text based classi�cation to

improve accuracy and performance as opposed to the Maximum

A-Posteriori (MAP) probability estimate, and to improve the speed

obtained by a basic Naïve Bayes classi�er. This was of paramount

importance in the case that most of the input features were not discrete

rather interpreted by a set of rules for classifying the features' values or had

nominal categories. The consequence of using an enhanced Multinomial

Naïve Bayes classi�er for live packet classi�cation was the ability to achieve
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almost constant time in processing packets using deep packet inspection.

In an IPv6 packet, all �elds are potentially prone to covert attacks with

di�erent levels of severity, hence some features can be removed before running

the classi�er to concentrate on the features with the most detrimental e�ect.

The classi�er's algorithm starts with de�ning the class prior as follows:

P̂ (c) =
Nc

N
(3.24)

where P̂ (c) is the probability of the class c, Nc is the number of packets in class

c and N is the total number of packets in equation 3.24 and P̂ (fk | c) is the
conditional probability of the subset value of f given the class c in equation

3.26. P̂ (c) and P̂ (fk | c) can be estimated by �nding the Maximum Likelihood

Estimate (MLE). MLE is simply the relative frequency and corresponds to

the most likely value of each parameter such as tra�c class, �ow label etc.,

given the training data.

To �nd out the word count in each packet of the training data, the count of

word x in all training documents belonging to Class c should be calculated.

It is given by the equation summarised as:

P̂ (w | c) =
count(w, c) + 1

count(c) + |V |
(3.25)

where |V | is the size of the vocabulary (the words in the training set). The

+1 in the equation is the Laplace Smoothing to avoid obtaining a conditional

probability of unclassi�ed words which results in 0
|V | . Equation 3.26 shows

the �nal probability equation which uses logarithm values of the class prior

and conditional probabilities to avoid over-�tting (�oating-point under�ow):

logP̂ (c) +
∑

1≤k≤nd

logP̂ (fk | c) (3.26)

Algorithm 9 describes the feature reduction process.

• Multinomial Naïve Bayes Training

raining the HeuBNet6 MNB Classi�er 3 was preceded by the creation of a
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model �le containing the conditional probabilities of each known feature

value as shown in Section 3.7. Algorithm 8 line 5 -

P,C ← load_training_data(modfile) shows the loading of the

nominal-values list �le created by C4.5 feature pruning into the vector of

each packet's features and their frequencies in the packet P and a set of class

priors C.

This is followed by the calculation of four variables used in the classi�cation

equations;

fsetsize ←Max(Pfeat_id) where fsetsize is the largest feature ID

fsize ← Count(P) where fsize is the size of the set of feature IDs

csetsize ←Max(Cclass_id) where csetsize is the largest Class ID

csize ← Count(C) where csize is the size of the set of Class IDs

predictedclasses ← [] where predictedclasses is the set of predicted

classes, initially empty.

Lines 10 to 14 show the calculation of class priors from the set of packet's

features and their frequencies P and fsetsize using the equation 3.25.

Lines 16 to 27 show calculation of feature conditional probabilities for each

of the classes using the equations 3.25 and 3.26.

Lines 28 to 37 show the use of the predicted probabilities to generate a

model �le which would then be used for classifying packet during Live Mode.

• MNB Packet Classi�cation

Multinomial Naïve Bayes' text classi�cation is one of the best and fastest

classi�ers although it is simple to implement. In this research, the incoming

IPv6 packet were treated as a document to be classi�ed. The information in

the packet's pseudo header, ICMPv6 header, payload or in any available

extension headers and upper-layer protocol headers were converted to a

uniform format as discussed earlier which the classi�er. Once the trained

classi�er received a packet it used the model �le of predicted conditional

104



3.Proposed Detection Framework

probabilities of all available features to classify the packet as either normal

or covert.

The classify_packet(packet, outfile, format) function shows the MNB

classi�cation stage which has three inputs - the IPv6 packet, the output �le

to write predicted results to and the output format of the results. Line 41

- P,C ← extract_packet_features(modfile) shows the extraction of

features and their frequencies from the incoming packet into the sets used for

the classi�cation process followed by the calculation of feature and class ID

sets variables as done during the MNB training phase from Line 42 to 47.

Line 48 starts the iteration through each feature of the packet to �nd their

predicted conditional probabilities for each class (normal or anomaly). The

process is done in three phases:

(a) Calculate the n−arity predicted score for each of the features k from the

logarithm of feature's predicted conditional probability of a given class

multiplied by the frequency of the feature in the packet n = 2 for classes

{Normal, Anomaly}

logP̂ (c) +
∑

1≤k≤nd

logP̂ (fk | c) (3.27)

(b) Calculate the n predicted classes for feature k classpredicted from the n−
arity predicted score.

argmax{c ∈ C}(scorepredicted) (3.28)

(c) Write the n predicted classes for feature k to the out�le in the chosen

format (0 for predicted scores format and 1 for predicted probabilities

format).

The �nal calculation is �nding the accuracy of the prediction by comparing

the features' test classi�cations against the predicted classi�cations expressed
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as a number between 0 and 1 which is found using Iverson bracket1 [162]:

1− C(x)/s

where C(x) =
s∑

n=1

[featijtestscore 6= featijpredictedscore ]

[...] = Iverson bracket

s = feature set size

(3.29)

1In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that
generalises the Kronecker delta.
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Algorithm 8 HeuBNet6_MNBC

INPUT: Database DB4, IPv6 Packet± AttributeIDs P ,Classi�cation classc
.

OUTPUT: Prior probabilities prior, Conditional Probabilities condprb,

Training model Tmod �le .

1: procedure Get_Frequency_Table(a, b) . The g.c.d. of a and b

2: end procedure

3: function TrainMNBClassifier()

4: modfile← c45_feature_pruning()

5: P,C← load_training_data(modfile)

6: fsetsize ←Max(Pfeat_id)

7: fsize ← Count(P)
8: csetsize ←Max(Cclass_id)

9: csize ← Count(C)
10:

. ==================================

. Calculate class prior probabilities given by: P̂ (c) = Nc

N

. ==================================

11: prior← []

12:

classfreqtable ← count_each_class_freq(C,csetsize,csize)

13: for i← 0 to csetsize − 1 do

14: prior[i]← classfreqtable[i]/csize

15: end for

16:

. ==================================

. Calculate feature conditional probabilities given by:

P̂ (w | c) = count(w,c)+1
count(c)+|V |

. ==================================

17: condprb← []

18: featclassfreqtable ←
create_feat_freq_table(P,C, fsetsize,csize)
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19: classfreqsum ←
calc_class_freq_sum(featclassfreqtable,P,csize)

20:

21: for i← 0 to fsetsize − 1 do

22: featprb← []

23: for i← 0 to fsetsize − 1 do

24: featprb[j] ←
(1 + featclassfreqtable[i][j])/(fsetsize + classfreqsum[j])

25: end for

26: condprb[i]← featprb

27: end for

28:

. ==================================

. Save generated model to �le

. ==================================

29: for each class probability cp ∈ prior do
30: tmod← append(cp)

31: end for

32: tmod← append_new_line()

33: for each feature cond probabilities cp ∈ condprb do
34: for each probability p ∈ cp do
35: Tmod← append(p)

36: end for

37: tmod← append_new_line()

38: end for

return prior,condprb,tmod

39: end function

40: function Classify_Packet(packet, outfile, format)

41: P,C← Extract_Packet_Features(packet)

42: fsetsize ←Max(Pfeat_id)

43: fsize ← Count(P)
44: csetsize ←Max(Cclass_id)

45: csize ← Count(C)
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46:

47: predictedclasses← []

48: for each feature f ∈ Pfeats do

49: scorepredicted ← []

. ==================================

. Calculate predicted log prob using logP̂ (c) +
∑

1≤k≤nd
logP̂ (fk | c)

. ==================================

50: scorepredicted ← predict_logprb(f)

. ==================================

. Calculate classpredicted using argmaxc∈C(scorepredicted)

. ==================================

51: classpredicted ← class_from_score(scorepredicted)

52: predictedclasses← classpredicted . add to array

53:

write_class_to_file(outfile,classpredicted, scorepredicted, format)

54: end for

55:

56: accuracy ← (1− count(C \ predictedclasses)/csize)

57: return accuracy

58: end function

3.7.4.3 C4.5 Feature Pruning

Stored training datasets created through the NIHA Algorithm were used to

generate a training �le for the MNB classi�er. The data needed to undergo a

pruning process as shown in Algorithm 9. Entries from the training database

were read one at a time and converted to an array of features which were

evaluated using Information Gain.

The pruning process organised the features with the most gaining

information into a generated ranking table. A probability threshold was

then used to reduce the redundant features. The downside of this approach

when applied to IPv6 covert detection was that every feature could

theoretically be used by attackers to perform attacks whose damage can be
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measured by the importance of the attacked host network and information

on it. If a basic form of Naïve Bayes was to be used for classifying the

packets that may have had some of the eliminated features pruned, the

detection would have led to many False Negatives as the least relevant

features with covert channel capability ignored. Hence, C4.5 pruning was

performed knowing that the Multinomial Naïve Bayes would subsequently

be used.

Algorithm 9 HeuBNet6_C45_Feature_Pruning
INPUT: Database TDb, IPv6 Packet± AttributeIDs P ,Classi�cation classc

.

OUTPUT: Prior probabilities prior, Conditional Probabilities condprb,

Training model Tmod �le .

1: run_c45_pruning()

2:

3: function C45_Feature_Pruning(TDb, nbtranfilelist)

Equations for calculating Feature Gain Ratio:

InformationGain(A) = I(S1, S2, ..., Sm) = −
m∑
k=1

Si

S
log2

Si

S
(3.30)

SplitInformation(A) = −
x∑

j=1

Sj

S
log2

Sj

S
(3.31)

GainRatio(A) =
InformationGain(A)

SplitInformation(A)
(3.32)

RankingTable← []

4: for each record rec ∈ tdb_tt training table do

5: for each feature feat ∈ rec do

6: featgrc ← calculate_gain_ratio(feat, Classc)

7: RankingTableij ← append(argmax(featgrc))

8: end for

9: end for

10: remove_low_gain_features(RankingTableij))

11: while !EndOfRankingTable do

110



3.Proposed Detection Framework

12: modfilei ← Create_MNB_Training_File(RankingTableij)

13: nbtranfilelist← append(filename(modfilei))

14: end while

15: return nbtranfilelist

16: end function

• MNB Training data size estimation

This section shows the estimation of the number of model �les created during

C45 Pruning. In order to calculate the estimated size of the model training

data we needed to obtain the number of characters per line by using the

average length of all features nominal ID and frequency multiplied by the

total number of features per line:

Avg. characters per feature, µ =
10788∑
n=1

len(Feature_Nominal_ID)/10788

= 7

Characters per line, λ = µ · 8

= 7 x 8 features

= 56

Hence, estimated training data size = γ · λ

= 346,816,512 x 56

= 19,421,724,672 characters ≈ 18.09GB

(3.33)

The 18.09 GB MNB training data would be split into 1235 �les of less than

30MB each with 280,869 lines to ease the importing process into the

HeuBNet6 system. The �le contains a list of training �les looked as shown

in Figures 3.6. A sample of the training �le is shown in Figure 3.10.
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id,i,0,1001]src_addr,s,1,::3]dst_addr,s,2,::12]proto,i,1,58]
f_label,i,2,99]alert,v,1,msg1]

...
id,i,0,4372]src_addr,s,1,::14]dst_addr,s,2,::6]proto,i,1,58]
f_label,i,2,17]alert,v,1,msg1dst_addrdst_addr_portid]

Figure 3.10: Flow Label Corpus

3.7.5 Anomaly Detection Reporting and Analysis

This section covers the production of various reports for analysing the e�ect of

features on overall covert detection, setting of reporting intervals and how the

HeuBNet6 would be validated using WEKA. A log �le to be created for alerts

is presented then various statistical reports and analytics are suggested.

3.7.5.1 Alarm

This section covers the reporting of anomalies for administrators to ensure that

new suspicious threats and false detections were carefully analysed and to allow

�ne tuning of the training datasets. A report of detection of anomalies in a form

of a log �le containing selected details of each anomalous packet such as IPv6

Packet ID, Date and Time, Source Address and Port, Destination Address and

Port, Protocol, Attack Type, Severity was produced at a �xed or chosen time

interval. The log was designed to be checked by an administrator to ascertain

the severity of speci�c attacks and to identify attackers and compromised or

targeted hosts. Algorithm 10 shows the process of writing the details of a

detected anomalous packet.
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Algorithm 10 HeuBNet6_Alarm

1: When a message is received from the HeuBNet6 Main (the system controller);

2: Create a log entry from the anomalous packet with the following details; IPv6

Packet ID, Date and Time, Source Address and Port, Destination Address and

Port, Protocol, Attack Type,

3: Write log entry to �le.

4: Check if the set prompt time has expired to alert an administrator to review

the detected anomalies

3.7.5.2 Statistical Reporting and Analytics

This section presents a series of forms proposed for reporting detected anomalies

and the production of statistical and analytical reports for checking accuracy

and system performance. Statistical reporting may allow a �ne grained analysis

of the various attributes and their e�ect on performance and accuracy, while

analytical reports would provide a coarse grained assessment of the system

elements with recommendations.

(a) Statistical Report

The statistical report will include the following items:

i. Attribute score predictive analysis.

ii. Attribute probability analysis.

iii. Detection Rates (DR) for True Positive Rate (TPR), False Positive

Rate (FPR), True Negative Rate (TNR).

iv. Classi�cation accuracy for MNB and NIHA.

v. Liable Covert Attacks in features comparison and analysis.

vi. Statistical Figures.

(b) Analytical Report

Analytical reports may provide the means of assessing various aspects of

the proposed system for proof of correctness, performance assessment and

recommendations for future work. The reports would include the following:

i. Behaviour of the NIHA in comparison to Finite Automata.
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ii. Performance of MNBA in comparison to NBA.

iii. Time elapsed in detection and accuracy rate for NIHA and MNBA.

iv. True Positive Rate (TPR), False Positive RATE (FPR), True Negative

Rate (TNR), Detection Rate (DR) analysis.

v. Confusion Matrix Figures.

