NeuroPlace: categorizing urban places according to mental states

Al-Barrak, L., Kanjo, E. ORCID: 0000-0002-1720-0661 and Younis, E.M.G., 2017. NeuroPlace: categorizing urban places according to mental states. PLoS ONE, 12 (9), e0183890. ISSN 1932-6203

[img]
Preview
Text
PubSub9074_Kanjo.pdf - Published version

Download (5MB) | Preview

Abstract

Urban spaces have a great impact on how people’s emotion and behaviour. There are number of factors that impact our brain responses to a space. This paper presents a novel urban place recommendation approach, that is based on modelling in-situ EEG data. The research investigations leverages on newly affordable Electroencephalogram (EEG) headsets, which has the capability to sense mental states such as meditation and attention levels. These emerging devices have been utilized in understanding how human brains are affected by the surrounding built environments and natural spaces. In this paper, mobile EEG headsets have been used to detect mental states at different types of urban places. By analysing and modelling brain activity data, we were able to classify three different places according to the mental state signature of the users, and create an association map to guide and recommend people to therapeutic places that lessen brain fatigue and increase mental rejuvenation. Our mental states classifier has achieved accuracy of (%90.8). NeuroPlace breaks new ground not only as a mobile ubiquitous brain monitoring system for urban computing, but also as a system that can advise urban planners on the impact of specific urban planning policies and structures. We present and discuss the challenges in making our initial prototype more practical, robust, and reliable as part of our on-going research. In addition, we present some enabling applications using the proposed architecture.

Item Type: Journal article
Publication Title: PLoS ONE
Creators: Al-Barrak, L., Kanjo, E. and Younis, E.M.G.
Publisher: Public Library of Science
Date: 12 September 2017
Volume: 12
Number: 9
ISSN: 1932-6203
Identifiers:
NumberType
10.1371/journal.pone.0183890DOI
Divisions: Schools > School of Science and Technology
Depositing User: Linda Sullivan
Date Added: 13 Sep 2017 13:45
Last Modified: 13 Sep 2017 13:45
URI: http://irep.ntu.ac.uk/id/eprint/31589

Actions (login required)

Edit View Edit View

Views

Views per month over past year

Downloads

Downloads per month over past year