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Abstract 

Tissue transglutaminase 2 (TG2) is modulated by protein kinase A (PKA) mediated 

phosphorylation: however, the precise mechanism(s) of its modulation by G-protein coupled 

receptors coupled to PKA activation are not fully understood. In the current study we 

investigated the potential regulation of TG2 activity by the β2-adrenoceptor in rat H9c2 

cardiomyoblasts. Transglutaminase transamidation activity was assessed using amine-

incorporating and protein cross-linking assays. TG2 phosphorylation was determined via 

immunoprecipitation and Western blotting. The long acting β2-adrenoceptor agonist 

formoterol induced time- and concentration-dependent increases in TG2 transamidation. 

Increases in TG2 activity were reduced by the TG2 inhibitors Z-DON (Benzyloxycarbonyl-(6-

Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 (1,3,dimethyl-

2[2-oxo-propyl]thio)imidazole chloride). Responses to formoterol were blocked by 

pharmacological inhibition of PKA, extracellular signal-regulated kinase 1 and 2 (ERK1/2), or 

phosphatidylinositol 3-kinase (PI-3K) signalling. Furthermore, the removal of extracellular 

Ca2+ also attenuated formoterol-induced TG2 activation. Fluorescence microscopy 

demonstrated TG2-induced biotin-X-cadaverine incorporation into proteins. Formoterol 

increased the levels of TG2-associated phosphoserine and phosphothreonine, which were 

blocked by inhibition of PKA, ERK1/2 or PI-3K signalling. Subsequent proteomic analysis 

identified known (e.g. lactate dehydrogenase A chain) and novel (e.g. Protein S100-A6) 

protein substrates for TG2. Taken together, the data obtained suggest that β2-

adrenoceptor-induced modulation of TG2 represents a novel paradigm in β2-adrenoceptor 

cell signalling, expanding the repertoire of cellular functions responsive to catecholamine 

stimulation. 
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1. Introduction 

Transglutaminases (EC 2.3.2.13; TGs) are a family of structurally and functionally similar 

Ca2+ dependent enzymes that catalyse post-translational modifications of proteins. TGs 

introduce a stable covalent bond between free amine groups (e.g. protein- or peptide-bound 

lysine) and γ-carboxamide groups of peptide-bound glutamine residues (Eckert et al., 

2014). Nine members of the TG family have been characterised (Factor XIIIa, TGs 1-7 and 

erythrocyte band 4.2), of which erythrocyte band 4.2 is inactive in mammals (Iismaa et al., 

2009; Agnihotri and Mehta, 2017). TG2 is the only member of the family that is ubiquitously 

expressed and displays a variety of activities. Along with post-translational protein 

modifications (transamidation, deamidation, protein disulphide isomerase), TG2 also acts as 

a G-protein (Gh) and has an intrinsic kinase activity (Gundemir et al., 2012). 

  When acting as a G-protein, TG2 couples to members of the G-protein coupled receptor 

(GPCR) family including the 1β-adrenergic receptor, thromboxane A2 receptor and oxytocin 

receptor (Gundemir et al., 2012). The capacity of TG2 to perform multifunctional roles in 

cells and tissues makes it an important regulator of many cellular functions, including 

migration, cell adhesion, cell differentiation, cell survival, apoptosis, and organization of the 

extracellular matrix (Nurminskaya and Belkin, 2012). Dysregulation of TG2 is implicated in 

numerous pathologies, e.g. celiac disease, neurodegenerative disorders, cancer and fibrosis; 

hence, it represents a potential therapeutic target (Caccamo et al., 2010). TG2 activity is 

modulated by protein kinases; e.g. phosphorylation of TG2 at Ser216 by protein kinase A 

(PKA) inhibits its transamidase activity and enhances its kinase activity (Mishra et al., 2007; 

Wang et al., 2012). However at present, the precise mechanism(s) of its modulation by 

GPCRs coupled to PKA activation are not fully understood. 

  The β2-adrenoceptor is a member of the GPCR superfamily, which can interact with both Gs 

and Gi-proteins (Rockman et al., 2002). When interacting with Gs, the β2-adrenoceptor 

activates PKA-dependent signalling pathway (Benovic, 2002). Interaction with Gi results in 

the release of βγ subunits and triggers the activation of additional signaling cascades that 



include extracellular signal-regulated kinase 1 and 2 (ERK1/2) and protein kinase B (PKB; 

Daaka et al., 1997; Okamoto et al., 1991; Steinberg, 1999; Yano et al., 2007). Our recent 

studies have demonstrated that TG2 activity increases in cardiomyocyte-like H9c2 cells 

following stimulations with phorbol-12-myristrate-13-acetate (PMA) and forskolin, activators 

of protein kinase C (PKC) and PKA, respectively (Almami et al., 2014). Overall, these 

observations indicate that TG2 activity could be modulated by the β2-adrenoceptor. In this 

respect, it is interesting to note that β2-adrenoceptor activation triggers TG2 expression in 

macrophages in response to the stress-related catecholamines adrenaline and noradrenaline  

(Yanagawa et al., 2014). In the present study, we have demonstrated for the first time that 

activation of the β2-adrenoceptor with the long-acting β2-adrenoceptor agonist formoterol 

increases TG2 transamidation activity in H9c2 cells via a pathway dependent upon PKA, 

ERK1/2, phosphatidylinositol 3-kinase (PI-3K) and extracellular Ca2+. Hence β2-

adrenoceptor-induced modulation of TG2 represents a novel paradigm in β2-adrenoceptor 

cell signalling, expanding the repertoire of cellular functions responsive to catecholamine 

stimulation. 

 

 

  



2. Materials and methods  

 

2.1. Materials  

AS 605240 (5-(6-Quinoxalinylmethylene)-2,4-thiazolidine-2,4-dione), BAPTA/AM (1,2-Bis(2-

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester), CGP 20712 

(1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-

imidazolyl)phenoxy]-2-propanol dihydrochloride), CL 316243 (5-[(2R)-2-[[(2R)-2-(3-

Chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylic acid 

disodium salt), dobutamine, formoterol, ICI 118,551 (±)-erythro-(S*,S*)-1-[2,3-(Dihydro-

7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride), KT 5720 

(9R,10S,12S)-2,3,9,10,11,12-Hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-

diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, hexyl 

ester), LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), PD 98059 (2’-

amino-3’-methoxyflavone), propranolol and wortmannin were obtained from Tocris Bioscience 

(Bristol, UK). Casein, 3-isobutyl-1-methylxanthine (IBMX), N′,N′-dimethylcasein, pertussis 

toxin, protease inhibitor cocktail, phosphatase inhibitor cocktail 2, horseradish peroxidase 

conjugated ExtrAvidin® (ExtrAvidin-HRP), Fluorescein isothiocyanate-conjugated ExtrAvidin® 

(ExtrAvidin-FITC and Triton™ X-100 was obtained from Sigma-Aldrich Company Ltd. 

(Gillingham, UK). The TG2 inhibitors Z-DON (Z-DON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-

(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 

(1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) along with purified standard guinea-

pig liver TG2 were obtained from Zedira GmbH (Darmstadt, Germany). Biotin-TVQQEL was 

purchased from Pepceuticals (Enderby, UK). Biotin cadaverine (N-(5-aminopentyl)

biotinamide) and biotin-X-cadaverine (5-([(N-

(biotinoyl)amino)hexanoyl]amino)pentylamine) were purchased from Invitrogen UK 

(Loughborough, UK). DAPI (2-[4-(Aminoiminomethyl)phenyl]-1H-Indole-6-carboximidamide 

hydrochloride) was from Vector Laboratories Inc (Peterborough, UK). Coomassie blue 



(InstantBlue™ stain) was purchased from Expedeon (Swavesey, UK).  Fluo-8 AM was 

purchased from Stratech Scientific Ltd (Newmarket, UK). Rp-cAMPs (adenosine 3’,5’-cyclic 

monophosphorothioate, 8-chlro, Rp-isomer) was from Calbiochem (San Diego, CA, USA). 

Dulbecco’s modified Eagle’s medium (DMEM), foetal bovine serum, trypsin (10X), L-

glutamine (200 mM), penicillin (10,000 U/ml)/streptomycin (10,000 g/ml) were purchased 

from Lonza (Castleford, UK). All other reagents were purchased from Sigma-Aldrich Co Ltd 

(Gillingham, UK) and were of analytical grade. Antibodies were obtained from the following 

suppliers: monoclonal phospho-specific ERK1/2 (Thr202/Tyr204) from Sigma-Aldrich; 

polyclonal phospho-specific PKB (Ser473), polyclonal total unphosphorylated PKB, monoclonal 

total unphosphorylated ERK1/2, polyclonal total unphosphorylated c-Jun N-terminal kinase 

(JNK), polyclonal total unphosphorylated p38 mitogen-activated protein kinase (p38 MAPK), 

monoclonal phospho-specific p38 MAPK, monoclonal phospho-specific JNK, and polyclonal 

anti-cleaved caspase 3 from New England Biolabs (UK) Ltd (Hitchin, UK);  monoclonal anti-

transglutaminase 2 (CUB 7402) from Thermo Scientific (Loughborough, UK); polyclonal 

antibodies recognising phosphoserine and phosphothreonine from Abcam (Cambridge, UK).     