3.7.6 Exporting Cross Validation ARFF Files

WEKA was used to perform cross validation process and certain

methodologies will be highlighted and used for this objective such as hold out

method. Section 5.1 discusses all cross validation methods. There is to date

no similar IPv6 Dataset or covert channel detection system available. The two

closest researches in IPv6 security are Bro and Suricata [163], although they

are more focused on Intrusion Detection Systems. The benchmark training

the testing data from HeuBNet6 database was exported to two ARFF format

�les that were to be loaded into WEKA. Thereafter, a series of algorithms

such as Genetic and Fuzzy, C45, Naïve Bayes and Multinomial Naïve Bayes

were run. Comparative analysis between HeuBNet6 and WEKA results, FP,

FN, error rates, performance runtime and various other indicators are

discussed in Chapter 5.

Algorithm 11 shows the creation of WEKA training and testing data.

Algorithm 11 HeuBNet6_Export_ARRF_Files

INPUT: Database DB .

OUTPUT:
WEKA Training File NIHATrain.ARRF,

WEKA Testing File NIHATest.ARRF
.

1: weka training arrf file:

2: Create a new ARRF �le named NIHATrain.ARRF on the File System

3: Create ARRF Headers as follows;

4: @relation 'NIHATest'

5: @attribute 'class' {'1', '2'}

6: @attribute 'Packet' string

7: @data
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8: Connect to Testing Database using a Database Manager Helper, dbman

9: Read all tuples from Training Data Table

10: for each t in r do

11: Serialise tuple's nominal values (except tupleid and date) and append

line to output ARRF File

12: end for

13: weka testing arrf file:

14: ARRF File named NIHATest.ARRF with ARRF headers as shown on

line 3 to 7

15: Read a subset of tuples (approx. N instances) from Testing Data Table

using dbman

16: for tupleRow ← 0 to NumOfTuples− 1 do

17: Serialise tuple's nominal values (except tupleid and date and append line

to output ARRF File

18: end for
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3.8 Summary

In this chapter, a novel HeuBNet6 system is presented to detect and classify covert

channels. This security system uses a new Network Intelligent Heuristic Algorithm

(NIHA) as a primary prevention and detection module. Then a secondary security

technique in the classi�cation module is presented to tackle and classify covert

channels statistically in IPv6. NIHA creates the essential part of the process

which is the primary data as well as the anomaly detection part. The covert

channel instances created in this process are around 18.5 millions instances from

10,788 attributes. A vast number of attacks based on this large feature set can be

performed against security systems belonging to legitimate governments, agencies

and private sectors as primary targets by attackers. The developed datasets are

proposed for IPv6 malware and covert channels detection.

This chapter summarizes four main contributions: a new multi-thread system

to deal with high speed of network stream, a novel Network Intelligent Heuristic

Algorithm (NIHA), new primary data containing new IPv6 covert channel

instances in a new di�erent format, and an application of Multinomial Naïve

Bayes classi�er is suggested as a new shared-knowledge security system.

Existed approaches are di�erent from and less e�ective than this new approach.

In the pre-processing of data, network simulation data has been transformed into

human readable data to ease and facilitate the transportation, classi�cation and

detection processes without causing packet loss which a�ected vital mechanisms

of the IPv6 such as error messaging, experimentation messages and new IANA

assigned numbers. In this approach, more than 25 types of possible covert channels

attacks were presented in di�erent modes. These channels were tested in four

di�erent environments LAN design; two of them had possible connection to the

internet and two had not. Each network design gave a feasible outcome as shown

in 4.5.

In this chapter, a novel approach was suggested as a hybrid security framework

to tackle the sophisticated covert channel security issues in the packet headers of

the incomplete network protocol IPv6.
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Experimental Methodology

4.1 Introduction

In Chapter 3, a new framework to create a security system (HeuBNet6) for

covert channel detection and classi�cation was presented. It operates as an

advanced Intrusion Prevention System (IPS). The system is based on a few

modules to specify attack behaviour (normal or abnormal) with Intelligent

Heuristic algorithms. The implementation of the system identi�ed data types

received from �ltered packets, categorized the instances, and transformed them

into speci�c attributes with their subset values. These values were passed into

data pruning process (puri�cation) to remove the unwanted, repeated and

unimportant subset values within the instances. For this purpose, Multinomial

Naïve Bayes algorithm (MNB) prior to the issue verdict process was modelled,

and issue verdict main function was used either to accept or reject the packets.

Raising an alarm for covert and unknown attack detection, this was vital at a set

time interval to check the log. Independently, this framework was developed to

create a multi-layered and multi-threaded security detection which did a process

of veri�cation on the covert channel instances. The outcome of this development

consisted of two folds. The �rst crucial part was saving the training and testing

data into an SQL database which was used to produce two qualitative reports,

namely statistical and analytical. The second part consisted of a complete report

in �nal version format including all labelled data to be used as an input into
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cross validation method.

This chapter aims to present the experimental methodology which

demonstrates the capabilities of the suggested system to detect misuse based

attacks. This chapter is organised as follows: Section 4.2 explains the

experimental design topology set up. Section 4.3 describes the testing

environment. Section 4.4 explains the main and sub attack scenarios. Section 4.5

describes the implementation of HeuBNet6 system components. Finally, section

4.6 produces a summary of this chapter.

Table 4.1: Firewall static wall

Protocol Network Address Gateway

IPv6 2001::1/64 2000::1/64
IPv6 ::1/0 2001::3

IPv4 0.0.0.0/0 192.168.20.1

4.2 Network Topology

The experiment network architecture was designed according to the attack

scenarios which were planned to test the system and hypothesis. This

architecture design was drawn e�ectively for the implementation process. Figure

4.1 shows the components of the testbed network architecture which was used in

this research. Graphical Network Simulator 3 (GNS3) [164] version

GNS3-1.5.1-all-in-one was used. It is an open source software and used for

computer network emulation through connecting real and virtual computers.

This method is �exible for complex network topologies [165]; moreover, it

emulates Cisco IOS images using Dynamips. Table 4.2 shows the IPv6 link-local

and global addresses of the tested virtual machines. All incoming and outgoing

tra�c should be redirected through HeuBNet6 system which works as an active

warden. LAN 3 and LAN 4 can access bi-direct within the network while LAN 1

and LAN 2 have same access points within the network through the server.

Table 4.3 shows the con�guration details which performed to prepare the testbed
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environment and Table 4.1 shows the static �rewall details. The testbed network

consisted of the following hardware and software:

1. HeuBNet6 Proxy System: is installed on Linux based operating system:

ubuntu-14.04.3-desktop-amd64.iso LTS.

2. Firewall: Palo Alto �rewall was con�gured into the architecture.

3. Attackers: three attackers were represented by three machines running

Linux OS ubuntu-14.04.3-desktop-amd64.iso TLS (the same version OS for

all three attacker).

4. Victims: four victims were set up using Linux OS ubuntu-14.04.3-desktop-

amd64.iso TLS (the same version for all four victims).

5. Routers: two CISCO routers were installed virtually, they are:

• c7200 with c7200-advipservicesk9-mz.122-33.SRE6.image

• c3725-adventerprisek9-mz124-11.image.

6. Switches: four switches were used.

4.3 Setting Up Testing Environment

The system was implemented in C++ programming language on a personal

computer with 3.1 GHz Intel Core i5 CPU 3450 and 8 GB RAM. The testing

environment was suggested to be in a controlled network lab environment rather

than to run it live on the university or any public network. This is due to the

university compliance with network security policy according to data protection

Act 1998 [166]. Table 4.2 shows the GNS3 testbed devices and its details.

4.3.1 Virtual Machine Environment

Oracle virtual machine box with Graphical User Interface (GUI) Version 5.0.16

r105871 was used as the experimental environment. Through these sessions, results

can be observed about how deep packet inspection is performed. For the suggested

simulation topology design, 4 LANs were created as shown in Figure 4.1.
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4. Experimental Results

Figure 4.1: Suggested LAN Topology

4.3.2 Covert Channel Attack Tool

There are few security assessment and analysis tools for IPv6 network. Not so

many tools are available for performing simulation and emulation as well. One of

the most popular attack simulation tool is The Hackers' Choice1 (THC-IPv6

Toolkit) [50]. However this tool does not provide extensibility in needed

functionalities during the research work. Moreover, it lacks some of the deep

packet inspection analysis mechanism which limits the testing range. Hence, a

security assessment and attack simulation tool was created to perform some

attacks against legitimate targets in the design topology of the thesis.

Iptables is a generic table structure �rewall. Each rule within an IP table

consists of a number of classi�ers which match the Iptables and one connected

action is called Iptables target. Furthermore, it provides the means to categorise

packets into a set of distinct sets of rules, namely:

1. Filter Tables: for making decision to allow or drop packets.

1More information abut this tool is available on-line http://tools.kali.org/

information-gathering/thc-ipv6
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2. NAT Tables: for network address translation and modifying packets before

forwarding to destination.

3. Mangle Tables: for packet manipulating �eld values and marking for further

processing.

4. Raw Tables: for connection tracking and interfacing with the Net�lter

framework.

5. Security Tables: for per-packet or per-connection setting of internal SELinux

security context marks on packets.

On the other hand, Net�lter consists of a set of hooks as follows:

• NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN, NF_IP_FORWARD,

• NF_IP_LOCAL_OUT

• NF_IP_POST_ROUTING hooks

Net�lter mechanism works upon some speci�c rules in Linux operating systems.

For example, once a packet arrives, Linux kernel extension modules register

callback functions with the network stack. A callback function will be called back

for every packet that traverses the respective hook within the network stack.

Ip6tables rules redirect all tra�c to a processing application which decides how

to handle the packets. In the proposed HeuBNet6 system, using the Libnet�lter

API will aid to deal with the high streaming speed of data up to 40 Gbits per

second.

4.4 Attack Scenarios

HeuBNet6 was suggested to detect and test the investigated covert channels in

IPv6 in this project. This tool can be used by all parties in di�erent scenarios such

as attacker, receiver, or sender of the overt communication. The main assumption

was that Bob and Alice would be either sender, receiver (or attacker and victim)

while Wendy was the warden who metaphorically represented the security system

which monitored and captures messages to analyse and mitigate any attacks. Some

of the simulated attacks depend on certain scenarios as explained below.
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4.4.1 Scenario One

In this scenario, Alice (Attacker1) was the sender and Bob (Victim1) was the

receiver of the message which was actually an attack, over the tra�c. This scenario

depended on the active communication since both were connecting to each other

in two di�erent VLANs normal network tra�c, and free from any suspicious move.

4.4.2 Scenario Two

In this scenario, Alice prepared an attack against Bob, who was vulnerable, and

sent both normal and covert ICMPv6 packets to Bob (receiver). Wendy was the

warden catching, monitoring all messages, mitigating, analysing and producing the

outcome reports, then blocking the attack instance after updating the database.

All packets with covert data were automatically dropped before reaching their

destination while all normal packets were forwarded to their destinations. All 37

test cases depended on the same main scenario mentioned in section 3.2.

4.5 HeuBNet6 System Modules

This section shows some the experimented implementation of the covert channel

detection functions within the HIHE.

4.5.1 Training DataSet Creation

To create test data, a few commands will be run to simulate attacks against a

few victims on the network. In the �rst step, ip6tables should be con�gured to

put packets in two queues, route them to HeuBNet6 for classi�cation and save

the results to database. The following commands were taken from attack tools

THC and IPv6ToolKit:

/sudo ip6tables -I FORWARD -i eth1 -o eth0 -p ipv6-icmp -j

NFQUEUE
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myntu@heubnet6_VirtualBox:/home /heubnet6 /libnetfilter_queue

_1.0.2 sh ./hn6-train-db.sh

Figure 4.2 shows a packet (blue dotted line) sent by a node (2001::15) containing

various values for a destination node (2000::14) at the left. HeuBNet6 acted as a

router or proxy server between the two nodes, in addition to checking the packets

for covert exploits. HeuBNet6 applied classi�cation to each packet and saved the

data into the training database, which was then used for training the MNBC.

Figure 4.2: Suggested topology for training dataset creating

4.5.2 Testing Dataset Creation

To create test data, a few commands to simulate attacks against a few victims on

the network were run as shown in Figure 4.1. Some of the used commands during

simulation were taken from the THC, IPv6ToolKit and Scapy attack tools. The

following steps were taken to prepare the testbed environment:

1. Run the �le ./sendhbhfrag created in C language to simulate the attacks on

victim 2:
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• - gcc -std=c++0x -pthread -Wall -I ../../include -o

sendhbhfrag tcp6_hop_frag.c

2. Link to MySQL to store packet data into the database:

• -/usr/include/mysql -lmysqlclient -I /usr/include/mysql

4.5.3 Testing Heuristic Intelligent Engine

4.5.3.1 Experimental Tra�c Class Anomaly Covert Detection

It was assumed in this research that all valid tra�c classes on the network would

have been manually created and assigned to di�erent host's processes before any

experimentation was commenced. According to the IPv6 protocol, a source node

must correctly use speci�ed tra�c classes in order to access certain destination

nodes. The tra�c class is generally attached to an upper-layer protocol. However,

in order to generate all types of packets for testing purposes, tra�c class was

allowed to be repeatedly used.

According to the proposed model, Table 4.4 contains the Tra�c Class types

in IPv6 which were allowed between nodes on the network for experimentation

purposes.

Table 4.4: Tra�c Class Corpus

1 23 53 78 34 122 120 220

Based on Figure 4.3, two test cases of tra�c class anomaly detection shown in

Table 4.5 were experimented using source node Server-LAN1 and destination node

Attacker2-LAN2. In the �rst test case, Alice sends a hidden message to Bob in

the tra�c class �eld with the value of 66. This packet is expected to be �agged as

covert since tra�c class is invalid. Conversely, the second test case shows a packet

without a hidden message in the tra�c class �eld with an allowed value of 23 and

it is expected to be classi�ed as normal. The actual results show that both NIHA

and MNBC classi�ers have veri�ed the packet as covert and normal respectively.

