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Abstract 

An isochronous sequence is a series of repeating events with the same inter-onset-

interval. A common finding, is that as a the length of a sequence increases, so does 

temporal sensitivity to irregularities – that is, the detection of deviations from 

isochrony is better with a longer sequence. Several theoretical accounts exist in the 

literature as to how the brain processes sequences for the detection of irregularities, 

yet there remains to be a systematic comparison of the predictions that such accounts 

make. To compare the predictions of these accounts, we asked participants to report 

whether the last stimulus of a regularly-timed sequence appeared ‘earlier’ or ‘later’ 

than expected. Such task allowed us to separately analyse bias and performance. 

Sequences lengths (3, 4, 5 or 6 beeps) were either randomly interleaved or presented 

in separate blocks. We replicate previous findings showing that temporal sensitivity 

increases with longer sequence in the interleaved condition but not in the blocked 

condition (where performance is higher overall). Results also indicate that there is a 

consistent bias in reporting whether the last stimulus is isochronous (irrespectively of 

how many stimuli the sequence is composed of). Such result is consistent with a 

perceptual acceleration of stimuli embedded in isochronous sequences. From the 

comparison of the models’ predictions we determine that the improvement in 

sensitivity is best captured by an averaging of successive estimates, but with an 

element that limits performance improvement below statistical optimality. None of 

the models considered, however, provides an exhaustive explanation for the pattern of 

results found. 
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1. Introduction 1 

Psychological time is subject to several types of distortions (e.g., Allan, 1979). For 2 

instance, temporal structure (Horr & Di Luca, 2015), violations of regularity 3 

(Pariyadath & Eagleman, 2007; Rose & Summers, 1995), and musical context 4 

(Pecenka & Keller, 2011) can all influence the perceived duration of events. Here, we 5 

investigate the effect of temporal regularity on time perception. The simplest form of 6 

regularity in time is created by an isochronous sequence, that is, the repetition of 7 

identical stimuli after equal temporal intervals. Isochronous sequences create 8 

temporal expectations based on their regular rhythm and repeated pattern (Arnal & 9 

Giraud, 2012; Large & Jones, 1999) and can influence perceptual judgments and 10 

behaviour (Brochard et al., 2013; Coull, 2009; Cravo et al., 2013; Escoffier et al., 11 

2010; ten Oever et al., 2014). The sensitivity of judgments about the temporal 12 

properties of sequences is also improved by temporal regularities (Drake & Botte, 13 

1993; Grondin, 2001; Hirsch et al., 1990; McAuley & Kidd, 1998). 14 

The aim of this paper is twofold: first, we analyse existing models of how the 15 

brain deals with detecting temporal deviations in isochronous sequences (sequences 16 

of stimuli spaced by identical intervals). To do this, we utilize stimuli and conditions 17 

taken from previous investigations (Halpern & Darwin, 1982; Hoopen et al., 2011; 18 

Schulze, 1978; 1989) whereby observers are presented a sequence of isochronous 19 

tones except for the last interval. In concert with the methodology of Halpern and 20 

Darwin (1982) and ten Hoopen et al. (2011), the last interval could be shorter or 21 

longer than expected, whereas in Schulze’s (1989) study the last interval could only 22 

be equal or longer than the preceding intervals. Using such a methodology allows us 23 

to measure the temporal sensitivity to temporal deviations as well as finding the point 24 

at which participants subjectively report a single stimulus was isochronous. As such, 25 
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the second aim of the paper is to see if there is a distortion from veridical perception – 26 

that is – if isochronous stimuli in a sequence are perceived as being on time, or 27 

whether they are perceptually accelerated, or delayed. The existing accounts of 28 

temporal sensitivity in isochronous sequences can only account for this type of 29 

changes in perceived isochrony by appealing to a response bias (an imbalance in the 30 

probability of the two responses), which has no perceptual origin. Such a finding 31 

would open the road to models that are able to capture biases in perceived timing of 32 

stimuli in isochronous sequences. 33 

1.1 Percept Averaging (PA) Model Description 34 

Schulze (1989) proposed to frame the problem of detecting whether the final duration 35 

in a sequence of intervals is deviant as discrimination between the duration of the Nth 36 

interval from the average of the percept of the previous N-1 intervals. Here we term 37 

this approach Percept-Averaging (PA) model, which assumes that all intervals are 38 

stored in memory and the perceptual system is capable of averaging them in a 39 

statistically optimal fashion, thus increasing the precision of the average (Schulze, 40 

1989).  41 

First of all, we will consider a simple case, where all N intervals in the 42 

sequence are independently estimated. If each estimate of the duration of an interval E 43 

is affected by independent Gaussian noise with average µ=0 and variance σ2, then the 44 

average of N-1 estimates has variance equal to 𝑉 (
1

𝑁−1
∑ 𝐸𝑖

𝑁−1
𝑖=1 ) =

(𝑁−1) σ2

(𝑁−1)2
=

σ2

(𝑁−1)
. 45 

The predicted just-noticeable difference (JND') with a sequence of N intervals of 46 

which the last could be deviant is expressed by 𝐽𝑁𝐷𝑁′ = √
σ2

(𝑁−1)
+ σ2 = √

𝑁σ2

(𝑁−1)
 . 47 

Using this formula we find that the JND' predicted with a sequence of 2 intervals is 48 

𝐽𝑁𝐷2′ = √2σ. We can then express the predicted JNDN' of a sequence with N 49 
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intervals where the change in tempo happens at the last interval as a function of the 50 

empirical JND2 of a sequence with 2 stimuli by integrating the two formulas as such:  51 

   𝐽𝑁𝐷𝑁′ =  𝐽𝑁𝐷2 √
𝑁

2(𝑁−1)
    Eq. (1). 52 

The pattern generated by this formula is shown in Figure 1.  53 

The results of Schulze (1989) suggest that the improvement in performance 54 

with interleaved presentation of different sequence durations in a block is higher than 55 

the one predicted by this formula. Schulze speculated about the possibility that 56 

participants learned the duration of intervals throughout the experiments rather than 57 

within a single sequence. He also investigated whether this discrepancy could be due 58 

to the correlation in the noise of the duration estimated of successive intervals. A 59 

correlation in this instance means that an error made on the estimate of one interval 60 

influences also the estimates of the neighbouring ones. With coefficient of correlation 61 

r between successive intervals (and 0 otherwise) the average of N-1 estimates has 62 

variance equal to 𝑉 (
1

𝑁−1
∑ 𝐸𝑖

𝑁−1
𝑖=1 ) =

 σ2

(𝑁−1)2 +
 2𝑟(𝑁−2)σ2

(𝑁−1)2 . The JND' predicted with a 63 

sequence of N intervals where the last could be deviant can be, thus, expressed by 64 

