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Abstract

The temperature based algorithm known as the Nomogram Method for the determination of a 95.45% death-time interval can be
combined with non-temperature based (NTB) findings in the so called Compound Method (CM). The impact of such integration on
the probability yielded by the resulting interval has however neither been described nor exploited. In fact the interval after integration
of NTB findings rarely yields 95.45% probability. We present a technique, based on the conditional probability distribution that
can be calculated if the NTB findings are taken into account, which ensures the probability inside the interval to be 95.45%. The
technique was successfully applied to a set of 53 cases published by Henssge et al. [1] and led to a reduction of the interval width
up to more than 15% compared to the CM interval, whereas in other cases the interval width increased due to probability content
of the CM intervals below 95.45%. A spreadsheet file in which the method proposed in this paper is implemented can be obtained

upon email request from the author S. Potente.
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1. Introduction

Postmortem cooling of the body as a phenomenon of
death has been known for a long time [2, 3]. Making use of
Newton’s Cooling Law, Marshall and Hoare derive their es-
timation for the time of death from the difference between
the body temperature and the ambient temperature at
the time of measurement [4, 5, 6]. Nonsurprisingly, in any
real-life case exist many factors besides time since death
which also influence this temperature difference. Therefore
their formula in practice never provides the exact time of
death. But nevertheless, despite of the fact that the prob-
ability distribution of the random variable “time of death”
is unknown, a stochastical answer to the question of death
time can be given. This is achieved through the Central
Limit Theorem, according to which the true probability
distribution of death time should come close to a Gauss
distribution. !

Email addresses: florianb@mscc.huji.ac.il (F. M. Biermann),
s.potente@em.uni-frankfurt.de (S. Potente).
1 The central limit theorem claims that the distribution of a sum of n
random variables under relatively general conditions asymptotically
approaches a Gauss distribution (see [7], p. 186 and p. 197).
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A Gauss distribution is specified up to the two param-
eters expected value and standard deviation. The for-
mula of [4] provides an estimator for the expected value,
while the standard deviation was estimated by Henssge
[8, 9, 10, 11, 12, 13]. There are also several corrective fac-
tors provided for adjustment if special conditions prevail.
Moreover, the method has been refined for specific situa-
tions and conditions [14, 15, 16, 17, 18]. There also exists
a variant of the method for brain temperature vs. ambient
temperature [19, 20]. There have however been some con-
cerns regarding the methodology of body cooling based
death time estimation [21, 22].

The Nomogram Method (NM) [8] operates under the
assumption that the whole of 100% probability is spread
out over eternity. In other words: only under the condition
that death can have occurred at any point in time (even
the future!), the area yielding 95.45% 2 of the probability

2 For Gauss distributions, a probability of almost exactly 95.45% is
contained in a four-standard-deviation interval centered around the
expected value. The inverval borders of NM take this form and thus
contain 95.45%. (Nevertheless the authors in [8] repeatedly approx-
imate this probability as 95%). To make our method comparable to
NM, we have to construct a 95.45%-interval, although with comput-
ers it is easy to construct intervals containing any probability, so the
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is correctly expressed by the death time interval. Thus, any
information, non-temperature based (NTB) data or fac-
tual evidence, that rules out any time as a possible time of
death, will change the probability distribution and thus the
width and/or the position of the correct 95.45% interval.

The Compound Method (CM) [23, 1] in its most com-

mon form integrates NTB data with the NM approach by
removing those times from the death time interval which
have positive probability according to NM but conflict
with NTB findings. By discarding the conflicting parts
from the interval a narrowing is achieved compared to
the solely temperature-based estimation, while in case the
NTB findings do not conflict with the original interval,
they are ignored. So the CM scope is limited to the 95.45%
NM interval and dismissals of death times outside the in-
terval borders have no impact on the procedure’s result.
When NTB data suggests a dismissal in close proximation
of the interval’s borders, the authors of [1] acknowledge
this as a “confirmation” of the interval’s borders. Finally
the resulting, possibly narrowed interval is given as the
new valid interval. The compound method has been docu-
mented extensively [24, 25, 11, 1, 23, 26, 27].
This procedure however does not take into account the ef-
fects of dismissals of death times on the probability density
within the resulting interval - which in general no longer
accumulates to 95.45%. Furthermore, NTB data that will
not lead to any dismissal inside the NM interval’s borders
can in fact still contribute valid information, but it is ig-
nored. 3

In this paper we propose to resolve those problems by
first deriving a probability distribution conditional on the
NTB data and then computing an appropriate confidence
interval for the new distribution. Contrary to CM, the in-
terval after deployment of CPD will yield 95.45% probabil-
ity in all cases.