A brief example of how MBNC computes the classi�cation is shown in Subsection

4.5.4.
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Table 4.5: Detection of covert tra�c class result using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC
Attacker 2 2 Server 1 66 Normal Normal Normal
Attacker 2 2 Server 1 23 Covert Normal Normal

The execution commands for this attack is:

Alice/scapy# python testpkt.py -t 128 -c 0 - -nh 58 - -tf 23

Figure 4.3: Tra�c Class anomaly detection topology

4.5.3.2 Experimental Flow Label Anomaly Covert Detection

The �ow label attribute has caused many concerns over the years about its true

purpose and application. The attribute's speci�cation is ambiguous in its usage

and applicability due to the fact that it is unprotected during transmission and can

be changed en route. Currently, no Internet-wide mechanism can depend on the

attribute without applying a "best e�ort" quality reliability check [167]. In 2011,

the �ow label attribute was proposed in the RFC 7424 [168] for optimising and

scaling networks using Link Aggregation Groups (LAGs) and Equal-Cost Multi-

paths (ECMPs) which still remains informational.
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Several implementations of the �ow label have been proposed mostly based on

the obsolete RFC 3697 [169, 170]. The 3-tuple (source address, destination address

and the transport protocol type) �ow label instead of a 5-tuple (source address,

destination address, source port, destination port, and the transport protocol type)

implementation is favoured in RFC 6437.

In this test, the �ow label attribute was used to provide a new functionality

called Network Routing Service Mechanism (NRSM) which helped to distribute

tra�c on the network without inspecting the packet's payload. Nodes have to use

speci�c �ow labels to access services provided by other nodes. A Flow Manager

Utility Subsystem (FMUS) was created to handle the creation and administration

of �ow labels used on an internal network. This step was taken instead of letting

a source to create a pseudo-random �ow label on the �y. Flow label corpus Table

1 was created as shown in Appendix A.3.

Three test cases of �ow label anomaly detection shown in Table 4.6 based

on Figure 4.4 were experimented using the source node Attacker1-LAN1 and the

destination node Victim1-LAN2.

• In the �rst test case, Alice sends a hidden message to Bob using �ow label

�eld with the hexadecimal value of 0x1BC. This packet is expected to be

�agged as covert since �ow label is invalid.

• The second test case shows a packet without hidden message in the same

�eld carrying an allowed value of 0x63 and is expected to be classi�ed as

normal.

• In the third case, Alice used a di�erent protocol value 0x16 embedding the

hidden data in. This is covert. The actual results show that both NIHA and

MNBC classi�ers have veri�ed the packet as covert and normal respectively.

The execution commands for this attack is:

/Alice/scapy/sendpkt - -sa 2001:17 �da 2000::13 �pr 58 �fl 444

�t 128 -c 0
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Figure 4.4: Flow label anomaly detection topology

Table 4.6: Covert detection of �ow label using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC
Attacker 1 1 Victim 1 2 444 Covert Covert Covert
Attacker 2 2 Server 1 99 Normal Normal Normal
Attacker 2 2 Victim 2 1 Proto = 22 Covert Covert Covert

4.5.3.3 Experimental Hop Limit Anomaly Covert Detection

Hop limit (originally Time To Live, TTL in IPv4) is used by the source address

(sender) to calculate how many nodes or routers the packet will pass through

before reaching the destination. An attacker can use this �eld to create a covert

channel by systematically manipulating values in a series of packets. If a pattern

is detected showing an increase or decrease in the hop limit, this occurrence will

be observed in successive packets to provide a signalling mechanism passing bits

between a pair of hosts then the packets must be tagged as covert.

Three test cases of hop limit anomaly detection as shown in Table 4.7 based on

Figure 4.5 were experimented using source node Attacker1-LAN1 and destination

node Victim1-LAN2.

• In the �rst test case, Alice sends a message to Bob using previous hop limit

value �eld with the value 0xEA. This packet is expected to be �agged as

normal, since hop limit is valid using the next hop limit value of hex 0x19

within a sensible number of possible routers between he source and
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destination nodes.

• The second test case shows a packet with hidden value in the hop limit �eld.

The previous value of the hop limit was set to 0xF while the next hop limit

value was set to 789 larger than the number of routers on the network. This

packet was therefore expected to be classi�ed as covert.

• In the third case, Alice set the hop limit to a low number of hops such that

the hop limit is reduced to zero before it reaches its destination. The packet

was expected to be classi�ed as covert. The actual results show that both

NIHA and MNBC classi�ers also have veri�ed the packets in the three test

cases as expected.

The format of command that performs the hop limit attacks is:

/sendpkt.py �sa 2001::7 �da 2000::14 �ty 128 �nh 58 �cd 0 �fl 23

�pd hello �tf 1 �hl 15 �pl 5

Figure 4.5: Hop Limit anomaly detection topology
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Table 4.7: Covert detection of Hop Limit anomaly using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC

Attacker 1 1 Victim 1 2
Prev=23
Next=25

Normal Normal Normal

Attacker 2 2 Victim 2 1
Prev=15
Next=789

Covert Covert Covert

Attacker 1 1 Victim 3 2 0, Not Dst Covert Covert Covert

4.5.3.4 Experimental Next Header Anomaly Covert Detection

The Next Header can potentially be used by attackers to create covert channel

that may exploit for both in�ltrating and ex�ltrating information into and out of

a computer network. Fake extension headers can be appended by an attack before

sending or forwarding a packet to its destination. Likewise, valid IANA protocol

numbers can be used to initiate a dialogue between source and destination nodes

in which the destination node will ex�ltrate data using a echo reply message. The

following tests have been performed:

1. Non Protocol Number Test : An attacker can use any number from 0 to

255 for a next header value to trigger an ex�ltrating covert channel with a

parameter problem reply sent back by a destination node.

2. Fragmentation Header Exploits : It consists of the following tests:

• Too Many Fragments Test

An attacker can break a packet into too many fragments with the

intention of maximising the 2-bit reserve bits in each fragment to perform

covert channel attacks. Additionally, an attacker can purposely create an

incomplete fragment so that the whole packet can be dropped by the

destination node. This will trigger a parameter problem message

embedded with covert data.

• Authentication Header Exploit Test

An Authentication Header with an invalid Integrity Check Value (ICV)

can be used together with the Hop-by-Hop extension header by an

attacker. This can be done in an ingress packet knowing that it will fail
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IPsec integrity protection checks and will consequently be dropped by

destination node. The amount of data that an attacker can transmit from

a source to destination is 1,022 bytes per packet [17].

Five test cases of extension header anomaly detection as shown in Table 4.8

based on Figure 4.6 were experimented using the source node Attacker2-LAN2 and

the destination node Server-LAN1.

• In the �rst test case, Alice sends a message to Bob using Next Header �eld

embedding non protocol value in hexadecimal of 0x2BC. This packet is

expected to be �agged as covert since extension header is invalid.

• The second testing is to calm down the situation by sending a valid value

0x3A which will be classi�ed as normal.

• The third test case shows a packet with hidden value (denoted by XXXXX) in

PadN option of the Hop by Hop extension header. The packet was expected

to be classi�ed as covert.

• In the fourth test case, Alice speci�es in the jumbogram payload option.

However, the packet is not a jumbogram since it is less than 0xFFFF bytes.

Eventually, the packet was expected to be covert.

• In the �fth test case, Alice set the jumbogram payload option and attaches

a fragmentation extension header at the same time to embed hidden data.

All actual results show that both NIHA and MNBC classi�ers have veri�ed

the packets covert as expected.

The format of command execution for this attack is:

/sendpkt.py �sa 2001::7 �da 2000::14 �ty 128 �nh 700 �cd 0 �fl 23

�pd hello �tf 1 �hl 15 �pl 5

4.5.3.5 Experimental Payload Length Anomaly Covert Detection

If the payload length did not match the actual datagram payload after removing

extra data found, or the packet was not a Jumbo-gram but had a length of more

than 65,535 bytes, the packet would be tagged as covert.
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Table 4.8: Covert detection of Next Header anomaly using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC

Attacker 2 2 Server 1
Non Protocol
NH = 700

Covert Covert Covert

Attacker 2 2 Server 1 NH = 58 Normal Normal Normal
Attacker 1 2 Victim 1 2 PadN=XXXXX Covert Covert Covert

Attacker 2 2 Victim 2 1
Jum Plen Opt
Jumbo <65535

Covert Covert Covert

Attacker 1 1 Victim 1 2
Jum Plen Opt

Frg Ext
Covert Covert Covert

Figure 4.6: Next Header anomaly detection topology
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Two test cases of payload length anomaly detection shown in Table 4.9 based

on Figure 4.7 were experimented using source node Attacker1-LAN1 and

destination node Victim1-LAN2. In the �rst test case, Alice uses the payload

length �eld to embed a hidden message to Bob. This packet is expected to be

�agged as covert since the value is invalid. Similarly, the second test case shows a

packet with a larger value of the jumbo payload length within the message,

which should be classi�ed as covert. The actual results showed that both NIHA

and MNBC classi�ers also have veri�ed the packet as covert and normal

respectively. The execution command for this attack is:

myntu@abdul-VirtualBox:/sendpkt.py �sa 2001::7 �da 2000::14

�ty 128 �nh 58 �cd 0 �fl 23 �pd hello �tf 1 �hl 20 �pl 0

Figure 4.7: Payload Length anomaly detection topology

Further payload length based covert channels can be identi�ed from Miller's

work [160] and these are:

1. Payload length is zero, with no Hop-by-Hop options and Jumbo Payload

option present.

2. Payload length is not zero with Jumbo Payload present.
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3. Jumbo Payload option is present and Jumbo Payload length less than 65,535

bytes.

4. Jumbo Payload option is present with an Fragmentation Extension Header.

Table 4.9: Covert detection of Payload Length anomaly using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC

Attacker 1 1 Victim 1 2
PL = 0

NoHBH Opt
JumboOpt

Covert Covert Covert

Attacker 2 1 Victim 2 3
PL >0

Jumbo PyLD
Covert Covert Covert

4.5.3.6 Experimental Source Address Anomaly Covert Detection

The source address attribute can be used by an attacker to send 16 bytes of

arbitrary data to a destination node. It is therefore imperative to check that the

source address �eld contains a valid IPv6 address. Furthermore, in the proposed

HeuBNet6 system, an address corpus of all nodes that can either contact or be

contacted by other nodes was maintained. This was decided to provide an extra

layer of network security.

Two test cases of source address anomaly detection shown in Table 4.10 based

on Figure 4.8 were experimented using source node Attacker1-LAN1 and

destination node Victim1-LAN2. In the �rst test case, Alice injects an original

source address (2000::3) to Bob which is classi�ed as normal. In the second test

case, a fake source address (2000::88) was sent within the message covertly which

was classi�ed as covert. The actual results show that both NIHA and MNBC

classi�ers have veri�ed the packet as covert and normal respectively.

The execution command for this attack is:

myntu@abdul-VirtualBox:/sendpkt.py �sa 2000::88 �da 2000::14

�ty 128 �nh 58 �cd 0 �fl 23 �pd hello �tf 1 �hl 20 �pl 0
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Figure 4.8: Source Address anomaly detection topology

Table 4.10: Covert detection of Fake Source Address anomaly using NIHA and
MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC
Attacker 1 1 Victim 1 2 2000::3 Normal Normal Normal

Unknown 1 Victim 1 2 2000;:88 Covert Covert Covert

136



4. Experimental Results

4.5.3.7 Experimental Type-Code Anomaly Detection

Some of the seventeen covert channel attacks from the algorithm were implemented

and described below.

Error messages from 1-127 can be spoofed by the attacker and can be used

to stop a host connecting to the destination network which results in Denial of

Service (DoS). Attackers can craft their attacks knowing that the destination host

will drop the packet with any of these types and return a packet with an error

message. This can be performed through using either echo reply or parameter

problem which can also be used to ex�ltrate from the destination. In the latter

error message, a huge amount of data can be extruded causing serious data breach.

Since one of HeuBNet6's goals is to gather audit data for analytical and security

improvement purposes, these types of packets are not dropped at the �rewall-level.

The packets underwent the usual covert detection process, saved to database but

were not re-injected into the network regardless of the covert classi�cation status.

Seventeen detection tests of Type-Code covert attacks were proposed in the

NIHA Algorithm. For experimentation purposes the Destination Unreachable

Type-Code covert attack was selected which contained the followings tests for

error messages:

• Destination Unreachable Test 1: Route to destination does not exist.

• Destination Unreachable Test 2: Access Denied.

• Destination Unreachable Test 3: Address not assigned.

• Destination Unreachable Test 4: Address unreachable.

• Destination Unreachable Test 5: Port unreachable.

Three test cases of Type_Code anomaly detection as shown in Table 4.11

based on Figure 4.9 were experimented using source node Attacker1,2-LAN1,2

and destination node Victim1,2,3-LAN2,1,2.

• In the �rst test case, Alice sends a message to Bob using Type �eld value

with the 0x80 and Code �eld value with 1. This packet is expected to be

�agged as covert since the Type _Code sent was invalid.
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• The second test case shows an Echo Request packet with hidden value in

the same �eld sending Type 0x80 and Code 0 expected to be classi�ed as

normal.

• In the third case, Alice sends an Echo Reply Type value 0x81 and Code 0,

eventually, this packet will be normal. The actual results showed that both

NIHA and MNBC classi�ers also have veri�ed the latest two cases as normal

respectively.

