
Received August 2, 2016, accepted September 28, 2016, date of publication October 21, 2016, date of current
version November 18, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2619259

Extrinsic Information Modification in the Turbo
Decoder by Exploiting Source Redundancies for
HEVC Video Transmitted Over a Mobile Channel
RYAN PERERA1, HEMANTHA KODIKARA ARACHCHI1, (Member, IEEE),
MUHAMMAD ALI IMRAN2, (Senior Member, IEEE),
AND PEI XIAO3, (Senior Member, IEEE)
1CVSSP, University of Surrey, Guildford, GU2 7XH, U.K.
2School of Engineering, University of Glasgow, Glasgow, G12 8QQ, U.K.
3ICS, University of Surrey, Guildford, GU2 7XH, U.K.

Corresponding author: R. Perera (g.perera@surrey.ac.uk)

This work was supported by the U.K. Engineering and Physical Sciences Research Council under Grant EP/N020391/1.

ABSTRACT An iterative turbo decoder-based cross layer error recovery scheme for compressed video is
presented in this paper. The soft information exchanged between two convolutional decoders is reinforced
both by channel coded parity and video compression syntactical information. An algorithm to identify the
video frame boundaries in corrupted compressed sequences is formulated. This paper continues to propose
algorithms to deduce the correct values for selected fields in the compressed stream. Modifying the turbo
extrinsic information using these corrections acts as reinforcements in the turbo decoding iterative process.
The optimal number of turbo iterations suitable for the proposed system model is derived using EXIT charts.
Simulation results reveal that a transmission power saving of 2.28% can be achieved using the proposed
methodology. Contrary to typical joint cross layer decoding schemes, the additional resource requirement is
minimal, since the proposed decoding cycle does not involve the decompression function.

INDEX TERMS Combined source channel coding, EXIT charts, iterative decoding, mobile communication,
turbo codes, video compression.

I. INTRODUCTION
In a survey conducted by Qualcomm Technologies
in 2013 [1], three of the top seven features new buyers seek
in a mobile device are related to the viewing experience such
as display size, display quality and display resolution. This
trend is also evidenced by the tremendous burst of demand
for video data we have seen over the last few years over
mobile networks, that mobile video accounted for 55% of
mobile data traffic during 2014 [2]. Scientists seeking to
accommodate this demand strive to compress video data to
the greatest extent possible [3], while networking engineers
strive to deliver these data as reliably as possible. As such,
we have seen novel radio resource allocationmethods [4], [5],
intelligent adaptivemodulation and coding techniques [6] and
numerous forward error correcting methods, such as turbo
codes [7], performing very close to the theoretical channel
capacity.

Among the efforts of finding efficient means for com-
pressed mobile video delivery, improved video recovery by

means of joint source-channel decoding (JSCD) is gaining
interest among researchers. JSCD is a cross layer approach, in
which data flows between the application layer (APP) video
compression source decoder and the physical layer (PHY)
channel decoder to collaboratively recover errors. For any
form of error recovery, the available redundancy in the
received bit stream must be leveraged, be it in the form of
controlled channel code redundancy or the residual source
redundancy that survived the compression stage. The receiver
is more equipped for error recovery when more redundancy
is available.

Reference [8] gives an insight into ways of quantifying
source code redundancy and channel code redundancy of
transmission-ready H.263-compressed video data. It pointed
out the fact that not all binary patterns are legitimate code
word sequences, and not all code word sequences refer to
a legitimate picture block, inferring the existence of a sig-
nificant amount of residual source redundancy. For instance,
the number of redundancy bits in a H.263 compressed image

7186
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

block, whose length is typically around 60 bits, is 11 bits [8].
However, the source redundancy exploitation methodology
presented in [8] is computationally very expensive and obso-
lete for today’s video transmission schemes, where more
efficient entropy coding schemes such as Context Adaptive
Binary Arithmetic Coding (CABAC) [9] are deployed in
place of run-length variable length code (VLC).

Exploiting the source semantics of variable length codes
in H.263 [10] compressed video, such as the number of DCT
coefficients and the number of bits in the sequence, authors
in [11] proposed a JSCD algorithm, which required only
the knowledge of the length in bits of the VLC sequence
as an a priori information. Abiding to the fundamentals of
Viterbi algorithm [12] it selected a survivor sequence while
reading the VLC sequence. The survivor selection was based
on the conventional Viterbi metric, the VLC structure, and
source semantics constraints on the sequence. This algorithm
demonstrated an unprecedented gain of up to 30dB of PSNR
after three turbo decoding iterations in comparison to a con-
ventional H.263 decoder, which did not utilize the VLC syn-
tax (the run-length-last triplet syntax) or source semantics;
and a 16dB gain in comparison to a decoder, which used only
VLC syntax constraints. However, with the introduction of
HEVC we have seen the exploitation of these run-length-last
VLC redundancies by the video compressor. Consequently,
they are no longer at the receiver’s disposal for error recovery.

The works presented in [13]–[18] attempted to correct the
channel decoded and corrupted packets by flipping one or
more bits to nominate several candidate patterns and passing
it on to a syntax checker until a valid sequence was identified.
W. E. Lynch, in [17], used the syntactic/semantic rules of
compressed video to detect errors. The algorithm therein,
chose a predefined number (nF ) of the smallest absolute post
turbo decoder log likelihood ratio (LLR) values (which the
authors referred to as flip bits) and generated a set of video
packet candidates by allocating all possible bit combinations
for the flip bits. The video decompression routine verified
each candidate for its conformance to the syntax,modified the
LLR values and fed them back to the turbo decoder. Although
this was feasible for small nF , it becomes increasingly com-
plex (in the order of 2nF ) as the channel degrades and nF
increases, a view also shared in [19]. While [17] was demon-
strated for MPEG-4 compressed video, a similar approach
was demonstrated for H.264 in [18]. In both references, the
header stream and video packet lengths were assumed to be
delivered error free, which is a highly unlikely scenario.

Another approach to reinforcing extrinsic information at
the turbo decoder was presented by Z. Peng et al. in [20].
Here, reinforcements came after an APP image processing
stage, and was in the form of scaling or descaling certain
soft values of the last extrinsic information sequence that was
fed into a constituent MAP decoder. The authors’ focus was
mainly on recovering vector quantization coded images [21],
where their most significant gains were demonstrated. When
compressed using vector quantization, a block error in the
receiver reconstructed image can be directly attributed to a

specific segment in the bit stream that was the output from
the turbo decoder. After detecting the erroneous blocks using
a boundary matching based block error detection algorithm,
they modified the a priori probabilities of the bit positions
(the extrinsic information) that was fed back into the turbo
decoder. The latest compression standard HEVC however,
does not portray such an identifiable mapping between the
image blocks and the compressed bit stream as in the case of
vector quantization coded images.