 

2.2. Cell culture  

Rat embryonic cardiomyoblast-derived H9c2 cells were obtained from the European Collection 

of Animal Cell Cultures (Porton Down, Salisbury, UK). These cells, derived from embryonic rat 

heart tissue (Kimes and Brandt, 1976), are increasingly used as an in vitro model for 

studies exploring cardioprotection, since they display similar morphological, 

electrophysiological and biochemical properties to primary cardiac myocytes (Hescheler et 

al., 1991). Cells were cultured in 75 cm2 flasks in DMEM supplemented with 2 mM L-

glutamine, 10% (v/v) foetal bovine serum and penicillin (100 U/ml)/streptomycin (100 

g/ml). Cells were maintained at 37°C in a humidified 5% CO2 atmosphere until confluency 

and sub-cultured (1:10 split ratio) using trypsin (0.05% w/v)/EDTA (0.02% w/v).  

 



2.3. RT-PCR analysis of β1, β2 and β3-adrenoceptor mRNA expression 

Total RNA was isolated from mitotic H9c2 cells, rat heart and rat lung using a GenElute™ 

mammalian total RNA isolation miniprep kit (Sigma-Aldrich Company Ltd, Gillingham, UK) 

according to the manufacturer’s instructions. First strand complementary DNA (cDNA) was 

synthesized utilising random primers and M-MLV reverse transcriptase (Promega, 

Southampton, UK). PCR was performed using the following gene-specific primer sequences: 

β1-adrenoceptor (599 bp cDNA product) forward 5´-TACTCCTGGCGCTCATCGT-3´ and 

reverse 5´- CTCGCAGCTGTCGATCTTC-3´; β2-adrenoceptor (323 bp cDNA product) forward 

5´- AGCCACACGGGAATGACAG-3´ and reverse 5´-CCAGAACTCGCACCAGAA-3´; β3-

adrenoceptor (724 bp cDNA product) forward 5´-AGTCCTGGTGTGGATCGTG-3´ and reverse 

5´- ACGCTCACCTTCATAGCCAT-3´; GAPDH (392 bp cDNA product) forward 5´- 

CAAGTTCAACGGCACAGTCA-3´and reverse 5´- GAGTGGCAGTGATGGCATG-3´. PCR 

conditions for the β1, β2 and β3-adrenoceptor and GAPDH were 40 cycles of 94oC for 1 min, 

59oC for 1.5 min, and 72oC for 1 min. RT-PCR products were analysed by using 1.5% (w/v) 

agarose gel electrophoresis and visualised by ethidium bromide staining.  

 

2.4. cAMP accumulation assay 

H9c2 cells (5000 cells/well) were seeded on a white 96 well microtitre plate, with clear-

bottomed wells (Fisher Scientific, Loughborough, UK) and cultured for 24 h in fully 

supplemented DMEM. The medium was removed and the monolayer treated with a range of 

concentrations of formoterol for 20 min in serum-free DMEM (40 µl/well) in the presence of 

20 mM MgCl2 and 500 µM IBMX. Following stimulation, cAMP levels within cells were 

determined using the cAMP-Glo™ Max Assay kit (Promega UK, Southampton, UK). Briefly, 

10 µl of cAMP detection solution were added to all wells and incubated for 20 min at room 

temperature. After incubation, Kinase-Glo® reagent (50 µl/well) was added and incubated 

for 10 min at room temperature, following which luminescence levels across the plate were 



read using a plate-reading FLUOstar Optima luminometer (BMG Labtech Ltd, Aylesbury, 

UK). Forskolin (10 µM) was used as a positive control and the luminescence values were 

converted to cAMP levels using a cAMP standard curve (0-100 nM), according to the 

manufacturer’s instructions. 

 

2.5. Transglutaminase activity assays 

Time course profiles and concentration-response curves were obtained for formoterol. 

Where appropriate, cells were also pre-incubated for 30 min in a medium with or without 

the protein/lipid kinase inhibitors Rp-cAMPs (PKA, 50 µM; de Wit et al., 1984), KT 5720 

(PKA, 5 µM; Kase et al., 1987),  PD 98059 (MEK1/2, 50 µM; Dudley et al., 1995), LY 

294002 (PI-3K, 30 µM; Vlahos et al., 1994), wortmannin (PI-3K; 100 nM; Arcaro and 

Wymann, 1993) and AS 605240 (PI-3K; 1 µM; Camps et al., 2005) prior to treatment with 

1 µM formoterol. Following stimulation, cells were rinsed twice with 2.0 ml of chilled PBS, 

lysed with 500 μl of ice-cold lysis buffer (50 mM Tris-HCl pH 8.0, 0.5% (w/v) sodium 

deoxycholate, 0.1% (v/v) protease inhibitor cocktail, and 1% (v/v) phosphatase inhibitor 

cocktail 2 and 3). Cell lysates were clarified by centrifugation at 4°C for 10 min at 14,000 x 

g prior to being assayed for TG activity, as described below. Protein was determined using 

the bicinchoninic acid (BCA) protein assay (Smith et al., 1985), using a commercially 

available kit (Sigma-Aldrich Co. Ltd), with bovine serum albumin (BSA) as the standard. 

   Biotin-labelled cadaverine incorporation assays were performed according to Slaughter et 

al. (1992) with the modifications reported by Lilley et al. (1998). Briefly, 96-well microtitre 

plates were coated overnight at 4°C with 250 µl of N′,N′-dimethylcasein (10 mg/ml in 

100 mM Tris-HCl, pH 8.0). The plate was washed twice with distilled water, blocked with 

250 μl of 3% (w/v) BSA in 100 mM Tris-HCl, pH 8.0 and incubated for 1 h at room 

temperature. The plate was washed twice before the application of 150 µl of either 6.67 mM 

calcium chloride or 13.3 mM EDTA (used to check background TG2 activity) assay buffer 

containing 225 µM biotin-cadaverine (a widely used substrate to monitor TG amine 



incorporating activity) and 2 mM 2-mercaptoethanol. The reaction was started by the 

addition of 50 μl of samples, positive control (50 ng/well of guinea-pig liver TG2) and/or 

negative control (100 mM Tris-HCl, pH 8.0). After incubation for 1 h at 37°C, plates were 

washed as before. Then, 200 μl of 100 mM Tris-HCl pH 8.0 containing 1% (w/v) BSA and 

ExtrAvidin®-HRP (1:5000 dilution) were added to each well and the plate incubated at 37°C 

for 45 min; it was then washed as before. The plate was developed with 200 μl of freshly 

prepared developing buffer (7.5 µg/ml 3, 3´, 5, 5´-tetramethylbenzidine and 0.0005% 

(v/v) H2O2 in 100 mM sodium acetate, pH 6.0) and incubated at room temperature for 15 

min. The reaction was terminated by adding 50 μl of 5.0 M sulphuric acid and the 

absorbance read at 450 nm. One unit of TG2 was defined as a change in absorbance of one 

unit/h. Each experiment was performed in triplicate. 

   Biotin-labelled peptide cross-linking assay was performed according to the method of 

Trigwell et al. (2004) with minor modifications. Microtitre plates (96-well) were coated and 

incubated overnight at 4°C with casein at 1 mg/ml in 100 mM Tris-HCl pH 8.0 (250 μl per 

well). The wells were washed twice with distilled water, before incubation at room 

temperature for 1 h with 250 μl of blocking solution (100 mM Tris-HCl pH 8.0 containing 3% 

(w/v) BSA). The plate was washed twice before the application of 150 µl of either 6.67 mM 

calcium chloride or 13.3 mM EDTA assay buffer containing 5 μM biotin-TVQQEL and 2 mM 2-

mercaptoethanol. Starting of reactions, positive and negative controls, reaction 

development and termination were as described above for biotin-cadaverine assay. One unit 

of TG2 was defined as a change in absorbance of one unit/h. Each experiment was 

performed in triplicate. 

 

2.6. Western blot analysis  

H9c2 cells were grown in 25 cm2 flasks and when 80-90% confluent placed in serum free 

DMEM medium for 16 h. Serum-starved cells were then washed once with PBS (pH 7.4) and 

where appropriate incubated for 30 min in medium with or without the protein/lipid kinase 



inhibitors as described above, prior to treatment with 1 µM formoterol. Following treatment 

cells were washed twice with PBS and lysed (300 µl) with boiling 0.5% (w/v) SDS in Tris. 