The commands that execute these types of attacks are:

/scapy# python testpkt.py �sa 2001:17 �da 2000::13 -t 128 -c 1

/scapy# python testpkt.py �sa 2000::3 �da 2001::7 -t 128 -c 0

/scapy# python testpkt.py �sa 2001:15 �da 2000::17 -t 129 -c 0

Figure 4.9: Type_Code anomaly detection topology

The Parameter Problem covert attack is associated with improper setting of

�eld values. The intention of this action is to make the protocol to drop the packet

at the destination node which in turn enables the destination node to send out

hidden messages as a reply.
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Table 4.11: Covert detection of Type _Code using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC
Attacker 1 1 Victim 3 2 128, 1 Covert Covert Covert

Attacker 2 2 Victim 2 1 128, 0 Normal Normal Normal

Attacker 1 1 Victim 1 2 129, 0 Covert Normal Normal

Parameter Problem Tests are as follows:

• Parameter Problem Test 1: Erroneous header �eld .

• Parameter Problem Test 2: Fake next header .

• Parameter Problem Test 3: Unknown option.

An experimental command that executes this type of attacks is in the form:

/scapy# python testpkt.py �sa 2001:15 �da 2000::17 �t 299 -c 0

where the type value is set to a value above 255.

Two test cases were experimented. In the �rst instance, a packet with the Type

�eld value of 299 was sent by Alice Attacker1-LAN1 to Bob Victim2-LAN. This

packet was expected to be �agged as covert. In the second case, a packet with

Type code value of 128 was sent from Alice Attacker2-LAN2 to Bob Server-LAN1.

NIHA and MNBC correctly classi�ed the packets in both instances as expected.

Figure 4.10: Parameter Problem anomaly detection topology
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Table 4.12: Detection of Parameter problem covert data using NIHA and MNBC

Src (Alice) LAN Dst (Bob) LAN Value Expected NIHA MNBC
Attacker 1 1 Victim 1 2 Type = 299 Covert Covert Covert
Attacker 2 2 Server 1 Type = 128 Normal Normal Covert

4.5.4 Computation of Class Label Using MNBC

This section shows an example of how MNBC computes packet covert classi�cation

to predict the class label (covert or normal) based on the Hop Limit �eld. Using the

training data in Table 4.13, predict a class label using Naïve Bayes classi�cation.

The data tuples are described by attributes Tra�c_class (TC), Flow_Label (FL),

Hop_Limit (HP), Payload_Length (PL), ICMPv6_Type (T), ICMPv6_Code (C)

and ICMPv6_Payload (PYL). The class label attribute covert channel has two

values (Covert, Normal). The tuples were classi�ed are (This is an example for

a sample data with 8 attributes holding class but the captured data has nearly

80,000 packet instances),

Table 4.13: Training Data in Nominal Values to Naïve Bayes Format

Header Selected Field Input Value Nominal Values NB Format

Pseudo Tra�c Class
89
90

T_TC,
F_TC

1233:1
1234:1

Psuedo Flow Label
src,port,dst,port,�ow label

2000::3
2001::19

T_FL
F_FL

65:1
66:1

Pseudo Hop Limit
456
457
458

HopL_INC,
HopL_DEC,
HopL_UNC

345:1
346:1
347:1

Pseudo Payload Length
433
434
435

PLen_INC,
PLen_DEC,
PLen_UNC

100:1
101:1
102:1

Pseudo Next Header
6 (frag)
22(telnet)

Extra_CovHdr,
No_ Extra_CovHdr

85:1
86:1

Pseudo Source Address
2001::7 ,
2001::13,
2001::15

Node_1,
Node_2,
Node_3

233:1
234:1
235:1

ICMPv6 Type & Code
1,0
255,255

Type 1_Code0
Type 255_Code255

45.1
65.378:1

K = (TC= false, true, Hop_Limit=unchanged, ICMPv6_Type=0,1). If it

needs to maximize P (K|Ci)P (Ci) for i = 1, 2, P (Ci), the prior probability of each
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class can be composed based on the training tuples:

K= (TC= false,true, Hop_Limit=unchanged, ICMPv6_Type=0,1). If a

maximization is needed, then P (K|Ci)P (Ci)fori = 1, 2, P (Ci) the prior

probability of each class can be composed based on the training tuples:

P(covert channel = Yes) = 7/10 = 0.7, P(covert channel = No) =

3/10 = 0.3

Info(S) = − 7

10
log2(

7

10
)− 3

10
log2(

3

10
) = 0.881 (4.1)

To calculate P(K |Ci), for i=1,2, P(Ci) the following conditional

probability will be computed:

P(TC=false | covert channel=Yes) =2/10= 0.2

(TC=false | covert channel=No) = 8/10= 0.8

(HL=unchanged | covert channel = yes) = 1/10 = 0.1

P(HL=unchanged Covert channel = No) = 9/10 = 0.9

P(ICMPv6_Type =1 | covert channel = Yes) =6/10 = 0.6

P(ICMPv6_Type =0 | covert channel = No) = 4/10 = 0.4

Using the above probabilities, the following can be obtained: P(K | Covert

channel= yes) = P(TC=false | covert channel=Yes) ∗ P(HL=unchanged |

covert channel = yes) P(ICMPv6_Type =1 | covert channel = Yes) =0.2

∗ 0.1 ∗ 0.6 = 0.12 and P(K| covert channels = No) = 0.8 ∗ 0.9 ∗ 0.4

= 0.288

To �nd the class Ci that maximizes P(K |Ci)P(Ci), it can compute P(K|

covert channel = yes) ∗ P(covert channels=yes) = 0.12 ∗ 0.7 = 0.084

P(K| covert channel = No) ∗ P(covert channels=No) = 0.3 ∗ 0.288 =

0.0864.

As mentioned previously that MNBC classi�er predicts the covert channels =

yes for tuple K. The classi�er started to give a high ranking values of the attributes

in the classi�cation level as shown in Table 4.15 and a sample result of comparison

between NIHA and MNBC is shown in Table 4.14.
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To work out the decision tree information gain used on the given sample of

data, the following calculations have been performed. Each value in the sample

packet is a discrete value as the class label covert channel attribute has two

distinct values (covert channel = Yes or No). Let us give them m=2, and let

class C1 correspond to Yes and class C2 correspond to No, there are 7 tuples Yes

and 3 tuples No. Let us create a root node N for the tuples in Ci, then to �nd

the splitting criterion for these tuples, the information gain of each attribute

must be computed using equation 3.3. As a sample of captured tra�c, if 10

packets were taken with 8 attributes, each attributes have more than one subset

values(tuples) as shown in Table 4.13, it can be calculated as follows:

Info(S) = − 7

10
log2(

7

10
)− 3

10
log2(

3

10
) = 0.881 (4.2)

Next, each attribute expected information requirement needs to be computed.

Let us take attribute Hop_Limit category "unchanged" distribution, there are

three No and one Yes; for "decreased " category, there are 5 Yes and 0 No; for

"increased" category, there are 1 yes and 0 No. Using equation 3.4, it will be as

follows:

InfoHopLimits(S) =
4

10
∗

(
− 1

4
log2(

1

4
)− 3

4
log2(

3

4
)

)

+
5

10
∗

(
− 5

5
log2(

5

5
)

)

+
1

10
∗

(
− 1

1
log2(

1

1
)

)
= 0.324

(4.3)

The information gain of Hop Limit is 0.324 bit. Next, let us take attribute

Tra�c Class category "True Class" distribution. There are four yes and three No.

For "False Class" category, there are three Yes and 0 No, using equation 3.4, it
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Table 4.14: Results of new attacks detection using NIHA & MNBC

Attack Name MNBC Detection % NIHA Detection %
Neptune (SYN Flood) 97.4 98.2
Xmas Tree 97.2 97.7
Multihop 97.9 97.9
Spy 97.8 98.5
Average Rate % 97.57 98.07

can be calculated as below:

InfoTrafficClass(S) =
3

10
∗

(
− 3

3
log2(

3

3
)

)

+
7

10
∗

(
− 4

7
log2(

4

7
)− 3

7
log2(

3

7
)

)
= 0.846

(4.4)

The information gain of Tra�c Class is 0.846 bit and the information gain of

Hop Limit is 0.324 bit. Next, let us take attribute Flow Label category "True

Label" distribution. There are six yes and three No. For "False Label" category,

there are one Yes and 0 No. Using equation 3.4, the calculation will be:

InfoF lowLabel(S) =
9

10
∗

(
− 6

9
log2(

6

9
)− 3

9
log2(

3

9
)

)
= 0.8264 (4.5)

The information gain of Flow Label is 0.826 bit. The other attributes will

have the same calculations.

4.5.5 Exporter

The exporter produced audit data to verify the accuracy of the classi�ers by using

a new format of training and testing data ARFF �les for cross validation against

WEKA. The ARFF format �le consisted of three headers: relation, attribute and

data. Each word had the pre�x @ as shown in Figure 4.11. The header section of
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Table 4.15: Ranking of the attributes using C4.5 with InfoGain

Ranking Att Sequence Attribute Name

0.99 8 ICMPv6_PYL
0.55 3 HOP_Limit
0.55 4 Payload_L
0.33 5 Next_Header
0.33 2 Flow_Label
0.33 1 Tra�c_Class
0.33 7 ICMPv6_Code
0.25 6 ICMPv6_Type

the ARFF �le contained a list of the attributes (columns in the data), and their

types. Thus, Table 3.5 has the @Relation as IHATest, the @attribute Class

represents the detection classes {1 for Normal, 2 for Anomaly}, @attribute Packet

represents the nominal representation of values in the IPv6 header �elds, ICMPv6

header and extension headers. Lastly, the @data section in Table 3.6 was the

normal transformed data from the network simulation language.

4.5.5.1 ARFF File

The ARFF format was produced after during Multinomial data transformation in

order to be compatible for cross validation stage later and to be tested in WEKA.

A sample of an ARFF data �le is shown in Figure 4.11.
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Figure 4.11: ARFF �le format created for evaluation process

4.5.6 Alarm Flagger

When an anomaly is detected, the system creates a �le log entry message to

describe the detected anomaly in the IPv6 header. The alarm message consists of

three sections:

• The �rst section shows the anomaly type via a packet ID representing a

category either critical (severe level highlighted) or a warning. The system

decides the severity type of the anomaly based on the new class label which

is used to indicate whether a security policy violation has occurred, or an

error has occurred.

• The second section contains various subsections of header details:

destination and source, IP addresses, protocol number, source and
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destination port number, amount transmitted source in byte (size), data

type sent and mechanism used (tunnelling, teredo etc.).

• The third section contains logging details about the attempted service name

(user_ID), frequencies occurrences tried to gain access, last attempts and

suggesting to email/export the log entry/�le if needed for further analysis.

Additionally, the group of anomaly will be shown with regards to which

network domain was attacked via an intelligent shell script. Figure 4.12

shows a sample of a generated alarm when an anomaly covert is detected.

Figure 4.12: Alarm noti�cation of an anomaly detection from HeuBNet6
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4.6 Summary

In this chapter, 37 experimental tests were performed on the investigated header

�eld attributes. All instances of covert channels' attacks have been performed

successfully. The performance was obvious throughout all experiments and testing

phases. The test cases were planned and scheduled along with an excerpt of the

designed network topology for this project. Some challenges were faced during the

simulation attacks operations. Usually, complying with the main scenario always

creates a challenge once network design is initiated. In spite of the setbacks, results

from the experiments indicated that the model operated and performed correctly.

This progress was achieved through obtaining the preliminary and primary data

needed for experimental covert detection and classi�cation. The live anomaly

detection process of covert channels in IPv6 was functioning smoothly dealing

with large tra�c throughput. A multi-threaded queue mechanism was deployed

to deal with a high speed which was the highest network that could be a�orded

to split the gathered tra�c into two queues over many designated IP addresses

within the TCP/IP protocol. Thus, the multiple security and detection process

using NIHA and MNBC achieved good results o�ering high detection rate with an

overall of 98.% and low false positive rate (FPR). Further analysis of experimental

results are shown in chapter 5.

147



Chapter 5

Evaluation Methodology and

Analysis

In Chapter 4, the empirical implementation and testing of the model was

performed. This implementation led to create potential novel primary data

through using two essential modules: Network Intelligent Heuristic Algorithm

(NIHA) and Multinomial Naïve Bayes Classi�er (MNBC). On the other hand,

this data consists of two types of datasets: training and testing datasets which

will be used in the holdout cross validation method later. The achieved results

are impressive with regards to the signi�cant accuracy which obtained detection

rate 96.66% of the overall process with good performance. New suggested models

and systems always need to be validated and evaluated against other similar

systems and other synthetic data. According to the methodology which was

conducted in this research, one of the outcome components of the suggested

model is the primary data, which is unique and unlikely to be validated against

KDD-NSL benchmark data. This is due to the incompatibility in the format

type and their features held in comparison to DARPA data type. In this chapter,

vital elements in validation and evaluation of the suggested model are discussed.

Basically, decision making in network security depends on creating or gaining

data from its original sources and this is considered to be the essence of networking

operations. This data should be reliable because it is completely collected during

data acquisition period. Furthermore, the data should be accurate and consistent

148



5. Evaluation and Results Analysis

based on the reliable testing measures. Finally, the data should be �exible and

compatible for future testing and examination by researchers.

This chapter is organised as follows: Section 5.1 discusses the cross validation;

Section 5.2 explains evaluation metrics; Section 5.3 discusses the confusion

metrics; Section 5.4 discusses the precision analysis; Section 5.5 discusses the

covert detection evaluation; Section 5.6 presents a discussion about critical

analysis; Section 5.7 discusses the weaknesses of Naïve Bayes algorithm; Section

5.8 presents a summary of the evaluation results; Section 5.9 summarises the

chapter.

5.1 Cross Validation

In order to obtain a reliable accuracy estimate, standard measures should be

speci�ed for the classi�er through cross validation process [171]. Some of the

data is removed before training begins. Then when training is done, the removed

data can be used to test the performance of the learned model on "new" data.

This is the basic idea for a whole class of model evaluation methods called cross

validation.

