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 Abstract: Fluctuation scaling describes the relationship between the mean and standard 

deviation of a set of measurements. An example is Horwitz scaling which has been reported 

from inter-laboratory studies. Horwitz and similar studies have reported simple exponential 

and segmented scaling laws with exponents (α) typically between 0.85 (Horwitz) and 1 when 

not operating near a detection limit. When approaching a detection limit the exponents change 

and approach an apparently Gaussian (α = 0) model. This behavior is generally presented as a 

property of inter-laboratory studies which makes controlled replication to understand the 

behavior costly to perform. To assess the contribution of instrumentation to larger scale 

fluctuation scaling, we measured the behavior of two inductively coupled plasma atomic 

emission spectrometry (ICP-AES) systems, in two laboratories measuring thulium using 2 

emission lines. The standard deviation universally increased with the uncalibrated signal 

indicating the system was heteroscedastic. The response from all lines and both instruments 

was consistent with a single exponential dispersion model having parameters α = 1.09 and β = 

0.0035. No evidence of Horwitz scaling was found and there was no evidence of Poisson 

noise limiting behavior. The “Gaussian” component was a consequence of background 

subtraction for all lines and both instruments. The observation of a simple exponential 

dispersion model in the data allows for the definition of a difference detection limit (DDL) 

with universal applicability to systems following known dispersion. The DDL is the minimum 

separation between two points along a dispersion model required to claim they are different 

according to a particular statistical test. The DDL scales transparently with the mean and 

works at any location in a response function.   

 

 

Key words: ICP-AES, ICP-OES, fluctuation scaling, characteristic function, uncertainty 

functions, noise precision models, Horwitz curve, HorRat, power laws, Taylor’s law, gain, 

mean variance, analytical methods, exponential dispersion models, dispersion calibration.
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Introduction: 

Fluctuation scaling presented in a variety of ways has been widely observed in chemical 

measurements.
1-12

 Fluctuation scaling in chemistry is presented implicitly in some papers,
10

 

while in others it is described by a range of terms (noise precision models,
11

 uncertainty 

functions,
3
 characteristic functions,

2
 Horwitz curve,

8
 etc.). Here, it will be referred to as 

fluctuation scaling to provide a link into the extensive literature from other disciplines 

providing useful approaches to interpreting results.
13-22

 While many of these articles are 

presented in terms of variance, standard deviation is used here to be consistent with the prior 

literature in analytical chemistry. 

 

Following on from earlier work, Horwitz
7,8

 noted a scaling behavior in inter-laboratory studies 

which was later recognized to follow the form:
0.850.02s c= . This is an example of a process 

following an exponential dispersion model of the form: s x αβ= . Chemical fluctuation 

scaling has been widely reported following this and related forms in the context of inter-

laboratory comparisons; however, studies addressing how it arises are limited. Most 

discussions are empirical in nature
3,8

 with few published investigations into the mechanisms 

producing the observed behavior. Hanley
12

 recently reported that many basic measurements 

including balance readings, fluorescence intensity, and absorbance are inconsistent with either 

Horwitz behavior or the characteristic function. Much of chemical measurement follows 

simple or segmented exponential dispersion models with exponents that do no match either 

the Horwitz exponent (α = 0.85) or the main exponents of the characteristic function (α = 1; α 

= 0). To our knowledge, no attempts have been made previously to trace the origins of 

observed scaling from raw measurements through to calibrated results. The experiments 

reported here were designed to evaluate instrument repeatability as assessed by the standard 

deviation of replicate measurements and not to assess accuracy. 
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 4

Theory 

The Horwitz curve belongs to the family of exponential dispersion models having the 

property: 

s x αβ=          (1) 

where x  is the mean, s is the standard deviation, and α and β are process and dispersion 

constants, respectively. The dispersion parameter, β, is equivalent to s when x =1. Some 

presentations of this and related functions use population mean, µ, and population standard 

deviation, σ, rather than x  and s. The nomenclature here is meant to clarify that empirical 

studies have finite n. In the limit as n approaches ∞, equation 1 approaches the population 

parameters. Additionally, in Horwitz and many related studies, x  is considered to be 

concentration and given the symbol c. The general form given by equation 1 can be in any 

units.  