Protein samples (15-20 µg) were separated by SDS-PAGE in 10% (w/v) polyacrylamide gels 

using a Bio-Rad Mini Protean III system. Proteins were transferred to nitrocellulose 

membranes in a Bio-Rad Trans-Blot system, using electro-transfer buffer comprising 25 mM 

Tris, 192 mM glycine pH 8.3 and 20% (v/v) MeOH. Following transfer, the membranes were 

blocked and probed with antibodies as described by Almami et al., (2014). The primary 

antibodies (1:500 dilutions unless otherwise indicated) used were phospho-specific ERK1/2 

(1:1000), phospho-specific PKB, phospho-specific p38 MAPK, phospho-specific JNK, and 

cleaved active caspase 3, GAPDH and TG2. Horseradish peroxidase-conjugated secondary 

antibodies (New England Biolabs (UK) Ltd), diluted 1:1000 in blocking buffer, were applied 

for 2 h at room temperature. Following removal of the unbound secondary antibody, blots 

were extensively washed and developed using the Enhanced Chemiluminescence (ECL) 

Detection System (Uptima, Interchim, France) and quantified by densitometry using 

Advanced Image Data Analysis Software (Fuji; version 3.52). Samples were also analysed 

using primary antibodies that recognise total ERK1/2, PKB, p38 MAPK and JNK (1:1000) in 

order to confirm the uniformity of protein loading. 

 

2.7. Measurement of in situ TG2 activity 

H9c2 cells were seeded on 8-well chamber slides (15,000 cells/well) and cultured for 24 h in 

fully supplemented DMEM. The cells were then incubated for 6 h in medium containing 1 

mM biotin-X-cadaverine (a cell permeable TG2 substrate; Perry et al., 1995) before 

experimentation. Where appropriate, cells were treated for 1 h with TG2 inhibitors Z-DON 

(150 µM) or R283 (200 µM) before the addition of 1 µM formoterol. Following stimulation, 

cells were fixed with 3.7 % (w/v) paraformaldehyde and permeabilised with 0.1% (v/v) 

Triton™ X-100, both in PBS, for 15 min at room temperature. After washing, cells were 

blocked with 3% (w/v) BSA for 1 h at room temperature and the transglutaminase-



mediated biotin-X-cadaverine labelled protein substrates detected by incubation with FITC-

conjugated ExtrAvidin® (1:200 v/v). Nuclei were stained with DAPI and images acquired 

using a Leica TCS SP5 II confocal microscope (Leica Microsystems, GmbH, Manheim, 

Germany) equipped with a 20x air objective. Optical sections were typically 1-2 µm and the 

highest fluorescence intensity values were acquired and fluorescence intensity relative to 

DAPI stain quantified for each field of view. Image analysis and quantification were carried 

out using Leica LAS AF software.   

 

2.8. Measurement of intracellular calcium 

H9c2 cells were plated in 24-well flat-bottomed plates (15,000 cells/well) and cultured for 

24 h in fully supplemented DMEM. Cells were loaded with Fluo-8 AM (5 µM, 30-40 min) 

before mounting on the stage of a Leica TCS SP5 II confocal microscope (Leica 

Microsystems, GmbH, Manheim, Germany) equipped with a 20x air objective. Cells were 

incubated at 37°C using a temperature controller and micro incubator (The Cube, Life 

Imaging Services, Basel, Switzerland) in the presence of imaging buffer (134 mM NaCl 134, 

6 mM KCl 6, 1.3 mM CaCl2 1 mM MgCl2 1, 10 mM HEPES, and 10 mM glucose 10; pH 7.4). 

Using an excitation of 490 nm, emissions over 514 nm were collected. Cells were imaged 

and data collected every 1.7 s for 10 min. Increases in intracellular Ca2+ were defined as 

F/F0 where F was the fluorescence at any given time, and F0 was the initial basal level of 

fluorescence. 

 

2.9. Determination of TG2 phosphorylation 

Following stimulation, H9c2 cells were rinsed twice with 2.0 ml of chilled PBS and lysed with 

500 μl of ice-cold lysis buffer (2 mM EDTA, 1.5 mM MgCl2, 10% (v/v) glycerol, 0.5% (v/v) 

IGEPAL, 0.1% (v/v) protease inhibitor cocktail, and 1% (v/v) phosphatase inhibitor cocktail 

2 and 3 in PBS). Cell lysates were clarified by centrifugation (4°C for 10 min at 14000 x g), 

after which 500 µg of supernatant protein were incubated overnight at 4°C with 2 µg of 



anti-TG2 monoclonal antibody or IgG. Immune complexes were precipitated using Pierce™ 

Classic Magnetic IP/Co-IP Kit (Fisher Scientific, Loughborough, UK). The precipitates were 

resolved by SDS-PAGE in 10% polyacrylamide gels, transferred to nitrocellulose membrane 

filters and probed using anti-phosphoserine or anti-phosphothreonine antibodies (1:1000). 

Antibody reactivity was visualised by ECL and quantified densitometrically, as described 

above.  

 

2.10. Measurement of biotin-X-cadaverine incorporation into proteins serving as 

substrates for TG2 

Cellular proteins acting as substrates for endogenous TG2-catalysed polyamine 

incorporation reactions were investigated as described by Singh et al. (1995). Biotin-X-

cadaverine labelled proteins were enriched using CaptAvidin™-agarose sedimentation beads 

(Life Technologies, Loughborough, UK), subjected to SDS-PAGE in 4-15% polyacrylamide 

gradient gels and separated proteins stained with Coomassie blue.  

 

2.11. Proteomic analysis of TG2 biotin-X-cadaverine labelled substrate proteins 

Following pre-treatment with 1 mM biotin-X-cadaverine, H9c2 cells were treated with 

formoterol and lysed as described above. The proteins labelled with biotin-X-cadaverine 

were purified using CaptAvidin™-agarose and biotin-X-cadaverine labelled proteins were 

processed for trypsin digestion (Trypsin, proteomics grade; Sigma-Aldrich, UK).  

    Samples (~50 µg protein) were reduced and alkylated (1 µl 0.5 M DTT, 56° C for 20 min; 

2.7 µl 0.55 M iodoacetamide, room temperature 15 min in the dark), dried in a vacuum 

concentrator (Eppendorf, UK) and resuspended in 100 µl 50 mM tri-ethyl ammonium 

bicarbonate (TEAB).  Trypsin (2 µg in 2 µl of 1 mM HCl), was added in and incubated 

overnight at 37° C in a thermomixer.  Samples were then evaporated to dryness in a 

vacuum concentrator and resuspended in 5% (v/v) acetonitrile/0.1% (v/v) formic acid (20 

µl) and transferred to a HPLC vial for MS analysis. Samples (3 µl) were injected by 



autosampler (Eksigent nanoLC 425 LC system) at 5 µl/min directly onto a YMC Triart-C18 

column (25 cm, 3 µm, 300 µm i.d.) using gradient elution (2-40% Mobile phase B, followed 

by wash at 80% B and re-equilibration) over either 110 (120 min run time) min (for 

spectral library construction using data/information dependent acquisition DDA/IDA) or 50 

min (60 min run time) for SWATH/DIA (Data Independent Acquisition) analysis (Gillet et al., 

2012; Huang et al., 2015). Mobile phases consisted of A: 2% (v/v) acetonitrile, 5% (v/v) 

DMSO in 0.1% (v/v) formic acid; B: acetonitrile containing 5% (v/v) DMSO in 0.1% (v/v) 

formic acid.  

   A spectral library was constructed using the output from ProteinPilot 5 (SCIEX) combining 

four IDA runs per group (Control, formoterol treated), filtered, and aligned to spiked-in iRT 

peptides (Biognosys, Switzerland) using PeakView 2.2 (SCIEX) and the SWATH micro app 

2.1 plug in.  SWATH data extraction, quantitation and fold change analysis were carried out 

using SCIEX OneOmics cloud processing software (Lambert et al., 2013).  

 

2.12. Data analysis  

All graphs and statistics (one-way ANOVA followed by Dunnett’s multiple comparison test 

and two-way ANOVA for group comparison) were performed using GraphPad Prism® 

software (GraphPad 7.0 Software, Inc., USA). Agonist EC50 values (concentration of agonist 

producing 50% of the maximal stimulation) were obtained by computer-assisted curve 

fitting using GraphPad Prism® software. Agonist p[EC50] values were subsequently 

calculated as the negative logarithm to base 10 of the EC50. Results represent mean ± 

S.E.M. and p values <0.05 were considered statistically significant. 