The holdout method [172] as shown in Figure 5.1 is the simplest type of cross

validation. In this method, the given data are randomly partitioned into two

independent sets, a training set and a test set. Essentially, two-thirds of the data

are allocated to the training set, and the remaining one-third is allocated to the

test set. The training set is used to derive the model, then the model accuracy will

be estimated with the test set. Apparently, the estimate will be dealt only with one

portion of the initial data used to derive the model. The function approximator

�ts a function using the training set only. Then the function approximator is asked

to predict the output values for the data in the testing set. The output errors are

accumulated as occurred before to give the mean absolute test dataset error, which

obviously is used to evaluate the model.

The advantage of this method is that it is usually preferable to the residual

method and takes no longer to compute with a high variance. There are other cross

validation methods such as k-fold and leave-one-out (LOOCV) cross validation

[8, 172]. k-fold is useful when no dataset is available which will be used with
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the new primary data. Leave-one-out is very costly due to the large amount of

outcome data in this project.

Figure 5.1: Estimation accuracy with holdout method [8]

To perform an evaluation of the system, WEKA 3.7 database system built in

Java programming language has been used on a personal computer with 3.1 GHz

Intel core i5 CPU 3450 and 8 GB RAM. To provide an evaluation of the

proposed framework, a deep analysis of the detection modules of NIHA and

MNBC has been conducted, and su�cient results of evaluation have been

obtained. The dynamic analysis of the framework via validation and veri�cation

of the created primary data by the system has been performed.

The results of all testing experiments show a high accuracy of initial hypothesis

performed by NIHA and MNBC. Table 5.1 and Figure 5.2 show a distinguished

correctness with a low false positive of the new classi�er. The detection rate (DR)

was 98%.

NIHA was run to process the detection of selected characteristics of covert
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Table 5.1: Overall HeuBNet6 Accuracy Detection

Classi�ers Accuracy TPR FPR Precision Time

Naïve Bayes 86% 76% 0.23 0.76 1.50
NB+InfoGain 65% 83% 0.38 0.82 1.40
HeuBNet6 98% 98% 0.12 0.98 1.20
NB+SubSetEval 55% 81% 0.32 0.74 1.45
SVM 96% 94% 0.15 0.94 1.25
C4.5 91% 93% 0.15 0.89 1.30
GA 97% 95% 0.14 0.93 1.23

channels in IPv6. Additionally, processing the classi�cation module resulted in

better performance with regards high detection rate. All experiments have been

performed on the original dataset, with the included eight attributes. HeuBNet6

has been compared to the following built-in classi�ers in WEKA: Naïve Bayes

classi�er, Subset Evaluation Technique, Bayes Net, NBC, InfoGain, SVM

(Gaussian process), C4.5 and GA. In Appendix A.4, Table 2 and Table 3 show

the HeuBNet6 primary data format that have been used in cross validation

process. Figure 5.2 and Table 5.1 show an overall accuracy gained from testing

NIHA against other current classi�ers.

Table 5.2: Sample training dataset used in Evaluation Process

Class TF FL PL NH SA DA TY CD PY

anomaly 1 99 47 60 2001::7 2000::3 128 8 payload
anomaly 1 99 47 43 2001::7 2000::3 128 8 payload
anomaly 1 99 47 44 2001::7 2000::3 128 8 payload
anomaly 1 99 47 60 2001::7 2000::3 128 8 payload
anomaly 1 99 47 43 2001::7 2000::3 128 8 payload

5.2 Evaluation Metrics

The performance of MNB classi�er was evaluated using the detection rate, false

alarm rate and overall accuracy. Generally, targeted metrics and measures to
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Figure 5.2: Overall HeuBNet6 accuracy in comparison to other classi�ers

evaluate the correctness of the classi�cation module are used as "building blocks"

for covert channels detection. These are de�ned as follows [6]:

• True Positive (TP): Number of correctly identi�ed positive tuples of covert

channels. The overall TP are 78,800.

• True Negative (TN): Number of correctly labelled normal tuples by the

classi�er. The overall TN are 7,630.

• False Positive (FP): Number of incorrectly labelled normal tuples by the

classi�er. The overall FP are only 1110.

• False Negative (FN): Number of wrongly labelled covert channels tuples by

the classi�er. The overall FN are 1130.

The detection rate of any speci�ed attack can be measured by the following

metrics notations and their calculations:

1. Accuracy formula is

TP + TN

TP + TN + FP + FN
∗ 100 (5.1)
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The result of calculation is:

78800 + 7630

78800 + 7630 + 1130 + 1110
∗ 100 = 97% (5.2)

2. Detection rate is
TP

TP + FN
∗ 100 (5.3)

The detection rate will be:

78800

78800 + 1110
∗ 100 = 98.61% (5.4)

3. False alarm is
FP

FP + TN
(5.5)

The false alarm rate is:

1110

1110 + 7630
= 0.12% (5.6)

5.3 Confusion Matrix

The confusion matrix as shown in Table 5.4 is a useful tool to evaluate the

performance of the suggested classi�er in recognizing tuples of di�erent classes.

The numbers of correct and incorrect detections are presented into the columns

of the confusion matrix generated by the classi�cation model. The metrics is

NxN, where N is the number of target values (classes). MNBC data collected

through WEKA are presented in Table 5.2. Figure 5.3 shows the results of the

metric measures of the HeuBNet6. The data sample in Table 5.2 was used in the

cross validation process. The sample consisted of ten columns, each column

holding the characteristics of covert data type and its subset values. The

columns headers were: class (1 for anomaly, and 2 for normal), tra�c class (TF),

�ow label (FL), Payload length (PL), next header (NH), source address (SA),

destination address (DA), type (TY), code (CD), and �nally payload (PY).

NIHA has been evaluated through creating two criteria as will be explained in

Section 5.5. In this case the classi�er is evaluated in detecting covert channels

based on features of IPv6 and ICMPv6 headers. The ability of this classi�er is

shown in evaluation using di�erent performance measures criteria such as
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accuracy, sensitivity, speci�city, and Receiver Operator Characteristics (ROC)

curve. Obviously, the MNBC classi�er has performed exclusively correct in

comparison to other classi�ers as shown in Table 5.1 and Figure 5.3. The overall

detection rate of HeuBNet6 was 98% which is the optimal accuracy and

performance can be obtained.

Table 5.3: MNBC Data Size Used in Confusion Matrix for covert anomaly
detection

Classi�er TP TN FP FN

MNBC 78800 7630 1130 1110

Table 5.4: Confusion Matrix Showing the Actual Predicted Class

Predicted class
Classes Predicted normal Predicted covert Total
Actual no TN FP N
Actual yes FN TP P
Total N' P' N+P

In order to work out the complete computation of the values which have been

obtained from the classi�er, the given values in confusion matrix Table 5.5 is used.

The following calculations have been made:

1. Sensitivity or True Positive Rate (TPR) is to �nd out how often the actual

anomaly class is predicted. This is done as follows:

TP

actual_yes
∗ 100 =

78800

79930
∗ 100 = 98% (5.7)

2. Misclassi�cation (Error Rate) is to �nd out how often the classi�er predicts

it wrong. This is done as follows:

FP + FN

total
∗ 100 =

1110 + 1130

88670
∗ 100 = 2.5% (5.8)

3. Speci�city is correct prediction of actual "no" by the classi�er as shown in:

TN

actualno
∗ 100 =

7630

8740
∗ 100 = 87% (5.9)
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4. Precision is the frequency of the "yes" prediction by the classi�er. It is done

as follows:
TP

predictedyes
∗ 100 =

78800

79910
∗ 100 = 98% (5.10)

5. Prevalence is working out how often the "yes" class condition actually occurs

in the test dataset. It is done through:

actualyes

total
∗ 100 =

79930

88670
∗ 100 = 90% (5.11)

Table 5.5: Values of Confusion Matrix with the Actual Predicted Class

Predicted class
Classes Predicted normal Predicted covert Total

Actual normal 7630 1110 8740
Actual covert 1130 78800 79930

Total 8760 79910 88670

Figure 5.3: HeuBNet6 Confusion Matrix

5.4 Precision Analysis

The sensitivity and speci�city are the conditional probabilities. The prevalence is

the prior, and the positive/negative predicted values are the posterior
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probabilities. The suggested decision tree C4.5 created a positive power along

with Multinomial Naïve Bayes algorithm on the detection rate with a precision

accuracy of 0.98*100=98% as shown in Table 5.1 and Figure 5.2. Apparently, an

obvious improvement with 98.61% is observed in comparison to the �rst

experimental results testing similar to implemented techniques. In order to

create a more reliable experiment result, a 10-fold cross validation was performed

on HeuBNet6 through dividing the whole primary data into 10 partitions of

nearly equal sizes. The results are shown in Table 5.6 and the ROC curves are

shown in Figure 5.4. The positive predicted values of both NIHA and MNBC

modules as shown in Figure 5.2 are elaborating an impressive enhancement in

HeuBNet6 performance.

Table 5.6: Sensitivity and Speci�city of HeuBNet6 performing 10-Fold Cross
Validation

TP 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.89 0.86
TN 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.80 0.79 0.79

Figure 5.4: Performance of precision Level of MNBC

The Precision accuracy outcomes show the reliability of the experiment

results. To obtain a statistical evaluation by reading the �nal results of all
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Table 5.7: Precision of HeuBNet6 Model Accuracy in Comparison to Current
Classi�ers

Classi�ers Accuracy TPR FPR Precision Time (ms)
Naïve Bayes 86 % 76% 0.23 0.76 1.50
NB+InforGain 65% 83% 0.38 0.82 1.40
NB+SubsetEval 55% 81% 0.32 0.74 1.45
SVM 96% 94% 0.15 0.94 1.25
C4.5 91% 93% 0.15 0.89 1.30
GA 97% 95% 0.14 0.93 1.23
HeuBNet6 (MNBC) 98% 98% 0.12 0.98 1.20

classi�ers and their performance against HeuBNet6, the suggested classi�er

precision can be observed as 0.98, which is higher than subset evaluation

algorithm 0.74 and the precision of InfoGain with NB was 0.82. Furthermore,

SVM using Gaussian function which is the compatible technique to the primary

data obtained 0.94 with accuracy of 96%. Genetic Algorithm exposed with the

next highest accuracy of 97% and a precision of 0.93.

In analysing Table 5.7, a signi�cant performance of the MNBC can be observed

in both elements: time spent and precision rate. MNBC has given the highest

value of precision rate with 0.98% accompanied with lowest time elapsed 1.20 ms.

If compare these two gained values with Naïve Bayes which obtained 0.76 elapsing

1.50 ms, NB supported with InfoGain achieved 0.82 precision accuracy and the

time elapsed was 1.40 ms. NB+SubSetEval technique gathered 0.74 and time

elapsed was 1.45 ms. If the SVM precision compared with HeuBNet6 (MNBC)

performance, a di�erence of 0.4% is found as SVM obtained a lower accuracy

rate of 2% elapsing di�erence of 0.5 ms. Finally, C4.5 individually was tested to

evaluate the novel data. The accuracy result was 91% with a precision rate of

0.89 and a di�erence of elapsed time to create the model is 0.10 ms. So obviously,

in terms of the initial detection performance and �nal results, HeuBNet6 is the

fastest that obtained the highest accurate covert channel detector among the other

advanced machine learning methods.
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5.5 Evaluation of Covert Detection

The system HeuBNet6 produces four components in a sequential manner: alarm

message, statistical report, analytical report and evaluation report. These reports

contain di�erent data types and �gures. Evaluation report contains the covert

channel characteristics outcome from the targeted values. This type of �le would

theoretically be run into a similar system which can handle with the same created

data type (attack instances).

Figure 5.5 is a sample of NIHA and MNBC output classi�cation data with class

type and accuracy rate.

Figure 5.5: A sample of NB classi�ed output data format

It shows the accuracy calculated from the detection classes of every immediate

20 processed packets. The accuracy is stored and averaged over a set detection

period. The overall detection rate of HeuBNet6 was roughly 97.61% as compared

to the 98.41% accuracy obtained by WEKA using the NB-Formatted test data

converted from the packet values as shown in Figure 5.5. HeuBNet6's reduction

in detection rate could be attributed to lost packets during test runs either by the

packet crafting tool or from the Libnet�lter queue.

The cross validation process in WEKA was useful and veri�ed the gained results

and hypothesised scenarios. This is particularly important because no other IPv6

covert detection tools are available to test the new generated datasets since similar

tools are proprietary and unpublicized.

5.5.1 Covert Detection Criteria

This section shows the evaluation of some of the covert detections based on the

selected IPv6 pseudo header and ICMPv6 headers experimented in this research.
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Each evaluation calculates the experimented threat level of each attribute which

was selected.

The attributes have been divided into two criteria: The �rst criteria is Cr-1

contains all attributes which hold more than one subset value, as an opportunity

to test the vulnerability of packets based on a particular subset value. The second

criteria is Cr-2 contains all attributes with one value for each, hence is not possible

to be clearly evaluated as a key attribute (Key).

1. Echo Request Anomaly Detection Evaluation

This evaluation aims at identifying the level of threat posed by echo

request messages. Echo request messages could be exploited to act as a

Ping command to discover computers on the network by an attacker. The

covert attack packets could have any of the valid IPv6 next header protocol

numbers to allow further covert attacks in the extension header. This

evaluation shows that HeuBNet6 correctly identi�ed 2,304 anomalous echo

request packets between two computers out of 2,305 overall samples.

• Selected Attributes

� Type = 128 (Cr-1) (Key)

� NH = ALL (Cr-1) (Key)

� SA=2001::7 (Cr-2)

� DA=2000::3 (Cr-2)

• Results

� Total Covert = 2,304

� Total Normal = 1

� Total Samples =2,305

Figure 5.6 shows a medium number of covert attacks associated with Echo

Request Messages (Type = 128). The type-code attribute has a covert-

normal ratio of 128:1.

2. Echo Request with ICMPv6 Detection Evaluation

This evaluation analyses the echo request covert attacks that speci�cally
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Figure 5.6: Echo Request evaluation graph

carry covert data in the ICMPv6 Extension header. 256 out of 258 tests

were classi�ed as covert attacks.