 

Many models of the form of equation 1 are Tweedie models and the Horwitz curve is a special 

case of equation 1. It is possible that the Horwitz curve may conform to a Tweedie model 

from a Poisson-Gamma process.
12

 The difficulty is that not all models of the form of equation 

1 are Tweedie models and the Horwitz exponent arises from a wide range of complex 

processes producing inter-laboratory data which include dispersion from measurements (e.g. 

mass, volume, intensity, etc.) made at lower levels of abstraction. It is unknown to what extent 

expectations based on classical error propagation rules predict behavior at higher levels of 

abstraction.   

 

In the context of this study, a number of characteristics of statistical distributions, dispersion 

models, and processes must be understood. Specifically, the distribution of replicates of a 

single sample may give apparently Normally distributed local behavior. This does not mean 
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 5

the process is Normal or that it conforms to a Normal dispersion model. A Normally  

distributed appearance may mask a fundamentally different process. For example, Poisson and 

Gamma distributions can be approximated by a Gaussian distribution under certain 

conditions. Under these same conditions the Poisson and Gamma distributions will be good 

approximations to the Gaussian distribution.  In a fluctuation scaling plot, a Gaussian model 

requires the exponent to be 0, which also implies the data are homoscedastic (
0s xβ= ). A 

Poisson model requires the exponent to be 0.5 and a Gamma model has an exponent of 1.  

 

The well-known Normal, Poisson, Compound Poisson, and Gamma distributions belong to 

the Tweedie class of exponential dispersion models.
14,15,21,22

 For this reason Tweedie models 

have been of interest for modeling a wide range of systems. However, all models of the form 

of equation 1 are not Tweedie models. Tweedie models with exponents 0 < α  < 0.5 do not 

exist
22

 and analytical balances have been observed to fall in this region.
12

  

 

Finally, the observation of a particular exponent does not prove a particular process. It can 

falsify a hypothesis and suggest alternatives but does not provide proof. As an example, if α  = 

0 then the data set is homoscedastic, incompatible with Poisson or Gamma processes allowing 

them to be rejected, and suggestive of a Gaussian process. However, a host of non-Gaussian 

processes (e.g. adding uniformly distributed deviates to a set of numbers) can generate a 

fluctuation scaling plot that has α  = 0.  

 

A range of alternative forms modeling observed fluctuation scaling behavior have been 

proposed including segmented forms.
2,11

 These include noise precision models of various 

types
11

 and the characteristic function advocated by Thompson which has the form:
2,3

 

( )22 xas β+=         (2) 
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 6

Similarly to the Horwitz curve, the characteristic function is usually presented in terms of σ 

rather than s and x given in concentration or mass fraction units. It is worth noting that 

versions of equation 2 were invoked well before Horwitz’s classic paper,
1,6

 and the general 

shape has been widely observed.
2,3,23

 Thompson provided a semi-empirical derivation based 

on the observation that measurements typically include a portion where s is nearly constant 

( as = ) and another where s is proportional to signal strength or concentration ( s xβ= ). 

The standard rules for propagation of independent variances corresponding to these two 

regions produce equation 2.
2
 As a general approach, both the Thompson and Horwitz 

presentations are limited. The Horwitz equation has been criticized for predicting that the 

standard deviation will go to zero as concentration goes to zero; a condition that is not usually 

observed.
2
 There is evidence that the Horwitz exponent is not universal in inter-laboratory 

comparisons
3
 and is not observed in a wide range of underlying measurements.

12
 Similarly, 

the characteristic function has limitations. Many studies do not have a regime where 

s xβ= ,
2,3

 many measurements have segmented forms,
12

 and others are not expected to on 

theoretical grounds (e.g. Poisson data
24

). Examples where  xs β≠  include: analytical 

balances, fluorimeters, and spectrophotometers.
12

 This leaves a range of open questions about 

how these shapes and observed behavior arise. 

 

A shape similar to equation 2 can be obtained by subtracting a constant, κ, which is less than 

the minimum observed mean signal ( κ>minx ) from x when presenting a data set following 

equation 1 (Equation 3 and Figure 1).  

( )ακβ −= xs        (3) 

If κ is close to minx , equation 3 models background subtraction and creates a family of shapes 

similar to equation 2. The importance of equation 3 is that it allows the authentic background 

noise source ascribed to a in equation 2 to be generated by the same process as the noise 
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 7

ascribed to the β term. Thompson assumed they were independent additive variances from 

different processes – a Gaussian noise floor and a region having constant relative standard 

deviation. The a and β terms can be from different independent process (see below equations, 

4,5, and 6), but this is not a requirement to produce a similar shape.  Equation 3 implies that 

an apparently Gaussian segment in a fluctuation scaling plot can arise from any model of the 

form of equation 1 for which has α  ≥ 0 via any data processing adding or subtracting a 

constant.  In the ICP data sets presented below, there is only evidence for a single exponential 

model of the form of equation 1 suggesting a single error generating process.  The apparent 

Gaussian zone under these circumstances is a consequence of data processing not an authentic 

transition from one process to another. 