In the case of HEVC, recovery of the slice header is much
more important than the recovery of slice data. Most liter-
ature, [11], [17], [18], [20], deemed the use of very strong
coding schemes to protect the header stream such that error-
free transmission can be assumed. Employing such a strong
coding scheme would overshadow any gain achieved by the
proposed methods. We propose a technique to recover the
header information using the syntactical conformance verifi-
cation and soft information turbo decoding. Themethodology
is demonstrated for the state of the art video compression
scheme HEVC. Since HEVC has only recently been intro-
duced commercially, literature attempting a JSCD approach
for HEVC compressed video recovery is very scarce. How-
ever, for comparison purposes we adopt the Peng’s imple-
mentation on MPEG coded video [20], which like HEVC,
portrays a well-organized bit structure.

This paper is organized as follows. Section II introduces
the system model and assumptions. Focus is narrowed in
Section III on the receiver operations, along with notations
defined. Section IV presents a mandatory prerequisite identi-
fication for the success of the proposed algorithm. Details on
header field correction are included in Section V. Section VI
demonstrates the performance of the technology in realistic
contexts. Section VII concludes the paper.

II. JOINT SOURCE CHANNEL DECODING
In the receiver’s attempt to recover the compressed video
data, the receiver must make use of the redundancy available
within the bit stream. This redundancy can be the residual,
unintentional redundancy that survive the video compression
stage or the intentionally added redundancy at the chan-
nel coding stage. The traditional approach to video recov-
ery is error correction using channel redundancy, followed
by video decompression, and then error concealment using
source redundancy. Nevertheless, research [22] has found that
these two types of redundancy can be used collaboratively
to improve the overall performance in video recovery. This
section introduces a system model that can be used for such
a collaborative approach, and introduces the assumptions
applicable for the proposed algorithm.

In order to improve the turbo code performance, one
can either alter its constituent convolutional decoders, or
reinforce the extrinsic information exchanged between the
decoders. The approach proposed in this paper considers the
latter approach. A mobile receiver which attempts to recover
compressed video data after being received over a noisy
wireless channel is considered. An overview of the system

VOLUME 4, 2016 7187



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

FIGURE 1. End-to-end overview of the proposed system.

model is depicted in Fig. 1. For reinforcing the extrinsic
information of the turbo decoder, the Slice-header-field Pars-
ing and Correction (SPC) module plays a pivotal role. The
historic slice headers, which store past decoded information
of the video, and the syntax rules, which impart knowledge
on how an HEVC compliant bit stream is structured, assist in
the correction function.

The output from the turbo decoder can be any pattern of
bits if the transmission experiences noisy channel conditions.
Many of these patterns result in invalid HEVC semantics and
are illegitimate compressed bit sequences. Similar behavior
has been observed in [8] for previous video coding standards
such as H.263. The SPC module checks the HEVC syntax
of the headers, and if an error is identified, it attempts to
deduce the correct header. Based on this alteration the LLR
stream is modified. These soft values are then fed back to
the turbo decoder as extrinsic information. This is the basic
premise behind the innovation presented in this paper. As an
overview, the proposed JSCD approach turbo decodes the
data initially, modifies the a posteriori LLR values based on
the source semantics and other factors, and recommences
turbo decoding. This is an iterative operation between turbo
iterations and LLRmodification until the errors are corrected.

A. HEVC STANDARD
Most video compression standards [3], [10], [23] divide each
frame into blocks and apply a hybrid approach of inter-/intra
prediction and 2-D transform coding. In the case of HEVC,
the prediction and 2-D transformation is performed on slices,
an area in the picture that can be decoded independent of other
slices of the same picture. The compressed slices are encap-
sulated into Network Abstraction Layer (NAL) units, which
contain headers and a section of CABAC coded slice data.
The CABAC coded section is characterized by a plethora
of possible bit patterns, and detecting, let alone correcting a
faulty bit is hardly viable. On the contrary, themore important
slice headers follow a rigid set of rules and exhibit a higher
degree of source redundancy in the form of;
• patterns recognizable between the neighboring headers,
• the clearly defined field structure within the headers, and
• the repetitions among header fields within a picture
frame.

Due to their organized structure and the severe consequences
of their deformation on the decompression function, our focus
is only on rectifying the bit positions of the slice segment
headers and NAL unit headers. The slice header syntax fol-
lows the criteria given in [24, Sec. 7.3.6.1]. Exploitation of
the aforementioned forms of redundancies benefit only the
header regions, and therefore, a mechanism is required to
spread the benefits across the remaining portion of the bit
sequence.

B. HEVC OVER LTE-ADVANCED
In this paper, it is considered that each NAL unit occupies
one IP packet. This is the preferred and most efficient choice
for packetized transmission [25]. Since the IP packet size is
restricted, the NAL unit size is restricted, and the area of
the slice often varies to fully occupy the permitted NAL unit
size. The overhead burden, as the APP payload reaches the
PHY transport block (TB) generator, is in the form of headers
only (e.g., IP and MAC addresses, timestamp, checksums,
payload type). The input to the PHY is in the form of TBs
entailing one or more IP packets. The PHY functions closely
follow the 3GPP standard for Long Term Evolution (LTE)
advanced [26], [27].

With the inclusion of an interleaver before the turbo
encoder, the header bits are placed among the CABAC coded
bits. Therefore, at the turbo decoding stage after the LLR
modification process, the CABAC coded bits will also benefit
from the alterations made. Note that this inclusion is in addi-
tion to the interleaving function between the turbo encoder
and the transmitter, already specified in the LTE-Advanced
standard. In the event of error bursts, the standard-compliant
interleaver ensures that errors are distributed between slices,
so the turbo decoder and the source decoder are better
equipped to recover the NAL units. However, it does not
solve the problem that the LLR modification operation only
improves the header regions. Therefore, an interleaver pre-
ceding the turbo encoder is necessary for the proper function-
ing of the proposed JSCD approach.

Sections III-V present the main contributions of this paper.
An algorithm for access unit boundary identification in a
corrupted bit sequence is presented. Subsequently, algorithms
are introduced to analyze and amend NAL unit header fields,
thus altering the extrinsic information exchanged within the
turbo decoder. These algorithms are utilized in the iterative
model indicated in Fig. 1.

III. RECEIVER OPERATIONS
After performing the reverse PHY operations at the receiver,
the bit stream is passed on to the turbo decoder. Initially, the
sequence of a priori LLR values, which are used in the BCJR1

algorithm, is set to an all-zero vector. The turbo decoder
iterates until either the transport block cyclic redundancy
check (CRC) is successful or until the maximum number

1Named after the four founders of the algorithm; Bahl, Cocke, Jelinek and
Raviv.

7188 VOLUME 4, 2016



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

of turbo iterations is reached. The choice for the maximum
number of turbo iterations is based on EXIT charts [28],
whichwill be further discussed in SectionVI. Faulty transport
blocks are compared against the video compression syntax
and modifications are performed within the SPC module and
LLR modification module. Subsequently, this modified LLR
stream is input back to the turbo decoder, as the a priori LLR
sequence, to perform the recursive BCJR algorithm. Trans-
port blocks characterizing a successful CRC are forwarded
to the video decompression stage and to the historic slice
headers.