Figure 5.7: Echo request evaluation logarithmic graph

• Selected Attributes

� Type = 128 (Cr-1) (Key)

� NH = 58 (Cr-1) (Key)

� SA=2001::7 (Cr-2)

� DA=2000::3 (Cr-2)
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� FL = 99 (Cr-2)

• Results

� Total Samples = 258

� Echo Request = 256

� Extension Header = 2

Figure 5.7 shows a high number of covert attacks associated with Next

header (58) and Echo Request Messages (Type = 128). The covert-

normal ratio for echo request with ICMPv6 extension header attacks is

128:1.

3. ICMPv6 Extension Header Covert Detection Evaluation

This evaluation analyses ICMPv6 extension header covert attack detection

since the ICMPv6 header is of utmost importance in the IPv6 protocol.

From the 80,000 training and testing samples as shown in Appendix A.4,

7940 packets from the source address (2001::7) to the destination address

(2000::3) were classi�ed as normal while only 766 as covert.

• Selected Attributes

� Type = 128 (Cr-1) (Key)

� NH = 58 (Cr-1) (Key)

� SA=2001::7 (Cr-2)

� DA=2000::3 (Cr-2)

� FL = 99 (Cr-2)

• Results

� Total Samples = 8,706

� Total Covert = 766

� Total Normal = 7,940

Figure 5.8 shows the number of covert attacks associated with normal

ICMPv6 Next Header extension Message (NH = 58).
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Figure 5.8: ICMPv6 Header Covert Detection graph

4. ICMPv6 Extension Header vs Other IPv6 Extension Headers

This section compares ICMPv6 extension header covert attacks against the

rest of the IPv6 extension headers {6, 43, 44, 50, 51, 59, 60,135}. It was

found that ICMPv6 extension header had 766 normals while the rest of the

extension headers had 8,662 anomalies. The anomalies for the other

extensions were considerably high due to some incomplete experimental

implementation. It should be also noted that two further classi�cations

namely DROP and ALLOW are suggested in the pseudo-algorithms to

handle cases. This is while packets are supposed to be dropped or allowed

regardless of their classi�cation. These classi�cations together with the

completion of the proposed algorithm would change the preliminary results.

• Selected Attributes

� NH = 58 (Cr-1) (Key)

� SA=2001::7 (Cr-2)

� DA=2000::3 (Cr-2)

� FL = 99 (Cr-2)

• Results

� Total Samples =9428
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� Total Covert = 8662

� Total Normal = 766

Figure 5.9: ICMPv6 Next Header evaluation logarithmic graph

Figure 5.9 shows a comparison of experimental covert attacks in the

ICMPv6 extension header and the rest of the IPv6 extension headers

{6, 43, 44, 50, 51, 59, 60,135} for packets sent between the two nodes

listed above.

5. Echo Request Anomaly vs Next Header Anomaly Evaluation

Figure 5.10 shows the comparison between echo request anomalies against

next header anomalies. It is observed that there are 2,304 echo request

anomalies while there are only 766 normals for next header.

• Selected Attributes

� NH = 58 (Cr-1) (Key)

� SA=2001::7 (Cr-2)

� DA=2000::3 (Cr-2)

� FL = 99 (Cr-2)

• Results

� Total Samples = 3068

� Total Covert = 2304
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� Total Normal = 766

Figure 5.10: Echo Request Anomaly versus Next Header Anomaly Evaluation
logarithmic graph

6. Echo Request and Multicast Listener Discovery (MLD)

Anomalies Detection Evaluation

This section shows a comparison between anomalies based on multicast

listening discovery and echo request messages. This is an important metric

for detecting whether a source node is probing the network to discover

other nodes with a probable intention to carry out attack on it or a node is

legitimately broadcasting many solicitation messages. In case of an event

that an attacker is pinging many nodes on the network, HeuBNet6 would

clearly detect the discrepancy in the rate of solicitation messages and echo

request messages.

• Selected Attributes

� Type = 128 (Cr-1) (Key)

� Type = 130 (Cr-1) (Key)

� SA=2001::7 (Cr-2)

� DA=2000::3 (Cr-2)

� FL = 99 (Cr-2)

• Results
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� Total Samples = 4353

� Total Covert = 2304

� Total Normal = 2049

Figure 5.11: ICMPv6 Next Header evaluation logarithmic graph

Figure 5.11 shows that there were proportionally equal anomalies in

echo request messages and multicast listener messages in the HeuBNet6

covert detection experimentation.

5.6 Critical Analysis

This Section provides critical analysis of the model performance with regards to

the detection functionalities and other issues. Generally, countermeasure

processes can not remove hidden information in steganography, which should be

detected, analysed, eliminated or documented instead. The suggested method

can be applied in passive warden threat model and active warden

countermeasure model, despite the fact that active warden is unable to remove

all steganography in the network lower level and the application model upper

level [5, 15, 43, 46]. The application layer detection process will damage the

information carrier and will not be successful [37] to eliminate all covert channels

anomaly implications. The multi-layer security suggested in this multi-threaded
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approach has not performed accurately to gain the ultimate level of optimization

due to the unlikely controlled experiment environment. This environment lacked

the possibility to function on live corporate business network. Conversely,

HeuBNet6 behaved and performed perfectly as shown in Figure 5.2

corresponding to the correct values in Table 5.7 in relation to detection accuracy,

in addition to the comparison among other di�erent algorithms.

5.6.1 Detection Method

Commonly, as mentioned in Chapter 2, there are two main detection methods

referred to as misuse (knowledge based) and anomaly (behavioural based)

detection [114]. The �rst attempt, known as signature based IDS, encodes

knowledge of known intrusions (misuses) typically to rules, and uses them to

screen events. The second attempt tries to learn the features of each event and

its patterns which constitute normal behaviour, then through observing these

patterns that are distinguished from other established norms, detect an intrusion

when it occurs [173].

Some of these IDSs o�er both capabilities, typically via a hybridisation

(heterogeneous) of techniques [114, 174]. Xiang et al [175] suggested a hybrid

system which may be modelled according to both normal and intrusive data,

which later has become a common approach in recent research adopting machine

learning techniques [114].

Additionally, this general perception about misuse detection is no longer

entirely accurate. In recent years, �exibility has become one of the vital features

that researchers have attempted to create into incorporated techniques, to allow

misuse detection systems to be capable of detecting more variations of attacks.

This case o�ered the possibility to implement machine learning techniques along

with rule based systems to detect variations of attacks, which were deemed in the

past to be unable to detect even slight variations of attacks due to rigid rules

[176]. In addition to the capability of Rule Based Systems (RBS) of detecting

variations of attacks, they may even be deployed for anomaly detection.

Researchers incorporated fuzzy logic and genetic algorithm to de�ne the rules

and successfully managed to use them in IDS [21].
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An intelligent algorithm based detection system is applied in order to create a

new adaptive rule based detection framework to investigate the association level

among the header �elds usability by the attacker when misusing the oversight

design vulnerability in this protocol IPv6 [132]. Hold out method was used to

cross validate the model which gave a higher variance than k-fold technique. The

main reason is that the k-fold cross-validation estimator has a lower variance than

a single hold-out set estimator, which can be very important if the amount of data

available is limited. Obviously, there will be a lot of variations in the performance

estimate for di�erent samples of data, or for di�erent partitions of the data to form

training and test sets. k-fold validation reduces this variance by averaging over k

di�erent partitions, so the performance estimate is less sensitive to the partitioning

of the data. Moreover, further repeated k-fold cross-validation can be done, where

the cross-validation is performed using di�erent partitioning of the data to form k

sub-sets, and then taking the average over that as well in addition to the possibility

of costly validation for such high volume of data.

5.6.2 HeuBNet6 as a Rule Based System

Expert system is one of the most common form of rule based systems which can

be applied to detect intrusions. It uses event correlation (association) to detect

misuse attack type, and this is a signi�cant sign of RBS. The suggested system

developed an intelligent rule based concept such as IF-THEN rules to recognize

covert channel and new unknown attacks. These extracting rules can be used

directly in the training dataset without having to generate a decision tree. This

rule based algorithm can be used in parallel to a non rule based algorithm as an

additional security thread using Multinomial Bayes classi�er. The framework is

�exible and can be installed on end point systems such as hosts to be a part of host

based anomaly detection, then it will focus on user behaviour or process/program

behaviour. In this case, the system relies on the pattern which relates to the user

behaviour built to several pro�les for users, providing them with access privileges.

However, a major challenge of host based anomaly detection systems is that the

system needs to keep up to date with environmental changes which eventually will

increase false alarm due to behavioural drift [177]. This technique can cause an
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issue with the awareness of the users in the anomaly training, then they gradually

change their behaviour which will leave no impact on detection mode [178].

5.6.3 HeuBNet6 as a Hybrid System

As mentioned above, hybridisation includes intelligent rules and is possible to be

deployed in di�erent types of IDSs. There are some features of this technique

which can be summarised as:

1. Algorithmic: in this stage, techniques or algorithms are hybridised to

perform a single task together compounding a system such as using genetic

algorithms to evolve rules [21, 179].

2. Hierarchical: in this stage, there is a hierarchy observed in the

architecture of the IDS, which includes various techniques performing multi

tasks in di�erent ways at each level. An example of this is deploying RBS

in a high level module to obtain correlated alerts from a lower module

detector.

3. Cooperative: in this stage, di�erent techniques are suggested to perform

multiple and independent tasks, which later will be combined somehow to

form a holistic system such as designating one technique to perform misuse

detection and another to perform anomaly detection [24, 46].

The suggested security system operates like many other systems with

combinations of all three mentioned categories. However, there are several

examples of the �rst two categories discussed previously [141]. Basically, the IDS

deploys an RBS for misuse detection and uses fuzzy association rule mining for

anomaly detection [21]. Additionally, the anomaly detection enables the direction

to build hybridization of association rule mining with GA to optimize fuzzy

element functions, meanwhile a GA is basically used to perform feature selection.

5.6.4 Statistical Report

In addition to the evaluation report produced by the system and sent to cross

validation process, the system comprises useful statistics details of the generated
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data for business and professional needs. The statistical reports produced by the

system involves the following items:

1. Attribute score predictive analysis.

2. Attribute probability analysis.

3. Detection Rates (DR) for True Positive Rate (TPR), False Positive Rate

(FPR) and True Negative Rate (TNR).

4. Classi�cation accuracy for MNBC and NIHA.

5. Liable Covert Attacks in features comparison and analysis.

6. Statistical Figures.

5.6.5 Analytical Report

Analytical reports can provide the means of assessing various aspects of the

proposed system for proof of correctness, performance assessment and

recommendations for future work. The analysis report contains the following

items:

1. Behaviour of the NIHA in processing large size of data.

2. Performance of MNBC in compare to NB.

3. Time elapsed in detection and accuracy rate for NIHA and MNBC.

4. True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate

(TNR), Detection Rate (DR) analysis.

5. Confusion Matrix Figures.
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5.7 Weaknesses of Naïve Bayes Algorithm

In Section 3.7 the suggested hypothesis Bayesian classi�er was used as a

supervised learning technique. This technique allowed us to determine

uncertainty of the model by determining probabilities of interdependent events,

furthermore, assigning the attributes that exist in the IPv6 header, ICMPv6

header and the selected Upper Layer Protocol UDP from TCP header. The

classi�er is used due to the �exibility of its diagnostic technique and prediction of

covert channels where number of input parameters were engaged.

The probability of an attribute in belonging to a classi�ed category has been

maximized such as covert or normal depending on a novel training dataset. In

other words, this system presented a new approach to predicting multiple classes

for tuples based on conditional probabilities of the data set. However, Naïve

Bayes essentially has some weaknesses which may produce unexpected results or

outcomes from the experimented testing and examinations of the selected and

extracted features [180]. The signi�cant challenges that the suggested technique

attempted to resolve, are as follows:

1. Di�culty in getting most of a priori conditional and joint probabilities is

expected in the hypotheses. This issue was solved using normalization

techniques through dissecting the attributes subset types and values

included in the extracted header �elds from the messages. These values

were transformed to numerical and human readable language, used in the

data pre-processing phase then passed to NIHA as well as into the

suggested MNBC algorithm to create su�cient data types and results.

2. Managing the huge content in the databases was slightly hard to control.

This was due to the large amount of captured packets during the training and

active warden phases collecting raw data, pre-processing data, then storing

them into the database for processing and producing the suggested reports

by the exporter process.

3. This type of mechanism needs a lot of calculations. A multi-threaded

approach is proposed through using Object Oriented Programming
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language C++. This programming language o�ered a decent speed in

calculations.

4. The outcome should be separated in order to distinguish the classes and

expected values which must be validated using other benchmark results.

This issue was overcome through an evaluation stage using WEKA tool to

compare the prediction of classi�cation based on the new training datasets

created by NIHA with reference to all known IPv6 RFCs. The results were

exactly similar to the outputs produced from HeuBNet6 security model.

5.8 Evaluation Results

In this section, a conclusion of the evaluation process is presented. In cross

validation, a holdout and k-fold were used in order to evaluate the suggested

system performance. In the initial stages of the experiment, the HeuBNet6

detection rate was 97% operating on the new data created by NIHA using cross

validation holdout technique. This technique divides the data into two sets:

training dataset and testing dataset. The time elapsed in this process was 1.20

ms and the precision was 0.98 which is quite impressive if compared with other

similar techniques. The prevalence of NIHA was 90%, showing the highest

correctness occurrence of covert class condition among the other classi�ers. The

precision rate of NIHA and MNBC was 0.98, and the highest accuracy rate was

obtained through 10-fold cross validation. Meanwhile, the lowest sensitivity rate

of NIHA is 0.86. This is the best optimal performance that can the suggested

system can gain. Meanwhile, the highest True Negative Rate is 0.87 as the lowest

TPR is 0.80. The ROC curve as shown in 5.4 explained an increasing detection

rate using NIHA. WEKA data mining tool is used to evaluate the suggested new

data which has enhanced the detection process.

