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Abstract

Assessment methods in human locomotion often involve the description of normalised

graphical profiles and/or the extraction of discrete variables. Whilst useful, these

approaches may not represent the full complexity of gait data. Multivariate statistical meth-

ods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis

(DFA), have been adopted since they have the potential to overcome these data handling

issues. The aim of the current study was to develop and optimise a specific machine learn-

ing algorithm for processing human locomotion data. Twenty participants ran at a self-

selected speed across a 15m runway in barefoot and shod conditions. Ground reaction

forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from

which joint angles (˚), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee

and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power

spectra of the kinematic and kinetic variables were used as a training database for the devel-

opment of a machine learning algorithm. All possible combinations of 10 out of 20 partici-

pants were explored to find the iteration of individuals that would optimise the machine

learning algorithm. The results showed that the algorithm was able to successfully predict

whether a participant ran shod or barefoot in 93.5% of cases. To the authors’ knowledge,

this is the first study to optimise the development of a machine learning algorithm.

Introduction

Gait analysis attempts to describe the characteristics of human locomotion [1, 2]. From a clini-

cal perspective, it is often used to assess the effects of conditions on gait, such as cerebral palsy

[3], and lower limb amputation [4], and has led to improved diagnoses, enhanced treatment

recommendations and enabled the evaluation of treatment outcomes [2, 5]. During gait analy-

sis, data acquisition tools such as motion capture systems, force plates and electromyography

are used to assess the biomechanical and physiological characteristics of gait. Kinematic and

kinetic data, such as joint angles and ground reaction forces (GRF) are often reported, however
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subsequent analysis, such as inverse dynamic calculations, can be conducted to assess further

aspects of gait such as joint moments and powers [6, 7]. These variables are often presented in

temporal waveforms or time-series throughout the gait cycle [7, 8].

As data acquisition tools used to collect gait data and the subsequent procedures for calcu-

lating novel variables continuously advance, they provide an ever increasing volume of data [7,

8]. This presents a hindrance to clinicians and researchers when trying to interpret this data

and/or forming clinically useful information [9]. A widely used approach to analyse and inter-

pret movement data is through the description of graphical profiles of temporal waveforms

and reinforcement of this information through the use of discrete variable extraction [8, 9].

Research has also attempted to summarise waveforms of gait data using indices and summary

scores [10–13]. However, the interpretation of graphical profiles may be researcher-depen-

dent, meaning results may differ between patients and/or laboratories. Similarly, the choice of

data collected is dependent upon equipment availability, and researchers’ selection of variables.

This can be an issue in a clinical environment as variables assessed in a patient may not be the

cause of a problem, thus results may show no significant difference with the primary problem

remaining undetected and untreated. Therefore, data collection, analysis and interpretation

are somewhat subjective and prone to researcher bias.

Gait data is also governed by a set of well-defined characteristics namely 1. high dimension-

ality, 2. time-dependence, 3. high variability, and 4. nonlinear correlations residing between

the variables independently measured [14, 15]. During data processing, these characteristics

are important to consider, however, while previously mentioned methods such as gait indices,

summary scores and the extraction of discrete variables may be adequate to provide enough

information in some investigations, in others they may not be suitable since temporal informa-

tion is lost [16]. For example, measurements are often repeated for a given individual in order

to account for intra-subject variations. Such variations may result in specific discrete variables

that take place at different timings of the measurements for each repeat. These would be

neglected in methods where the time-series of the data is ignored/removed. In instances where

the time-series of the data is accounted for, careful phasing of the waveforms is required to

access the information relating to the absolute gait cycle. Also, certain features reside in the

shape of the gait time-series, e.g. in pathological gait [8, 17] where distortions result from

pathology and thus are not picked up in methods using purely scalar quantities. Recent studies

introduced the use of Spatial Parameter Mapping (SPM) technique considering entire gait

waveform thus preserving temporal characteristics of data during statistical analysis [18, 19].

In addition, usually, there will not be fixed linear relationships between variables and each var-

iable may affect or be affected by one or more other variables differently [14, 17]. Therefore,

the problem of high dimensionality will often prompt the researcher to identify the variable(s),

also known as informative features that change the most as the most important/relevant. How-

ever, changes in this variable may reflect the summation of multiple smaller changes in other

variables, some of which are sometimes unmeasured, which scale it and infer it is the underly-

ing cause for the difference in gait. For example, when reporting net muscle moments, the

individual muscle forces, which drive these moments, are not routinely reported. Hence, there

is a need for effective quantification methods to reduce dimensionality sets and establish rela-

tionships between variables while retaining temporal information.