2. Effects of NTB findings and police evidence on
the probability distribution

We identify the time line with R. The nature of the sub-
ject makes it possible to translate NTB findings and police
evidence always into a time interval (—oo,a] at which
death had not yet occured, or into a time interval [, c0)
at which the person was already dead.

T is the continuous random variable “time of death” sup-
ported on R (in the unconditional case) or on a subset of
R (under the condition that some death times cannot have
occured), and by ¢ we denote a realization of T'. Let f(t) be

exact 95%-value could be used instead.

3 Factual evidence that might contribute further information is also
not taken into account in CM. Such evidence might be the time
when the body was found dead or times when he was proven alive
the last time.

T’s prior probability density function (before the NTB in-
formation was taken into account) and f(£) be the posterior
probability density function (after the NTB information
was considered). We denote by N D those time intervals in
which death has not occured according to NTB informa-
tion. We set the time at which the body was found to 0. If
NTB findings indicate a to be the latest point of time at
which the dead person was alive, and they suggest  to be
the earliest point of time at which the person was dead (5 >
0 is impossible accordingly), then ND := (—o0, a]U[f, c0).
By P(ND) we denote the probability which according to
f(t) is assigned to N D, formally

P(ND) = /_a f(t)dt+/;o F(t)dt.

If there is no reason to believe that the relative probabil-
ities in the set R\ND are affected by the fact that the
event N D has not occured, for any two nonempty inter-
vals? [c,d], [e, f] € R\ND must hold

JEfwae [T f(badt
JEpwae 7 fyat

Obeying the restriction

| dwa=1, @)

(1)

the unique continuous probability density function f (t)
which assigns probability 0 to ND and which fulfills (1)
and (2) is

o
foy— | T-pov) TTENP 3)

0 ifte ND.

This fact is proved in the appendix. Such conditional
density function of a univariate random variable is ubig-
uitously used in applied statistics but, to our knowledge,
has not yet found its way into death time estimation.

For those who do not want to follow the proof in the ap-
pendix we present an intuition which is based on a purely
frequentist interpretation of probabilities.® Assume there
are N bodies with the same difference between body tem-
perature and ambient temperature. If the death times of
these N bodies are drawn from a random variable with
continuous density function f(t), then one would expect
that in a certain time interval I = [a,b], which carries
probability P(I) = fab f@t)dt, P(I)- N of the persons have
died. In the same way, one would expect P(B) - N of the
N cases to have died in B for an interval B ;\(f}‘gk}vl C B.

Hence, of these P(B) - N cases, a fraction of By~ Would

4 To be precise, the intervals [c,d] and [e, f] must yield probability
greater than 0 according to the probability density functions f(t)
and f(t).

5 This intuition was communicated to us by professor Anton Bovier,
University of Bonn.



be expected to have died in I. Let B be the interval which
is left after the integration of NTB data. Then all N bod-
ies must have died within B, and thus the probability of
a given person to have a death time within [ is 5((]?)'_1]\[\, =

P(I)
P(B)’

which complies with the density function (3).

To illustrate the problem of CM, we discuss the case that
ND is an interval (—oo, a. The NM confidence interval is
denoted by [b, ] with b < o < ¢ and for simplicity we as-
sume it contains a probability of exactly 0.95 (instead of
0.9545). Then the new interval reported according to CM
is [, ¢]. Denote the probability which the conditional prob-
ability density function f(t) assigns to [a, ¢] by P([a, d]).
Using (3), for b < a < ¢ we can express this probability as
a function of a by

_ e f@)dt
P(la, o)) () = w

Setting P([«, c])(«) = 0.95, after some tranformations we
obtain

/ i F(t)dt = 0.475. (4)
b

Hence, only if « fulfills equation (4), the interval computed
with CM contains 95% probability. ¢

3. An alternative way to compute the confidence
interval

As was explained above, probability distributions can
be transformed into conditional probability distributions
when the conditions are known. When the (conditional)
probability distribution is known, intervals for any proba-
bility mass in question can be determined and vice versa.
The goal of our method, the conditional probability distri-
bution (CPD) method, is set to result in a reliable 95.45%
interval to be used both in practical casework and in court.