𝐽𝑁𝐷𝑁′ = σ√
𝑁

𝑁−1
−

2𝑟

𝑁2 . The reader should note that this expression differs from the 65 

third equation on page 294 in Schulze (1989), as we believe that the mathematical 66 

derivation leads to a second term that should be negative, not positive. Since the JND' 67 

predicted with a sequence of 2 intervals is 𝐽𝑁𝐷2′ = 𝜎√(2 − 2𝑟) , then (similarly to 68 

Eq. 1) we can express the JNDN' as a function of the empirical JND2 and r as such 69 

 𝐽𝑁𝐷𝑁′ =  𝐽𝑁𝐷2 √
1

2−2𝑟
(

𝑁

𝑁−1
−

2𝑟

(𝑁−1)2)  Eq. (2). 70 

The patterns that can be obtained with this formula as a function of r are shown in 71 

Figure 1.   72 
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Schulze proposed that the non-correlated formulation did not capture the 73 

results as well as the negatively correlated formulation, especially in the interleaved 74 

condition (Schulze, 1989). However, the value of coefficient of correlation, r, was not 75 

determined in the original manuscript. Also, Schulze did not analyse the case where 76 

noise in successive samples could be positively correlated (such cases could be due to 77 

protracted variation of attention whose duration spans multiple stimuli), giving rise to 78 

a lesser improvement in performance as a function of sequence duration. We instead 79 

perform this analysis and evaluate the predictions of the model with different 80 

correlation (Figure 1). With these quantitative predictions, we will be able to compare 81 

the predictions of all models with the empirical data. 82 

1.2 Multiple Look (ML) Model Description 83 

Drake and Botte (1993) investigated participants’ ability to judge the difference in 84 

tempo that happened not at the end of the sequence as in Schulze (1989), but in the 85 

middle of the sequence. The change in tempo, thus, creates two isochronous 86 

sequences with different rhythms. The authors focused the analysis on the presence of 87 

multiple estimates of interval duration, and for this they coined the name Multiple-88 

Look model (ML). The model posits that the precision of the estimate improves as the 89 

number of ‘looks’ at each sequence increases. The ML model has a formulation that is 90 

consistent to the model proposed by Schulze’s (1989) with uncorrelated noise, where 91 

the multiple estimates of the intervals are stored in memory and their average is 92 

compared. Here, we will show how to derive the expression of the ML model 93 

following the logic of Schulze’s (1989) demonstrating their mathematical equivalence. 94 

In the task of judging a tempo change in the middle of the sequence, participants 95 

perform the discrimination by comparing the average of the duration of the first N/2 96 

intervals to the average of the second set of N/2 intervals. The noise in the estimate of 97 
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half the sequence is 𝑉 (
1

𝑁/2
∑ 𝐸𝑖

𝑁/2
𝑖=1 ) =

𝑁

2
𝜎2

𝑁2

4

=
2

𝑁
𝜎2. So, the JND for a sequence of N 98 

intervals, where the change in tempo happens in the middle of the sequence is 99 

𝐽𝑁𝐷𝑁′ =  𝐽𝑁𝐷2 √
2

𝑁
𝜎2 and by expressing it as a function of the empirical 𝐽𝑁𝐷2 we 100 

obtain  101 

    𝐽𝑁𝐷𝑁′ =  
𝐽𝑁𝐷2

√𝑁
  Eq. (3). 102 

Miller and McAuley (2005) suggested a generalized ML model, whereby the 103 

two sequences (denoted n1 and n2, respectively, so that N=n1+n2) make independent 104 

contributions to the performance. Again, in Schulze’s (1989) framework participants 105 

compare the average of the n1 intervals to the average of the n2 intervals, with a JND' 106 

that is 𝐽𝑁𝐷𝑛1+𝑛2
′ =  √

𝜎2

𝑛1
+

𝜎2

𝑛2
 , or expressed as a function of the empirical 𝐽𝑁𝐷2we 107 

obtain: 108 

   𝐽𝑁𝐷𝑛1+ 𝑛2
′ =  √

1

2

𝐽𝑁𝐷2
2

𝑛1
+ 

1

2

𝐽𝑁𝐷2
2

𝑛2
  Eq. (4).  109 

It should be noted that this is a more general expression of the previous two 110 

formulations when noise is considered uncorrelated, so that with n2=1 the formula is 111 

identical to Eq. 1 and with n1=n2 the formula is identical to Eq. 3.  112 

The model of Miller and McAuley (2005) slightly departs from this 113 

formulation. Eq. 4, predicts that the JNDn1+n2 should decrease as the number of ‘looks’ 114 

increases for either of the two intervals. For Miller and McAuley, instead, the 115 

contribution of the two sequences is allowed to vary depending on a weight parameter, 116 

w as such: 117 

  𝐽𝑁𝐷𝑛1+𝑛2
′ =  √𝑤

𝐽𝑁𝐷2
2

𝑛1
+  (1 − 𝑤)

𝐽𝑁𝐷2
2

𝑛2
  Eq. (5). 118 

According to Miller and McAuley, the parameter w modulates the contribution of the 119 
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two averaged estimates. If w = 1 then the discrimination performance would be 120 

determined only by average of the first series of intervals, whereas if w = 0 then the 121 

JND would be determined by average of the second series of intervals. Such 122 

parameter cannot be reconciled with the functioning of the model proposed by 123 

Schulze (1989), as both averages are required to perform the discrimination and are, 124 

thus, influencing the performance. 125 

If the general ML model expressed by Eq. 5 is instantiated for the case 126 

analysed by Schulze (1989) where the change in tempo happens at the last stimulus 127 

(n1=N-1 and n2=1) the formula becomes  128 

 𝐽𝑁𝐷𝑁′ =  √
𝑤(𝐽𝑁𝐷2)2

𝑁−1
+  

(1−𝑤)(𝐽𝑁𝐷2)2

1
= 𝐽𝑁𝐷2√1 +  𝑤

2−𝑁

𝑁−1
  Eq. (6).  129 

In the generalized ML model (Eq. 6), the weight parameter w ranges between 130 

0 and 1 and describes how much reliance a participant has on the first of two 131 

sequences to be compared. The patterns of performance vary according to this value 132 

as shown in Figure 1. The model is based on the presence of a memory store to which 133 

future intervals are compared (Treisman, 1963). After comparison, the memory store 134 

is updated integrating every presentation of intervals, i.e., to form an internal 135 

reference (see Dyjas et al., 2012). In the formula, the weight w captures the proportion 136 