Denoting the k th transmitted bit as uk , the soft decision on
uk at the output of an MAP decoder is given by

3(uk ) = L(uk )+ ysk + Le(uk ) (1)

where

L(uk ) a priori LLR of uk ,
ysk received value for the k th systematic bit,
Le(uk ) extrinsic information conveyed to the other

decoder.

All terms in (1) are log likelihood ratios. Le (uk) is derived
using the BCJR algorithm, and for the subsequent MAP
decoder, L (uk) = Le (uk). As the turbo iterations progress,
the magnitude of Le (uk) values increase, indicating the rise in
reliability. By altering L (uk) based on external source syntax
information, Le (uk) of the subsequent MAP decoders are
updated and the decoding process is effectively reinforced
(note that for the first MAP decoder, immediately after the
LLR modification module Le (uk) is reset to an all-zero
vector).

A. DEFINITIONS AND NOTATIONS
The a posteriori log likelihood ratio after the turbo decoder is
denoted as L(u[k]). This relates to the k th bit in the transport
block of size T bits. After the hard decision, a sequence of
T bits is forwarded to the SPC module. The hard decision of
the k th bit is denoted as û[k]. Let’s consider the t th transport
block since the beginning of the considered video sequence
transmission. The LLR values of this t th transport block are:

Ct = {L (u[k]) | k ∈ [(t − 1)T + 1, tT ]} (2)

The hard decision values on the t th transport block are:

Ĉt =
{
û [k] | k ∈ [(t − 1)T + 1, tT ]

}
(3)

The task is to modify (2) in a manner to comply with the
HEVC syntax and follows the trends set by the preceding bits{
û[k] | k ∈ [1, (t − 1)T ]

}
.

Next, the notation for the complete transmitted video
sequence is defined. DenotingNi as the bit sequence of the ith

IP packet, the sequence of cumulative IP packet lengths can
be denoted by L =

{
li =

∑i
m=1 length(Nm) | i ∈ [1,N ]

}
,

where N is the total number of IP packets in the transmission,
and length(Nm) indicates the number of bits inNm. The set of

LLR values pertaining to the complete stream of IP packet
bits is {L (u[k]) | k ∈ [1, lN ]} .
The LLR values of the ith IP packet are:

{L (u[k]) | k ∈ [li−1 + 1, li]} with l0 = 0 (4)

For simplicity, we define ji = li + h, ∀i ∈ [1,N ], where h
is the number of bits in the IP packet header overhead. Then,
(ji−1 + 1) is the starting index of the ith NAL unit.

Denote the first starting bit of a NAL unit in Ĉt as
û[ji−1 + 1]. Note that the initial part of Ĉt may contain a
partial NAL unit, and û[ji−1 + 1] is the starting bit of the NAL
unit that follows the partial NAL unit. û[ji−1 + 1] belongs to
the ith NAL unit in the video transmission. In the rest of the
paper, it is also assumed that the last portion of Ĉt belongs to
the (i+ n)th NAL unit.

IV. ACCESS UNIT BOUNDARIES
Before correcting the header fields of a NAL unit,
it is necessary to cluster the NAL units into their
respective access units. There is a dedicated flag in the
slice segment header indicating the access unit boundary:
first_slice_segment_in_pic_flag. However, in the event of
erroneous transmissions, the accuracy of this flag is not guar-
anteed. This section proposes a more reliable mechanism to
identify the first NAL unit in each access unit. This identifi-
cation is performed in the SPC module depicted in Fig. 1.

Initially, a heuristic approach is adopted to rectify the
sparse bit errors using neighboring bits. The fact that certain
fields (of NAL units within an access unit) remain unaltered
is used in this regard. Note that the modifications performed
in this section is an interim stage, the results of which are
discarded after access unit boundaries are identified.

Denote B and B̂, bit sequences, whose ith elements are bi
and b̂i respectively. A function fa : B → B̂ is defined for B,
whose elements are from the alphabet {−1,+1}, as:

b̂i = fa(bi) =

{
bi, if m = 0
sgn(m), otherwise

(5)

Here m = 2bi + bi−1 + bi−2 + bi+1 + bi+2 and sgn(·) is the
signum function.

The value of m is calculated such that if all the 4 neighbor-
ing bits suggest that the bit value should be altered, the change
is executed. Else, if at least one of the 4 neighbors suggests
the bit under consideration is correct, it is left intact. The
function fa is used to heuristically rectify the sparse bit errors
of the fields indicated in Table 1. These fields are chosen
because they have a definite position within the NAL unit.
Refer to [24] for the order and methodology of interpreting
the headers.

Denote Bk =
{
û[ji−1 + k], û[ji + k], ..., û[ji+n−1 + k]

}
,

where k ∈ {[2, 7] ∪ [14, 16] ∪ 18}. These collocated bit
sequences are modified by performing the function fa on Bk .
The modified sequences are denoted as B̂k .

Next the set of candidates, A, for the first NAL unit
of each access unit are identified. This algorithm is

VOLUME 4, 2016 7189



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

TABLE 1. Fields on which fa is applied.

Algorithm 1 Obtaining Candidates for Access Unit
Boundaries
Require: the availability of sequences B̂k where
k ∈ {[2, 7] ∪ [14, 16] ∪ 18}

Ensure: all actual first NAL units are included in A
for m ∈ [i, i+ n] do F NAL units in Ĉt

Sm← 0
for k ∈ {[2, 7] ∪ [14, 16] ∪ 18} do

if û[jm−2 + k] 6= û[jm−1 + k] then
Sm← Sm + 1

end if
end for
if û[jm−1 + 17] = 1 then

Sm← Sm + 1
end if

end for
A← {m|Sm ≥ 3}

explained below and summarized in Algorithm 1. In B̂k ={
û[ji−1 + k], û[ji + k], ..., û[ji+n−1 + k]

}
, if,

û[jm−2 + k] 6= û[jm−1 + k], where m ∈ [i, i+ n] (6)

then the mth NAL unit is regarded as a candidate. Note that
the inequality is between the (m − 1)th and mth NAL units.
The score of this candidate, Sm, is defined as the number of
instances among k ∈ {[2, 7] ∪ [14, 16] ∪ 18}, (6) is satisfied.
Next the implications of first_slice_segment_in_pic_flag

are incorporated into Sm. The bit pertaining to first_slice_
segment_in_pic_flag of the ith NAL unit is û[ji−1 + 17].
If û[jm−1 + 17] = 1, then Sm is incremented by 1.
The candidates are shortlisted as A = {m|Sm ≥ 3}. The

value 3 has been empirically chosen such that all actual
first NAL units are included in the candidate set A. Fig. 2
depicts experimental results on successful detection and false
detection of first NAL units, for various Sm thresholds. The
experiment is carried out on the Soccer sequence, using the
simulation parameters indicated in Table 3, at a channel SNR
of 11.5dB. This is the lowest SNR value, at which the actual
first NAL units can be identified using the notion of an Sm
threshold.

