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a b s t r a c t

Here we investigated the time course underlying differential processing of local and global shape in-
formation during the perception of complex three-dimensional (3D) objects. Observers made shape
matching judgments about pairs of sequentially presented multipart novel objects. Event-related po-
tentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part
structure and global shape configuration – based on predictions derived from hierarchical structural
description models of object recognition. There were three types of different object trials in which sti-
mulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local
parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses
of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the
N1 component between 146–215 ms post-stimulus onset. These negative amplitude deflections were
more similar between objects sharing global shape configuration than local part structure. Differentia-
tion among all stimulus types was reflected in N2 amplitude modulations between 276–330 ms. sLORETA
inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object
discrimination weighted towards local part structure. The results suggest that the perception of 3D object
shape involves parallel processing of information at local and global scales. This processing is char-
acterised by relatively slow derivation of ‘fine-grained’ local shape structure, and fast derivation of
‘coarse-grained’ global shape configuration. We propose that the rapid early derivation of global shape
attributes underlies the observed patterns of N1 amplitude modulations.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human visual system is remarkably good at distinguishing
among visually similar three-dimensional (3D) objects across
changes in the sensory input (e.g., Arguin and Leek, 2003; Bar,
2003; Bar et al., 2006; Cichy et al., 2014; Cristino et al., 2015; Fa-
bre-Thorpe, 2011; Harris et al., 2008; Kirchner and Thorpe, 2006;
Leek, 1998a, 1998b; Leek et al., 2015, 2007; Leek and Johnston,
2006; Tarr and Bulthoff, 1998; Thorpe et al., 1996; VanRullen and
Thorpe, 2001). This ability relies fundamentally on sophisticated
perceptual processes that compute mental representations of 3D
object shape.

In principle, 3D objects comprise different kinds of shape in-
formation (e.g., Arguin and Saumier, 2004; Biederman, 1987; Da-
vitt et al., 2014; Edelman, 1999; Hummel, 2013; Hummel and
06
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Stankiewicz, 1996; Leek et al., 2012a, 2012b, 2009, 2005; Lloyd-
Jones and Luckhurst, 2002; Marr and Nishihara, 1978; Pizlo, 2008;
Reppa et al., 2014; Schendan and Kutas, 2007; Ullman, 2006). This
information varies in the spatial scale at which it is likely to be
computed. For example, we can distinguish between ‘local’ in-
formation sampled from relatively small regions of the sensory
input, and ‘global’ information sampled from larger regions - along
a continuous spatial scale (e.g., from a single image point to an
entire object). Sampling at relatively small scales might include
information about edge boundaries, vertices, surface curvature,
slant, part boundaries and local part shape. In contrast, sampling
at larger scales might include information about global object
properties such as the overall spatial configuration, axes of elon-
gation and symmetry, orientation, aspect ratio and size.

Currently, we know relatively little about how shape informa-
tion across these different scales, or levels of representation, is
computed and integrated during the perception of complex 3D
object shape. Some potentially relevant evidence comes from re-
search with other classes of stimuli. For example, prior studies of
scene perception have shown that observers can rapidly classify
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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scenes based on coarse analyses of global (i.e., low spatial fre-
quency) image content (e.g., Bullier, 2001; Hegde, 2008; Heinz
et al., 1994, 1998; Lamb and Yund, 1993; Peyrin et al., 2010, 2004,
2003; Schyns and Oliva, 1994). Similarly, studies using hierarchical
displays in which, for example, observers report either local or
global information from congruent or incongruent arrays (e.g., a
larger letter H comprised of either small Hs or Ts - Navon, 1977)
have provided evidence for the precedence of global information
processing during visual perception. Other work has shown early
perceptual sensitivity to local and global stimulus structure in
hierarchical displays within 200 ms of display onset (e.g., Beau-
cousin et al., 2013; Han et al., 2000; Proverbio et al., 1998; Ya-
maguchi et al., 2000), asymmetric involvement of the left and
right hemispheres in the processing of local and global display
properties (e.g., Fink et al., 1996; 1997; Kimchi and Merhav, 1991;
Han et al., 2002; Heinz et al., 1994; 1998), and dissociations be-
tween the reporting of local and global elements of complex dis-
plays in patients with unilateral lesions (Robertson et al., 1988;
Robertson and Lamb, 1991).

However, the direct relevance of these studies to our under-
standing of differential processing of local and global properties of
complex 3D object shapes is unclear. For example, scene classifi-
cation is likely to be constrained by contextual information that is
not available to processes involved in computing 3D object shape,
and in previous studies using hierarchical displays, unlike in ev-
eryday object recognition, observers are explicitly instructed to
attend to, and report, incongruent local or global display elements.