 

Equation 3 also predicts the consequences of adding electronic or digital offsets at any stage 

in the measurement process by considering κ less than zero. This produces a zone where 

apparent α approaches ∞ (Figure 1). The important feature of this discussion is that if a single 

exponential dispersion model describes the error process then the background against which 

detection is assessed belongs to the same model and s is entirely predictable based on the 

dispersion model. Understanding these shapes allows a range of instrumental characteristics 

(auto-zero, background subtraction, electronic offsets, etc.) to be inferred when otherwise they 

would not be transparent. 
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Figure 1: Simulations of an added offset (dotted line), subtracted background (long dashed 

line), and original model (solid line) by adjusting the value of κ in equation 3 while holding α 

and β constant.  

 

 

More general models can be defined including summed, segmented, and mixed exponential 

dispersion models. Summed dispersion models are of the form of equation 4. 

 ( )2

1

i

n

i
i

s x αβ
=

= ∑         (4) 

This form allows data sets exhibiting any exponent to be treated and, in the special case where 

n = 2, α1 = 0, and α2 = 1, this reduces to the Thompson characteristic function. This provides a 

form suitable for many circumstances. This type of model assumes there are n processes 

contributing to the error all of which are uncorrelated and contribute at every value of x . An 

example of such a system is a CCD detector investigated over the range from read noise 

limited through Poisson noise limited behavior.
24

  

 

Segmented exponential dispersion models are of the form of equation 5.  
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( )
( )
( )

( )

1

2

2

1 1

2 1 2

2 2 3

1
n

n n n

x for x t

x for t x t

s x for t x t

x for t x t

α

α

α

α

β

β
β

β −

 <


≤ <
= ≤ <



≤ <

M

      (5) 

These models apply to systems where the process determining the error changes at threshold 

points. Thompson presented models with two
2
 and three

4
 segments but did not provide a 

general framework nor an explanation of how three segments might arise. Models of this type 

require a fundamental change in the process generating the data set at the threshold points. A 

published example of such a response is a fluorimeter assessed in a particular way.
12

 

Segmented behavior would also be expected when a measurement system saturates. As the 

signal approaches the threshold for saturation, the standard deviation will decrease.  

 

Mixed exponential dispersion models are hybrids of summed and segmented forms. An 

example is a CCD imaging detector having a fixed readout noise.
25,26

 At low signal, readout 

noise dominates. As the device is exposed to increasing amounts of light, it follows Poisson 

statistics. When it approaches saturation, depending on system characteristics it might return 

to a fixed readout noise. Such a system is described by equation 6. 

( ) ( ) ( )
( )

1 2

3

2 2

1 2 1

3 1 2

x x for x t
s

x for t x t

α α

α

β β

β

 + <= 
 ≤ <

    (6) 

It should be noted that there is no requirement for measurements to follow models following 

1, 4, 5, and 6. For example, spectrophotometers measuring absorbance follow more complex 

models;
12

 however, the measured light intensities used to compute the absorbance will in 

many cases conform to these models.  

 

When a measurement follows the form of equation 1 either generally or locally as part of 

more complex models, the gain and/or relative gain can be defined.
12

 The gain, G, is a 
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 10

constant multiplier applied at any point during the measurement and calibration process. The 

effects of gain can be predicted by equation 7.  

( )1
s G x

α αβ−=          (7) 

An example of a measurement with variable gain is an electron multiplying CCD measuring 

light.
27

 Relative gain, GR, is a way to define the relative behavior between two systems 

believed to conform to the same scaling law.
12,28

 For example, if two instruments indexed 1 

and 2 have the same α and β, then  

( )α−== 1

1

2

1 R
G

G
GR           (8) 

where R is the ratio of measured pre-exponential factors, 

( )

( )

( )11

1 1

1

22

G G
R

GG

αα

α

β
β

−−

−

 
= =  

 
        (9) 

These considerations are useful in the context of a simple calibration procedure consisting of 

multiplication of a measured data point by a constant. Simple calibration of this type is 

equivalent to application of a gain factor and can be introduced at any stage in the 

measurement and calibration process. A special case exists when α = 1 resulting in R = 1 and 

GR = 1 for all values of G1 and G2. 