 

 

 

 

 



3. Results  

 

3.1. Functional expression of the β2-adrenoceptor in H9c2 cells 

In this study the expression of mRNA encoding for β1, β2 and the β3-adrenoceptors was 

determined in H9c2 cells by RT-PCR analysis. As shown in Fig. 1, mRNA was detected for all 

three β-adrenoceptor subtypes with a rank order of β2  β1 = β3. The selective β2-

adrenoceptor agonist formoterol (EC50 = 1.3  0.3 nM; p[EC50] = 8.9  0.1; n=3) stimulated 

a robust and pertussis toxin-insensitive increase in cAMP, confirming the functional 

expression of the β2-adrenoceptor in H9c2 cells via Gs-protein coupling (Fig. 2A). 

Formoterol-induced cAMP responses were blocked by the non-selective β-adrenoceptor 

antagonist propranolol (1 µM) and the selective β2-adrenoceptor antagonist ICI 118,551 (1 

µM), whereas the selective β1-adrenoceptor antagonist CGP 20712 (1 µM) had no effect 

(Fig. 2B). Due to the lack of a selective β1-adrenoceptor agonist, the functional expression 

of this subtype was assessed by determining the effect of the β1-adrenoceptor antagonist 

CGP 20712 on dobutamine (non-selective β1 and β2 agonist)-induced cAMP accumulation.  

Dobutamine-induced cAMP responses were blocked by propranolol and ICI 118,551, 

whereas CGP 20712 had no effect (Fig. 2C). The selective β3-adrenoceptor agonist CL 

316243 (1 µM) did not trigger a measureable increase in cAMP accumulation, suggesting 

that this subtype is not functionally expressed H9c2 cells (data not shown). Overall these 

data suggest functional expression of the β2-adrenoceptor (and neither β1- not β3-

adrenoceptors) in H9c2 cells.  

 

3.2. Effect of β2-adrenoceptor activation on TG2-mediated biotin cadaverine amine 

incorporation and protein cross-linking activity 

Initial experiments investigated the effect of the β2-adrenoceptor agonist formoterol on TG2 

transamidase activity in H9c2 cardiomyoblasts. TG2 catalyses two types of transamidation, 

namely (i) intra-, and/or inter-molecular covalent cross-links between protein-bound 



glutamine and lysine residues, and (ii) cross-links between small molecule primary amines 

and protein-bound glutamine (Nurminskaya and Belkin, 2012). H9c2 cells were treated with 

formoterol (100 nM) for varying times and cell lysates subjected to the biotin cadaverine 

amine-incorporation assay (Slaughter et al., 1992). Formoterol produced increases in TG2-

catalysed biotin-cadaverine incorporation activity, peaking at 20 min (Fig. 3A). Furthermore, 

formoterol (EC50 = 15  2.3 nM; p[EC50] = 7.85  0.09; n=4; Fig. 3C) stimulated 

concentration-dependent increases in biotin-cadaverine incorporation activity. The effect of 

β2-adrenoceptor activation on TG2-mediated protein cross-linking activity in H9c2 cells was 

also determined using the biotin-labeled peptide (biotin-TVQQEL) cross-linking assay 

(Trigwell et al., 2004). Formoterol (Fig. 3B) triggered time-dependent increases in TG2-

mediated protein cross-linking activity peaking at 20 min. Formoterol (EC50 = 27  11 nM; 

p[EC50] = 7.69  0.15; n=4; Fig. 3D) also stimulated concentration-dependent increases in 

protein cross-linking activity. It is worth noting that  levels of TG2 protein expression did not 

significantly change following stimulation with formoterol (data not shown). Although the β2-

adrenoceptor couples to Gs and Gi proteins (Daaka et al., 1997; Zamah et al., 2002), pre-

treatment with pertussis toxin (Gi/o-protein blocker; 100 ng/ml) for 16 h had no significant 

effect on formoterol-induced TG2 activity (Fig. 3E and F). Finally, ICI 118,551 and 

propranolol blocked formoterol-induced TG2 activity (Fig. 4A and B).  

 

3.3. The effect of TG2 inhibitors on β2-adrenoceptor-induced TG2 activity 

To confirm that TG2 is responsible for the β2-adrenoceptor induced transglutaminase 

activity in H9c2 cardiomyocytes, two structurally different cell permeable TG2 specific 

inhibitors were tested; R283 (a small molecule; Freund et al., 1994) and Z-DON (peptide-

based; Schaertl et al., 2010). Although these TG2 inhibitors are cell-permeable, inhibition of 

cellular TG2 is only achievable at concentrations significantly above their IC50 value versus 

purified enzyme (Schaertl et al., 2010; Freund et al., 1994). H9c2 cells were pre-treated for 

1 h with Z-DON (150 µM) or R283 (200 µM) prior to stimulation with formoterol (1 µM) for 



20 min. Both inhibitors blocked formoterol-induced TG-mediated amine incorporation (Fig. 

4C) and peptide cross-linking activity (Fig. 4D), confirming the involvement of TG2. 

 

3.4. The role of Ca2+ in β2-adrenoceptor- induced TG2 activity 

Since TG2 is a Ca2+-dependent enzyme we determined the role of Ca2+ in β2-adrenoceptor-

induced TG2 activation. The role of extracellular Ca2+ was assessed by measuring TG2 

responses in the absence of extracellular Ca2+ using nominally Ca2+-free Hanks/HEPES 

buffer containing 0.1 mM EGTA. Removal of extracellular Ca2+ partially attenuated 

formoterol-induced TG2 activity (Fig. 4E and F). To assess the role of intracellular Ca2+, 

measurements of TG2 activation were also performed using cells pre-incubated with the 

Ca2+ chelator BAPTA-AM (50 µM for 30 min) in the absence of extracellular Ca2+. Loading 

cells with BAPTA in the absence of extracellular Ca2+ did not lead to further inhibition of 

formoterol-induced TG2 activation (Fig. 4E and F).  These observations suggest that β2-

adrenoceptor-induced TG2 activation is partially dependent upon the influx of extracellular 

Ca2+. We have previously measured A1 adenosine receptor-induced changes in intracellular 

Ca2+ in H9c2 cells using the fluorescent Ca2+ indicator Fluo-8 (Vyas et al., 2016). In this 

study, formoterol did not trigger measurable increases in intracellular Ca2+ in H9c2 cells 

loaded with Fluo-8 AM (data not shown).  

 

3.5. The effect of protein and lipid kinase inhibitors on β2-adrenoceptor-induced 

TG2 activity 

Since the β2-adrenoceptor activates PKA, the effect of two structurally different PKA 

inhibitors, Rp-cAMPs (de Wit et al., 1984) and KT-5720 (Kase et al., 1987), on formoterol-

induced TG2 activity was assessed. Pre-treatment with Rp-cAMPs (50 µM; Fig. 5A and B) 

and KT 5720 (5 µM; Fig. 5C and D) partially attenuated formoterol-induced TG-mediated 

amine incorporation and protein cross-linking activity, suggesting the involvement of PKA. 

However, the effect of KT 5720 on protein cross-linking activity was not statistically 



significant. Overall, these data indicate that PKA-dependent pathway(s) play a role in β2-

adrenoceptor-induced TG2 activity. 

We have recently shown that the Gi-protein coupled A1 adenosine receptor stimulates 

TG2 activity in H9c2 cells via a number of protein kinases (e.g. PKC, ERK1/2, p38 MAPK and 

JNK1/2; Vyas et al., 2016). The β2-adrenoceptor also triggers the activation of signalling 

cascades involving ERK1/2, p38 MAPK, JNK1/2 and PKB (Daaka et al., 1997; Okamoto et 

al., 1991; Steinberg, 1999; Yano et al., 2007). Modulation of ERK1/2, p38 MAPK, JNK1/2 and 

PKB activity following β2-adrenoceptor activation was assessed in H9c2 cells by Western 

blotting using phospho-specific antibodies that recognise phosphorylated motifs within 

activated ERK1/2 (pTEpY), p38 MAPK (pTGpY), JNK1/2 (pTPpY)  and PKB (pS473).  Formoterol 

(1 µM for 20 min) stimulated significant increases in ERK1/2 (Fig. 6) and PKB phosphorylation 

(data not shown for clarity) in H9c2 cells. In contrast, formoterol did not stimulate p38 MAPK 

or JNK1/2 activation (data not shown). As expected, pre-treatment with PD 98059 (50 µM; 

MEK1 inhibitor) blocked formoterol-induced activation of ERK1/2 (Fig. 6A). Treatment with 

PD 98059 (50 µM) also blocked formoterol-induced induced TG-mediated amine 

incorporation activity and protein cross-linking activity, suggesting a role for ERK1/2 in 

regulating these activities (Fig. 5E and F).  