(across trials) in which the participant stores a combined memory trace of all 137 

previously presented intervals. With w = 1, the store is used in a statistically optimal 138 

fashion, combining information from all the preceding intervals. In this case, the 139 

𝐽𝑁𝐷𝑁
′  is determined by the limited precision of the comparison of the last interval 140 

with such a memory trace. With w = 0, instead, the store does not integrate 141 

information across intervals, thus it only contains a representation of the latest interval 142 

presented. Performance reflected by 𝐽𝑁𝐷𝑁
′  with w = 0 is, thus, determined by the 143 
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precision in comparing the last interval in a sequence with the previous one, 144 

regardless of how many preceding intervals there are. 145 

The goal of the ML Model is to quantify the discrimination performance with 146 

two sequences of regular intervals. With this task, several studies have reported 147 

results consistent with the ML model (Grondin, 2001; Ivry & Hazeltine, 1995; 148 

McAuley & Jones, 2003; McAuley & Kidd, 1998; ten Hoopen, et al., 2011), although 149 

others have not found a close match with its predictions (Grondin, 2001; Hirsch et al., 150 

1990; ten Hoopen et al., 2011). Furthermore, Grondin (2001) demonstrated a ML 151 

effect with visual stimuli only if tempo was compared in two separate sequences, 152 

whereas the effect was not present if a change in tempo happened within one 153 

sequence. Ivry and Hazeltine (1995) also compared one sequence performance with 154 

performance in two sequences, but with audio stimuli, finding a ML effect in both. 155 

1.3 Internal Reference (IR) Model Description 156 

The models examined so far are based on averaging the duration estimates of multiple 157 

intervals and comparing this value a final duration estimate. Such a process requires 158 

the storage in memory of all the estimates of all intervals to obtain a statistically 159 

optimal average. However, a more efficient alternative formulation is to compute the 160 

average iteratively each time a new estimate becomes available. As per the IR model, 161 

such a procedure can be performed using a recursive estimator, like the Kalman filter. 162 

The mean with N=n+1 estimates is a weighted average of the mean 𝜇𝑛 of the 163 

previous n estimates and of the last estimate 𝐸𝑛+1, which can be expressed as  164 

   𝜇𝑛+1 =
𝑛

𝑛+1
∑ 𝐸𝑖

𝑛+1
𝑖=1 =

𝑛

𝑛+1
𝜇𝑛 +

1

𝑛+1
𝐸𝑛+1 Eq. (7). 165 

where 𝐾 =
1

(𝑛+1)
 is called the gain factor and indicates how the weight given to the 166 

single E value decreases with longer sequence. This idea is similar to the concept of a 167 

clock model in time perception (Gibbon et al., 1984; Treisman, 1963), where the 168 
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representation of duration increases in precision by averaging the representation of 169 

successive estimates of intervals, thus leading to better performance (Dyjas et al., 170 

2012; Schulze, 1979). If estimates are independent, this formula leads to the same 171 

variance decrease obtained by averaging all stimuli at once expressed by Eq. 1. On 172 

the positive side, however, this way of computing the average reduces the memory 173 

requirements to only a single estimate value at the time (plus the knowledge of how 174 

many stimuli have been averaged) albeit it increases the complexity of the 175 

computation, because a weighed average is required for each iteration. The iterative 176 

process, however, does not lead to statistically optimal variance reduction with 177 

positively correlated noise estimates.  178 

 An alternative to this scheme has been proposed by Dyjas et al. (2012), 179 

originally to account for serial effects in tasks requiring the comparison of two 180 

durations. The authors propose that weights are different from the statistically optimal 181 

K and do not depend on the sequence length. Instead, they propose a weight g for 182 

modulation of the current estimate and the contribution of the previous reference: 183 

  𝜇𝑁 = 𝜇𝑛+1 = (1 − 𝑔)𝜇𝑛 + 𝑔𝐸𝑛+1  Eq. (8). 184 

Such a scheme leads to a geometric moving average (Roberts 1959), where the weight 185 

g assigned to the historical list of estimates decreases as a geometric progression 186 

when time passes. The variance associated with such averaging method is (see Dyjas 187 

et al., 2012) 𝑉(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) =
𝑠2(𝑔2𝑛+(1−𝑔)2(1−𝑔)2𝑛)

1−𝑔2
. As the participant would be 188 

comparing this average to the last interval, the predicted JND' for a sequence of N 189 

interval can be calculated as 𝐽𝑁𝐷𝑁′ = √
𝑠2+𝑠2(𝑔2𝑛+(1−𝑔)2(1−𝑔)2𝑛)

1−𝑔2 , whereas for a 190 

sequence of only two intervals, the JND2' would be 𝐽𝑁𝐷2′ =191 

√𝑠2 + 𝑠2(𝑔2 + (1 − 𝑔)2). Performing the substitution of JND2' in JNDN' gives 192 
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𝐽𝑁𝐷𝑁′ = 𝐽𝑁𝐷2√
(1+(𝑔2𝑛+(1−𝑔)2(1−𝑔2𝑛))

1−𝑔2

1+(𝑔2+(1−𝑔)2)

 that simplifies to: 193 

  𝐽𝑁𝐷𝑁′ = 𝐽𝑁𝐷2√
𝑔(1+2𝑛)+1

𝑔3+1
  Eq. (9). 194 

Predictions of the IR model expressed in Eq. 9 are shown in Figure 1 for different 195 

values of g. It is immediately evident that such a formulation cannot predict the same 196 

improvement and decrease in performance as the other proposals derived from 197 

Schulze (1989). 198 

1.4 Diminishing Returns (DR) function 199 

Ten Hoopen et al. (2011) investigated the issue of temporal sensitivity in a single 200 

sequence of audio stimuli where the change in tempo could happen at one of several 201 

positions. They found that performance changed more as a function of the number of 202 

intervals before the tempo change, rather than after. They adopted a reciprocal DR 203 

function to capture the performance increase: 204 

 JNDn1: n2
= a +

b1

n1
+

b2

n2
 Eq. (10). 205 

where a is the asymptotic performance and b are the amount of performance increase 206 

for each added interval before and after the tempo change. The parameters fitting the 207 

results of Ten Hoopen et al. highlight that performance increment is higher for 208 

changes before the tempo change are captured by b1>b2. It should be noted that the 209 