 

Equations 3 and 7 allow a general treatment of the impact of either classical ( x mc b= + ) or 

inverse ( c mx b= + ) linear calibration on a dispersion relationship of the form of equation 1. 

Here, m and b are the slope and intercept of the calibration and c is the concentration.  With 

suitable definitions for G and κ, the predicted models become: 

( ) ( )1
s G c

αα β κ−= +         (10) 
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This is very similar in shape to Thompson’s characteristic function when α = 1. The key 

difference is that the squared version includes cross terms while Thompsons’s does not 

making it closer to the form of root quadratic NPMs.
11

 

 

Generalized Difference Detection. 

These considerations allow the definition of a difference detection limit (DDL) applicable to 

all data sets conforming to a known dispersion model relating s to x . We define the DDL as 

the minimum distance between two mean signals required to conclude they are different to a 

specified degree of confidence. This can be used to estimate whether a difference will be 

detectable using a range of statistical criteria. Measurements following equation 1 are easiest 

to apply, however, systems conforming to equations 4, 5, 6 or more complex forms, though 

less convenient, can also be used to estimate a DDL.  

 

As an example, suppose we wish to detect a difference for a process following an exponential 

dispersion model of the form of equation 1 using an  F-ratio. This requires an assumption that 

at each position along the model the local distribution is approximately normal. With this 

assumption, a general formula is obtained, ( )2 1/ critx x F
α
= . This one compact equation 

defines the requirements for F-test difference detection for every model meeting the 

assumptions of approximate normality and following the form of equation 1. It applies to 

every x  and the only further requirement is to adjust Fcrit to match the decision requirement 

for the DDL. If 1x = 1, α = 1, and n = 10 and 99% confidence (Fcrit = 5.35) is needed, then 

2x = 2.31 and the DDL ( 12 xxxDDL −=∆ ) will be 1.31. A mean value of 2.31 represents the 

detection of a difference from 1 at 99% confidence. The DDL scales with 1x  (e.g. for α = 1, 

and n = 10 when 1x  = 10, the 99% confident DDL will be 13.1). This example has been 

selected as it represents a somewhat unusual variant of detection limit methodology by 
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 12

comparing variance using the F-ratio rather than comparing means. The F-ratio case is 

interesting because illustrates how to use the process parameter, α. A DDL cannot be defined 

using an F-ratio for a system with a Gaussian dispersion model (α = 0) due to the DDL going 

to infinity as α approaches 0. However, as α gets large the DDL becomes vanishingly small.  

 

DDLs can be defined using the more conventional approach of comparing means and if 

needed the statistical criteria adjusted to minimize false negatives. The definition has 

generality while avoiding a range of issues including: background subtraction, translating raw 

data units into concentration units below a limit of quantification, and being restricted to a 

specific part of a response function. Although it has been illustrated here with an F-ratio 

giving a convenient general formula, a host of other statistical methods could be used. 

 

 

Experimental Section 

ICP-OES 

Thulium solutions (0.07 ppb to 10,000 ppm) were prepared from the chloride (TmCl3
.
6 H2O 

(Aldrich, UK)) in dilute nitric acid. This metal was selected to minimize the possibility of 

contamination effects at low concentration. ICP measurements were made using two 

commercial ICP-AES systems (Optima 2100D, Perkin Elmer; and ICP-OES 5100, Agilent) 

equipped with auto samplers using the parameters indicated in Table 1. Within each trial a set 

of 10 replicate measurements were made to assess the mean and standard deviation.  

 

Parameter Optima 2100D  Agilent 5100  

Gas flow rate 15 L/min  12 L/min 

Auxiliary gas flow 0.2 L/min 1.0 L/min 

Nebulizer flow rate  0.8 L/min 0.7 L/min 

RF power  1300 Watts 1300 Watts 

Pump flow rate  1.50 mL/min 1.50 mL/min 
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Tm Wavelengths 313.126 nm 

346.220 nm 

313.126 nm 

346.220 nm 

Table 1: ICP-AES parameters. 