       PI-3K plays a prominent up-stream role in β2-adrenoceptor-induced modulation of 

ERK1/2 and PKB (Zhang et al., 2011). In this study the pan PI-3K inhibitors wortmannin 

(100 nM; Fig. 7A and B) and LY 294002 (30 µM; Fig. 7C  and D) blocked formoterol-induced 

TG2 activity. Furthermore, the selective PI-3K inhibitor AS 605240 (1 µM) also blocked 

formoterol-induced TG2 activity (Fig. 7E and F).  

      Given the role of ERK1/2, PI-3K and extracellular Ca2+ in formoterol-induced TG2 

activation, we assessed whether PI-3K and extracellular Ca2+ play an up-stream role in 

ERK1/2 activation. Wortmannin, LY 294002, AS 605240 or removal of extracellular Ca2+ 

attenuated formoterol-induced ERK1/2 activation (Fig. 6). In contrast, Rp-cAMPs (Fig. 6B) 

and pertussis toxin (data not shown) had no significant effect on formoterol-induced ERK1/2 



activation. These data suggest formoterol activates ERK1/2 via a PKA-independent but PI-

3K and Ca2+-dependent pathway.  

      It is important to note that KT-5720, Rp-cAMPs, PD 98059, LY 294002, and AS 605240 

had no significant effect on purified guinea pig liver TG2 activity (data not shown). Overall, 

these data suggest that TG2 activity is modulated in H9c2 cells by the β2-adrenoceptor via a 

pathway involving PKA, ERK1/2 and PI-3K. 

 

3.6. Visualisation of in situ TG2 activity following β2-adrenoceptor activation 

Biotin-X-cadaverine, a cell penetrating biotin-labelled primary amine, acts as the acyl-

acceptor in intracellular TG2-mediated transamidating reactions and becomes incorporated 

into endogenous protein substrates of TG2, which can subsequently be visualised by 

reporters such as FITC- and HRP-ExtrAvidin® (Lee et al., 1993). H9c2 cells were pre-

incubated with 1 mM biotin-X-cadaverine for 6 h at 37°C prior to treatment with formoterol 

for 1, 5, 10, 20, 30 and 40 min. After fixation and permeabilisation, intracellular proteins 

with covalently attached biotin-X-cadaverine were visualized using FITC-ExtrAvidin®. As 

shown in Fig. 8A, formoterol (100 nM) induced a time-dependent increase in the 

incorporation of biotin-X-cadaverine into endogenous protein substrates of TG2. These data 

are comparable to the time-dependent increases in TG2 activity observed in vitro (see Fig. 

3). Formoterol-mediated biotin-X-cadaverine incorporation was also concentration-

dependent (EC50 = 47  27 nM;  p[EC50] = 7.65  0.27; n=4; Fig. 8B). To confirm the 

involvement of TG2 activation, cells were treated with the TG2 inhibitors Z-DON (150 µM) 

and R283 (200 µM) for 1 h prior to incubation with formoterol (1 µM) for 20 min. Pre-

treatment of cells with Z-DON and R283 resulted in the complete inhibition of formoterol-

mediated biotin-X-cadaverine incorporation into protein substrates (Fig. 9A). The in situ 

responses to formoterol were attenuated by inhibitors of PKA (KT 5720 and Rp-cAMPs), PI-

3K (LY 294002 and AS 605240) and MEK1 (PD 98059) and following removal of 

extracellular Ca2+ (Fig. 9).  



3.7. β2-adrenoceptor-induced TG2 phosphorylation    

The effect of formoterol on TG2 phosphorylation was examined via immunoprecipitation of 

TG2, followed by SDS-PAGE and Western blot analysis using anti-phosphoserine and anti-

phosphothreonine antibodies. As shown in Fig. 10, formoterol (1 µM) enhanced TG2-bound 

phosphoserine and phosphothreonine. Pre-treatment with Rp-cAMPs (50 µM), PD 98059 (50 

µM) and AS 605240 (1 µM) attenuated formoterol-induced TG2 phosphorylation (Fig. 10 

and 11). Finally, removal of extracellular Ca2+ attenuated formoterol-induced TG2 activity 

(Fig. 11). Formoterol-induced increases in TG2 phosphorylation were also blocked by the 

pan PI-3K inhibitors wortmannin and LY 294002 (data not shown). 

 

3.8. Identification of biotin-X-cadaverine labelled protein substrates 

Following stimulation with formoterol (1 µM for 20 min), cell extracts from biotin-X-

cadaverine labelled cells were enriched using CaptAvidin™-agarose sedimentation beads, 

resolved by SDS-PAGE on 4-15% polyacrylamide gradient gels and visualised using 

Coomassie blue stain (Fig. 12). As shown in Fig. 12A, the intensity of some proteins bands 

eluted from the CaptAvidin™-agarose beads increased following stimulation with formoterol 

(1 µM) which may be indicative of TG2-mediated transamidation and/or altered interactions 

with TG2 substrate binding partners. Furthermore, pre-treatment with Z-DON and R283 

attenuated the levels of eluted proteins (Fig. 12). However, it is notable that the intensity of 

several protein bands also decreased following formoterol treatment, indicative of reduced 

levels of transamidation and/or altered interactions with TG2 substrate binding partners. To 

identify the proteins captured and eluted from CaptAvidin™-agarose beads, eluates were 

analysed by SWATH-MS (Sequential Windowed Acquisition of All Theoretical Fragment Ion 

Mass Spectra; Huang et al., 2015). This technique allows quantification of mass 

spectrometry data and the results presented are shown as formoterol-induced fold-changes 

in proteins eluted from CaptAvidin™-agarose compared to control unstimulated cells. SWATH 

analysis revealed increases in eight proteins not previously identified as TG2 protein 



substrates and five known substrates in response to β2-adrenoceptor activation in H9c2 cells 

(Table 1). Interestingly, SWATH-MS analysis also identified proteins whose profile revealed 

a decrease in formoterol treated cells when compared to untreated control cells (Table 1). 

Further work is needed to determine whether these changes represent altered 

transamidation and/or interactions with TG2 substrate binding partners.  

  



4. Discussion 

In this study, we have established for the first time that the β2-adrenoceptor triggers robust 

increases in TG2 transamidation activity in H9c2 cells via a signalling pathway dependent 

upon PKA, ERK1/2, PI-3K and extracellular Ca2+.   

 

4.1. In vitro modulation of TG2 by the β2-adrenoceptor 

Activation of the β2-adrenoceptor with formoterol triggered time- and concentration-

dependent increases in the amine incorporating and protein cross-linking activity of TG2. It 

is notable that the potency in mediating biotin-cadaverine incorporation and protein cross-

linking is lower than for formoterol-stimulated cAMP accumulation. These differences may 

be a consequence of biased agonism between agonist-induced cAMP accumulation versus 

TG2 activation (Rajagopal et al., 2011). Alternatively, it may be a consequence of the 

multiple signalling pathways e.g. PKA, ERK1/2, PI-3K, and Ca2+ shown to be required for 

TG2 modulation.  

 

4.2. Role of extracellular Ca2+ in β2-adrenoceptor-induced TG2 activation 

Since the transamidating activity of TG2 is dependent upon Ca2+, we assessed the role of 

extracellular and intracellular Ca2+ in β2-adrenoceptor-induced TG2 activation. Removal of 

extracellular Ca2+ partially inhibited formoterol-induced TG2-mediated transamidation 

activity. Surprisingly, formoterol did not trigger observable increases in intracellular [Ca2+] 

in H9c2 cells loaded with Fluo-8 AM. At present the reason(s) for this discrepancy are 

unclear but it may reflect very localized formoterol-induced increases in intracellular [Ca2+] 

(as a consequence of Ca2+ influx) that, whilst sufficient to trigger TG2 activation, were not 

detectable using the methodology employed. It is important to note that, although changes 

in intracellular [Ca2+] required for TG2 activation are typically in the order 3-100 µM, there 

is growing evidence that intracellular [Ca2+] can reach levels sufficient to activate TG2 

(Király et al., 2011). Alternatively, the role of Ca2+ in formoterol-induced TG2 activation 



may be in the sensitization of TG2 to β2-adrenoceptor-mediated activation. For example, 

interaction of TG2 with protein binding partners and/or membrane lipids have been 

proposed to induce a conformational change that promotes activation at low levels of 

intracellular [Ca2+] (Király et al., 2011). Clearly, further studies are required to determine 

precisely how β2-adrenoceptor-induced TG2 activation occurs in the absence of detectable 

increases in intracellular Ca2+, but the kinase-dependent pathways outlined in the present 

study could be central to these novel aspects of TG2 regulation.   