Principal Component Analysis (PCA) is a well-established multivariate analysis used for

data reduction and sometimes classification, first applied to human locomotion by Deluzio

et al. [8]. Typically, it has been used in lieu of statistical comparisons to classify data while

maintaining the variance in the structure of the original data. It has had many applications in

the comparison of able-bodied gait and pathological gaits such as amputee gait [20–23], osteo-

arthritis gait [16, 24] and Parkinsonian gait [25–27]. Linear PCA is a strong algorithm that is
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able to detect patterns in certain structures, without user supervision. Therefore it deduces

informative features for classification from the structures without direction, lead purely by the

variance within the data [28] and it seeks the most efficient representation of the original data-

base using Principal Components (PCs). Discriminating factors of interest to the user may go

undetected if they are of small magnitude, and/or if they end up being shared between too

many Principal Components. Thus, to identify subtle discrimination features that exist

between experimental groups, a supervised algorithm such as Discriminant Functional Analy-

sis (DFA) is required. The multivariate statistical method of DFA seeks out linear combina-

tions of the input variables, the PCA scores in our case, in order to best discriminate between

groups and therefore highlight differences in the detailed structure of the data where PCA only

discriminates between gross structures [28]. Together the combination of unsupervised and

supervised numerical search algorithms create a powerful machine learning algorithm, which

refers to the ability of a device to independently conduct discrimination on a database without

the input of a researcher [22, 29]. In a clinical setting, a machine learning algorithm can pro-

vide an objective method to conduct analyses and thus eliminating researcher bias when

assessing gait data [29]. Previous studies have used machine learning algorithms to identify

gait differences between young and older adults [30–33], males and females [34], pathological

and non-pathological gait [22, 24, 29, 35, 36] and high discrimination results have been

obtained such as 91.7% or 95.8% between older and younger individuals [30, 31, 36], between

males and females with 98–100%, and 100% between pathological and non-pathological gait

[22]. However, in less challenging environments, where differences between distinct groups

(e.g. males vs. females) are more easily detected, previous studies have not considered how the

quality of data used to train the machine learning algorithm, can deteriorate the quality of the

outcome. Different individuals will exploit features in different manners and will not necessar-

ily train the computer in the way that will work best for other individuals that the automated

system will analyse later in its predictive stage. At the training stage, it is therefore important to

supply the algorithm with a training database that has been carefully selected for its aptitude to

reveal the best, highly generic, discriminating features. Furthermore, the PCA algorithm out-

puts information in a new space defined by a set of axes necessarily orthogonal to each other,

causing features of interest too often reside within more than one PCA score. How successful

the DFA algorithm will be in pulling out the important discriminating features will, therefore,

depend on the extent to which these features have blurred out onto multiple PCA axes.

Therefore, the specific individuals that have been chosen and used to develop the training

database for the machine learning algorithm will strongly affect its predictive abilities. Using

increasingly larger database for the training stage is of no help, as the feature blurring into mul-

tiple PCA scores will only become worse, which we will attempt to address in the current study.

It is, however, possible to work with a smaller sample and try to optimise predictive accu-

racy by implementing an iterative process where the individuals contributing to the training

stage are systematically permuted. In our current study, we find hidden groupings using all

possible permutations for resampling our database. We develop, demonstrate and evaluate

such a resampling procedure for processing human locomotion data, using power spectra of

temporal waveforms as an efficient compromise to keep temporal information without the

need to either phase the data or compute user-defined discrete variables.

Methods

Participants

A convenience sample of twenty recreationally active participants (14 males and 6 females; age

24±4 years; height 1.75±0.086m; mass 72.0±8.5 kg) were drawn from the University
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community. These individuals who had no lower limb pathologies, and were free of injury

during the time of the study, provided informed consent to participate. Ethical approval was

granted by the Nottingham Trent University Ethics Committee (Humans).

Experimental design

The study investigated participants under two different experimental conditions; running with

(shod) and without shoes (barefoot) with trial conditions being counterbalanced between

participants.

Data acquisition

Participants completed all activities wearing their own shorts and running shoes. To measure

kinematic data, 36 spherical 14mm, retro-reflective markers were placed directly onto the skin

or clothing using bi-adhesive tape. Markers were attached bilaterally and used to define trunk

[37] and lower limb segments [38].

Participants warmed-up with a five minute run on a treadmill at self-selected speed. After

the warm-up, participants proceeded to the experimental trials, which required them to run at

self-selected speed along a 15m runway making contact with a force plate. This process was

repeated until five successful trials (force plate contacts) had been recorded for each condition.

Once completed, the process was repeated for the second condition of experimental trials.