DR function expressed in Eq. 10 is not based on a process oriented model as the one 210 

proposed for example by Schulze (1989), because purpose was to fit the data. With 211 

this specification, in the rest of the manuscript we will refer to the DR as a model 212 

rather than a function. Eq. 10 can nevertheless be used to express the JND of a 213 

sequence of intervals where the last one is deviant as a function of the JND obtained 214 

in a sequence with two intervals. If we define c as the combined factor 𝑐 = 𝑎 + 𝑏2 215 



 13 

and we simplify 𝐽𝑁𝐷2 to be 𝐽𝑁𝐷2 = 𝑐 + 𝑏1 then 𝐽𝑁𝐷𝑁 cab be expressed as a function 216 

of 𝐽𝑁𝐷2 and 𝑐 as such: 217 

 𝐽𝑁𝐷𝑁 = 𝑐 +
𝐽𝑁𝐷2−𝑐

𝑛−1
 Eq. (11). 218 

The ability of the DR model expressed in Eq. 11 to capture an improvement in 219 

performance in our empirical study can be analysed by looking at the range of 220 

possible fittings in Figure 1 (i.e., the change in the predictions of the DR as a function 221 

of the c parameter). 222 

1.5 Experimental question 223 

The models analysed so far (PA, ML, IR, DR) all make predictions that 224 

discrimination performance improves as the number of intervals to be examined 225 

increased. There are, however, quantitative differences in the predictions by Schulze’s 226 

(1989) PA model (Eq. 1 and Eq. 2), the ML model (Eq. 6), the IR model (Eq. 9), and 227 

the DR model (Eq. 11). In this paper, we hope to be able to determine which model 228 

captures the data of two experimental conditions (interleaved and blocked 229 

presentation of duration) using the free parameter that each model has (respectively: 230 

correlation r, weight w, gain factor g, and combined factor c).   231 

 232 

 233 

 234 

 235 
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 236 

Figure 1. Predictions for the Percept Averaging (PA, Eq. 1 and 2), Multiple 237 

Look (ML, Eq. 6), Internal Reference (IR, Eq. 9), and Diminishing Return (DR, 238 

Eq. 11) models for JNDN with a sequence of N stimuli expressed as a function 239 

of JND2=1ms. Each model has a single free parameter that has been varied 240 

to show the range of patterns that can be captured by the models. The value 241 

of the parameters for the DR model has been tuned (as discussed in the 242 

results section) to capture statistical optimality obtaining a value of c=0.8.  243 

  244 

As in Schulze’s (1989) study, we investigate the case where sequence lengths 245 

are presented either interleaved or blocked. Schulze found that only in the case of the 246 

interleaved presentation there was an increase in performance with longer sequences. 247 

In contrast to Schulze’s studies (1978; 1989), we allow the last interval to be either 248 

longer or shorter than the previous ones. That is, the last stimulus could be presented 249 

anisochronously compared to the previous sequence, either too early or too late. The 250 
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task is similar to ten Hoopen et al.’s (2011), as participants are asked to judge whether 251 

the last stimulus was presented ‘earlier’ or ‘later’ than isochrony (i.e., they reported 252 

whether the last interval was shorter or longer than the previous ones). The analysis of 253 

‘earlier’ vs. ‘later’ judgments allows us to determine whether temporal expectations 254 

generated by the sequence of stimuli with identical interval can cause a consistent bias 255 

in perceived isochrony, an analysis that was possible but has not been performed by 256 

ten Hoopen et al. The motivation for this new analysis is to try to account for any 257 

consistent bias in responses with a perceptual mechanism. In particular, a bias in 258 

perceived isochrony can be explained by appealing to a modification of the perceived 259 

timing of the last stimulus in the sequence. This possibility requires a difference in the 260 

formulation of the problem of perceived isochrony as has been done so far: rather 261 

than considering the perceptive duration of the individual interval, here we propose to 262 

analyse the perceived timing of stimuli. In particular, we analyse the time at which the 263 

last stimulus in the sequence is perceived, which is presented right after the change in 264 

tempo. Perceived timing of stimuli can be affected by several factors in a way 265 

independent from perceived duration.  266 

Titchener (1908) was the first to suggest that attention (among other factors) 267 

can modulate perceived timing of individual stimuli as a fully attended stimulus is 268 

processed faster than an unattended one. Summerfield and Egner (2009) investigated 269 

the contribution of attention in a recognition task supporting the idea of prioritized 270 

processing of attended stimuli. Such attentional facilitation speeds up perception, an 271 

effect termed prior entry, which has been highlighted in studies involving temporal 272 

judgments (Sternberg & Knoll, 1973; Shore et al., 2001; Vibell et al., 2007; Zampini 273 

et al., 2005; for a review see Spence & Parise, 2010) and at the neural level 274 

(McDonald et al., 2005). According to a time-frequency analysis of 275 
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electroencephalographic (EEG) recordings by Rohenkohl and Nobre (2011), 276 

decreased brain activity in the alpha band for expected stimuli is correlated with faster 277 

responses, tentatively suggesting a neural basis for the prior entry hypothesis.  278 

To evidence the relationship between attention and perceptual acceleration we 279 

manipulated task demand by presenting stimulus sequences of different length either 280 

in an interleaved or blocked presentation. This condition was also present in the 281 

original study by Schulze (1989). We posit that in the interleaved condition, 282 

participants do not know when the sequence will end and thus will have to pay closer 283 

attention. Such uncertainty will increase the reliance on sensory predictions, which 284 

should result in a stronger prior entry effect. The perceived timing of stimuli in the 285 

interleaved condition should be accelerated and, consequently, perceived isochrony 286 

should be obtained with slightly delayed stimuli (and thus slightly longer intervals) 287 

rather than stimuli presented at the expected time point. 288 

2. Methods and Materials  289 

2.1.1 Participants 290 

Twenty-five undergraduate students (age range from 18 to 25 years and mean age of 21.3 291 

years) with self-reported normal hearing were recruited by the research participation system of the 292 

University of Birmingham. They gave informed consent before taking part in the experiment and were 293 

rewarded with course credits or a payment of six pounds per hour. Ethical guidelines have been 294 

followed in all the experiments and were approved by the STEM Ethics Committee of the University of 295 