In Fig. 2, the bars in black ink indicate the actual first NAL
units residing in A, as a percentage of all actual first NAL
units in the transport block. The highest threshold value such
that all actual first NAL units are included in A is 3. The
gray bars indicate the false first NAL units residing in A, as
a percentage of all NAL units included in A. Note that at the
threshold of ‘3’ there exists some false positives residing inA.

FIGURE 2. Validity of A for various Sm thresholds at 11.5dB.

Algorithm 2 Final Screening Criteria for A

Require: Ĉt , A
Ensure: false first NAL units are eliminated from A

repeat
flag← 0
for m ∈ [i, i+ n] do

if m ∈ A then
û[jm−1 + 17]← 1 F first_slice_segment_in_pic_flag

else
û[jm−1 + 17]← 0

end if
end for
for m ∈ A do F every access unit

Rm← 0
obtain {Ek} F includes 22 sequences
for each sequence, Ek , do

if mode 6=first member then
Rm← Rm + 1

end if
end for
if Rm ≥ 8 then

A← A− {m}
flag← 1

end if
end for

until flag ∧ (A 6= ∅)

Nevertheless, we proceed on the hypothesis that the ele-
ments in A are legitimate, and modify the corresponding
first_slice_segment_in_pic_flag fields. This is because the
value of this flag changes the course of how the subsequent
fields are parsed.

The following assignment is performed to modify the
first_slice_segment_in_pic_flag:

û[jm−1 + 17] =

{
1, if m ∈ A
0, otherwise

(7)

A final screening criteria for A is introduced to eliminate
the inaccurate candidates in A. The relevant algorithm is
illustrated below and summarized in Algorithm 2. We use the

7190 VOLUME 4, 2016



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

concept that certain fields must hold common values for all
NAL units within an access unit. The considered fields are
those indicated in Table 1 and the following fields (includes
all bits of slice_pic_parameter_set_id).
• slice_type
• slice_pic_order_cnt_lsb
• short_term_ref_pic_set_sps_flag
For each of the selected 6 fields, the collocated bit

positions of the same field in different NAL units that
fall within an access unit are considered. For exam-
ple, when considering the first bit position of slice_pic_
order_cnt_lsb, the considered2 bit sequence is, E =

{û[jm−1 + 22], û[jm + 27], û[jm+1 + 27], ..., û[jḿ−2 + 27]},
where m and ḿ are two adjacent members in A.

FIGURE 3. Bit positions considered in the final screening process of A.

The bit positions of E are indicated in Fig. 3 as black. Gray
indicates other bit positions that are considered. Note that
sequence E is one of the twenty two different bit sequences
that need to be analyzed (the summation of the lengths of the
six fields is 22). The twenty two different bit sequences are
denoted as {Ek} in Algorithm 2.
It should be noted that the first_slice_segment_in_pic_flag

changes the course of how the subsequent fields are read [24].
If an invalid candidate resides in A, the fields of this invalid
candidate NAL unit must be different from the correspond-
ing fields of the other NAL units within the access unit.
Therefore, the number of instances the bits of the first NAL
unit (û[jm−1 + 22] in the example) differs from each bit’s
respective mode (mode of E in the example) is counted, and
denoted as Rm.
If Rm ≥ 8, m is removed from A. The value ‘8’ is

empirically chosen such that the actual first NAL units are
not eliminated from A, yet a majority of false positives are
eliminated. The results in Fig. 4 are derived with similar
simulation parameters as those used in the Sm threshold
identification experiment. In Fig. 4, the bars in black ink
indicate the actual first NAL units eliminated from A, as a
percentage of all actual first NAL units residing in A. The
lowest threshold value such that none of the actual first NAL

2Here it is assumed that b ≤ 16 or 23 ≤ b; f is 1-bit long;
g is 5-bit long; and h is 3-bit long. In Picture Parameter Set (PPS),
dependent_slice_segment_flag = 0, num_extra_slice_header_bits = 0, out-
put_flag_present_flag = 0, and in Sequence Parameter Set (SPS), sepa-
rate_colour_plane_flag = 0, long_term_ref_pics_present_flag = 0. b, f , g
and h are fields in Table 2

FIGURE 4. Validity of A for various Rm thresholds.

units are eliminated is 8. The bars in gray ink indicate the
false positives eliminated from A, as a percentage of all false
positives included in A. Note that at the threshold of ‘8’,
Algorithm 2 does not succeed in eliminating all false first
NAL units.

Based on this new A, (7) is re-performed until, for all can-
didates inA, the threshold Rm is not surpassed. Subsequently,
field modification is initiated. The very rare occasion when a
false positive survives Algorithm 2, is tackled in Algorithm 4.

V. HEADER FIELD CORRECTION
The field modifications described below occur after the
access unit boundary identification, and occur at the SPC
module in Fig. 1. The validation rules are categorized
to 4 types as illustrated in the Table 2. The character tag
(a,b,c) given to each field is based on the order the fields are
read at the decoder, as per Section 7.3.6.1 of [24]. Reading
and correcting the header fields are performed in the same
order, one access unit at a time. The algorithm used to correct
the field is based on the category to which the field belongs
in Table 2.

A. CATEGORY (a)
The fields in Category (a) have a definite value and therefore,
the relevant bits are modified as per the rules in Table 2 to
either 0 or 1. Thereafter, the corresponding LLR values are
modified. Since the alterations in Category (a) are highly
reliable decisions the following modification is performed on
the relevant bit:

L ′ (u[k]) =

{
−r, if û[k] = 0
+r, if û[k] = 1

(8)

The value r > 0 is determined through empirical data,
and L ′ (u[k]) is the modified value of the member, L (u[k]),
in Ct . For example, if e (refer Table 2) in the ith NAL
unit is modified to 0, the following assignment is done:
L ′ (u[ji−1 + 17]) = −r .

B. CATEGORY (b)
For each field in Category (b), the collocated bit positions
of the same field in different NAL units that fall within an

VOLUME 4, 2016 7191



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

TABLE 2. Header fields.

access unit are considered. Denote these bit sequences as
{Ek}, the function fa is performed on each Ek to obtain

{
Êk
}
.

Identification of {Ek} is performed in a similar manner as
explained in Fig. 3.

Some fields in Category (b) are variable length coded
(Exp-Golomb or signed Exp-Golomb), e.g., f, h and o.
Exp-Golomb and signed Exp-Golomb syntaxes have a well
defined structure (please refer [24, Sec. 9]). Their representa-
tion is pivotable about a center ‘1’ bit. The number of zero bits
to precede the ‘1’ bit, is the same number of bits that follow
the ‘1’ bit. This characteristic is used when correcting f, h
and o. The algorithm to obtain the collocated bit sequences
for these fields is explained in Algorithm 3.