Ground reaction force (GRF) was measured at 1000Hz using one floor-mounted strain gauge

force plate (AMTI, Watertown, MA, USA) and kinematics were measured at 100 Hz using a

nine-camera motion capture system (Qualisys, Gothenburg, SE).

Data pre-processing

The raw marker trajectories and force data were exported as .c3d files and processed in Visual

3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were interpolated using a

cubic-spline algorithm with kinematic and GRF data being subsequently filtered using 4th

order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off frequencies respec-

tively. Medial and lateral landmarks defined anatomical frames from which segment co-ordi-

nate systems were defined following the right-hand rule [38]. A flexion-extension, abduction-

adduction and longitudinal cardan rotation sequence was used to define the order of rotations

to calculate joint kinematics. Gait events of heel strike (HS) and toe off (TO) were determined

using GRF data and data all were normalized to 100% gait cycle.

Joint angles (˚), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and

ankle joints, as well as the GRF (multiples of body weight; BW) were computed using Visual

3D (C-Motion, Inc, Germantown, USA). Results were reported in all three anatomical planes,

thus thirty temporal waveforms were reported for a single trial, which was considered to start

when the right limb hits the force plate at heel strike and finished at the consecutive heel strike

on the same limb. Processed data were exported from Visual3D in .c3d files and individual sig-

nals from the .c3d files were imported to MATLAB1 R2013a (MathWorks Inc., MA, USA).

Machine learning algorithm

In our study, we optimise a specific machine learning algorithm that would distinguish

between two experimental conditions of barefoot and shod running. The development of the

machine learning algorithm, using PCA and DFA was done in three stages of dimensionality

reduction, informative feature extraction and classification. Prior to conducting PCA or DFA,

the data were linearly interpolated to the same digital length to allow the power spectrum
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(modulus of FFT) to be computed for all variables. This allowed us to remove the absolute

phasing of kinetic and kinematic waveforms which would affect the discrimination process

since any error in the phase correction required to obtain the absolute gait cycle would be spu-

riously identified as a discriminating feature between the trials, compromising the outcome of

the machine learning algorithm. Apart from the absolute phasing of different frequency com-

ponents of the data, the rest of the temporal information of the waveforms is kept intact in the

power spectra.

An input matrix M was established which contained the power spectra of the kinetic and

kinematic waveforms extracted from each experimental trial. The matrix was ordered as fol-

lows: for each subject five trials of each condition existed (twenty subjects resulted in 200 trials)

and every trial was made of 30 columns with 50 row vectors, where each column represented a

variable and each row vector represented the frequency of the 3D coordinate measure of the

variable. The input matrix M, originally 3D with 200 x 30 x 50 points, was rearranged to be

2D, with 200 x 1500 points, in order to undertake the PCA on a collection of 200 trials each

comprising of 1500 points.

First, the data were summarised using PCA and thus high dimensionality was reduced

from the original 1500 points (for each trial) to 8, 10 or 12 points. Our numerical analysis

was made immune to overfitting artefacts originating from the over-exploitation of small

details, by choosing the highest explored rank (12th) well below the one still carrying infor-

mation (20th) (see supplementary material S3 Fig). Principal Component Analysis (PCA) is

an orthogonal transformation turning dependent variables of a multivariate database to a

small set of independent new variables or Principal Components Z, which are used to repre-

sent the variance observed in the original variables X [14]. Components Z make up the col-

umns of the correlation/covariance matrix (covariance in the current study) and are

eigenvectors, also referred to as loading vectors. The Principal Components (PCs) are

ordered in terms of decreasing variance such that the majority of variation in the data can

usually be described by the first couple of PCs and therefore the remaining PCs can be

ignored reducing the dimensionality of the data which commonly reduces the noise in the

input data X. However, depending on the research question this may not hold true and

medium or lower ordered PCs may provide the necessary information rather than higher

ordered PCs [39].

Using the reduced database, DFA was further applied to a selection of PC scores (up to the

eighth, up the tenth and up to the twelfth score), in order to identify generic discriminating

features between the two experimental conditions, and cluster the data as required by the goal

of the study (shod versus barefoot). Discriminant Function Analysis (DFA), also known as

Linear Discriminant Analysis (LDA), is a statistical analysis which works to attain the maxi-

mum discrimination between classes. To achieve maximum separation, the ratio of inter-class

and intra-class variance for any given database is computed. This results in linear class bound-

aries thus grouping the various class clusters in a given subspace [40].