 

4.3. Role of PKA and ERK1/2 in β2-adrenoceptor-induced TG2 activation 

The role of PKA and other protein/lipid kinases in formoterol-induced TG2 activation was 

explored using appropriate pharmacological inhibitors. The PKA inhibitors Rp-cAMPs and KT 

5720 attenuated formoterol-induced TG2 responses, suggesting a role for PKA. The MEK1/2 

(up-stream activator of ERK1/2) inhibitor PD 98059 also attenuated formoterol-induced TG2 

activation. These data are in agreement with the role of ERK1/2 in TG2 activation triggered 

by the Gi-protein coupled A1 adenosine receptor (Vyas et al., 2016). The attenuation of 

formoterol-induced TG2 responses by Rp-cAMPs and KT 5720 may be a consequence of the 

up-stream role of PKA in β2-adrenoceptor-induced ERK1/2 activation (Schmitt and Stork, 

2000). However, in H9c2 cells formoterol-induced ERK1/2 activation was insensitive to PKA 

inhibition and therefore the role of PKA in TG2 activation appears to be independent of 

ERK1/2. However, removal of extracellular Ca2+ and inhibition of PI-3K attenuated 

formoterol-induced ERK1/2 activation. Although beyond the scope of the present study, it 

would be of interest to investigate further the mechanism(s) underlying β2-adrenoceptor -

induced ERK1/2 activation in H9c2 cells. 

PI-3K plays a prominent role in β2-adrenoceptor signalling (Zhang  et al., 2011). In the 

present study we have shown that formoterol-induced TG2 activity is sensitive to the pan 

PI-3K inhibitors wortmannin and LY 294002 and the selective PI-3K inhibitor AS 605240. 



Overall, these observations suggest that PI-3K lies up-stream of ERK1/2 stimulation and 

TG2 activation in H9c2 cells.  

 

4.4. β2-adrenoceptor-induced phosphorylation of TG2 

Given the apparent role of PKA and ERK1/2 in the regulation of TG2, we investigated the 

phosphorylation status of TG2 following β2-adrenoceptor stimulation. The data obtained 

demonstrate that TG2 is phosphorylated in response to β2-adrenoceptor activation. 

However, it is important to state that the relationship between formoterol-induced TG2 

phosphorylation and TG2 transamidase activity is not known. Further work is required to 

determine if formoterol stimulated TG2 activation is dependent upon formoterol-induced 

TG2 phosphorylation. It is notable that we have recently reported that TG2 is also 

phosphorylated following stimulation of the A1 adenosine receptor in H9c2 cells (Vyas et al., 

2016). Hence, the modulation of TG2  phosphorylation may represent a common 

downstream target of GPCR signalling. Previous studies have shown that TG2 is 

phosphorylated by PKA at Ser215 and Ser216  (Mishra and Murphy, 2006). At present it is not 

known if formoterol triggers TG2 phosphorylation at Ser215 and Ser216 . However, previous 

studies have revealed that PKA-mediated phosphorylation of TG2 at these sites has several 

potential consequences, including promotion of protein-protein interactions, enhancement of 

TG2 kinase activity and inhibition of transamidating activity (Mishra and Murphy, 2006; 

Mishra et al., 2007). In this study β2-adrenoceptor-induced PKA activation promoted TG2 

transamidating activity. The attenuation of in vitro TG2 cross-linking activity by PKA 

observed by Mishra et al. (2007) was achieved using histidine-tagged TG2 immobilized on 

nickel-agarose and incubation with purified PKA. Hence, in vivo regulation of TG2 activity by 

PKA may be influenced by interaction of TG2 with other proteins and/or lipids. Thus, further 

studies are warranted in order to determine the consequence(s) of β2-adrenoceptor-induced 

TG2 phosphorylation. In view of the multiple protein/lipid kinases (PKA, ERK1/2, PI-3K) 

implicated in β2-adrenoceptor-induced TG2 activation, we investigated the influence of 



kinase inhibitors on TG2 phosphorylation. Formoterol-induced increases in TG2 

phosphorylation were reduced following pharmacological inhibition of PKA, MEK1/2, PI-3K 

and removal of extracellular Ca2+. Whilst the attenuation of TG2 phosphorylation following 

PI-3K inhibition is most likely due to the upstream role of PI-3K in ERK1/2 activation, it is 

conceivable that the protein kinase activity of PI-3K may directly phosphorylate TG2 (Hunter 

1995; Naga Prasad et al., 2005). Further studies are required to establish if PKA, ERK1/2 or 

indeed PI-3K directly catalyse the phosphorylation of TG2. Finally, removal of extracellular 

Ca2+ attenuated formoterol-induced TG2 phosphorylation. These data may reflect the role of 

extracellular Ca2+ in formoterol-induced ERK1/2 activation. Alternatively, it may be that 

conformational changes in TG2 triggered by Ca2+ facilitate its subsequent phosphorylation 

by PKA and/or ERK1/2. Conversely, it is also a possibility that TG2 phosphorylation may 

sensitize TG2 to activation in the presence of low Ca2+ as discussed above. Further work to 

identify the phosphorylation site(s) targeted following β2-adrenoceptor activation would be 

worthwhile. 

 

4.5. In situ β2-adrenoceptor-induced polyamine incorporation into protein 

substrates 

Intracellular polyamines e.g. spermine, spermidine, and putrescine can be covalently 

attached onto proteins via TG2-mediated transamidation activity, resulting in the 

incorporation of a positively charged group into the target protein. Thus, TG2-mediated 

polyamination may promote changes in protein conformation, which could lead to 

alterations in protein function (Yu et al., 2015). For example, the TG2-mediated 

incorporation of polyamines into RhoA results in constitutive G-protein activity (Makitie et 

al., 2009; Shin et al., 2008; Singh et al., 2001), whereas the incorporation of polyamines 

into phospholipase A2 results in a 2-3 fold increase in enzymic activity (Cordella-Miele et al., 

1993). In the current study, in situ TG2 activity increased following stimulation of the β2-

adrenoceptor. These in situ responses were comparable to amine incorporation activity 



observed in vitro and were also sensitive to pharmacological inhibition of PKA, MEK1/2, PI-

3K and removal of extracellular Ca2+, confirming the role of these signalling pathways in β2-

adrenoceptor-induced TG2 activation. It is interesting to speculate that β2-adrenoceptor-

mediated incorporation of polyamines might regulate the function of a range of cellular 

targets and may represent a new paradigm in β2-adrenoceptor signaling and regulation of 

cellular function.  

 

4.6. Identification of proteins in CaptAvidin™-agarose bead eluates 

SWATHTM-MS analysis identified eight proteins not previously identified as TG2 protein 

substrates (e.g. Protein S100-A6) and five known substrates (Table 1) in response to 

formoterol stimulation. It is beyond the scope of the present discussion to describe the 

biological functions/roles of all of these proteins but it is interesting to note that protein 

S100-A6 is a Ca2+ binding protein that is known to interact with tropomyosin and actin 

(Donato et al., 2013), and that several other identified proteins are cytoskeletal proteins 

(e.g. actin, myosin, tropomyosin). Hence it is conceivable that TG2-mediated modulation of 

protein S100-A6 function plays a role in β2-adrenoceptor-induced regulation of 

cardiomyocyte contractility. Interestingly, recent studies have shown that TG2 plays a role 

in oxytocin-induced contraction of human myometrium (Alcock et al., 2011).  

   Further interrogation of the SWATH data identified a large number of proteins (including 

many whose function is linked with muscle contraction) that displayed a pronounced 

decrease following treatment with formoterol indicative of altered levels of transamidation of 

specific substrates and/or proteins interacting with them (Table 1). It is notable that TG2 

can catalyse simultaneous transamidation and deamidation of heat shock protein 20 and 

thus β2-adrenoceptor-induced activation may also promote the deamidation of TG2 

substrates (Boros et al., 2006). Overall, these data have identified a large number of 

proteins whose elution profile from CaptAvidin™-agarose beads changes markedly in 



formoterol treated cells. The challenge for future work will be to explore the role of such 

TG2-mediated modifications in β2-adrenoceptor function and signalling. 

   At present very little is known of the in vivo regulation of TG2 in cardiomyocytes and how 

such activity may alter under pathological conditions. Interestingly, TG2 knockout mice 

display no significant change in haemodynamic parameters (heart rate, systolic and diastolic 

blood pressure and contractility) when compared to non-transgenic animals (Nanda et al., 

2001). These observations suggest no significant role for TG2 in normal cardiovascular 

function. More recent studies have demonstrated that TG2 mediates cell survival against 

ischaemia/reperfusion injury by regulating ATP synthesis in cardiomyocytes derived from 

TG2-/- knockout mice, suggesting a cardioprotective role for TG2 (Szondy et al., 2006). 

Interestingly, increased levels of TG2 expression have been demonstrated in animal models 

of cardiac hypertrophy (Iwai et al., 1995) and from heart failure patients (Hwang et al., 

1996). Furthermore, cardiac-specific over-expression of TG2 is associated with cardiac 

hypertrophy, apoptosis  and fibrosis (Small et al., 1999; Zhang et al., 2003). Overall, these 

studies demonstrate a potential role for TG2 in cardiac pathology (Iismaa et al., 2009). 