5.9 Summary

In this chapter, an evaluation and cross validation process of the model

HeuBNet6 have been performed. Furthermore, dynamic association analysis was
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considered for the results given by NIHA in the empirical period and overall

framework testing. Critical analysis of the integrated MNBC module has been

preformed as well. Additionally, technical issues such as design and

implementation has been discussed. A comparison between HeuBNet6 and

current techniques with regards to the compatibility and �exibility in business

needs and network security has been discussed. The model's drawbacks have

been discussed. Moreover, the barriers in performing such analysis on live

detection have been discussed. Static analysis resulted in considerable precision

rate and confusion metrics level for the attributes and its subset values.

Three outcome reports, namely the statistical, analytical and evaluational

reports were discussed in this chapter, and the liability level of the model with

regards to its feasibility against such live attacks in network security were

explained. The experiments results showed the accuracy of the detection

methodology used in HeuBNet6 and elaborated the extensibility of detecting

unknown and new security attacks against IPV6 protocol. Our system has

detected and analysed more than 20 possible covert channels in IPv6 causing

various security threats against legitimate targets. The frequent extensibility of

such attacks depended on the attacker's knowledge about the system, inherited

protocol vulnerability in architecture design and the users' behavioural patterns.

All these elements are vital for network engineers and cyber security experts to

tackle and mitigate these types of attacks.
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Chapter 6

Conclusions and Future Work

In this chapter, conclusions of the undertaken work in the thesis will be highlighted

in addition to the major achieved contributions. Some signi�cant recommendations

and suggestions will be presented along with the future work directions.

6.1 Conclusions

Network security is an inevitable demand and a major concern for most

governments, agencies and professional companies. This is due to their huge

involvement in the internet and networking business transactions. Hence, as

mentioned in Section 2.7 there is a need for new approaches with new directions

to implement di�erent methodologies not only to mitigate security threats but

also to eliminate these vulnerabilities of TCP/IPv6. The heuristic intelligent

algorithm is one of the most powerful techniques used in searching and making

decisions. This approach outcomes with the best optimal results in many areas,

but it has not been used in tackling, detecting and eliminating covert channels in

IPv6 so far. Due to various and di�erent approaches in network security, the

need for this technique arose in our preliminary investigations and analysis in

security vulnerabilities as discussed in Sections 1.1 and 1.3. Additionally,

implementing Advanced Machine Learning algorithm in the same domain also

was a vital option to develop our framework and challenge such types of hidden

information carrier over the net.
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Our Network Intelligent Heuristic Algorithm (NIHA) and the enhanced

Multinomial Naïve Bayes Classi�er (MNBC) were gathered as "HeuBNet6" to

represent a new type of hybridization security framework. This novel adaptive

framework �ghts against covert channels within IPv6. It works as an advanced

Intrusion Detection and Prevention System (IDPS) for IPv6. Furthermore, it

uses supervised learning technique objectively to mitigate security threats and

attacks against IPv6 and ICMPv6 protocols. This hybrid approach is adding a

di�erent and a new way of thinking towards �nding solutions to one of the most

sophisticated attacks against privacy and security policies in the world [74, 181].

The suggested classi�cation model showed a high accuracy rate and improved

the performance of Multinomial Naïv Bayes Algorithm (MNBA). This

development was elaborated through coupling MNBA with feature selection

techniques in this dual (multi-layer) security (multi-threaded) mechanism. IPv6

has some serious security vulnerabilities despite of its security improvements and

advanced functionalities in comparison to IPv4. Covert channel is categorized as

one of the most e�ective stealthy security threats against any organization's

sensitive (classi�ed) data or information assets; eventually, it violates network

security policies and privacy rights of the users.[5, 17, 25, 26].

Generally, as mentioned in Chapters 3 and 4, an advanced feature selection

technique has been used in the latter part of the model. C4.5 decision trees with

Information Gain technique was developed and implemented successfully to

achieve higher accuracy rate and lower possible faults. This method has

signi�cant development phases in data pruning and presenting a clear format of

the most informative tuples belonging to the main attributes. It functioned

coherently in the process development to classify and detect covert channels in

IPv6. Moreover, this process was performed preliminary to analyse the live data

type of each captured packet. These packets carried substances of various attack

instances causing various damage to classi�ed information assets in vulnerable

machines. This technique was implemented to categorize and optimize values

held in each attack instance with its subset values. Metrics and measurements

used to perform the aimed objectives were according to the variation of the most

standard values set by RFC's and IANA. The suggested algorithm depicted most

abnormal behaviour of the selected attributes in the header �eld of IPv6. These

174



6. Conclusions and Future Work

attributes could be misused and reversed against legitimate targets.

In this thesis, the development of the experimental steps was conducted to

reduce the probabilistic stimulation, which developed the process in such a way

to achieve higher accuracy in detecting common sophisticated attacks, which

manipulated protocols' headers and payloads vulnerabilities. Furthermore, it led

to a successful classi�cation process, then eventually, achieved lower false

negative rate (FNR) and higher true positive rate (TPR).

The reason behind this optimal level of performance, as shown in test the phases

in Section 4.5 and the analysis in Chapter 5, was that a di�erent approach has

been deployed to deal with diverted and transformed complex data format within

the preprocessing data module. Signi�cantly, this progress was used to reduce

data entropy and noise in both training and test datasets. However, in covert

channel analysis, it was found that the original values of IPv6 protocol header

�elds were not always recognized by NIHA which possibly indicated to contain

certain amount of entropy. This vulnerability has been exploited by the attacker

to inject malware or any type of data aiming to the receiver then to create serious

damages.

This step particularly initialized pure data pruning process and signi�cant

compatible data format (attack instances) outcome as shown in Chapter 4.

Consequently, the module was able to create original primary data which was

considered to be the essence of the new approach and implementation. This was

due to the lack of covert channel instances attributes (data type format) merely

for IPv6. These formats were analysed and depicted to enable and direct the

process to expose hidden channel features which were selected in the primary

dataset of the IPv6 and its attacks in captured packets.

In this thesis, it was managed to depict most of usability chances to abuse

IPv6 header �elds. Furthermore, more than 55 test cases were run in a controlled

network lab environment, and approximate 70% decent and clear experimented

cases were chosen and validated as shown in Section 4.5.
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The following research questions have been answered in the thesis:

1. What is the feasibility of a new prevention model to detect and eliminate

covert channel attacks in IPv6? It is argued that a prevention model is

more likely possible to be designed and created in order to perform detection

and mitigation of covert channels. We have achieved the planned primary

objective of the research question. Furthermore, it was con�rmed that as

far as there are new technologies every day, there would be a need for new

prevention models. This issue was discussed in Sections 2.2 and 2.3.

2. What e�ective countermeasure methods can be used to mitigate security

implications and the associated risks in IPv6? This question was discussed

in Sections 2.3 and 3.3. Th need for advanced countermeasures through

investigating the traditional techniques used in current and previous

countermeasures has been explained. Moreover, the security threats impact

created by attackers on network security policies and privacy was also

explained. Furthermore, a justi�cation of the new �ndings via practical

evidence and evaluation of the suggested new model was presented in

comparison to other di�erent models to mitigate such vulnerabilities in

IPv6.

Furthermore, the sub questions also have been answered in this thesis as

follows:

(a) Is it possible to develop a classi�er to categorize an arbitrarily sized

database of labelled attack instances and test the conditional

independence status of the attributes? A classi�er has been developed

to organize and categorize the data which was created by NIHA. In

Section 3.6, an elaboration about the classi�er MNBC is given.

Meanwhile, MNBC is processed as a second security module detecting

the covert data and its attack instances.

(b) Can a supervised Machine Learning technique be developed to create

a knowledge based framework in order to detect and classify covert

channels in IPv6? This sub question also has been answered through the

development of the project. An automated machine learning technique
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is used in the suggested knowledge based framework. Furthermore, it

is a novel method used in detecting and classifying covert channels in

IPv6. Section 3.5 explains in detail the framework steps and phases.

(c) Is it possible to optimize the accuracy of covert channels classi�cation

using advanced feature selection technique? The accuracy was invoked

through customizing the subset values of each attack attribute. NIHA

module was used to create the novel attack instances; meanwhile,

MNBC module was used to customize the values using enhanced

feature selection technique such as C4.5. Section 3.5 elaborates the

technical implementation of the module in the framework.

6.2 Summary of the Contributions

This project has contributed to propose a new approach di�erent from current

approaches to solve the similar problem which many researchers have attempted

so far. It analyses, classi�es and detects the most complicated IPv6 protocol

security vulnerabilities using advanced intelligent heuristic algorithms [17, 25].

This technique functioned as a primary model for data processing. Due to the

lack of covert channels benchmark database, provisional samples have been

created through simulations of various local attacks on a controlled separated

LAN topology. The scope of the project was narrowed according to ethical rules

restrictions and Acts as explained in Section 6.3. The primary contribution of

this research is that to the best of our knowledge, this is the �rst e�ort that

suggests a multi-threaded security system for IPv6 to mitigate such complicated

security threats created by covert channels attacks. Furthermore, to the best of

our knowledge, in a part of the attempts performed [17, 25, 26], there is no

su�cient data (known and unknown attack instances) of using covert channels in

IPv6 similar to what has been achieved in this project. In this project, primary

data was developed which consisted of nearly 6 millions multi instances data

types. These data types can be used and manipulated for future research in this

domain for ongoing development research basis.

The major contributions presented in this thesis are illustrated as follows.
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6.2.1 A New Structure for Security Detection Model

A multi-threaded security structure is designed for IPv6 to detect covert channels

(information carrier) attacks and threats. The �exibility of this structure is o�ering

a new attempt to deal with high speed tra�c �ow and throughput. This part was

presented in Section 3.5.

The model uses advanced data mining techniques as a supervised machine

learning algorithm in an enhanced mode of Multinomial Naïve Bayes Classi�er

(MNBC) coupled with a novel heuristic analysis approach. This model is an

adaptive security approach which can be used as a modern paradigm for threat

detection and classi�cation in future accumulative research. This part of

contribution was explained in Section 3.6.

6.2.2 A Novel Intelligent Heuristic Algorithm

Heuristics are mental short cut or "rule of thumbs" that give some guidance on

how to do a tasks, but it does not guarantee solutions consistently [182]. Heuristics

may be used to determine the speci�c rules for solution generation. The research

contributes a novel Network Intelligent Heuristic Algorithm (NIHA) as an essential

security system model to analyse, assess and create covert channel characteristics

in IPv6 and ICMPv6 packets. This will optimise the weight and value of each

attack instance. This part of the contribution was elaborated in Section 3.7.

The proposed algorithm NIHA is the core element of the security detection

model as it provides the means to specify and manage detection policies and

speci�cations that are used to detect covert channels in IPv6.

6.2.3 A New Primary Dataset for Covert Channel Attacks

in IPv6

The creation of new primary data through the use of NIHA is one of the distinctive

contribution in this project and it is a leap into ground breaking areas of IPv6

covert channels1. New attack instances are created as an outcome of the empirical

research progress. The primary data for the initial development of the project

1Test scenarios and data are available at https://ultimatecyber.github.io/heubnet6/
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are potentially impressive to the testing and evaluation phases. Furthermore, this

data can be used for future research and similar models evaluation particularly in

TCP/IPv6 security problem domain. This part of contribution was presented in

Section 3.7.

6.2.4 A New Shared Knowledge Framework

A new shared knowledge framework is presented and implemented in this research

supported by the developed security model and a new sample research dataset

produced by NIHA. The knowledge base can be redeployed at all critical points of

an organisation's network topology. It is envisaged that further research emanating

from this work will produce the amalgamation of newly discovered attacks due to

changes of IPv6 speci�cations acquired through the wider research community.

6.3 Limitations of The Project

Since the study of covert channels started to gain momentum in the security

community about two decades ago, numerous diverse ideas have been formulated

to confront and counter this problem. To detect steganography or cryptography,

advanced in-depth analysis encryption application is needed. Meanwhile,

metaferography (covert channel) detection may vary using di�erent sources to

obtain data then to manipulate speci�c techniques to analyse the data.

Apparently, most of the security systems classify data either by misuse detection

or behaviour (anomaly) detection. Each approach presents its relevant metrics

with certain limitations. It is unlikely to expect that an IDS or IPS can be

capable to eliminate every single channel used for data transfer. However, there

is no perfect detection system. This is not possible at all due to the complexity,

incomplete implementation, and the unpredictable state of the fast advanced

system evolution.

A single IPv6 IDS or IPv6 covert channel detector can strive to narrow the

success opportunities for attackers by minimizing the probabilities of large attack

classes. The coordinated implementation of multi-thread security system promises

and allows broader con�dence in the given results. Additionally, it improves the
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coverage of hidden communication channels detection process, making it a critical

component for di�erent comprehensive security system architecture.

6.3.1 Ethical Consideration

It is impossible to create a research free of delimitations aspects, so as this

research which was limited by the ethical rules considerations represented in Data

Protection Act 1998. The project empirical stage testing would harm and violate

public and private network policy and privacy if operated; however, the rules and

regulations do not allow penetration testing or "hacking" in an academic

institution like Nottingham Trent University. Therefore, a controlled network

topology design was created using GNS3 network simulation tool [164]. This tool

was installed on Oracle VM Virtual Box Graphical User Interface Version 5.0.16

r105871. Eventually, the project would have become more e�ective if we could

have performed some real attacks online against our virtual targeted servers.

6.4 Future Work

The investigation about covert channel in IPv6 is new and needs more qualitative

studies o�ering di�erent opportunities for future research. Most of the security

issues studied and investigated in this thesis carried speci�c path for more inquiry

to explore new �ndings. However, IPv6 has an ongoing design aspects development

which allows further research.

The �exibility in the protocol design facilitates attackers' job to in /ex-�ltrate

any type of data from legitimate targets. Supposedly, this should draw attention

of the protocol designers to reconsider the protocol architecture to the existence of

covert channels and think about the mitigation options. Obviously, IPsec has made

IPv6 more secure than IPv4 in terms of the obligation in activating it. Meanwhile,

the later protocol application is more vulnerable when IPsec is deployed for packet

integrity check with gaining complete knowledge about the IPsec security. Thus,

covert channels could not be defeated as far as the security information is disclosed.