All previous stages were combined to develop the machine learning algorithm which is also

referred to as a predictive algorithm, when applied to data that did not contribute to the learn-

ing stage. To optimise its development, the process was divided into two stages of training and

predictive (see Fig 1). During the training stage, data from ten participants was used to direct

the search for generic features and identify which of these provided the greatest discrimination

between the two experimental conditions. During the predictive stage, data of the remaining

ten participants that had not contributed to the training of the machine learning algorithm

were used to assess whether it could correctly assign data to the group with the same generic

features.

Optimisation of a machine learning algorithm in human locomotion
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Optimisation process

To identify which ten participants would best train the algorithm and result in the best overall

classification, allowing the most predominate, generic discriminating features to be identified

Fig 1. Flow-chart of the development of the machine learning algorithm.

https://doi.org/10.1371/journal.pone.0183990.g001
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between the two experimental conditions, all possible combinations of 10 out of 20 partici-

pants were explored (see Fig 2); a total of 184,756 iterations were identified and assessed there-

fore optimising the algorithm. An error rate was computed for each individual iteration (see

Fig 3) and the one yielding the combination of participants with the lowest error rate revealed

the strongest generic discriminating features.

The error rate was calculated as follows: each trial was projected onto a two-dimensional

DF space, yielding a set of two DF scores. In this space, the coordinates of the two centroids

were calculated, and for each trial, the Euclidean distances to both centroids were further cal-

culated. The ratio of these two distances was used to assess whether the trial ended up in the

‘shod’ or ‘barefoot’ category, with a value of 1 corresponding to the threshold dictating the

membership. The trials ending up with the incorrect membership were expressed as a percent-

age error rate, over all the 200 trials (20 individuals each undertaking 5 shod and 5 barefoot

runs).

Classification evaluation and performance measure

A confusion matrix has been used to evaluate the performance of the machine learning algo-

rithm. In a two classes problem, positive and negative, as it is the case in the current study,

there are four possible outcomes of classification, namely true positive (TP), false negative

(FN), true negative (TN), and false positive (FP). In the current study, positive instances relate

to shod running trials and negative instances relate to barefoot running trials. The sensitivity

and specificity (see Eqs 1 and 2) respectively refer to positive and negative instances which

have been correctly identified.

Fig 2. Flow-chart of the iteration process used to optimise the machine learning algorithm.

https://doi.org/10.1371/journal.pone.0183990.g002
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Sensitivity (SEN) or true positive rate (TPR):

sensitivity ¼
true positives

true positivesþ false negatives

TPR ¼
TP
P
¼

TP
TPþ FN

ð1Þ

Fig 3. Histogram indicating the error rates of discrimination for each individual iteration. An iteration consisted of a different combination

of 10 participants out of 20 for each the training and predicted database. The error is the percentage of variables that end up in the wrong category

(shod or barefoot).

https://doi.org/10.1371/journal.pone.0183990.g003
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Specificity (SPC) or true negative rate (TNR):

specificity ¼
true negatives

true negativesþ false positives

TNR ¼
TN
N
¼

TN
TN þ FP

ð2Þ

Results

The outcome of all possible iterations, as shown in the histogram of Fig 3, indicates that the

error rates of trials which could not be correctly classified ranged from 6.5% to 47.5% and the

majority of iteration were identified to have an error rate of 22.5%. This clearly demonstrates

how much the algorithm can be helped by careful selection of the training database. As previ-

ously mentioned the lowest error rate indicated the highest predictive ability, and thus the itera-

tion corresponding to 6.5% was used as the input for the optimised machine learning algorithm.

Increasing the rank of the PCA scores fed to the DFA algorithm from 8 to 12 did not

improve the outcome, and the data we show was obtained using 10 PCA scores. Using the

entire database as the training database for the discrimination exercise yielded an error rate of

24% as seen in Fig 4.

The optimum iteration was further used to identify the most discriminating features

between the two experimental groups of barefoot and shod running using DFA as illustrated

Fig 4. Unoptimised result, showing data following discrimination undertaken on the entire collection

of measurements, both for PCA and DFA, resulting in an error of 24%.

https://doi.org/10.1371/journal.pone.0183990.g004
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in Fig 5. The different bar charts correspond to different DF curves integrated over all spectral

frequencies (full frequency-resolved DF curves are shown in the supplementary material S1

Fig), where each bar represents a variable. The fact that they are dissimilar justifies the benefit

of undertaking the discrimination in two dimensions rather than one. The length of each bar

emphasises the weight factors of individual kinetic and kinematic variables (averaged over all

frequencies). Long and short bars had a high and a low contribution to the discrimination pro-

cess, respectively. Since the analysis was conducted for thirty variables, there are thirty bars for

each integrated DF curve. Variables corresponding to individual bars have been ordered, in

decreasing order of contribution, and displayed in supplementary material S2 Fig. High con-

tribution variables included ankle angle and power in the transverse plane, ankle angle in the

sagittal plane and ankle moment in the coronal plane whereas low contribution variables cor-

responded to knee angle and moment in coronal plane, and medial-lateral and the anterior/

posterior GRFs. An example of a highly discriminating, and a low discriminating variable is

shown in Fig 6.