Regarding the increased levels of TG2 observed in heart failure patients it is interesting to 

speculate that TG2 activation, as a consequence of the elevated levels of catecholamines 

associated with heart failure, may contribute to the pathophysiology of heart failure. 

Alternatively, TG2 activation under these conditions may play a protective role during heart 

failure. 

    In conclusion, our data have revealed for the first time that activation of TG2 occurs by 

the β2-adrenoceptor via a multi-protein kinase pathway.  Work is currently underway to 

explore further the function(s) of β2-adrenoceptor-induced TG2 activity in cardiomyocytes. 

 

Conflict of interest 

None declared 

 



Acknowledgements 

We would like to thank Gordon Arnott for helping with confocal imaging. 

 

  



Figure legends 

 

Fig. 1. β-adrenoceptor mRNA expression in H9c2 cells. mRNA isolated from H9c2 cells was 

subjected to RT-PCR using intron spanning β1, β2 and β3-adrenoceptor gene specific primers. 

mRNA samples isolated from rat heart (β1-adrenoceptor) and rat lung (β2 and β3-

adrenoceptor) were used as positive controls. L: 100 bp DNA standard; lane 1: no DNA 

control; lanes 2, 4 and 6: positive control; lanes 3, 5 and 7:  H9c2 cell-derived mRNA. 

mRNA control using GAPDH primers is shown in the lower panel. The results presented are 

representative of three independent experiments.  

 

 

Fig. 2. β-adrenoceptor agonist-induced cAMP accumulation in H9c2 cells. Where indicated 

cells were pre-treated for 16 h with 100 ng/ml pertussis toxin. Cells were either (A) treated 

with the indicated concentrations of formoterol for 20 min; (B) pretreated for 30 min with 

propranolol (100 nM), CGP 20712 (100 nM), or ICI 118551 (100 nM) prior to 20 min 

stimulation with formoterol (10 nM) or (C) pretreated for 30 min with propranolol (100 nM), 

CGP 20712 (100 nM), or ICI 118551 (100 nM) prior to 20 min stimulation with dobutamine 

(1 µM). Levels of cAMP were determined as described in Materials and Methods. Data are 

presented as levels of cAMP in nM. The results represent the mean  S.E.M. of four 

experiments each performed in triplicate. *P0.05, **P<0.01, ***P<0.001, and 

****P<0.0001, (a) versus control and (b) versus 10 nM formoterol or 1 µM dobutamine 

alone. 

 

Fig. 3. Effect of the β2-adrenoceptor agonist formoterol on TG2 activity in H9c2 cells. Cells 

were stimulated with formoterol (100 nM) for the indicated time periods (panels A and C). 

Concentration-response curves for formoterol in cells treated with agonist for 20 min 

(panels B and D). Where indicated H9c2 cells were pre-treated for 16 h with 100 ng/ml 



pertussis toxin prior to 20 min stimulation with 1 µM formoterol (panels E and F). Cell 

lysates were subjected to the biotin-cadaverine incorporation (panels A, C and E) or the 

peptide cross-linking assay (panels B, D and F). Data points represent the mean ± S.E.M. 

for TG2 specific activity from four independent experiments. *P0.05, **P<0.01, 

***P<0.001 and ****P0.0001, (a) versus control response and (b) versus 1 µM formoterol 

alone. 

 

 

Fig. 4. Effect of β-adrenoceptor antagonists, inhibitors of TG2 and removal of extracellular 

Ca2+ on formoterol-induced TG2 activity in H9c2 cells. H9c2 cells were pretreated for 30 min 

with the antagonists ICI 118,551 (1 µM; β2-adrenoceptor selective) and propranolol (1 µM 

non-selective β-adrenoceptor)  or for 1 h with the TG2 inhibitors Z-DON (150 µM) and R283 

(200 µM) prior to stimulation with formoterol (1 µM; 20 min). H9c2 cells were also 

stimulated for 20 min with formoterol (1 µM) either in the presence of extracellular Ca2+ 

(1.8 mM) or in its absence using nominally Ca2+-free Hanks/HEPES buffer containing 0.1 

mM EGTA. Experiments were also performed using cells pre-incubated for 30 min with 50 

µM BAPTA/AM and in the absence of extracellular Ca2+  (nominally Ca2+-free Hanks/HEPES 

buffer containing 0.1 mM EGTA) to  chelate intracellular Ca2+. Cell lysates were subjected to 

biotin-cadaverine incorporation assay (panels A, C and E) or peptide cross-linking assay 

(panels B, D and F). Data points represent the mean ± S.E.M. for TG2 specific activity from 

four independent experiments. *P0.05, **P0.01, ***P0.001 and ****P0.0001, (a) 

versus control and (b) versus 1 µM formoterol in the presence of extracellular Ca2+. 

 

Fig. 5. Effect of PKA and ERK1/2 inhibition on formoterol-induced TG2 activity. H9c2 cells 

were pretreated for 30 min with Rp-cAMPs (50 µM), KT-5720 (5 µM) or PD 98059 (50 µM) 

prior to 20 min stimulation with formoterol (1 µM). Cell lysates were subjected to biotin-

cadaverine incorporation (panels A, C and E) or peptide cross-linking assays (panels B, D 



and F). Data points represent the mean ± S.E.M. for TG2 specific activity from four 

independent experiments. *P<0.05, **P0.01, ***P0.001 and ****P0.0001, (a) versus 

control and (b) versus 1 µM formoterol alone. 

 

Fig. 6. Effect of formoterol on ERK1/2 phosphorylation in H9c2 cells. Where indicated, H9c2 

cells were pre-treated for 30 min with A) PD 98059 (50 µM), B) Rp-cAMPs (50 µM), C) 

wortmannin (100 nM), D)  LY 294002 (30 µM), or E) AS 605240 (1 µM) prior to stimulation 

with formoterol (1 µM) for 20 min. In Panel (F) cells were stimulated for 20 min with 

formoterol (1 µM) either in the presence of extracellular Ca2+ (1.3 mM) or in its absence 

using nominally Ca2+-free Hanks/HEPES buffer containing 0.1 mM EGTA. Cell lysates were 

analysed by Western blotting for activation of ERK1/2 using phospho-specific antibodies. 

Samples were subsequently analysed on separate blots using antibodies that recognize total 

ERK1/2 (data omitted for clarity). Data are expressed as the percentage of values for 

control cells (=100%) in the absence of protein kinase inhibitor and represent the mean  

S.E.M. of four independent experiments. **P<0.01 and ***P<0.001, (a) versus control and 

(b) versus 1 µM formoterol alone. 

 

Fig. 7. Effect of PI-3K inhibitors on formoterol -induced TG2 activity. H9c2 cells were 

pretreated for 30 min with wortmannin (100 nM), LY 294002 (30 µM), or AS 605240 (1 µM) 

prior to 20 min stimulation with formoterol (1 µM). Cell lysates were subjected to protein 

biotin-cadaverine amine incorporation assay (panels A, C and E) or cross-linking assay 

(panels B, D and F). Data points represent the mean ± S.E.M. TG2 specific activity from 

four independent experiments. *P<0.05, **P0.01 and ***P0.001, (a) versus control and 

(b) versus 1 µM formoterol alone.  

 

Fig. 8. Formoterol-induced in situ TG2 activity in H9c2 cells. Cells were incubated with 1 

mM biotin-X-cadaverine (BTC) for 6 h, after which they were treated with (A) 100 nM 



formoterol for 1, 5, 10, 20, 30 or 40 min or (B) the indicated concentrations (in M) of 

formoterol for 20 min. TG2-mediated biotin-X-cadaverine incorporation into intracellular 

proteins was visualized using FITC-ExtrAvidin® (green). Nuclei were stained with DAPI 

(blue) and viewed using a Leica TCS SP5 II confocal microscope (20x objective lens). 

