Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses

Bisele, M., Bencsik, M. ORCID: 0000-0002-6278-0378, Lewis, M.G.C. ORCID: 0000-0001-5918-3444 and Barnett, C.T. ORCID: 0000-0001-6898-9095, 2017. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses. PLoS ONE, 12 (9), e0183990. ISSN 1932-6203

[img]
Preview
Text
PubSub9060_Barnett.pdf - Published version

Download (4MB) | Preview

Abstract

Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors’ knowledge, this is the first study to optimise the development of a machine learning algorithm.

Item Type: Journal article
Publication Title: PLoS ONE
Creators: Bisele, M., Bencsik, M., Lewis, M.G.C. and Barnett, C.T.
Publisher: Public Library of Science
Date: 8 September 2017
Volume: 12
Number: 9
ISSN: 1932-6203
Identifiers:
NumberType
10.1371/journal.pone.0183990DOI
Divisions: Schools > School of Science and Technology
Depositing User: Linda Sullivan
Date Added: 13 Sep 2017 10:31
Last Modified: 15 Sep 2017 08:41
URI: http://irep.ntu.ac.uk/id/eprint/31584

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year