 

The descriptive statistics and scaling relationships were fit using log transformed data and 

parameters were estimated by standard regression methods in MS Excel with the Real 

Statistics Resource Pack (http://www.real-statistics.com/) except for the segmented and bent 

cable fits to the data which were done using R (Version 3.31) with the Segmented (Version 

0.5-2.1) and SiZeR (Version 0.1-4) packages, respectively. The Anscombe-Glynn
29

 test for 

kurtosis was done using the Moments package (Version 0.14). Iterative fitting with the Solver 

add-in of MS Excel was used to determine the offsets in instrument B by maximizing the R2
 

of the log-log linear regression while adjusting the value of the offsets.  

 

Results and discussion 

Uncalibrated Instrument Response  

The raw uncalibrated instrument fluctuation scaling response for the two instruments (Figure 

2) to Tm gave two distinct responses. Instrument A (Figure 2a) gave a single exponential 

dispersion model (
1.0860.00316s x= ) independent of the wavelength of observation. There 

was minimal sign of saturation (although the highest sample at 313 nm did not return a result) 

and no observable electronic offset. Instrument B (Figure 2b) showed three regions in each 

response suggesting the form of equation 5. At the lowest concentrations of Tm, a near 

vertical response was observed. This was attributed to an arbitrary offset in the electronics of 

the instrument (equation 3). At intermediate concentrations, behavior similar to that seen in 

instrument A was observed. Although the slopes for the intermediate range appear different in 

the figure (Figure 2b), the 95% confidence intervals overlapped indicating only a single 

dispersion model was needed. At the highest concentrations saturation occurred. Segmented 
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analysis (the fitted lines in Figure 2b) indicated the saturation breakpoints corresponded to 

values above 300 ppm Tm.  

 

To allow better comparison between the instruments, the data above the second breakpoint 

from Instrument B was removed and offsets fit to the data by optimizing the fit to a power law 

(Figure 2c) using equation 3 to estimate the constant. This left a simple dispersion model of 

the form of equation 1 (
1.0930.00345s x= ) for Instrument B giving remarkable agreement 

between the two instruments (Figure 2d). After offset adjustment, there were no significant 

differences in dispersion or process parameters between the two instruments excepting the 

saturation region above 300 ppm in instrument B. The observed α value near one indicates 

that gain has little or no effect on a data set. Specifically, equation 7 reduces to 

( ) 093.1093.0 XGs β=  for this data implying that s will remain within ±30% of the original 

values for values of G over the range 0.1 to 10. This characteristic of exponential dispersion 

models following equation 1 with α near one probably gives rise to the very close 

correspondence between the two instruments.  

 

The data are conclusive on a number of points. Homoscedasticity can be firmly rejected and 

has no place in any discussion of ICP-AES.  Homoscedastic data requires α = 0 which is not 

observed. Poisson noise limitation can also be rejected for these instruments and conditions. 

For Poisson noise, α would be expected to be 0.5 rather than 1.09. The exponent is above 1 at 

> 95% confidence indicating a modest super-linear relationship between mean and standard 

deviation. Relative signal to noise (repeatability) will be improved at lower intensities and the 

exponent, α, provides a framework for deciding this. In general, when  α < 1 increasing the 

signal level by increasing the sample concentration will be beneficial; when α = 1 the quality 

of the measurement will be independent of signal level and largely independent of 

concentration; and when  α > 1 the relative uncertainty is improved by lower signals. There 

Page 14 of 27

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15

was no Gaussian noise segment. Before removing the offset from Instrument B, the opposite 

is seen; a near vertical segment. If there is a Gaussian noise floor, it is impossible to view 

under useful measurement conditions due to the continuum background from the plasma. A 

single definable dispersion parameter (β = 0.0035) describes both instruments well. This 

indicates a percent relative standard deviation (PRSD) of 0.35% when x  = 1 which increases 

to ~1% at the top of the range. These dispersion (β = 0.0035) and process (α = 1.09) 

parameters may be a characteristic of modern ICP-instruments and claims of improvement 

should be referenced against them rather than detection limits. Detection limits are 

controversial due to lack of modernization by some bodies.
30

 However, using the formula 

presented earlier for an F-ratio defined DDL, a difference between two mean values can be 

claimed whenever ( ) critFxx ≥09.1

12 / . Under the definitions of the DDL, it applies anywhere 

along the curve shown in figure 2d and will scale appropriately with signal strength.  

 

A fluctuation scaling law with α near 1 can be generated by sample introduction variability. In 

modern ICP, this might be caused by sample pump fluctuations or other stochastic aspects of 

nebulizers, spray chambers and spray entrainment. Any such fluctuations would affect all 

samples independent of concentration. Noisy sample introduction can also explain the 

asymptotic behavior of Thompson’s characteristic function and any study where α is near 1. 