Birmingham. 296 

2.1.2 Design  297 

There were two sessions, one with interleaved presentation and one with blocked presentation 298 

of trials with different sequence lengths: 3, 4, 5 or 6 stimuli (2, 3, 4 or 5 intervals). For every sequence 299 

length, the timing of the last stimulus was selected among 15 possible anisochronies: ±0, 20, 40, 60, 80, 300 
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100, 150, and 200 ms. The trial types resulting from the combination of blocked/interleaved 301 

presentation (2), sequence length (4), and anisochrony of the last stimulus (15) were repeated 8 times in 302 

order to determine the parameters of eight psychometric functions (see results) for a total of 960 trials 303 

per participant. 304 

2.1.3 Stimuli 305 

Stimuli were identical tones produced by a speaker located on a desk approximately 50 cm 306 

from the participant (20 ms with 5 ms linear ramp, 1 kHz, 75.1 dBA). Trials were composed of a 307 

different number of stimuli within a sequence, where intervals between successive stimuli in the 308 

sequence remained the same (IOI = 700 ms) for all but the final stimulus, which could be presented at 309 

different anisochronies.   310 

2.1.4 Procedure 311 

Participants sat in a quiet testing cubicle. A sequence of auditory stimuli of different lengths 312 

were presented in which the participants had to respond whether the anisochrony of the final stimulus 313 

was ‘earlier’ or ‘later’ than the expected timing (Fig. 2). Sequence lengths were either presented 314 

blocked or interleaved and the order of the two presentations was counterbalanced across participants.   315 

 316 
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 317 

Figure 2. Examples of trials with different sequence length. (a) Sequence of 318 

three stimuli (two intervals) where the final stimulus is presented later than 319 

expected (+ Anisochrony). (b) Sequence of four stimuli (three intervals) where 320 

the final stimulus is presented earlier than expected (- Anisochrony). (c) 321 

Sequence of five stimuli (four intervals) where the final stimulus is presented 322 

later than expected (+ Anisochrony). (d) Sequence of six stimuli (five intervals) 323 

where the final stimulus is presented earlier than expected (- Anisochrony). 324 

 325 

2.2.1 Data Analysis 326 

We analyzed the proportion of ‘later’ responses for each anisochrony of the last stimulus, to 327 

obtain a distribution for each sequence length with interleaved and with blocked presentation. In order 328 

to determine if a change in the perceived isochrony of stimuli changes due to temporal expectations 329 
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and attention, we calculated the Point of Subjective Equality (PSE) as the anisochrony at which 330 

participants are most unsure about whether the final stimulus was presented early or late. Thus, the PSE 331 

is the time point the last stimulus needs to be presented in order for it to be perceived as being 332 

isochronous. The PSE is obtained by calculating the first order moment of the difference between 333 

successive proportions of responses using the Spearman-Kärber method (see Ulrich & Miller, 2004, for 334 

further details of this method). The second order moment is proportional to the inverse slope of the 335 

psychometric function, which here is termed JND. 336 

To obtain PSE and JND, we employ the Spearman-Kärber method, which is a non-parametric 337 

estimate that avoids assumptions about the shape of the psychometric functions underlying the 338 

participants’ responses. The formulae below are used to estimate the first and second moment of the 339 

psychometric function underlying the data. First we define the 15 anisochronies of the final stimulus, 340 

where ANIi with i={1, ... 15} and pi with i={1, … 15} as the associated proportion of ‘later’ responses. 341 

We further define ANI0 =-250 ms, ANI16=+250 ms and we assume p0=0 and p16=1, to be able to 342 

compute the intermediate ANI between two successive ones 343 

  𝑠𝑖 =  
𝐴𝑁𝐼𝑖+1 + 𝐴𝑁𝐼𝑖

2
, with   i={0, ... 15}  Eq. (12).  344 

and the associated values of the difference in proportion of responses, taken at and above 0 to 345 

monotonize the proportion of responses  346 

  𝑑𝑝𝑖 = 𝑚𝑎𝑥 (0, 𝑝𝑖+1 − 𝑝𝑖) ,  with i={0, ... 15} Eq. (13). 347 

With these indexes we can express PSE and JND analytically as such:  348 

  𝑃𝑆𝐸 =  
1

∑ 𝑑𝑝𝑖
15
𝑖=0

∑ 𝑠𝑖  𝑑𝑝𝑖
15
𝑖=0  Eq. (14). 349 

and 350 

  𝐽𝑁𝐷 =  √
1

∑ 𝑑𝑝𝑖
15
𝑖=0

∑ 𝑑𝑝𝑖
15
𝑖=0 (𝑠𝑖 − 𝑃𝑆𝐸)2 Eq. (15). 351 

 352 

2.2.2 Model Fitting 353 

In order to find the best fit for the each of the model’s parameter, for each participant we found the 354 

minimum sum of squares difference between the predicted JNDN

′
 and the empirical JNDN. In Schulze’s 355 
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PA model (Eq. 2) the minimisation is done with the correlation, in the generalized ML model (Eq. 6) 356 

with the weight, in the IR model (Eq. 9) with the gain factor, and the DR model (Eq. 11) with the 357 

combined factor. The fitting is done independently for the two conditions (blocked vs. interleaved).   358 

3. Results  359 

The average proportion of responses across participants for sequences of different 360 

lengths and type of presentation (interleaved and blocked) are shown in Fig. 3. A 361 

consistent difference in the shape of the response distributions with blocked and 362 

interleaved presentation is evident across the various sequence lengths. 363 

Discrimination performance was characterised by JND values (Fig. 4), which 364 

are calculated according to the Spearman-Kärber method (see method section). The 365 

proportions of ‘late’ responses in each psychometric function were monotonized prior 366 

to analysis. To determine whether temporal sensitivity improves with sequence length 367 

and whether differences in sensitivity existed between blocked and interleaved 368 

presentations, JND values were submitted to a two-way repeated measure ANOVA 369 

with factors condition (blocked or interleaved) and number of intervals in the 370 

sequence (2, 3, 4 or 5). Results indicate better discrimination with blocked 371 

presentation of sequence length (F(1,24)=20.3, p<0.001, ηp²=0.46, Fig. 3c), an 372 

improvement in performance due to sequence length (F(3,72)=3.4, p=0.022, η373 

p²=0.12), and a significant interaction between the two factors (F(3,72)=4.1, p=0.009, 374 