To facilitate this procedure, it was shown how the new
probability distribution, which is conditional on the NTB
data, can be generated. The next step is to choose one
of the usually infinitely many intervals of the conditional
probability density function which contain a probability of
95.45%. We will explain the way which in our opinion is
the most straightforward to do this.

Given the conditional probability density function f (t)
which was specified in expression (3), define

I;

f) = {la,b] | f(t) is continuous on [a, b,

/ ’ f(t)dt = 0.9545}

6 If f(t) is the Gaussian probability density function, equation (4)
cannot be solved for « in a closed form (see [7], p. 189). But because
0.475 = %, we know that (4) is solved by a = p, with g being the
expected value of the Gaussian distribution.

to be the set of all intervals on which f (t) is continuous and
which contain probability of 0.9545. Usually the forensic
expert wants to report an interval which is as narrow as
possible, so that we define an optimal 0.9545-confidence
interval for the function f(t) to be an interval [a, b] which
fulfills two properties:

(1) [CL, b] S If(t)
(i) la—b| <|c—d| ¥ [c,d] €Tz

If f(t) is the Gaussian density function, then f(t) has a
unique optimal confidence interval.

To sum up, instead of using the CM procedure, we pro-
pose to compute an optimal 0.9545-confidence interval for
the probability density function (3) which is conditional on
the NTB data. In practice, this can be done by an algorithm
which is so frugal that it can be implemented for real death
time estimation with a software as simple as Microsoft©
Excel©. The spreadsheet file in which this is done can be
obtained on email request from the author S. Potente, ac-
companied by a manual which contains a detailed exposi-
tion of the algorithm.

4. Practical application of the CPD method

For demonstration and as a proof-of-concept, the CPD
method was applied to a set of external data. Henssge et al.
[1] applied CM to 72 crime scene cases in a field study. For
53 of these cases the CM data was given in detail with one
case tested twice over time (leading to a total of 54). The
CPD method was applied to all 53 cases. The results are
given in the table in appendix B.

We start with an example which illustrates how to read
the table. In the following exposition, “lower limit” of a
death time interval denotes the boundary closer in time
to the finding of the body, while “upper limit” refers to
the boundary further remote in the past. Consider case
No. 12: Application of NM led to an expected value of
-6.9 hours prior to measurement. The interval width was
5.6 hours (4/-2.8 h, corresponding to a variance of 1.96).
Electric excitability of fascial muscles grade IT was present
when CM was applied, so the lower limit of the CM in-
terval given was -5 hours. For the upper limit no findings
“better” than the NM boundary were found, so the NM
interval upper limit was taken as CM interval upper limit
accordingly, resulting in a CM interval from -5h to -9.7h
(interval width 4.7h). For the CPD algorithm the same
lower limit was taken for the lower limit of possible death
time. No information was given as to when the person was
last seen alive, so the upper limit was set to -10.000. Had
there been any information available such as that it was
certain that the person was alive 12, 15 or even 30 hours
ago this information would have entered accordingly and
the result would have further improved. The given infor-
mation was processed through the CPD algorithm with an



Excel© datasheet which can be obtained by email from
S. Potente. The resulting CPD 95.45%-interval limits are
-5h to -9.3h prior to measurement (CPD interval width 4.3
hours ). The CPD interval is 0.37 hours shorter than the
CM interval (approximately 7.95% improvement).

In the original paper [1] the CM led to a narrowing of
the death-time interval as determined via Henssge’s NM
in 48 out of 53 cases with width improvements between
-1.5% and -92.86%. In the case of 92.86% narrowing, the
remaining death time interval held only 47.38% probabil-
ity (case 48, where in Henssge et al. [1] application of CM
was rejected for reasons of an unusually large dismissal). In
6 cases out of 53 the CM did not achieve an improvement
of the interval width as compared to NM even though the
borders were “confirmed”, which means that the CM in-
terval boundaries were close to the NM boundaries.