The outcome of the PCA search (Fig 7) alone results in severely overlapping clouds, demon-

strating the fact that the discrimination that was sought for is not residing in the main devia-

tions found in the data, illustrating the challenging nature of the conditions of interest.

Instead, the discrimination required (shod/barefoot) resides in subtle details of the spectra,

necessitating the second stage numerical search, DFA, to be applied to the data after reduction

of PCA. We also undertook visual examination of both the time courses and the spectra of our

‘barefoot’ and ‘shod’ conditions, and no clear common discriminating patterns emerged in

spite of careful inspection.

Fig 5. DFA discrimination figure showing two bar charts where each bar is equivalent to a measured variable from a DF curve, integrated

over all spectral frequencies. Abbreviations are knee (KNE), ankle (ANK), angle (ANG), moment (MOM), power (POW), anterior-posterior (AP),

medial-lateral (ML) and vertical (VERT).

https://doi.org/10.1371/journal.pone.0183990.g005
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The quality of the discrimination obtained with our optimised DFA is illustrated in Figs 8,

9 and 10. The quality in discrimination is evidenced by the minimal amount of overlap

between the two conditions; two well-discriminated groups will not occupy the same space.

The outcome of the training database alone, used to develop the algorithm is shown in Fig 8.

Once developed the predictive ability of the algorithm was assessed as illustrated in Fig 9. It

can be seen that even though there is a slightly greater scatter in the predictive outcome it does

not compromise the quality of discrimination: when the software has been given a chance to

be trained with the ideal training data base, Figs 8 and 9 suggest that the computer is further

able to correctly discriminate those individuals that have a rather ‘unique’ or ‘rare’ way to run

shod and barefoot. Combining both the outcomes from the training database and the predic-

tive data (Fig 10), it is clear that both experimental conditions of barefoot and shod running

are clustered in separate clouds which are shifted to the left and right side respectively, with

minimal overlap between the two clouds and a slight vertical slant between the two centroids.

The overlap is representative of 6.5% of the trials which could not be correctly discriminated

(5% and 8% overlap respectively when considering the predicted data only, and the training

Fig 6. An illustrative representation of exemplar highly discriminating (A—sagittal plane ankle angle) and lower discriminating (B—sagittal

plane knee angle) variables from a single participant during both shod (red limbs and lines) and barefoot (blue limbs and lines) running.

Dashed lines represent the instance in the gait cycle that the illustrations are taken from.

https://doi.org/10.1371/journal.pone.0183990.g006
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data only). The discrimination occurs mostly horizontally with a slight angle indicating that

the discrimination is mostly achieved through the DF score 1. Projection onto a higher dimen-

sional space did not yield any significant discrimination. The classification evaluation rein-

forces these results and shows that sensitivity i.e. true positives (shod and truly identified as

shod) would be correctly identified in 90% of cases and specificity i.e. true negatives (barefoot

and truly identified as barefoot) would be correctly identified in 91%.

Discussion

In our study, we optimised the predictive accuracy of a specific machine learning algorithm to

distinguish between two experimental conditions of barefoot and shod running. This was

done by implementing an iterative process, where the individuals contributing to the training

stage were systematically permuted, using an iterative process to explore all possible iterations

of 10 participants out of 20 in order to identify generic discriminating features between the

two experimental conditions. The optimised algorithm yielded a high discrimination accuracy

of 93.5%, typically 17.5% higher than when using a standard analysis.

We achieved high improvement in the software’s performance by using half of our data for

training, and the other half for prediction. In instances where the machine learning algorithm

is facing the challenge of a mixture of highly ‘generic’ and highly ‘singular’ trials in its training

database, we suggest that by homing onto the highly generic individuals, at the stage of training

the computer, substantial improvements may be achieved over the entire group, including the

Fig 7. Outcome of PCA following classification. Each dot represents a trial of a participant and since each

participant has conducted 10 trials (5 shod and 5 barefoot) and there was a total of 10 participants the figure

illustrates the discrimination of 100 trials.

https://doi.org/10.1371/journal.pone.0183990.g007
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highly ‘singular’ individuals. The relatively small group size of our study prevents us from esti-

mating the extent to which accidental spurious information may also have been harvested in

the process but limiting ourselves to only 10 PCA scores severely limits the likelihood of such

phenomena.