ηp²=0.38). Such an interaction suggests that the improvement in temporal 375 

discrimination due to sequence length is present with the interleaved presentation of 376 

different sequence length (one-way repeated measure ANOVA with factor sequence 377 

length: F(3,72)=5.1, p<0.003, ηp²=0.18) but performance is not affected with 378 

blocked presentation of one length (F(3,72)=2.0, p=0.119, ηp²=0.12). 379 
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Biases in perceived isochrony are captured by PSE values (Fig. 5), which are 380 

also calculated according to the Spearman-Kärber method (see method section). In 381 

both conditions, we find that stimuli presented physically isochronous are actually 382 

reported more often to appear earlier than expected. Perceived isochrony is obtained 383 

when the last stimulus was presented later than it should – i.e., with a longer last 384 

interval (single sample t-test of PSE calculated on the data against 0: interleaved, 385 

t(24)=6.1, p<0.001, blocked: t(24)=2.6, p=0.015). In order to test whether there is a 386 

consistent difference of this effect with blocked or interleaved presentation of 387 

sequence lengths, we submitted PSE values a two-way repeated-measures ANOVA 388 

with factors presentation condition (interleaved or blocked) and number of interval in 389 

the sequence (2, 3, 4 or 5). Results indicate a change in PSE depending on the 390 

presentation condition (F(1,24)=13.4, p=0.001, ηp²=0.36), as the final stimulus in the 391 

interleaved condition has to be presented 24.6 ms (4.0 ms SEM) after isochrony in 392 

order to be perceived isochronous, whereas the last stimulus in the blocked condition 393 

has to be presented 12.1 ms (4.6 ms SEM) after isochrony. The difference between 394 

both interleaved and blocked condition was 12.4 ms (4.5 ms SEM). We find no main 395 

effect of sequence length or an interaction (both p > 0.11). 396 

In sum, the sensitivity of detecting anisochrony increases with longer 397 

sequences if different lengths are interleaved but is overall higher if only one 398 

sequence length is presented in a block. Perceived isochrony is consistently biased 399 

and the observed bias does not change due to sequence length, but it is affected by the 400 

presentation condition (interleaved and blocked). Not knowing the serial position of 401 

the interval to be judged leads to a higher bias, so that the sequence is perceived as 402 

being isochronous if the last stimulus is presented slightly later, i.e., after a longer 403 

interval compared to the previous ones.  404 
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   405 

Figure 3. Proportion of ‘later’ responses as a function of the 406 

anisochrony of the final interval in the sequence for (a) 2, (b) 3, (c) 407 

4, and (d) 5 intervals for interleaved and blocked presentation. 408 

Asterisks indicate significant difference between the two conditions 409 

according to the values in Table 1. Error bars represent the 410 

standard error of the mean. 411 
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 412 

Figure 4. JND values as a function of sequence length for (a) 413 

interleaved and (b) blocked presentation. (c) JND values 414 

calculated on the proportion of ‘later’ responses across sequence 415 

lengths for blocked and interleaved conditions. The asterisk 416 

indicates a significant difference according to the ANOVA 417 

presented in the text. Error bars represent the standard error of 418 

the mean. 419 
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 420 

Figure 5. PSE values as a function of sequence length for (a) 421 

interleaved and (b) blocked presentation. (c) PSE values 422 

calculated on the proportion of ‘later’ responses across sequence 423 

length for interleaved and blocked presentation. The asterisk 424 

indicates a significant difference from 0 according to single-sample 425 

t-tests and between conditions according to the ANOVA (details 426 

presented in the text). Error bars represent the standard error of 427 

the mean. 428 

3.1 PA Model Results 429 

The Schulze (1978; 1989) PA model predicts that as the representation of previous 430 

duration becomes more accurate with longer sequences, and as such, increases 431 



 25 

temporal sensitivity. We applied Eq. 1 to our data and (without any fitting procedure) 432 

it generally captures the decrease in the empirical 𝐽𝑁𝐷𝑁 in the interleaved condition 433 

and blocked condition (Fig. 6) with very similar sum of squares differences in the 434 

interleaved and blocked conditions, 1182±118 ms2 and 1210±277 ms2 respectively 435 

(t(24)=0.08, p=0.94; Fig. 7).  436 

Extending the Schulze (1989) model to include correlated noise lead us to 437 

employ Eq. 2. We found the minimum sum of squared differences between the 438 

predicted 𝐽𝑁𝐷𝑁′ and the empirical 𝐽𝑁𝐷𝑁 across the four durations for each participant 439 

through an exhaustive search of the value of correlation r. Predicted values that 440 

minimise such difference are shown in Figure 6. Such procedure will be employed for 441 

the following models and makes the models equivalent in terms of number of fitted 442 

parameters. The sums of squared differences for the PA Correlated model are 443 

825±183 ms2 and 587±115 ms2 which, notably, are significantly lower than the values 444 

obtained with the unfitted PA Uncorrelated model (interleaved: t(24)=2.5, p=0.017; 445 

blocked: t(24)=5.3, p<0.001; Fig. 7). Despite this improvement, the average 446 

correlations that lead to the minimum sum of square difference for each participant in 447 

each condition are quite small -0.056±0.091 and -0.124±0.092 and do not differ from 448 

0 (interleaved: t(24)=1.1, p=0.28; blocked: t(24)=1.4, p=0.18) nor differ from each 449 

other (t(24)=0.5, p=0.59).  450 

3.2 ML Model Results 451 

Like above, the ML model predicts that sensitivity to changes in tempo increases with 452 

longer sequences with a factor that limits performance compared to statistical 453 

optimality, the difference from 0.5 of the weight assigned to the two parts of the 454 

sequence (Drake & Botte, 1993; Miller & McAuley, 2005). Here we allowed 455 

individual participants’ weights to span a range between -0.5 and 1.5 as noise between 456 
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successive estimates can be correlated (see Schulze, 1989 and Oruç et al., 2003 for 457 

more detail). We performed the same sum of squared error minimization procedure as 458 

for the PA Correlated model. Predicted values of 𝐽𝑁𝐷𝑁′ that minimise error are 459 

overlaid to the empirical values in Fig. 6. Average weights are 0.39±0.09 and 460 

0.24±0.11 for the interleaved and blocked condition respectively, they differ from 0.5 461 

(single sample t-test against 0.5, interleaved: t(24)=2.6, p=0.014; blocked: t(24)=3.0, 462 

p=0.006) but they do not differ significantly (t(24)=1.1, p=0.26). The model captures 463 

the increasing sensitivity in the interleaved condition slightly, but not significantly, 464 

worse than for the blocked condition – as the values of the average sum of squared 465 

differences for the ML model are 802±180 ms2 and 579±119 ms2 for the interleaved 466 

and blocked conditions respectively, do not differ significantly (t(24)=1.0, p=0.32; 467 

Fig. 7). The performance of the ML model in capturing the data is not significantly 468 

different than the PA Correlated model  (t-test on average SSE across the two 469 

conditions between ML and PA t(24)=1.0, p=0.30). 470 

3.3 IR Model Results 471 

Slightly different from the averaging models stated above, the IR model proposed by 472 