Here, there is no sign the exponent changes when approaching the plasma background. The 

plasma background of the high intensity line (346.220 nm) is coincident with an analytically 

useful portion of the fluctuation curve for the less intense line (313.126 nm). Noisy sample 

introduction cannot explain this unless the fluctuations are the result of the plasma interacting 

with the aqueous sample matrix.  
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Figure 2: Raw uncalibrated instrument response to Tm at 313.126 nm and 346.220 nm. The 

two lines gave identical results for Instrument A (panel a) while Instrument B exhibited signs 

of offsets and saturation (panel b). In panel b, the lines represent the best fit piecewise model 

with two breakpoints the squares corresponding to 313.126 nm while the triangles correspond 

to 346.220 nm. After adjusting for the offset and the saturation (panel c) a single fluctuation 

scaling law described the response of both instruments (panel d). For comparison best fit lines 

are provided for Instrument A (squares) and Instrument B (triangles).    

 

 

Higher Moments (Skew and Kurtosis) of the measured Responses 

Higher moments were investigated to infer information about underlying error generating 

processes. The first approach was to construct a population skew-kurtosis plot using each 

sample’s ten replicates to compute skew and kurtosis (Figure 3). The second approach was to 

construct a normalized residual histogram for instrument A by subtracting the sample mean 

from each of the 10 replicate measurements and dividing by the computed standard deviation 

from the scaling law (Figure 4). The behavior of the Tweedie models for α = {0, 0.5, 1} which 

correspond to Normal, Poisson, and Gamma distributions, respectively, were considered as 

reference conditions for the data (Figure 3). The normal distribution has skew = 0 and kurtosis 

= 3. The Poisson distribution is parameterized by the mean, which also defines the skew and 
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kurtosis such that
2 3kurtosis skew= + . The gamma distribution has shape, k (k > 0), and 

scale, θ (θ >0), parameters. The shape parameter defines the skew ( 2 /skew k= ) and 

kurtosis ( (6 / ) 3kurtosis k= + ) leading to 
21.5 3kurtosis skew= + . Skew and Kurtosis are 

otherwise limited depending on n  (c.f. Cox’s tutorial and review
31

). 

1

33
;

1

2 2

−
+−

≤
−

−
≤

n

nn
kurtosis

n

n
skew  

In the current study (n = 10), these limits were 8/3 and 73/9 for skew and kurtosis, 

respectively. Finally, a lower bound on the relationship between these two moments exists, 

2 1kurtosis skew≥ + .
32,33

  As can be seen (Figure 3), the data lie within these limiting 

regions. Although similar plots to Figure 3 have been used to characterize scaling behavior in 

car paints,
34

 they were unable to definitively show obvious correspondence to normal, 

Poisson, or gamma distributions.  
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Figure 3: Skew and kurtosis plot of the raw uncalibrated instrument responses to Tm at 

313.126 nm and 346.220 nm. The solid lines represent the theoretical bounds for n = 10. The 

upper short dashed line corresponds to ideal gamma distributed data and the middle long 

dashed line represents the behavior of Poisson distributed data. A normal distribution would 
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appear at (3,0). The position of the normalized residuals (n = 528) shown as a histogram in 

figure 4 is given by the large diamond. 

 

 

The residual histogram (Figure 4) and analysis of the residuals directly were of greater 

assistance. A variety of distributions were investigated to fit the histogram, with none showing 

clear superiority. Logistic and Cauchy-Lorenz distributions fit better than the normal 

distribution, but not significantly so. The data showed significantly (p < 0.0002) greater 

kurtosis than expected from a normal distribution as assessed by the Anscombe-Glynn test.
29

 

The analysis also revealed 2 probable outliers in the data set. These observations indicate that 

currently, there is limited understanding of the types of error generation processes defining 

models of chemical fluctuation scaling and the resultant local and general distributions 

applicable to this basic chemical measurement. Future work will provide an opportunity to 

carry out more wide ranging hypothesis testing to identify the underlying processes.  
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Figure 4: Normalized residual histogram for all measurements from Instrument A. Best fit 

scaled normal (solid line) and logistic (dashed line) distributions are shown on a log axis to 

highlight correspondence in the tails of the observed data. Initially, the residuals (n = 530) had 

skew and kurtosis of -2.25 and 22.49 due to two measurements which appeared to be outliers. 
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These two values also caused the two points in the extreme upper left of Figure 3. These 

points had little influence on the histogram but strongly affected the computed higher 

moments. After removal skew and kurtosis became 0.09 and 4.17, respectively.  