Therefore, the inherited vulnerabilities in protocol design have contributed into the

existence of metaferography (covert channels), hence the complete elimination is
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impossible now and in the future.

Despite the fact that it is inevitable to have a prerequisite knowledge when

countering covert channels, they are more likely available in the upper layer

protocols such as: TCP, UDP, HTTP etc., and need to be addressed in order to

perform more investigations about the nature of such unknown anomaly attacks.

Accordingly, after achieving the main and sub objectives of this thesis, other

questions have been raised which inspire future research such as:

1. Can di�erent security frameworks be used to test the produced primary

data in order to improve the �exibility and compatibility with other security

frameworks to reach standard benchmark level?

2. What are the chances to achieve faster detection and better performance to

solve similar security issues for di�erent protocols such as TCP and UDP?

3. What are the security implications on business needs and information

management in IPv6 network?

4. Can covert channels use embedded steganography in IPv6 network?

These questions leave potential indications and directions for future work and

further planning. The motivation is to examine the weighting and ranking of

di�erent covert channels in di�erent security protocols to defeat cyber security

threats and attacks against legitimate targets and institutions. Furthermore, it is

important to develop feature selection algorithms to obtain the most optimal

accuracy using the tuples in the primary dataset of the IPv6. In addition to this,

it is desirable to design new and compatible techniques which can process data

tree pruning via using di�erent and advanced feature selection methods.

Although fuzzy genetic technique has been investigated and tested [21] in the

cross validation phase, it gave di�erent accuracy rate in comparison to the given

results in this thesis. HeuBNet6 can be developed into other directions by

extending the compatibility of the measures investigated into broader

extensibility such as time covert channel which will enhance and enrich the

research domain in the future.
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Appendices

A.1 HeuBNet6 and ICMPv6 with TypeCode

Algorithm

Algorithm 12 heubnet6_icmpv6_typecode_anomaly_detetion_algorithm
INPUT: ipv6_pkt, classc .

OUTPUT: Nominal Value tcdnom, Classi�cation classc. .

1: ipv6_hdr← get_ipv6_hdr(ipv6_pkt)

2: icmpv6_hdr← get_icmpv6_hdr(ipv6_pkt)

3: function Check_Type_Code_Pair(ThreadiQueue)

4: if icmpv6_hdrtype = icmp6_echo_request and icmpv6_hdrcode 6=
allowed_echo_request_code then{

5: Classc ← anomaly

6: go to dst_return_result

7: }

8: end if

9: if icmpv6_hdrtype = icmp6_echo_reply and icmpv6_hdrcode 6=
allowed_echo_reply_code then{

10: Classc ← anomaly

11: go to dst_return_result

12: }

13: end if

14: if icmpv6_hdrtype = icmp6_dst_unreach and icmpv6_hdrcode 6∈
allowed_dst_unreach_codes then

15: Classc ← anomaly
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16: go to dst_return_result

17: else

18: if icmpv6_hdrcode = 0 then

19: dst_exists ←
check_dst_addr_in_topology_corpus(icmpv6_hdrdst_addr)

20: if dst_exists = false then

21: Classc ← anomaly

22: go to dst_return_result

23: end if

24: end if

25: if icmpv6_hdrcode = 1 then

26:

access_denied← check_dst_addr_accessible(icmpv6_hdrdst_addr)

27: if access_denied = true then

28: Classc ← anomaly

29: go to dst_return_result

30: end if

31: end if

32: if icmpv6_hdrcode = 2 then

33:
is_assigned← check_dst_addr_assigned(icmpv6_

hdrdst_addr)
34: if is_assigned = false then

35: Classc ← anomaly

36: go to dst_return_result

37: end if

38: end if

39: if icmpv6_hdrcode = 3 then

40:

addr_unreachable← check_dst_addr_reach(icmpv6_hdrdst_addr)

41: if addr_reachable = false then

42: Classc ← anomaly

43: go to dst_return_result

44: end if
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45: end if

46: if icmpv6_hdrcode = 4 then

47: port_unreachable ←
check_dst_addr_port_reach(icmpv6_hdrdst_addr)

48: if port_reachable = false then

49: Classc ← anomaly

50: go to dst_return_result

51: end if

52: end if

53: end if

54: dst_return_result:

. String Concatenation

55: tcdnom ← type + icmpv6_hdrty + _code +icmpv6_hdrcd

56: return tcdnom, class

57: end function

58:

59:

60: function Drop_Blocked_Message_Types(Pkt,Result)

61: dum := 1 . Destination Unreachable Messages

62: ptbm := 2 . Packet Too Big Messages

63: tem := 3 . Time Exceeded Messages

64: ppm := 4 . Parameter Problem Messages

65: mld := {130,131,132,143} . Multicast Listener Discovery

66: net := {...} . Local Net Address Pool

67: if ipv6_pkt
icmpv6_hdrtype = {dum or ptbm or tem or ppm} then

68:

. ==================================

. verify exceeding MTU

. ==================================

69: if ipv6_pkt
icmpv6_hdrtype ∈

ptbm and packet_exceeds_mtu(ipv6_pkt) then

70: Classc ← anomaly

71: end if
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72:

. ==================================

. tem -0 - Hop limit exceeded in transit 1 - Fragment reassembly time exceeded

. ==================================

73: if ipv6_pkt
icmpv6_hdrtype ∈

tem and hop_limit_exceeded(ipv6_pkthl) then

74: Classc ← anomaly

75: end if

76: if ipv6_pkt
icmpv6_hdrtype ∈

tem and hop_limit_exceeded(ipv6_pkthl) then

77: Classc ← anomaly

78: end if

79:

. ==================================

. ppm - 0 - Erroneous header �eld encountered 1 - Unrecognized next header

type encountered 2 - Unrecognized IPv6 option encountered

. ==================================

80: if ipv6_pkt
icmpv6_hdrtype ∈

ppm and unkown_header_field_found(ipv6_pkt) then

81: Classc ← anomaly

82: end if

83: if ipv6_pkt
icmpv6_hdrtype ∈

ppm and unkown_next_header_type_found(ipv6_pkt) then

84: Classc ← anomaly

85: end if

86: if ipv6_pkt
icmpv6_hdrtype ∈

ppm and unkown_ipv6_option(ipv6_pkt) then

87: Classc ← anomaly

88: end if

89: Resultstate ← drop

90: end if

. Check MLD errors

91: if PktICMPv6_HdrType
∈ mld and {PktIPv6_HdrSrc_addr

6∈
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net or PktIPv6_HdrDst_addr
6∈ net} then

92: Resultstate ← drop

93: end if

94: return Result

95: end function

96:

97: function Allow_Permitted_Message_Types(Pkt,Result)

98: uem := {5-99,102-126} . Unalloacated Error Messages

99: uim := {155-199, 202-254} . Unalloacated Information Messages

100: em := {100,101,200,201} . Experimental Messages

101: etn := {127,255} . Exension Type Numbers

102:

103: if PktICMPv6_HdrType
∈ {uem ∪ uim ∪ em ∪ etn } then

104: Resultstate ← allow

105: end if

106: return Result

107: end function

� End of Type-Code Algorithm �
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A.2 Investigated Request For Comments

Protocols

List of Main RFCs Investigated and Examined for This Project

1. Internet Protocol, Version 6 (IPv6) Speci�cation - RFC 2460

2. Router Alert - RFC 2711

3. IPv6 jumbogram - RFC 2675

4. Tunnel Encapsulation Limit - RFC 2473

5. IPv6 Flow Label Speci�cation - RFC 3697

6. IP Mobility Home Address - RFC 6275

7. IP Mobility Home Address - RFC 6275

8. Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link

Aggregation in Tunnels - 6438

9. IPv6 Flow Label Speci�cation - RFC 6437
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A.3 Flow Label Manager "Corpus"

Flow Label Manager "Corpus"
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A.4 Sample of Training Dataset
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Table 2: HeuBNet6 Training Dataset Sample

Class TF FL PL NH SA DA TY CD PY

anomaly 1 99 47 60 2001::7 2000::3 0 0 payload
anomaly 1 99 47 43 2001::7 2000::3 0 0 payload
anomaly 1 99 47 44 2001::7 2000::3 0 0 payload
anomaly 1 99 47 51 2001::7 2000::3 0 0 payload
anomaly 1 99 47 50 2001::7 2000::3 0 0 payload
anomaly 1 99 47 135 2001::7 2000::3 0 0 payload
anomaly 1 99 47 59 2001::7 2000::3 0 0 payload
anomaly 1 99 47 6 2001::7 2000::3 0 0 payload
normal 1 99 47 58 2001::7 2000::3 0 0 payload
anomaly 1 99 47 60 2001::7 2000::3 0 1 payload
anomaly 1 99 47 43 2001::7 2000::3 0 1 payload
anomaly 1 99 47 44 2001::7 2000::3 0 1 payload
anomaly 1 99 47 51 2001::7 2000::3 0 1 payload
anomaly 1 99 47 50 2001::7 2000::3 0 1 payload
anomaly 1 99 47 135 2001::7 2000::3 0 1 payload
anomaly 1 99 47 59 2001::7 2000::3 0 1 payload
anomaly 1 99 47 6 2001::7 2000::3 0 1 payload
normal 1 99 47 58 2001::7 2000::3 0 1 payload
anomaly 1 99 47 60 2001::7 2000::3 0 2 payload
anomaly 1 99 47 43 2001::7 2000::3 0 2 payload
anomaly 1 99 47 44 2001::7 2000::3 0 2 payload
anomaly 1 99 47 51 2001::7 2000::3 0 2 payload
anomaly 1 99 47 50 2001::7 2000::3 0 2 payload
anomaly 1 99 47 135 2001::7 2000::3 0 2 payload
anomaly 1 99 47 59 2001::7 2000::3 0 2 payload
anomaly 1 99 47 6 2001::7 2000::3 0 2 payload
normal 1 99 47 58 2001::7 2000::3 0 2 payload
anomaly 1 99 47 60 2001::7 2000::3 0 3 payload
anomaly 1 99 47 43 2001::7 2000::3 0 3 payload
anomaly 1 99 47 44 2001::7 2000::3 0 3 payload
anomaly 1 99 47 51 2001::7 2000::3 0 3 payload
anomaly 1 99 47 50 2001::7 2000::3 0 3 payload
anomaly 1 99 47 135 2001::7 2000::3 0 3 payload
anomaly 1 99 47 59 2001::7 2000::3 0 3 payload
anomaly 1 99 47 6 2001::7 2000::3 0 3 payload
normal 1 99 47 58 2001::7 2000::3 0 3 payload
anomaly 1 99 47 60 2001::7 2000::3 0 4 payload
anomaly 1 99 47 43 2001::7 2000::3 0 4 payload
anomaly 1 99 47 44 2001::7 2000::3 0 4 payload
anomaly 1 99 47 51 2001::7 2000::3 0 4 payload
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Table 3: HeuBNet6 Training Dataset Sample

Class TF FL PL NH SA DA TY CD PY

anomaly 1 99 47 135 2001::7 2000::3 0 12 payload
anomaly 1 99 47 59 2001::7 2000::3 0 12 payload
anomaly 1 99 47 6 2001::7 2000::3 0 12 payload
normal 1 99 47 58 2001::7 2000::3 0 12 payload
anomaly 1 99 47 60 2001::7 2000::3 0 13 payload
anomaly 1 99 47 43 2001::7 2000::3 0 13 payload
anomaly 1 99 47 44 2001::7 2000::3 0 13 payload
anomaly 1 99 47 51 2001::7 2000::3 0 13 payload
anomaly 1 99 47 50 2001::7 2000::3 0 13 payload
anomaly 1 99 47 135 2001::7 2000::3 0 13 payload
anomaly 1 99 47 59 2001::7 2000::3 0 13 payload
anomaly 1 99 47 6 2001::7 2000::3 0 13 payload
normal 1 99 47 58 2001::7 2000::3 0 13 payload
anomaly 1 99 47 60 2001::7 2000::3 0 14 payload
anomaly 1 99 47 43 2001::7 2000::3 0 14 payload
anomaly 1 99 47 44 2001::7 2000::3 0 14 payload
anomaly 1 99 47 51 2001::7 2000::3 0 14 payload
anomaly 1 99 47 50 2001::7 2000::3 0 14 payload
anomaly 1 99 47 135 2001::7 2000::3 0 14 payload
anomaly 1 99 47 59 2001::7 2000::3 0 14 payload
anomaly 1 99 47 6 2001::7 2000::3 0 14 payload
normal 1 99 47 58 2001::7 2000::3 0 14 payload
anomaly 1 99 47 60 2001::7 2000::3 0 15 payload
anomaly 1 99 47 43 2001::7 2000::3 0 15 payload
anomaly 1 99 47 44 2001::7 2000::3 0 15 payload
anomaly 1 99 47 51 2001::7 2000::3 0 15 payload
anomaly 1 99 47 50 2001::7 2000::3 0 15 payload
anomaly 1 99 47 135 2001::7 2000::3 0 15 payload
anomaly 1 99 47 59 2001::7 2000::3 0 15 payload
anomaly 1 99 47 6 2001::7 2000::3 0 15 payload
normal 1 99 47 58 2001::7 2000::3 0 15 payload
anomaly 1 99 47 60 2001::7 2000::3 0 16 payload
anomaly 1 99 47 43 2001::7 2000::3 0 16 payload
anomaly 1 99 47 44 2001::7 2000::3 0 16 payload
anomaly 1 99 47 51 2001::7 2000::3 0 16 payload
anomaly 1 99 47 50 2001::7 2000::3 0 16 payload
anomaly 1 99 47 135 2001::7 2000::3 0 16 payload
anomaly 1 99 47 59 2001::7 2000::3 0 16 payload
anomaly 1 99 47 6 2001::7 2000::3 0 16 payload
normal 1 99 47 58 2001::7 2000::3 0 16 payload
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