Dyjas et al. (2012) can only capture a limited range of improvements in temporal 473 

discrimination (Fig. 4). The factor limiting performance is the weight of the current 474 

estimate g, which here was tuned with the same procedure followed above. The best-475 

fitting weight g is 0.61±0.07 in the blocked and 0.66±0.05 in the interleaved condition, 476 

which do not differ significantly (t(24)=0.5, p=0.65). The sum of square difference for 477 

the IR model is 1000±180 for the interleaved condition and 778±162 for the blocked 478 

condition (Fig. 7). Such values are higher than the PA Correlated and MLM models 479 

(t-test on average SSE across the two conditions between IR and: PA t(24)=3.7, 480 

p=0.0011, MLM: t(24)=4.3, p<0.001).  481 
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3.4 DR Model Results 482 

We also fitted the results using the DR model proposed by ten Hoopen et al. (2011). 483 

Akin to the previous models, the DR model predicts that temporal sensitivity to 484 

irregularities increases with the amount of intervals presented. However, with each 485 

additional interval, the increase in sensitivity is less and less. We applied Eq. 10 to 486 

our data and found the best fit for the combined parameter c. Predicted average values 487 

of 𝐽𝑁𝐷𝑁′ with such individually tuned parameters are presented in Fig. 6. We find 488 

that the values that best fit the empirical data for the combined factor c in the 489 

interleaved condition are 78.8±10.2 and 105.6±10.2 which differ significantly 490 

(t(24)=336.3, p<0.001). With such values, the average sum of squared error is 491 

2500±524 ms2 and 3332±574 ms2 in the interleaved and blocked conditions 492 

respectively which do not differ significantly from each other (t(24)=0.3, p=0.77), but 493 

it is obviously much higher than all three other models (Figure 7, all p<0.001).  494 

  495 
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Figure 6. Predictions of the Percept Averaging (PA), Multiple Look (ML), 496 

Internal-Reference (IR), and Diminishing Returns (DR) model (see results 497 

section). The predictions of the PA (Schulze, 1978; 1989) and ML Models 498 

(Drake & Botte, 1993; Miller & McAuley, 2005) visually capture the increase in 499 

temporal sensitivity as a function of sequence length across the two 500 

conditions. The IR model (Dyjas et al., 2012) captures the flat course of JND 501 

for the blocked condition but cannot accurately capture the obvious increase 502 

in temporal sensitivity for the interleaved condition. The DR Model (ten 503 

Hoopen et al., 2011) captures the negatively accelerating course of the JND 504 

only for the interleaved condition but does not correctly account for flat course 505 

of JND in the blocked condition, as the fit for several participant predicts 506 

worse performance due to the presence of low-performance conditions. 507 

 508 

Figure 7. Comparison of the models fit to the empirical data captured by the 509 

sum of squared errors for the Percept Averaging (PA; Correlated and 510 
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Uncorrelated), Multiple Look (ML), Internal Reference (IR), and Diminishing 511 

Returns (DR) models. The dark grey bar represents the interleaved condition 512 

whilst the light grey indicates the blocked condition. A 2-way r.m. ANOVA on 513 

the data with factors models and interleaved/blocked is significant for the 514 

factor model (F(4,96)=39.37, p<0.0001, p²=0.62) whereas the factor 515 

blocked/interleaved and interaction are not significant. Error bars represent 516 

the standard error of the mean across participants. 517 

 518 

4. Discussion 519 

In this paper, we aimed to compare the predictions of existing models of how the 520 

brain may deal with detecting deviations from isochrony in sequences of auditory 521 

tones. Second, we wanted to see if we could observe any distortions from veridical 522 

isochronous perception. To investigate this, similar to previous investigations 523 

(Halpern & Darwin, 1982; Hoopen et al., 2011; Schulze, 1978; 1989), we 524 

manipulated sequence length across trials (2, 3, 4 or 5 intervals in a sequence). The 525 

final interval in the sequence could be presented too early or too late, and participants 526 

needed to identify which of the two cases it was. By presenting the final stimulus 527 

either earlier or later as ten Hoopen et al. did, we could eliminate response biases that 528 

affected the measure of sensitivity. We also tested whether presenting the sequences 529 

either interleaved (difficult task as participants do not know the sequence length to be 530 

judged) or blocked (simpler task because participants know which interval could be 531 

deviant) has an impact on perception. Temporal discriminability (quantified by the 532 

JND calculated on the proportion of ‘later’ than expected responses) is found to be 533 

higher in the blocked condition than in the interleaved condition. Furthermore, we 534 
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find that temporal sensitivity increases as a function of sequence length in the 535 

interleaved condition, but not in the blocked condition (Fig. 4a,b). This principal 536 

finding will now be reviewed in the context of the models of temporal deviation 537 

detection. 538 

4.1 Model Comparison 539 

The goal of the paper was to compare existing approaches to how the brain may deal 540 

with temporally deviant stimuli. As such, the finding that temporal sensitivity 541 

increases as a function of sequence length in the interleaved condition is consistent 542 

with the findings of Schulze (1989) and ten Hoopen et al. (2011). However, Schulze 543 

found a larger increase in performance with longer sequences than we report here and, 544 

thus, it is possible that such a difference could be due to the use of final intervals that 545 

could only be longer than the previous ones. The best fit of the predicted JNDN' to the 546 

empirical data JNDN was with the PA and MLmodels. The PA model without 547 

correlated noise predicted a too large improvement in performance in the blocked 548 

condition, but having the correlated noise included in the formulation, the PA model 549 

accurately captured the patterns of both conditions. The ML model finely captured the 550 

steeper slope of increased temporal sensitivity in the interleaved condition, and the 551 

limited improvement of blocked condition performances as well.  On the other side, 552 

although the IR model was not able to capture the close-to statistically optimal 553 

improvement of temporal sensitivity in the interleaved condition, it instead accurately 554 

captured the flat course that was observed in the blocked condition. Of all the models 555 

we have implemented, the DR model was a relatively demanding fit, as it predicted an 556 

increased pattern of JND that we did not find in our averaged blocked condition 557 

results. The DR model also over-estimated the improvement of temporal sensitivity in 558 

the interleaved condition.  559 
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The parameters used to fit the models to the data are also interesting. Despite 560 

the increase in performance from the PA Correlated compared to the PA Uncorrelated, 561 

the correlation parameter r does not significantly vary across conditions nor 562 

statistically differs from 0, although there is a slight tendency to negativity as 563 

expected by Schulze (1989). Such results leads us to think that beyond the limiting 564 

performance increase due to the overall negative weight, the reason for better fit 565 

needs to be searched in inter-individual level, i.e., in the different pattern of 566 

performance increase for different sequence duration. The fit of the ML to the data is 567 

somewhat consistent with this view. Overall, the deviation of the weight from 0.5 568 

suggests a limitation in the performance increase. However, the lack of a statistical 569 

difference in the weight depending on the conditions points at an inconsistency across 570 

participants. 571 

The three interval-based models described here (PA, ML, IR) have a common 572 

explanation for the increase in sensitivity to temporal properties with longer 573 

sequences due to the increase in precision of the duration representation following 574 

exposure to multiple intervals (i.e., Dyjas et al., 2012; Schulze, 1979). Such 575 

improvement is consistent with internal clock models (Gibbon et al., 1984; Treisman, 576 