An interesting question is whether it might be possible, in any study similar to ours, to iden-

tify the best group size to be used when optimising the training. Unfortunately, the extent to

which specific volunteers provide a generic enough feature and the extent to which features of

interest become spread between several PCA scores will depend on the specific study under-

taken so that no general method can be recommended.

For very large studies, one way forward is perhaps to start by following our optimisation

procedure with the same group sizes for training and predicting, and then further refine the

collection of ‘ideal’ individuals by swapping one of the ten individuals with a new one to see

whether improved discrimination could be obtained. This way the collection of ‘ideal’ generic

individuals could gradually be further improved. Using a larger sample then presented in the

current study would provide the option to validate the machine learning algorithm since indi-

viduals who did not contribute to the training and prediction stages could be used. In such

large studies, it is also possible to somewhat reduce the effect of a second possible source of

overfitting artefact, that coming from (possibly high magnitude) information accidentally

helping the clustering and therefore biasing it. It is possible to quantitate and minimise such

overfitting artefacts [41] by splitting the individuals who did not contribute to the training into

two groups respectively called ‘validation’ and ‘test’ sets. The trained algorithm can be

Fig 8. Outcome of training database following discrimination, from the 10 participants with the

smallest error in prediction.

https://doi.org/10.1371/journal.pone.0183990.g008
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optimised on the ‘validation’ set only, and those iterations yielding a performance much lower

on the ‘test’ set can be deemed as suffering from overfitting and dismissed. Unfortunately,

such method is not reliable on the relatively small group size of our study, and the high perfor-

mance of the optimised outcome of our work suggests that we would have reached the same

result if we had implemented it, as both ‘validation’ and ‘test’ sets would have benefitted from

a similar performance. Our method systematically tests the algorithm’s performance on data

that has not contributed (or biased) the learning of the computer and is therefore inherently

minimising overfitting artefacts.

Previous studies have achieved high discrimination results however the quality of data used

as a training database for the machine learning algorithms have not been considered which in

turn affects the reliability of their predictive outcome [22, 24, 29–35]. Factors affecting the reli-

ability of an algorithm include data from a very limited number of participants since classifica-

tion results can be high, however, they are not necessarily generic [22]. Unlike other published

work our discrimination (see Fig 5) is free from artefacts resulting from training the computer

with trials carrying rather rare or unique information. Moreover, the context of the experi-

mental protocol influences the results of a discrimination since some experimental groups or

conditions are easier to distinguish than others, in particular in instances where the two groups

to be discriminated are necessarily formed from different individuals, e.g. young vs. older indi-

viduals, normal vs. pathological gait and males vs. females [24, 29–35]. Thus in the develop-

ment of the current machine learning algorithm, the same heterogeneous sample of

participants repeated both experimental conditions. This creates a more challenging environ-

ment, when compared to having clearly discrete homogenous groups e.g. healthy vs.

Fig 9. Outcome of discrimination for the 10 participants not used to generate the machine learning

algorithm. The scatter slightly greater than in Fig 3, but an excellent reliability in terms of correct

discrimination.

https://doi.org/10.1371/journal.pone.0183990.g009
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pathology, whose data is independent of one another. Therefore, the outcome of the algorithm

presented in the current study was more likely to reflect the ability of the algorithm rather than

experimental group differences.

Developing a machine learning algorithm using scalar quantities extracted from the wave-

forms of kinetic and kinematic variables [29, 30, 32, 33] could result in the dismissal of impor-

tant temporal data, thus power spectra of full waveforms have been employed [24, 35, 36] since

each individual feature provides complementary information [42]. In the current study, the

training database used to conduct a numerical search using PCA and DFA included the spec-

tra of thirty full temporal waveforms of kinetic and kinematic variables for each trial thus the

entire waveform of a variable was taken into consideration.

In previous studies, ankle kinematic and kinetic variables such as plantar flexion [43,44]

have been shown to differ between barefoot and shod running gait [43–45]. Studies have also

reported limited differences between barefoot and shod runners in GRFs [46, 47]. Although

not the specific focus of the current study, the results of the current study confirmed these

findings, suggesting that these variables represent the key differences between shod and bare-

foot running gait. However, unlike previous research, the choice of variables selected in our

study as an input to the machine learning algorithm were generic biomechanical features, and

not specifically selected, thus reducing researcher bias and reflecting the true ability of the

algorithm to identify the generic discriminating features.