The CPD algorithm achieved a narrowing of the death
time interval compared to the CM-interval in 43 out of
53 cases. The range of improvement was between -0.01%
and -15.21% (between 0% and 5% in 9 cases, between 5%
and 10% in 24 cases, and more than 10% in 10 cases).
The six cases with no narrowing achieved by CM were all
narrowed using CPD (between -1.75% and -8.52%). In 9
cases the dismissal in CM was so large that the probabil-
ity in the given CM interval was less than 95.45% (between
47.38% and 94.87%). The true 95.45%-interval for these
cases calculated using CPD was therefore wider compared
to the CM interval (between +2.71% and +309.17%). How-
ever, in those cases the resulting CPD intervals were all
smaller than the original NM-interval (between -51.79%
and -71.43%). It should be noted that in 9 cases no infor-
mation was provided about the time the person was found
dead or was last seen alive respectively. In retrospect this
information could have been obtained easily at the scene

and might have led to further improvements when using
CPD.

5. Conclusions and Outlook

The CM approach is a reasonable and useful add-on to
conventional death time estimation based on body cool-
ing such as NM.7 However, the application of CM will
alter the probability distribution of the random variable
“time of death”, and the resulting intervals will rarely hold
95.45% probability (this happened in only two out of 53
cases which are displayed in the table in appendix B). The
CPD method, on the other hand, will always lead to a
correct 95.45% interval for use both in court and investiga-
tions. This interval will always be smaller than the initial
interval determined by the NM algorithm and in some

7 It is also valuable when temperature based methods cannot be
used for one reason or another, even though this aspect is not subject
of this paper.

cases smaller than the interval after application of CM.

The application of the algorithm to case data of 53 foren-
sic cases (published in Henssge et al. [1]) illustrate both the
need for and the potential of CPD application in death time
estimation. Every reader is invited to request by email the
Excel© file for testing, which comes bundled with a thor-
ough explanation of the mathematical procedures used.
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Appendices

Appendix A. Proof of the statement made in
section 2

Proposition f(t), the probability density function (3)
on page 2, is the only continuous function which assigns
probability of 0 to ND and fulfills conditions (1) and (2) of
the same page.

Proof. Let f(t) # f(t) be another such function which ful-
fills (1) and (2). It will be shown that this leads to a contra-
diction. Without loss of generality assume f(z) > f(z) at
some point € R\ND. It is clear from continuity of both
functions that then there exists an interval [a,b] C R\ND
which has measure greater zero, z € [a,b], and f(y) > f(y)
for all y € [a, b]. So clearly it holds

/a ' Far > / fwat,

and hence condition (2) ensures the existence of another
inteval [¢,d] C R\ND with

/Cd f(t)ydt < /Cd f(t)dt.

2 f(t)at § Y F(t)dt
JEfwar [ Fyat

obviously contradicting the requirement (1), which is

Therefore

O




Appendix B. Application of the CPD method to the 53 cases of Henssge et al. [1]