1963), where duration is judged as the accumulation of ‘ticks’ from an internal 577 

pacemaker. The fact that the fit of the PA model fails to find a difference in 578 

correlation and that the ML model fails to find a difference in the weight assigned to 579 

the intervals with blocked and interleaved presentation suggest that the integration of 580 

information is not complete and, thus, sub-optimal. The result that there is no change 581 

in correlation and in weighting is logical, as sensory correlation and memory 582 

integration should not be affected by whether the sequence is presented interleaved 583 

with other sequence lengths. 584 
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To further compare the models, we generated predictions for a sequence of 585 

100 stimuli (Fig. 1). We find that the models largely differ in their predicted 586 

performance. The ML expressed by Eq. 4 should lead to a progressive increase in 587 

performance as the sequence increases in length. A similar situation is present for the 588 

DR model. In comparison, the Correlated PA of Eq. 2 has a parameter that limits the 589 

integration of memory traces (Schulze, 1978, 1989). The IR model has also a hard 590 

stop in the performance and cannot go beyond statistical optimality with uncorrelated 591 

noise. Thus, the ML and DR models are unable to capture the asymptotic maximal 592 

performance with long sequences as they predict impossibly high performance.  593 

4.2 Response Bias 594 

A second aspect that our experiment allowed us to ascertain was the presence of a 595 

consistent bias in the reported isochrony, registered as consistent deviations of PSE 596 

from 0 in Fig. 5. Such bias changed depending on the interleaved/blocked 597 

presentation of durations. The PA model could, in principle, capture biases in 598 

perceived isochrony as an added constant in the comparison of durations (Schulze, 599 

1989). What remains unclear is the need for such a bias in an otherwise quasi-600 

statistically optimal performance and the reason why there should be a different bias 601 

in the two conditions presented here. The ML, IR, and DM models, on the other hand, 602 

do not make explicit predictions that can account for the registered biases in perceived 603 

isochrony. Such lack of an explanation calls for a novel model that can capture 604 

perceptual distortions or response biases in isochrony. 605 

4.3 Temporal Uncertainty 606 

We would like to speculate on the reasons why sensitivity to temporal deviations is 607 

lower in the interleaved condition, and we base our analysis on the observation that 608 

the uncertainty about which interval should be judged changes depending on 609 
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condition and serial position. In the blocked condition, participants know exactly 610 

when the sequence will end, whereas in the interleaved condition they do not, but the 611 

uncertainty decreases as the sequence progresses. We can speculate that sensitivity to 612 

temporal deviations increases with longer sequences in the interleaved condition 613 

because later intervals have higher conditional probability to be the ones that need to 614 

be judged (see Table 1). The hazard conditional probability for each successive 615 

stimulus is related to temporal expectations (Nobre et al., 2007) and has been shown 616 

to lead to better discrimination and faster reactions (Coull, 2009).  617 

Here, we speculate whether such probability could be connected to the 618 

consistent bias in response we find. In our results, isochrony is perceived when the 619 

final interval in the sequence is, on average, 17 ms longer than the previous ones. 620 

Such an effect is consistent with a positive time-order error (TOE; see Allan, 1979 621 

and Woodrow, 1935 for a review) and a perceptual acceleration of the final stimulus, 622 

an effect compatible with prior entry (Spence & Parise, 2010) and a recent study that 623 

showed that intervals are perceptually shortened (accelerated) when below 3 seconds 624 

(Wackermann, 2014). The fact that the duration of the last interval was 625 

underestimated is particularly interesting if we consider that the intervals used in our 626 

experiment are lower than the commonly used indifference point of 700 ms 627 

(Woodrow, 1935). The effect size does not change across the sequence durations 628 

tested, but we find that the delay required for perceived isochrony is 12 ms larger in 629 

the interleaved condition than in the blocked presentation. 630 

If this result is interpreted as an acceleration of the last stimulus, it should be 631 

considered that the difference in hazard probability would suggest greater expectation 632 

and, thus, more anticipation with longer sequences (Elithorn & Lawrence, 1955; Luce, 633 

1986; Näätänen, 1970; Niemi & Näätänen, 1981;). Hazard probability alone, therefore, 634 
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does not explain why there should be a perceptual acceleration of the last stimulus in 635 

the blocked condition, where no uncertainty about which stimulus to judge is present. 636 

Our data, in fact, show more anticipation for the interleaved condition, where 637 

intervals are actually more uncertain than in the blocked condition. Higher 638 

predictability in the blocked condition, instead, should have led to a stronger prior 639 

entry phenomenon. 640 

Table 1. Probabilities associated with each of the interval in 641 

the sequences in the interleaved condition (see also Coull, 642 

2009).  643 

   644 

5. Conclusions  645 

The present study first compared existing models of temporal sensitivity in 646 

isochronous sequences before demonstrating how the length of a sequence and 647 

interleaved presentation influence temporal judgments in isochronous sequences. Our 648 

results show that discrimination sensitivity increases for longer sequences in 649 

interleaved presentation and is overall better for blocked presentation. The pattern of 650 

performance increase is consistent with the averaging of successive estimate, but with 651 

a factor limiting performance. PA and ML models propose that either correlation 652 

between successive estimates or weighting of the representation are the key factors. 653 

Neither of the two exhaustively accounts for the pattern of performance increase 654 

found. The results also evidence that perceived isochrony is obtained if the last 655 

interval is longer than the previous one – i.e., with the last stimulus presented with a 656 

 
2nd 3rd 4th 5th  

Probability of interval 1 3/4 2/4 1/4 

Conditional probability of judgment 1/4 1/3 1/2 1 
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delay between 10-20 ms – a finding that is consistent with a perceptual acceleration of 657 

the last stimulus in a sequence. The models analysed do not make explicit predictions 658 

for such a bias. Explanations based on stimulus probability could prove fruitful in 659 

counting for the difference in performance between the two conditions and the 660 

anticipation effect with blocked presentation of a sequence length as a higher task 661 

demand in the interleaved condition increases attentional deployment leading to 662 

stronger anticipation of the last stimulus. 663 
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