The development of the machine learning algorithm described has many important appli-

cations in both clinical and research settings. In clinical settings, it allows for a more compre-

hensive and consistent assessment process across patients by utilising a wider range of data

whilst simultaneously eliminating researcher bias. Furthermore, since all discriminating

Fig 10. Combined display of trained and predicted data following discrimination.

https://doi.org/10.1371/journal.pone.0183990.g010
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features are identified, in both a clinical and research setting, it will prevent important factors

being neglected and ensure accurate and reliable diagnosis. This will enable analysis methods

to be more objective, consistent and reliable across institutions.

Conclusion

A specific machine learning algorithm, using composite PCA and DFA, was developed using

power spectra of temporal waveforms to successfully identify barefoot and shod running gait.

The predictive accuracy of the algorithm was optimised in a challenging environment by

implementing an iterative process. All discriminating features between the two experimental

groups were identified and a strong machine learning algorithm was developed with a 93.5%

accuracy in discriminating between conditions. This method can be implemented, to find

informative features when the sample size is small and heterogeneous, as common in gait

analysis.

Supporting information

S1 Fig. Full DFA spectra. The right-hand side vertical axis is valid for variables 1 to 3, whilst

the left-hand side one is valid for all remaining variables. Note that frequencies above 150 Hz

do not contribute to the discrimination and the high importance of ultra-low frequencies. In

some instances (e.g. variables No. 15 and 24), frequencies as high as 90 Hz contribute to the

discrimination. In the main manuscript, the data shown in Fig 4. was obtained by integrating

the absolute values of the spectra shown here, over all frequencies. The data shown in Fig 10. is

obtained by cross-correlating the spectra shown here with the spectra coming from the raw

variables (cross correlating any raw variable spectrum respectively with DF spectra 1 and 2

provide the corresponding DF score 1 and 2).

(TIF)

S2 Fig. Thirty variables in decreasing order of contribution to the discrimination between

barefoot and shod runners.

(TIF)

S3 Fig. PC score amplitude drop, with PC score rank, showing that up to 20 PC scores

carry relevant information.

(TIF)

Acknowledgments

We would like to give a great thanks to Professor Roy Goodacre, Manchester University for

providing us with the MATLAB1 DFA routine, written by B.K. Alsberg, NTNU, Norway

(made available at https://github.com/sci3bencsm/brood_cycle_matlab_code/tree/master).

Author Contributions

Conceptualization: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Data curation: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Formal analysis: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Funding acquisition: Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Investigation: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Methodology: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Optimisation of a machine learning algorithm in human locomotion

PLOS ONE | https://doi.org/10.1371/journal.pone.0183990 September 8, 2017 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183990.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183990.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183990.s003
https://github.com/sci3bencsm/brood_cycle_matlab_code/tree/master
https://doi.org/10.1371/journal.pone.0183990


Project administration: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T.

Barnett.

Resources: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Software: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Supervision: Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Validation: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Visualization: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T. Barnett.

Writing – original draft: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T.

Barnett.

Writing – review & editing: Maria Bisele, Martin Bencsik, Martin G. C. Lewis, Cleveland T.

Barnett.

References
1. Kirtley C. Clinical gait analysis: theory and practice. Elsevier Health Sciences; 2006.

2. Levine D, Richards J, Whittle MW. Whittle’s Gait Analysis. Elsevier Health Sciences; 2012 Jul 13.

3. Novacheck TF, Trost JP, Sohrweide S. Examination of the child with cerebral palsy. Orthopedic Clinics

of North America. 2010 Oct; 41(4):469–88. https://doi.org/10.1016/j.ocl.2010.07.001 PMID: 20868879

4. Barnett C, Vanicek N, Polman R, Hancock A, Brown B, Smith L et al. Kinematic gait adaptations in uni-

lateral transtibial amputees during rehabilitation. Prosthetics and Orthotics International. 2009 Jun; 33

(2):135–47. https://doi.org/10.1080/03093640902751762 PMID: 19367517

5. Hamill J, Gorton G, Masso P. Clinical Biomechanics: Contributions to the Medical Treatment of Physical

Abnormalities. Kinesiology Review. 2012 Feb; 1(1):17–23.

6. Winter DA. Biomechanics and motor control of human movement. John Wiley & Sons; 2009 Oct 12.

7. Robertson G, Caldwell G, Hamill J, Kamen G, Whittlesey S. Research methods in biomechanics, 2E.

Human Kinetics; 2013 Sep 25.

8. Deluzio KJ, Wyss UP, Zee B, Costigan PA, Serbie C. Principal component models of knee kinematics

and kinetics: normal vs. pathological gait patterns. Human Movement Science. 1997 Apr 30; 16

(2):201–17.