NM - e coDvs:
CASE | exp. NM width width
No. | Value | bounds change, change,
h absolute Eeaa
Ih
1 -3.4 | +/-2.8 -1.0 -6.2 5.2 98.14% -1.0 -7.0 -1.0 -5.8 4.7 -0.48 -9.16%
2 2.7 | +-2.7 -1.0 -5.4 4.4 98.26% -1.0 -6.0 -1.0 -5.0 4.0 -0.45 | -10.20%
3 -8.2 | +/-2.8 -5.4 -11.0 5.6 97.68% -3.0 -11.0 -5.6 -10.8 5.1 -0.48 -8.52%
4 -4.8 | +-2.8 -5.0 -7.6 2.6 94.87% -5.0 -10000 | -5.0 1.7 27 0.07 2.71%
5 -3.6 | +-2.8 -1.0 -6.0 5.0 |100.00% | -1.0 -6.0 -1.4 -5.8 4.4 -0.61 | -12.21%
6 -4.8 | +-2.8 -3.0 -7.6 4.6 98.69% -3.0 -8.0 -3.0 -7.1 4.1 -0.52 | -11.28%
7 -5.8 | +-2.8 -3.0 -8.0 5.0 |100.00% | -3.0 -8.0 -3.6 -8.0 4.3 -0.68 | -13.54%
11 |-21.2| +-45 | -16.7 | -22.0 5.3 96.44% 0.0 -22.0 -16.9 | -220| 51 -0.24 -4.47%
12 | -6.9 | +-2.8 -5.0 -9.7 4.7 97.51% -5.0 -10000 | -5.0 -9.3 4.3 -0.37 -7.95%
15 | -31 | +-2.8 -3.0 -56.9 2.9 99.30% -3.0 -6.0 -3.0 -55 25 -0.39 | -13.31%
17 | -22.1| +-7 -15.1 | -29.1 | 14.0 | 96.45% | -14.0 | -10000 | -15.4 | -28.8 | 13.4 -0.59 -4.20%
18 |-19.6 | +/-45 | -151 | -24.1 9.0 96.07% | -14.0 | -10000 | -15.2 | -24.0 | 88 -0.24 -2.68%
19 -8.8 | +/-2.8 -6.0 -10.0 4.0 97.17% -3.0 -10.0 -6.3 -10.0 3.7 -0.29 -7.30%
20 | -84 | +-2.8 -5.6 -8.0 2.4 94.19% -35 -8.0 -6.5 -8.0 25 0.14 5.85%
21 -24 | +/-59 | -18.1 | -24.0 59 95.45% -5.0 -24.0 -18.1 | -240| 59 0.00 0.00%
22 | -2.45|+/-2.45| -1.0 -4.9 3.9 97.43% -1.0 -7.0 -1.0 -4.6 3.6 -0.31 -7.91%
23 | -89 | +-28 -6.1 -8.0 1.9 91.26% -3.0 -8.0 -5.7 -8.0 2.3 0.37 19.30%
24 | -6.5 | +/-2.8 -3.7 -9.3 5.6 97.62% -35 -10.0 -3.9 -9.1 5.1 -0.47 -8.34%
26 -9.1 | +-2.8 -6.3 -8.0 1.7 89.47% -2.0 -8.0 -5.8 -8.0 2.2 0.47 27.41%
27 | -5.6 | +-2.8 -5.0 -8.4 3.4 96.58% -5.0 -10000 | -5.0 -8.2 82 -0.17 -5.09%
28 | -6.3 | +-2.8 -5.0 -8.0 3.0 |100.00% | -5.0 -8.0 -5.0 -7.8 2.8 -0.22 -7.22%
31 | -42 | +-28 -3.0 -7.0 4.0 97.57% -3.0 -8.0 -3.0 -6.7 3.7 -0.35 -8.63%
33 -75 | +/-2.8 -5.0 -10.3 5.3 97.64% -5.0 -10000 -5.1 -9.9 4.9 -0.41 -7.78%
34 | -6.1 | +-2.8 -3.3 -6.0 2.7 95.52% -2.0 -6.0 -3.3 -6.0 27 -0.01 -0.31%
35 | -5.9 | +-2.8 -3.1 -6.0 2.9 95.71% -0.5 -6.0 -3.1 -6.0 2.9 -0.03 -1.18%
36 | -5.8 | +-2.8 -3.0 -8.6 5.6 97.67% -3.0 -13.0 -3.2 -8.4 51 -0.48 -8.49%
37 | -5.3 | +-28 -2.5 -7.0 45 97.55% -1.0 -7.0 -2.9 -7.0 4.1 -0.37 -8.26%
39 | -5.2 | +-2.8 -5.0 -8.0 3.0 |100.00% | -5.0 -8.0 -5.0 -7.5 25 -0.46 | -15.21%
40 | -11.7 | +-2.8 -8.9 -10.0 11 79.75% -5.0 -10.0 -8.1 -10.0 1.9 0.80 72.32%