 

Uncalibrated Instrument Response with Background Subtraction 

All four data sets (two instruments measuring Tm at two wavelengths) coincide in the 

fluctuation scaling plot following offset adjustment. As a result, background signal sometimes 

coincide with an analytically useful signal level for another line or instrument. In ICP-AES, 

there is a continuum background present that varies with wavelength. Subsequent subtraction 

(Figure 5) produces an apparently Gaussian zone approximating the form of equation 2. This 

feature was not due to a Gaussian process or a separate independent noise source as is 

commonly supposed. Rather, the shape can be created by subtracting a constant (the 

background) from the means when constructing a fluctuation scaling plot.   
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Figure 5: Raw uncalibrated instrument response to Tm at 313.126 nm and 346.220 nm 

following background subtraction for Instrument A (squares) and Instrument B (triangles). 

The subtracted background values were 1192 and 2466 for Instrument A and 1382 and 3323 

for Instrument B. The lines are obtained by setting κ = {500, 1500, 4500} in the model 

( )1.09
0.0035s x κ= −  to bracket the observed data.  
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Calibration of the instrument response.  

Calibration computations influence the fluctuation scaling behavior in ICP-AES (Figure 6). 

The simplest calibration would consist of multiplication by a constant. This is a simple gain 

adjustment and for exponential dispersion models with exponents near 1 has little or no 

impact on the fluctuation scaling behavior (e.g. equation 7). For the wide range of [Tm] 

investigated, such a simple procedure was insufficient. In order to understand the impact of 

calibration on the behavior of the dispersion model, the mean and standard deviation of 

measured intensity were plotted as a function of [Tm] (Figure 6a and 6b). Attempts to fit the 

data were made using segmented (Figure 6a and 6b) and bent cable regression (Figure 6c and 

6d). Neither was particularly satisfactory as indicated by residual plots (Figure 6e and 6f). 

Bent cable regression was better, but in neither case were the residuals randomly distributed. 

Segmented and bent cable regression methods both assume the underlying behavior is linear 

and differ only in that bent cable regression tests whether the transition between segments is 

smooth. The goal of the exercise was to attempt a conversion from raw data to concentration 

units while having minimal impact on the dispersion model, particularly near the upper and 

lower extremes of the data set. This is remarkably difficult and there is limited discussion of 

the overall shape of the raw response function in ICP-AES in the literature, particularly in the 

case of modern instruments. Studies over wider ranges have tended to use ad hoc segmented 

calibrations over relatively restricted ranges. Log-log fits after background subtraction gave 

good approximations to the response over a restricted range (figures 6g and 6h); however, this 

procedure will produce biased estimates of the concentration at the extreme ends. Instrument 

A fit well to a straight line; however, Instrument B exhibited a slight curvature. Application of 

these calibrations to the restricted ranges identified in figures 6g and 6h yielded identical 

predicted vs. actual [Tm] responses for both instruments using both emission lines (figure 6i). 

The fluctuation scaling in calibrated units (figure 6j) exhibited an upward trend in some cases 
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in the foot of the fluctuation scaling curves. This is not considered significant, as there is some 

upward bias introduced by the logarithmic processing after background subtraction. Over the 

range from 1-300 ppm there was no difference between the instruments when measuring Tm 

using either emission line. The position of the foot of the scaling function varied with 

Instrument B consistently lower than Instrument A, an observation consistent with the 

measured resolution of the two instruments. Instrument B had an FWHM of 0.02 nm for the 

Tm 346.220 nm line while the FWHM for Instrument A was 0.03 nm.  
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Figure 6: Raw and calibrated responses of Instrument A (a, c, e, and g) and B (b, d, f, and h). 

The raw responses to Tm concentrations over 8 orders of magnitude (a and b) showing 

average intensity (filled symbols) and the standard deviations (open symbols) for  the 346.220 

nm (triangles) and 313.126 nm (squares). Lines in panels (a) and (b) correspond to segmented 

regression models for these indicators. Bent cable regression models for the intensity data (c 

and d) gave better fits as indicated by the residual plots (e and f). In the residual plots, the 
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filled symbols correspond to the segmented regression and the open symbols to the bent cable 

regression. Background subtraction followed by linear (g) or polynomial regression (h) 

yielded a useful range of approximately 6 orders of magnitude. The location of the line 

indicates the region over which the regression was valid. Outside this line, some individual 

data points fell below 0 after background subtraction. The calibrated response (i) covered a 

wide range with all lines in all instruments producing nearly identical data. The calibrated 

fluctuation scaling (j) exhibited nearly identical behavior between 1-300 ppm, however some 

variation was observed elsewhere. The dashed line corresponds to the results of calibrated 

response (h).  