Since most fields in Category (b) relate to other access
units (fields which exhibit such relationships are categorized
into Category (e)), the values extrapolated from the previous
access units are deployed to verify the authenticity of Cate-
gory (b) fields. This procedure is explained in Algorithm 4.

The condition, ‘if 3nδ̄ > ḿ − m and 2nδ̄ > 3n ¯̄δ’, ensures
that δ̄ occupies at least a third of the fields within the access

Algorithm 3 Obtaining Collocated Bit Sequences and
Eliminating Sparse Bit Errors For Category (b) Fields
Require: access units are segmented as per the first NAL

units in A
Ensure: collocated bit sequences to be used in Algorithm 4

for all fields in Category (b) do
if fixed length field then

obtain collocated bit sequences of the correspond-
ing bit positions and perform fa on each sequence

else F Exp-Golomb or signed Exp-Golomb
obtain collocated bit sequences of the first bit posi-

tion and perform fa
b← 0
while mode of last obtained sequence = 0 do

obtain collocated bit sequences of the next bit
position and perform fa

b← b+ 1
end while
while b > 0 do

obtain collocated bit sequences of the next bit
position and perform fa

b← b− 1
end while

end if
end for

unit, and that it is at least 3/2 times as popular as the next
popular candidate. These popularity conditions are chosen
based on the analysis of compressed and corrupted HEVC
sequences. If the condition is not satisfied, it implies that
our choice of first NAL unit positions (A) is inaccurate.
Consequently, none of the headers in this access unit are
modified, and are reset to their original LLR values.

In Algorithm 4, the operations ‘obtain field value, δi’
and ‘modify LLR stream’ require further explanation. For
fixed length fields, these operations are, respectively, a
binary to decimal conversion, and performing the modifica-
tion (8) on defined LLR positions. However, for Exp-Golomb
and signed Exp-Golomb syntaxes the methodology is
different.

Denote the collocated bit sequence for the first bit of
such a field as

{
û[ji−1 + ki] | i ∈ [m, ḿ− 1]

}
. Note that

these values relate to the mth NAL unit through to the
(ḿ − 1)th NAL unit. ki are the indices on which the field
starts, with respect to the beginning of each NAL unit. For
Exp-Golomb syntaxes, the field value is read as:

δi =

b∑
x=1

(
2x−1 + 2b−x(û[ji−1 + ki + b+ x])

)
(9)

where b is constrained by û[ji−1 + ki + b] = 1 and
∀x ∈ [0, b− 1], û[ji−1 + ki + x] = 0. For signed Exp-
Golomb syntaxes, the field value is read as:

δi = (−1)a+1da/2e (10)

7192 VOLUME 4, 2016



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

Algorithm 4 Category (b)
Require: availability of historic slice headers, bit values of

an access unit
Ensure: corrected header fields or relinquishment of the

correction attempt
for each field in Category (b) do

obtain collocated bit sequences F Algorithm 3
obtain set of possible extrapolated values �
for each NAL unit do F i ∈ [m, ḿ− 1]

obtain field value, δi
if δi /∈ � then

δi← 0
end if

end for
δ̄← most popular non-zero δi value
nδ̄ ← its frequency
¯̄δ← next most popular non-zero δi value
n ¯̄δ ← its frequency
if 3nδ̄ > ḿ− m and 2nδ̄ > 3n ¯̄δ then

corrected header field value← δ̄

modify LLR stream
else

reset all LLR values of this access unit
return

end if
end for

where a is the value when read as an Exp-Golomb syntax
field (9), and d·e denotes the closest integer larger than its
argument. Equations (9) and (10) describe the ‘obtain field
value, δi’ operation.
When the corrected header field value for Exp Golomb

syntaxes is selected as δ̄, the ‘modify LLR stream’ operation
is performed as follows:

L ′(u[ni + x]) =


−r, if x ∈ [0, β − 1]
+r, if x = β
r(2λx − 1) if x ∈ [β + 1, 2β]

(11)

where ni is the index on which the field starts for the ith NAL
unit (i.e., ni = ji−1 + ki)
β = argmaxb∈Z+

{∑b
x=1 2

x−1
≤ δ̄

}
, and

(λβ+1 ... λ2β ) is the binary representation of (δ̄−
∑β

x=1 2
x−1).

For o, which is the only signed Exp-Golomb syntax field in
the slice header (note that this field is always positive), when
the corrected header field value is selected as δ̄s, it is first
converted to obtain δ̄ = 2δ̄s−1, which is used to perform the
modification in (11).

C. CATEGORY (c)
Errors in Category (c) are only detected and cannot be cor-
rected. When a non compliance is identified, the reliability of
the relevant error detected bits is reduced. This modification
is confined to one NAL unit. In such instances where an

error is detected in a header field, yet no reliable conclusion
on its bit values can be decided, the following modification
is performed:

L ′ (u[k]) =

{
ln {exp (L (u[k])) · s} , if û[k] = 0
ln {exp (L (u[k])) /s} , if û[k] = 1

(12)

Here, û[k] is a bit in the erroneous field, and the weighting
factor s > 1 is selected such that the magnitude of L (u[k]) is
reduced, but the hard decision remains unaltered.

D. CATEGORY (d)
The only field in Category (d), p, is corrected as follows.
The slice header has an integer number of bytes. In order to
achieve this, the compression function pads the header with
a ‘1’ bit followed by ‘0’ bits until the header length is an
integer number of bytes. Therefore, after all the fields in the
header have been read, we alter the LLR sequence to indicate
a ‘1’ followed by ‘0’ bits until the byte is complete. The LLR
modification is as per (8).

E. CATEGORY (e)
Category (e) fields exhibit relationships with other fields,
and therefore, the value of these fields can be predicted.
Extrapolated values for these fields are used as � in Algo-
rithm 4. Obtaining candidates for the extrapolated values is
done by identifying a pattern among the field values of the
past access units. A few examples are described in Table 2
under Category (e). For the remaining fields in Category (b)
(i.e., the Category (b) fields absent from Category (e)), the set
of possible extrapolated values (� in Algorithm 4) is the set
of all integers.

VI. APPLICATION TO REALISTIC VIDEO SEQUENCES
It is known that given a k-bit compressed video sequence,
not all 2k bit patterns result in valid source sequences. This
indicates unexploited bit stream redundancy. The algorithms
proposed, in effect, utilize this noncompliance for correcting
some transmission errors. By doing so, we implement JSCD.
This section aims to demonstrate how to apply the informa-
tion theoretic algorithms to a practical system scenario, and
evaluate the performance gain achieved at the turbo decoder
in terms of error correction capability.