Images presented are from one experiment and representative of three independent 

experiments. Quantified data points for (C) time course and (D) concentration-response 

curve experiments represent the mean ± S.E.M. of fluorescence intensity relative to DAPI 

stain for five fields of view each from three to four independent experiments. *P<0.05, 

**P0.01, ***P0.001 and ****P0.0001 versus control response. 

 

Fig. 9. Effects of TG2 and kinase inhibitors on in situ TG2 activity in H9c2 cells following 

stimulation with formoterol. Cells were incubated with 1 mM biotin-X-cadaverine (BTC) for 6 

h after which they were treated as follows: (A) 1 h with the TG2 inhibitors Z-DON (150 µM) 

or R283 (200 µM), (B) 30 min with KT 5720 (5 µM) or Rp-cAMPs (50 µM), (C) 30 min with 

PD 98059 (50 µM) or LY 294002 (30 µM) or (D)  30 min with AS 605240 (1 µM) or in the 

absence of extracellular Ca2+ for 30 min (nominally Ca2+-free Hanks/HEPES buffer containing 

0.1 mM EGTA), prior to 20 min stimulation with formoterol (1 µM). TG2-mediated biotin-X-

cadaverine incorporation into intracellular proteins was visualized using FITC-ExtrAvidin® 

(green). Nuclei were stained with DAPI (blue) and viewed using a Leica TCS SP5 II confocal 

microscope (20x objective lens). Images presented are from one experiment and are 

representative of three independent experiments. Quantified data points represent the 

mean ± S.E.M. of fluorescence intensity relative to DAPI stain for five fields of view each 

from three independent experiments. *P<0.05, **P0.01, ***P0.001 and ****P<0.0001, 

(a) versus control and (b) versus 1 µM formoterol alone.   

 

Fig. 10. Effect of PKA and ERK1/2 inhibition on formoterol-induced phosphorylation of TG2. 

Where indicated, H9c2 cells were incubated for 30 min with Rp-cAMPs (50 µM) or PD 98059 



(50 µM) prior to stimulation with formoterol (1 µM) for 20 min. Following stimulation, cell 

lysates were subjected to immunoprecipitation using anti-TG2 monoclonal antibody as 

described under “Materials and Methods”. The resultant immunoprecipitated protein(s) were 

subjected to  SDS-PAGE and analysed via Western blotting using  (A) anti-phosphoserine 

and (B) and anti-phosphothreonine antibodies. One tenth of the input was added to the first 

lane to show the presence of phosphorylated proteins prior to immunoprecipitation and 

negative controls with the immunoprecipitation performed with beads or IgG only were 

included to demonstrate the specificity of the bands shown. Quantified data for formoterol-

induced increases in TG2-associated serine and threonine phosphorylation are expressed as 

a percentage of that observed in control cells (100%). Data points represent the mean  

S.E.M. from three independent experiments.  *P0.05, **P0.01 and ***P0.001 (a) versus 

control and (b) versus formoterol alone. 

 

Fig. 11. Roles of extracellular Ca2+ and PI-3K in formoterol-induced phosphorylation of TG2. 

Measurements of formoterol-induced TG2 phosphorylation were performed either in the 

absence of extracellular Ca2+ using nominally Ca2+-free Hanks/HEPES buffer containing 0.1 

mM EGTA, as indicated, or in cells incubated for 30 min with AS 60540 (1 µM) prior to 

stimulation with formoterol (1 µM) for 20 min. Following stimulation, cell lysates were 

subjected to immunoprecipitation using anti-TG2 monoclonal antibody as described under 

“Materials and Methods”. The resultant immunoprecipitated protein(s) were subjected to  

SDS-PAGE and Western blot analysis using  (A) anti-phosphoserine and (B) and anti-

phosphothreonine antibodies. One tenth of the input was added to the first lane to show the 

presence of phosphorylated proteins prior to immunoprecipitation and negative controls with 

the immunoprecipitation performed with beads or IgG only were included to demonstrate 

the specificity of the bands shown. Quantified data for formoterol-induced increases in TG2-

associated serine and threonine phosphorylation are expressed as a percentage of that 

observed in control cells (100%). Data points represent the mean  S.E.M. from three 



independent experiments.  *P0.05 and **P0.01 (a) versus control and (b) versus 

formoterol alone.  

 

Fig. 12. Detection of in situ TG2 activity and protein substrates in formoterol-treated H9c2 

cells. Cells were incubated with 1 mM biotin-X-cadaverine for 6 h, after which they were 

treated for 1 h with the TG2 inhibitors Z-DON (150 µM) or R283 (200 µM) before stimulation 

with formoterol (1 µM) for 20 min. Biotin-X-cadaverine-labelled proteins were enriched 

using CaptAvidin™ agarose sedimentation beads and eluted proteins subjected to SDS-

PAGE on 4-15% polyacrylamide gradient gels. (A) Coomassie blue staining of enriched 

biotin-X-cadaverine-labelled proteins following SDS-PAGE. (B) Quantification of protein 

substrates detected using Coomassie blue staining. Densitometry of each lane (total 

protein) was carried out using Advanced Image Data Analyser software (Fuji; version 3.52) 

and data are expressed as a percentage of basal TG2 protein substrate levels. Values are 

means  S.E.M. from three independent experiments. ***P<0.001 and ****P0.0001, (a) 

versus control response, (b) versus formoterol alone. 

  



Table 1. Identification of proteins showing increased or decreased levels in eluates from 

CaptAvidin™-agarose columns following formoterol-induced β2-adrenoceptor activation. 

Protein Name Uniprot 

Accession 

Uniprot 

Name 

Absolute 

Fold 

Change* 

Formoterol-induced increases    
dCollagen alpha-1(I) chain P02454 CO1A1_RAT 2.64 
aProtein S100-A6 P05964 S10A6_RAT 2.45 
dCollagen alpha-1(III) chain P13941 CO3A1_RAT 2.39 
fProtein SET Q63945 SET_RAT 2.26 
bL-lactate dehydrogenase A chain P04642 LDHA_RAT 1.95 
fAnnexin A5 P14668  ANXA5_RAT 1.91 
dCollagen alpha-2(I) chain P02466  CO1A2_RAT 1.86 
bMalate dehydrogenase, mitochondrial P04636  MDHM_RAT 1.84 
bD-3-phosphoglycerate dehydrogenase O08651  SERA_RAT 1.65 
fGalectin-1 P11762  LEG1_RAT 1.62 
cRibonuclease inhibitor P29315  RINI_RAT 1.57 
cHistone H1.5 D3ZBN0  H15_RAT 1.46 
d60S ribosomal protein L7 P05426  RL7_RAT 1.32 
    

Formoterol-induced decreases    
dCalumenin O35783  CALU_RAT -3.27 
dEH domain-containing protein 2 Q4V8H8  EHD2_RAT -2.76 
bMyosin regulatory light polypeptide 9 Q64122  MYL9_RAT -2.66 
cCysteine and glycine-rich protein 1 P47875  CSRP1_RAT -2.46 
dDynactin subunit 2 Q6AYH5  DCTN2_RAT -2.40 
bActin, gamma-enteric smooth muscle P63269  ACTH_RAT -2.36 
cTranscription intermediary factor 1-beta O08629  TIF1B_RAT -2.11 
eLactadherin P70490  MFGM_RAT -2.07 
dDynactin subunit 1 P28023  DCTN1_RAT -2.03 
aFour and a half LIM domains protein 1 Q9WUH4  FHL1_RAT -1.89 
bMyosin light polypeptide 6 Q64119 MYL6_RAT -1.84 
bFilamin-C D3ZHA0  FLNC_RAT -1.80 
bMyosin-9 Q62812  MYH9_RAT -1.73 
fPDZ and LIM domain protein 7 Q9Z1Z9  PDLI7_RAT -1.72 
dAlpha-centractin P85515  ACTZ_RAT -1.72 
aIntegrin beta-1 P49134  ITB1_RAT -1.70 
bTropomyosin alpha-1 chain P04692  TPM1_RAT -1.68 
aTransforming growth factor beta-1-induced 

transcript 1 protein 
Q99PD6  TGFI1_RAT -1.65 

aRho-associated protein kinase 2 Q62868  ROCK2_RAT -1.60 
dRas-related protein Rab-7a P09527  RAB7A_RAT -1.53 
gHeat shock protein HSP 90-alpha P82995  HS90A_RAT -1.53 
bLIM and SH3 domain protein 1 Q99MZ8  LASP1_RAT -1.43 
bMyosin regulatory light chain RLC-A P13832  MRLCA_RAT -1.43 
f14-3-3 protein theta P68255  1433T_RAT -1.41 
gEndoplasmin (Heat shock protein HSP 90-beta 

1) 
Q66HD0  ENPL_RAT -1.38 

 



H9c2 cells were pre-incubated with biotin-X-cadaverine prior to treatment with formoterol 

(1 µM) and biotin-cadaverine labelled proteins were captured and analysed by SWATH MS. 

*Absolute fold changes in formoterol treated samples versus control (n=4) were calculated 

using SCIEX OneOmics with parameters MLR weight > 0.15, confidence >70%,  algorithms 

used described by Lambert et al., (2013). Known TG2 targets appearing in the TG2 

substrate database (Csósz et al., 2009) or identified by Yu et al. (2015) and Almami et al. 

(2014) are indicated in italics. Proteins are grouped according to their functions and/or 

cellular function as follows: acell signalling; bmetabolism; ctransciption/translation; dvesicular 

trafficking/extracellular matrix constituent; eapoptosis; fstructural/scaffolding protein; 

gprotein folding. 
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