 

 

Conclusion 

This fluctuation scaling study demonstrated that the uncalibrated data from ICP-AES systems 

consisting of the measured intensity of light of specific wavelengths emitted from a plasma is 

consistent with an exponential dispersion model. Excepting a region of saturation above 300 

ppm in one instrument, the model applied universally to all the lines monitored by two 

instruments manufactured approximately 10 years apart which were operated in different 

laboratories. The data were universally heteroscedastic and exhibited no evidence of Gaussian 

or Poisson models over any part of the response. Outside the saturated region in the one 

instrument, there was no evidence of summed, segmented, or mixed dispersion models as 

represented by equations 2, 4, 5, and 6. There was evidence of an electronic offset in one of 

the instruments consistent with equation 3.  

 

The raw data fluctuation scaling law exponent suggested the Tweedie models conforming to 

gamma (α = 1) or positive stable (1 < α < 1.5) distributions might apply. Neither was 

particularly satisfying and further evidence for these was not found nor have they been 

proposed previously as important for this measurement. Fluctuation scaling exponents near 1 

can be readily explained by variable sample introduction. For this to explain the current data 

set, the aqueous sample matrix would have to interact with the plasma to create fluctuations 

because background signals sometimes coincided with those from detectable Tm along the 
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scaling law. This indicates a large gap in our current understanding of appropriate statistical 

distributions to model chemical measurements and a robust explanation of the Horwitz 

exponent remains elusive.  It also highlights a great opportunity to improve routine data 

processing methods beyond the homoscedastic assumptions of classical linear regression and 

related procedures. The value of the scaling law exponent (α = 1.09) indicates that the method 

is nearly gain independent (see equation 7) and within some limits nearly concentration 

independent. This characteristic gives robustness to the scaling law suggesting it will be a 

widely reproducible benchmark.   

 

Subtraction of a constant from the mean prior to computing the exponential fluctuation scaling 

model produced an apparently Gaussian zone (α ~ 0) followed by linear scaling consistent 

with many previous reports.
1-3,30

 Here, the shape is created by background subtraction which 

yields a form similar to a root quadratic noise precision model.
11

 Such a shape should not be 

interpreted as having separate noise generation processes as expected from equations 2, 4, 5, 

and 6. This interpretation is clearly incorrect for ICP-AES and is likely to be incorrect in 

many others. Any apparently summed or segmented dispersion relationship exhibiting a 

region conforming to Gaussian behavior must be investigated carefully to determine whether 

it is created by background subtraction or a separate underlying process.  Equations 3, 7, and 

10 can be used to better understand the impact of offsets or instrument pre-processing in a 

data set.  In our data, the background and analyte responses conformed to a single set of 

dispersion and process parameters. By avoiding the subtraction step which produces a 

response of the form of Equation 3, a generalized difference detection limit (DDL) can be 

directly defined on the dispersion model.  

 

For all systems for which a dispersion model can be measured, a DDL can be defined which is 

the minimum distance between two mean values x̅1 and x̅2 required to meet a particular 
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statistical test at a specified confidence level. The strength of this definition is that it avoids 

the calibration steps which may distort an otherwise simple relationship and applies to any 

pair of mean values at any position along a dispersion model not just the region used for 

conventional detection limits. 

 

Both instruments gave a calibrated linear response over approximately 6 orders of magnitude. 

Calibrating the data set in concentration units produced an uncertainty function resembling a 

bent stick or root quadratic models. The position of the bend varied between the two 

instruments and the two emission lines investigated. It also revealed a zone between 1 and 300 

ppm where the reproducibility of the two instruments was identical. Across all the 

presentations, no fluctuation scaling exponent ever matched the Horwitz exponent (α = 0.85) 

and did not generally match the linear portion of the characteristic function with an exponent 

significantly above 1. This inter-laboratory study demonstrates how fluctuation scaling studies 

provide a framework for robustly comparing instrumentation across multiple laboratories.  
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