To this end, an exemplary LTE-A system model, which
transmits over an Extended Pedestrian A channel suggested
by International Telecommunication Union, is used in simu-
lations. The raw video data are compressed using the HEVC
reference codec [24], with the reference implementation pub-
licly available at [29]. The configuration file is provided
at the same repository, encoder_lowdelay_P_main.cfg with
modifications to restrict the maximum allowed NAL unit
size, and to address the video resolution and frame rate.
After video compression, 40 bytes are allocated to precede
each NAL unit to account for the combined overhead of
IP/UDP/RTP headers [25]. A maximum IP packet size of
100 bytes is adopted as assumed by JVT’s wireless common

VOLUME 4, 2016 7193



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

conditions [25]. Simulations are performed using the
MATLAB LTE-System Toolbox, which has been tested and
validated [30].

TABLE 3. Simulation setup.

A. ERROR PERFORMANCE OF THE JOINT SOURCE
CHANNEL DECODING ALGORITHM
Experiments have been carried out to verify the benefits
of the SPC module. The simulation parameters for video
compression, channel encoding and transmission are as sum-
marized in Table 3. Two instances of turbo decoding are
considered with two different LLR sequences being input to
the turbo decoder: one sequence is the unmodified, received
LLR sequence (indicated by y in Fig. 1), and for the other
instance, a modified version of y. In this modification, the
systematic bit LLRs of y,

{
ysk | k ∈ [(t − 1)T + 1, tT ]

}
are

regarded asCt , and passed through the SPCmodule and LLR
modification module, before being input to the turbo decoder.
Performance of the two turbo decoding instances is evaluated
by verifying the integrity of the transport blocks after each
turbo iteration, using the CRC.

In this experiment, the HEVC compressed sequence of
Foreman has been used. A total of 60 transport blocks
from this video sequence are considered, and for each trans-
port block transmission, the number of iterations executed
until the CRC is successful is recorded. Fig. 5 depicts
excerpts from these results. Note that the y axis indicates the

FIGURE 5. Contribution from the SPC module.

cumulative number of successful transport blocks after
each iteration number. No transport block recoveries were
observed beyond 15 turbo iterations.

The recorded results and Fig. 5 indicate that the SPC
module contributes towards the turbo decoding performance
at all channel SNR levels above 11.3dB, below which the
LLR stream becomes irreparable. As per the recorded results,
11.7dB is the minimum channel SNR required to recover all
transport blocks when turbo decoding is used in isolation
(This is not indicated in Fig. 5). The inclusion of the SPC
module has reduced this threshold to 11.6dB.

Furthermore, the achieved gain increases as the channel
deteriorates. For example, at an SNR level of 11.5dB in the
absence of the SPC module, 20% of the transport blocks can-
not be recovered. Inclusion of the SPC module reduces this
value to 3% indicating better chances of successfully conceal-
ing the video artifacts due to lost NAL units. In comparison,
at 11.4dB, these values stand at 53% and 22%, respectively.
In other words, at 11.5dB the recovery increased by 17% and
at 11.4dB recovery increased by 31%.

Fig. 5 also indicates the effectiveness of the introduced
interleaver, π , in recovering the entire video stream, not only
the header regions. If the recovery was only in the header
regions, and the majority of the transport block remained
unaltered, hardly any improvement can be observed. Due to
the interleaving procedure, the modified header LLR values
reside among the CABAC coded slice data and assist in their
recovery.

B. CHOICE OF MAXIMUM TURBO DECODER ITERATIONS
Another feature evident in Fig. 5 is that no transport blocks
are recovered between turbo iterations 8 and 12. This feature
can be explained from EXIT charts, and it can assist in the
decision to choose the maximum number of turbo iterations
in the proposed algorithm. The EXIT charts for the turbo code
used in the simulations are depicted in Fig. 6. The curves

7194 VOLUME 4, 2016



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

FIGURE 6. EXIT chart for the LTE-Advanced turbo decoder, when used in
the simulation setup in this paper. The two axes indicate the mutual
information between the transmitted bits and the extrinsic LLR values
conveyed to the counterpart convolutional decoder, and the mutual
information between the transmitted bits and a priori LLR values
input to the convolutional decoder.

between SNR values of 11.0dB and 11.8dB are in steps of
0.1dB. Note that the curves are presented only up to their first
intersection.

Each transport block transmission in the above experiment
gives rise to a unique manifestation of an EXIT chart. The
EXIT charts depicted in Fig. 6 are averaged graphs of these
manifestations. For example, if we consider the ‘11.6dB,
Turbo coding only’ graph in Fig. 5, 95% of the transport block
transmissions have resulted in EXIT charts which allow the
trajectory to ‘exit’. The remaining 5% of the manifestations
have resulted in blocked bottlenecks and therefore, the trajec-
tory cannot exit.

The number of executed iterations increases as the bot-
tleneck becomes narrower. If the bottleneck becomes too
narrow, the required number of executed iterations to sneak
through the bottleneck drastically increases. This is the rea-
son for the absence of recovered transport blocks in Fig. 5
between turbo iterations 8 and 12. A transport block that
succeeded in exiting within 8 iterations, implies EXIT chart
manifestations with loose bottlenecks. If the transport block
encountered a tight bottleneck, it cannot exit until after
12 or 13 iterations.

Thus, a maximum of 8 turbo iterations is chosen for
the proposed algorithm. After 8 iterations, the majority of
recoverable transport blocks can be recovered. The remain-
ing transport blocks (if any can be recovered) can only be
recovered after many more turbo iterations. There is also a
very high probability that these cannot be recovered at all in
this turbo decoding stage. Therefore, the intelligent choice is

to temporarily seize turbo decoding after the 8th iteration and
recommence turbo decoding after LLR modification.

FIGURE 7. Effects on user viewing experience. (a) Foreman: 352 × 288.
(b) Soccer: 704 × 576. (c) Beergarden: 1920 × 1080.

C. IMPROVEMENT IN END USER VIEWING EXPERIENCE
Fig. 7 compares the end-to-end performance of the proposed
algorithm in terms of objective video quality of the decoded
video sequences. Results for three video resolutions have
been demonstrated. The simulation setup is as per Table 3.
The objective quality of the videos is measured using the
metric Structural Similarity (SSIM) index [31], which is a full
reference metric.

VOLUME 4, 2016 7195



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

In this experiment, the maximum number of LLR mod-
ification stage executions (refer Fig. 1) per transport block
is limited to three. If the recovery is incomplete after three
cycles, the relevant NAL units within the transport block are
considered to be lost. At the video decompression stage, when
a slice is lost, the affected regions are recovered from error
concealment. Results are presented for two forms of error
concealment algorithms; slice copy concealment where the
previous frame’s relevant region is copied in lieu of the lost
slice, and motion copy concealment [32] where the motion
vector of the previous frame’s relevant pixel block is regarded
as the lost block’s motion vector to synthesize the lost
regions.