41 -6 | +-2.8 -3.2 -6.0 2.8 98.62% -3.0 -6.0 -35 -6.0 25 -0.32 | -11.33%
43 | -4.9 | +-2.8 -35 -6.0 25 |100.00% | -3.5 -6.0 -3.7 -6.0 2.3 -0.16 -6.24%
44 | -39 | +-2.8 -3.0 -6.7 3.7 97.15% -3.0 -8.0 -3.0 -6.4 34 -0.27 -7.26%
46 -7.7 | +/-2.8 -5.0 -6.0 1.0 100.00% -5.0 -6.0 -5.1 -6.0 0.9 -0.08 -8.27%
47 | -6.3 | +/-2.8 -5.0 -9.1 4.1 97.73% -5.0 -10.0 -5.0 -8.7 3.7 -0.37 -9.06%
48 | -11.6 | +/-2.8 | -14.0 | -14.4 0.4 47.38% | -14.0 | -10000 | -14.0 | -156| 1.6 1.24 | 309.17%
49 |-16.4| +/-5.2 | -11.2 | -20.0 8.8 97.52% -5.0 -20.0 -11.9 | -200 | 81 -0.70 -7.95%
51 | -4.4 | +-2.8 -1.6 -7.0 54 98.42% -1.0 -7.0 -2.0 -6.8 4.9 -0.55 | -10.10%
52 | -4.2 | +/-2.8 -3.0 -7.0 4.0 97.57% -3.0 -8.0 -3.0 -6.7 3.7 -0.35 -8.63%
53 | -5.5 | +/-2.8 -2.7 -6.0 33 96.54% -1.0 -6.0 -2.9 -6.0 31 -0.16 -4.88%
55 -5 | +-2.8 -2.2 -7.0 4.8 97.76% -1.0 -7.0 -2.6 -7.0 4.4 -0.41 -8.59%
57 |-14.4| +-28 | -140 | -17.2 3.2 96.29% | -14.0 -20.0 -14.0 | -17.1| 31 -0.12 -3.82%
58 |-16.9 | +-3.2 | -13.7 | -20.0 6.3 97.66% -5.0 -20.0 -14.0 | -19.8 | 58 -0.52 -8.18%
59 -4.6 | +/-2.8 -3.0 -7.4 4.4 98.25% -3.0 -8.0 -3.0 -6.9 3.9 -0.46 -10.34%
60 -5 | +-28 -5.0 -7.8 2.8 95.45% -5.0 -10000 | -5.0 -7.8 28 0.00 0.00%
61 | -34 | +-28 -3.0 -6.2 3.2 96.29% -3.0 -13.0 -3.0 -6.1 31 -0.12 -3.80%
63 | -84 | +-2.8 -5.6 -7.0 1.4 85.69% -3.0 -7.0 -5.0 -7.0 2.0 0.62 44.35%
64 | -6.7 | +-2.8 -3.9 -9.5 5.6 95.84% -3.0 -20.0 -3.9 -9.5 55 -0.10 -1.75%
65 | -2.8 | +/-2.8 -1.0 -5.6 4.6 98.69% -1.0 -6.0 -1.0 -5.1 4.1 -0.52 | -11.28%
67 -7.7 | +-2.8 -5.0 -10.5 55 97.66% -5.0 -16.0 -5.2 -10.2 51 -0.45 -8.14%
68 |-11.4| +/-45 -6.9 -8.0 11 65.30% -3.0 -8.0 -56.2 -8.0 28 1.67 | 151.52%
69a | -45 | +/-2.8 -3.0 -6.0 3.0 |100.00% | -3.0 -6.0 -3.1 -5.9 2.8 -0.20 -6.52%
69b | -5.2 | +-2.8 -3.0 -7.0 4.0 |100.00% | -3.0 -7.0 -34 -7.0 3.6 -0.38 -9.41%
71 |-18.9| +-45 -14.4 -20.0 5.6 96.69% -5.0 -20.0 -14.7 | -20.0 5.3 -0.31 -5.53%
72 | -6.7 | +/-2.8 -3.9 -6.0 2.1 92.74% -2.0 -6.0 -3.6 -6.0 24 0.26 12.39%

Abbreviations: NM = Nomogram method; CM = Compound method; CPD = conditional probability distribution (*) - if no
information was available regarding the lower bound (e.g. "found dead at T-2"), time zero (measurement) was taken (+) - if no
information was available regarding the upper bound (e.g. "last seen alive at T-10"), T -10.000 was taken for calculation