9. Deluzio KJ, Wyss UP, Costigan PA, Sorbie C, Zee B. Gait assessment in unicompartmental knee

arthroplasty patients: Principal component modelling of gait waveforms and clinical status. Human

Movement Science. 1999 Oct 31; 18(5):701–11.

10. Schutte LM, Narayanan U, Stout JL, Selber P, Gage JR, Schwartz MH. An index for quantifying devia-

tions from normal gait. Gait & Posture. 2000 Feb 29; 11(1):25–31.

11. Cretual A, Bervet K, Ballaz L. Gillette gait index in adults. Gait & Posture. 2010 Jul 31; 32(3):307–10.

12. Barton GJ, Hawken MB, Scott MA, Schwartz MH. Movement Deviation Profile: A measure of distance

from normality using a self-organizing neural network. Human Movement Science. 2012 Apr 30; 31

(2):284–94. https://doi.org/10.1016/j.humov.2010.06.003 PMID: 20728953

13. Baker R, McGinley JL, Schwartz MH, Beynon S, Rozumalski A, Graham HK et al. The gait profile score

and movement analysis profile. Gait & Posture. 2009 Oct 31; 30(3):265–9.

14. Chau T. A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods.

Gait & Posture. 2001 Feb 28; 13(1):49–66.

15. Chau T. A review of analytical techniques for gait data. Part 2: neural network and wavelet methods.

Gait & Posture. 2001 Apr 30; 13(2):102–20.

16. Deluzio KJ, Astephen JL. Biomechanical features of gait waveform data associated with knee osteoar-

thritis: an application of principal component analysis. Gait & Posture. 2007 Jan 31; 25(1):86–93.

17. Daffertshofer A, Lamoth CJ, Meijer OG, Beek PJ. PCA in studying coordination and variability: a tutorial.

Clinical Biomechanics. 2004 May 31; 19(4):415–28. https://doi.org/10.1016/j.clinbiomech.2004.01.005

PMID: 15109763

18. Ardestani MM, Ferrigno C, Moazen M, Wimmer MA. From normal to fast walking: Impact of cadence

and stride length on lower extremity joint moments. Gait & Posture. 2016 May 31; 46:118–25.

Optimisation of a machine learning algorithm in human locomotion

PLOS ONE | https://doi.org/10.1371/journal.pone.0183990 September 8, 2017 17 / 19

https://doi.org/10.1016/j.ocl.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20868879
https://doi.org/10.1080/03093640902751762
http://www.ncbi.nlm.nih.gov/pubmed/19367517
https://doi.org/10.1016/j.humov.2010.06.003
http://www.ncbi.nlm.nih.gov/pubmed/20728953
https://doi.org/10.1016/j.clinbiomech.2004.01.005
http://www.ncbi.nlm.nih.gov/pubmed/15109763
https://doi.org/10.1371/journal.pone.0183990


19. Ardestani MM, Wimmer MA. Can a linear combination of gait principal component vectors identify hip

OA stages?. Journal of Biomechanics. 2016 Jul 5; 49(10):2023–30. https://doi.org/10.1016/j.jbiomech.

2016.04.040 PMID: 27255606

20. Mouchnino L, Mille ML, Martin N, Baroni G, Cincera M, Bardot A et al. Behavioral outcomes following

below-knee amputation in the coordination between balance and leg movement. Gait & Posture. 2006

Aug 31; 24(1):4–13.

21. Gao F, Zhang F, Huang H. Investigation of sit-to-stand and stand-to-sit in an above knee amputee.

InEngineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the

IEEE 2011 Aug 30 (pp. 7340–7343). IEEE.

22. LeMoyne R, Mastroianni T, Hessel A, Nishikawa K. Implementation of machine learning for classifying

prosthesis type through conventional gait analysis. In Engineering in Medicine and Biology Society

(EMBC), 2015 37th Annual International Conference of the IEEE 2015 Aug 25 (pp. 202–205). IEEE.

23. Soares DP, de Castro MP, Mendes EA, Machado L. Principal component analysis in ground reaction

forces and center of pressure gait waveforms of people with transfemoral amputation. Prosthetics and

Orthotics International. 2016 Dec; 40(6):729–38. https://doi.org/10.1177/0309364615612634 PMID:

26598512

24. Kobsar D, Osis ST, Hettinga BA, Ferber R. Gait biomechanics and patient-reported function as predic-

tors of response to a hip strengthening exercise intervention in patients with knee osteoarthritis. PloS

One. 2015 Oct 7; 10(10):e0139923. https://doi.org/10.1371/journal.pone.0139923 PMID: 26444426

25. Dillmann U, Holzhoffer C, Johann Y, Bechtel S, Gräber S, Massing C et al. Principal Component Analy-
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