As the benchmark for this experiment, the JSCD algo-
rithm in [20] for MPEG video sequences has been adapted.
Reference [20] modified the turbo decoder’s extrinsic infor-
mation pertinent to MPEG picture start codes and MPEG
slice start codes. It was developed under the assumption that
the positions of these start codes have been previously recov-
ered by some robust scheme. Since the HEVC equivalent for
these start codes are the NAL unit delimiters, this experiment
includes the delimiters in its packetized transmission. The
benchmark modifies the LLRs of these delimiter bit positions
using the ‘EFSIF’ algorithm introduced in [20], while the
JSCD method modifies both the delimiter positions and slice
header positions using the algorithms described in this paper.

The results indicate that the proposed method outperforms
the benchmark method. Fig. 7 depicts SSIM measurements
only above 11.375dB, below which hardly any NAL unit is
recoverable, and therefore measurement of SSIM is irrele-
vant. An interesting feature to note is that the LLR modifica-
tion of header fields causes a gain of 0.1dB in channel SNR
over the delimiter modification approach presented in [20].
The reason for this gain is because the method proposed in
this paper aims to modify more LLR positions than being
confined to delimiters.

FIGURE 8. Lost slices at different video resolutions. (a) Beergarden
frame: 1920 × 1080. (b) Soccer frame: 704 × 576.

The results show that Beergarden video has better
resilience to channel degradation over lower resolution
videos. Keeping in mind that NAL unit size is restricted to
100 bytes, a high definition (HD) frame entails more slices
than a lower resolution frame does, as indicated in Fig. 8.
In the event of a slice loss in a low resolution video, a vast
area is lost. At a given channel SNR level, although the slice
loss rate is equal for both videos shown in Fig. 8, the areas lost

FIGURE 9. Overall payload recovery performance of the proposed
methodology.

in the HD frame are scattered across the frame, thus making
the error concealment more effective.

The performance of the proposed methodology is further
demonstrated in a generic context. Fig. 9 depicts the percent-
age of successfully decoded transport blocks in the previous
experiment after a maximum of three iterations of LLR mod-
ification. The percentage value is the weighted average of the
three video sequence outcomes.

It is evident that below 11.35dB, the recovered amount of
transport blocks from the turbo decoding iteration is not suffi-
cient for the proposed methodology to operate. The proposed
methodology exhibits a maximum additional transport block
saving gain of 33.5% at 11.425dB, as opposed to the turbo
decoding only method. Against the benchmark method, this
value records as 18.5%

The innovation proposed is in line with the carbon foot
print reducing initiative embraced by many service providers
and next generation telecommunication standardization com-
mittees. The gain of 0.1dB represented in Fig. 7 transforms
to a power saving of 2.28% at the transmitting base station.

VII. CONCLUSION
This paper presents a cross layer algorithm to exploit HEVC
source redundancy in collaboration with channel code redun-
dancy for error recovery in mobile video transmission. The
exploited source redundancy exist in the form of slice header
semantics and field patterns. As a prerequisite to identifying
the selected HEVC fields, the paper presents a boundary
identification algorithm for access units in a corrupted bit
sequence. Subsequently, algorithms are developed to deduce
the possible values of the selected fields. The deduced values
are used to modify LLR values, that are subsequently used as
extrinsic information in the turbo decoder.

Experimental results demonstrate that the proposed
methodology has a favorable effect on visual experience.
The minimum channel SNR required to recover all transport
blocks is reduced from 11.7dB to 11.6dB. This represents
a power saving of 2.28% at the transmitter base station.
Experiments also revealed that the proposed algorithms can
achieve improvements at all SNR values above 11.3dB.

7196 VOLUME 4, 2016



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

Despite being a JSCD approach, the proposed technology
does not require the application layer decompression func-
tion. It relies only on computationally inexpensive semantic
conformance and trend identification functions, which utilize
redundancies present in slice headers. However, potential
redundancies in slice data can further enhance the error cor-
rection capabilities. Although the CABAC attribute makes
this extremely complex, its ultimate achievement will pay
off with huge benefits. Therefore, analyzing slice data for
improving the accuracy of LLR values is proposed as a future
work.

REFERENCES
[1] Qualcomm Technologies Inc. (2014). Enabling the Full 4k Mobile

Experience: System Leadership, accessed on Nov. 19, 2015. [Online].
Available: https://www.qualcomm.com/media/documents/files/enabling-
the-full-4k-mobile-experience-system-leadership.pdf

[2] (2016). Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2015Ű2020 White Paper, accessed on
Aug. 17, 2016. [Online]. Available: http://www.cisco.com/en/
US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-
520862.html

[3] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview of the
high efficiency video coding (HEVC) standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[4] R. Perera, A. Fernando, T. Mallikarachchi, H. K. Arachchi, and
M. Pourazad, ‘‘QoE aware resource allocation for video communications
over LTE based mobile networks,’’ in Proc. 10th Int. Conf. Heterogeneous
Netw. Quality Rel. Secur. Robustness (QShine), Aug. 2014, pp. 63–69.

[5] M. Hafeez, S. Jangsher, and S. A. Khayam, ‘‘A cross-layer architecture for
motion-adaptive video transmission over MIMO channels,’’ in Proc. IEEE
Int. Conf. Commun.(ICC), Jun. 2011, pp. 1–5.

[6] R. Perera, A. Fernando, H. K. Arachchi, and M. A. Imran, ‘‘Adaptive mod-
ulation and coding based error resilience for transmission of compressed
video,’’ in Proc. Int. Wireless Commun. Mobile Comput. Conf. (IWCMC),
Aug. 2015, pp. 1127–1132.

[7] B. Sklar, Fundamentals of Turbo Codes. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2002.

[8] H. Nguyen and P. Duhamel, ‘‘Estimation of redundancy in compressed
image and video data for joint source- channel decoding,’’ in Proc. IEEE
Global Telecommun. Conf., vol. 4. Dec. 2003, pp. 2198–2202.

[9] D. Marpe, H. Schwarz, and T. Wiegand, ‘‘Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636, Jul. 2003.

[10] Video Coding for Low Bit Rate Communication, document H.263, Interna-
tional Telecommunication Union, 2005.

[11] H. Nguyen and P. Duhamel, ‘‘Iterative joint source-channel decoding of
VLC exploiting source semantics over realistic radio-mobile channels,’’
IEEE Trans. Commun., vol. 57, no. 6, pp. 1701–1711, Jun. 2009.

[12] G. D. Forney, Jr., ‘‘The Viterbi algorithm,’’ Proc. IEEE, vol. 61, no. 3,
pp. 268–278, Mar. 1973.

[13] R. A. Farrugia and C. J. Debono, ‘‘A hybrid error control and artifact
detectionmechanism for robust decoding ofH.264/AVCvideo sequences,’’
IEEE Trans. Circuits Syst. for Video Technol., vol. 20, no. 5, pp. 756–762,
May 2010.

[14] R. Farrugia and C. Debono, ‘‘Robust decoder-based error control strategy
for recovery of H.264/AVC video content,’’ IET Commun., vol. 5, no. 13,
pp. 1928–1938, Sep. 2011.

[15] N. Q. Nguyen, W. E. Lynch, and T. Le-Ngoc, ‘‘Iterative joint source-
channel decoding for H.264 video transmission using virtual checking
method at source decoder,’’ in Proc. CCECE. May 2010, pp. 1–4.

[16] G. Sabeva, S. Jamaa, M. Kieffer, and P. Duhamel, ‘‘Robust decoding of
H.264 encoded video transmitted over wireless channels,’’ in Proc. IEEE
Workshop Multimedia Signal Process., Oct. 2006, pp. 9–13.

[17] X. F. Ma and W. Lynch, ‘‘Iterative joint source-channel decoding using
turbo codes for MPEG-4 video transmission,’’ in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., vol. 4. May 2004, pp. iv-657–iv-660.

[18] D. Levine, W. E. Lynch, and T. Le-Ngoc, ‘‘Iterative joint source-channel
decoding of H.264 compressed video,’’ in Proc. IEEE Int. Symp. Circuits
Syst., May 2007, pp. 1517–1520.

[19] F. Caron and S. Coulombe, ‘‘Video error correction using soft-output and
hard-output maximum likelihood decoding applied to an H.264 baseline
profile,’’ IEEE Trans. Circuits Syst. for Video Technol., vol. 25, no. 7,
pp. 1161–1174, Jul. 2015.

[20] Z. Peng, Y.-F. Huang, and D. J. Costello, ‘‘Turbo codes for image
transmission-a joint channel and source decoding approach,’’ IEEE J. Sel.
Areas Commun., vol. 18, no. 6, pp. 868–879, Jun. 2000.

[21] P. C. Cosman, K. L. Oehler, E. A. Riskin, and R. M. Gray, ‘‘Using
vector quantization for image processing,’’ Proc. IEEE, vol. 81, no. 9,
pp. 1326–1341, Sep. 1993.

[22] J. Hagenauer, ‘‘Source-controlled channel decoding,’’ IEEE Trans. Com-
mun., vol. 43, no. 9, pp. 2449–2457, Sep. 1995.

[23] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, ‘‘Overview of
the H.264/AVC video coding standard,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[24] High efficiency video coding, ITU-T document Rec. H.265, International
Telecommunication Union, 2013.

[25] S. Wenger, ‘‘H.264/AVC over IP,’’ IEEE Trans. Circuits Syst. for Video
Technol., vol. 13, no. 7, pp. 645–656, Jul. 2003.

[26] E. Dahlman, S. Parkval, and J. Skold, 4G: LTE/LTE-Advanced for Mobile
Broadband. New York, Ny, USA: Elsevier, 2011.

[27] ‘‘ITU-T Recommendation H.265: High efficiency video coding,’’ Int.
Telecommun. Union, Switzerland, Geneva, Tech. Rep. H.265 (04/2013),
2013.

[28] S. ten Brink, ‘‘Convergence behavior of iteratively decoded parallel con-
catenated codes,’’ IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737,
Oct. 2001.

[29] Fraunhofer. (2013). HEVC Reference Software Manual. [Online]. Avail-
able: https://hevc.hhi.fraunhofer.de/

[30] MathWorks, LTE System Toolbox, accessed on May 26, 2016. [Online].
Available: http://uk.mathworks.com/products/lte-system/features.html

[31] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[32] G. Kulupana, D. S. Talagala, H. K. Arachchi, and A. Fernando, ‘‘Error
resilience aware motion estimation and mode selection for HEVC video
transmission,’’ in Proc. IEEE Int. Conf. Consum. Electron., Jan. 2016,
pp. 85–86.

RYAN PERERA received the B.Sc. Eng. degree
(Hons.) in electronic and telecommunication
engineering from the University of Moratuwa,
Sri Lanka, in 2013. He is currently pursuing the
Ph.D. degree in electronic engineering with the
University of Surrey, U.K. In 2013, he was a Busi-
ness Analyst with Millennium IT, an affiliation
of London Stock Exchange Group. His current
research interests include channel adaptive error
resilience techniques for real time video commu-

nication, optimization of LTE-Advanced physical layer communication, and
cloud computing techniques to reinforce mobile communications.

HEMANTHA KODIKARA ARACHCHI (M’02)
received the B.Sc. Eng. degree (Hons.) and the
M.Phil. degree in electronic and telecommunica-
tion engineering from the University of Moratuwa,
Sri Lanka, in 1997 and 2000, respectively, and the
Ph.D. degree in telecommunications from AIT, in
2004. In 2003, he was with the Imaging Research
Group, Loughborough University, U.K. as an
Academic Visitor. He was with Brunel Univer-
sity from 2004 to 2006. He is currently a Senior

Research Fellow with the Center for Vision, Speech, and Signal Processing
group of the University of Surrey, U.K. His research interests are in video
coding, video communication, QoE, and context-aware content adaptation.
He has authored over 70 peer reviewed journal and conference papers.

VOLUME 4, 2016 7197



R. Perera et al.: Extrinsic Information Modification in the Turbo Decoder

MUHAMMAD ALI IMRAN (M’03–SM’12)
received the M.Sc. (Hons.) and the Ph.D. degrees
from Imperial College London, London, U.K., in
2002 and 2007, respectively. He was with Univer-
sity of Surrey, U.K. from 2007 to 2016. He has
led a number ofmultimillion international research
projects encompassing the areas of energy effi-
ciency, fundamental performance limits, sensor
networks, and self-organizing cellular networks.
He is currently a Professor of Communication Sys-

tems with the University of Glasgow, U.K., and the Vice Dean of the School
of Engineering, Glasgow College UESTC. He is also a Visiting Professor
with the University of Surrey, U.K., and the University of Oklahoma, USA.
He has a global collaborative research network spanning both academia
and key industrial players in the field of wireless communications. He has
supervisedmore than 20 successful Ph.D. graduates. He holds ten patents and
published over 150 peer-reviewed research papers including over 20 IEEE
Transaction papers. He was a recipient of the IEEE Comsoc’s Fred Ellersick
Award 2014 and the FEPS Learning and Teaching Award 2014 and twice
nominated for the Tony Jean’s Inspirational Teaching Award. He was a
shortlisted finalist for the Wharton-QS Stars Awards 2014 for innovative
teaching and the VC’s Learning and Teaching Award in University of Surrey.
He is a Senior Fellow of Higher Education Academy, U.K.

PEI XIAO (SM’11) received the Ph.D. degree
from theChalmersUniversity of Technology, Swe-
den, in 2004. He was as a Research Fellow with
Queen’s University Belfast and had held positions
with Nokia Networks, Finland. He is a Reader
with the University of Surrey and also the Tech-
nical Manager of 5G Innovation Center, leading
and coordinating research activities in all the work
areas in 5GIC. His research interests and expertise
span a wide range of areas in communications

theory and signal processing for wireless communications.

7198 VOLUME 4, 2016