Our aim was to investigate the processing of local and global
shape information during the perception of complex 3D objects. In
particular, we tested the hypothesis that the perceptual analysis of
3D object shape should show evidence of differential processing of
local part structure and global shape configuration. To examine
this we used a discrimination task in which observers made shape
matching judgements about pairs of sequentially presented sur-
face rendered, multi-part, novel objects. We recorded ERPs to
provide an online measure of perceptual processing. On each trial,
the stimuli could be the same or different objects. On different
object trials, shape similarity was manipulated in terms of same or
different local part structure and/or global shape configuration.
The rationale was based on comparing evoked potentials for re-
petitions of the same object relative to those for different object
pairs as a function of object shape similarity. ERP responses to
different object pairs that share local part structure, but not global
shape configuration, provide a measure of perceptual sensitivity to
local shape properties. In contrast, responses to different object
pairs that share global shape configuration, but not local part
structure, provide a measure of perceptual sensitivity to global
shape properties. Using this approach we were able to obtain
implicit measures of perceptual sensitivity to local and global
shape information that avoided explicitly directing perceptual
processing towards either level of representation.
2. Methods

2.1. Subjects

Twenty participants (10 male; 19 right handed, Mean age¼26;
SD¼7) took part in the experiment for course credit. None had a
previous history of neurological or psychiatric disorder. All had
normal or corrected-to-normal visual acuity. The study was ap-
proved by the Ethics Committee of the School of Psychology,
Bangor University. The protocol was fully compliant with the
ethics guidelines of the British Psychological Society and the De-
claration of Helsinki (1964). Participants provided written in-
formed consent, and were free to withdraw from the study at any
time.

2.2. Apparatus

EEG signals were acquired using a 64-channel NeuroScan Sy-
nAmps2 system (Neuroscan Inc.) – see below for acquisition and
online/offline filtering parameters. The EEG data were recorded in
a fully shielded and sound attenuated room. Two Dell Precision
380 workstations controlled stimulus presentation and data ac-
quisition. Stimuli were displayed on a Hitachi 17 CRT monitor
running at 1280�1024 (32 bit colour depth) resolution. A stan-
dard QWERTY PC keyboard was used to acquire behavioural re-
sponses. The experiment was programmed and run using E-prime
(v.1.1; www.pstnet.com/eprime).

2.3. Stimuli

The stimuli comprised a total set of 48 CAD generated 3D
surface rendered, four part, novel objects. This comprised 12 sets
each composed of four different objects (see Fig. 1). Each object
comprised four volumetric parts defined by variation among non-
accidental properties (NAPs): Edges (straight vs. curved), sym-
metry of the cross section, tapering (co-linearity) and aspect ratio
(Biederman, 1987). The use of novel object stimuli, rather than
images of familiar common objects, allowed us to carefully control
the geometric properties of the stimulus set, and reduce potential
influences of pre-established visual-semantic associations.

The models were designed in Strata 3D CX software (Strata Inc.
USA) and rendered with shading over smooth surfaces in a mus-
tard yellow colour (RGB: 227, 190, 43). This was done to prevent
obscuring object internal structure (e.g., part boundaries at local
surface discontinuities). The lighting model used a single light
source in the top left quadrant. Stimuli were scaled to have the
same maximum dimensions of 7.5° by 7.5° from a viewing distance
of 60 cm. Stimuli were displayed on a white background to en-
hance figure/ground contrast, and to ensure that object bounding
contour could be clearly identified.

Each of the 12 object sets were comprised of one base (‘target’)
object and three other (‘distracter’) stimuli. The distracters were
created by factorial variation of similarity to their respective target
in terms of local volumetric parts and/or global shape configura-
tion. We refer to the base objects as ‘SS’ stimuli. The distracter
conditions were: ‘SD’ (Same local/Different global – locally similar)
which shared parts but had a different global shape configuration
to the corresponding base object; ‘DS’ (Different local/Same global
– globally similar) which shared global shape configuration but
had different parts; ‘DD’ (Different local/Different global) which
shared neither parts nor global shape configuration with the cor-
responding base. Fig. 2 illustrates the different trial types.

These stimulus contrasts allowed us to examine perceptual
sensitivity to different types of similarity relations in terms of
shared local part structure and/or global shape configuration. Each
stimulus was rendered at a viewpoint chosen to ensure visibility of
the local parts and global spatial configuration, and to minimise
self-occlusion (see Fig. 1). We also created four masks each com-
posed of random configurations of NAP-defined part elements
from the object set. The purpose of the masks was to delineate the
onset of the second stimulus in the trial sequence, and to reduce
the likelihood that participants would be able to make shape
matching judgements based on a direct pixel-to-pixel matching
strategy. For the same reason, stimuli were displayed at different
scales: S1¼600�600 pixels; S2¼400�400 pixels.

2.4. Design and procedure

The design involved manipulating the relationship between

http://www.pstnet.com/eprime


Fig. 1. The 48 item novel object set used in the study.

Fig. 2. Illustration of the stimulus types: Stimulus conditions (SD, DS and DD) are denoted by local and global shape similarity to the base (SS) objects. The locally similar
objects (SD) share local parts but not global configuration. The globally similar objects (DS) share global configuration but not local parts. The DD stimuli share neither local
parts nor global spatial configuration.
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two sequentially presented objects (S1, S2). During the experi-
mental trials S1 always comprised an SS stimulus (see Fig. 1). S2
stimuli could be either SS (‘Same’ response) or one of three
‘Different’ response stimuli: SD (locally similar), DS (globally si-
milar) and DD. In total there were 288 trials divided equally into
two blocks of 144 trials each. Across blocks there were 48 trials per



Fig. 3. The trial structure (see text).
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Fig. 4. Mean RTs for correct responses as a function of stimulus condition (SS –

Same local/Same global – base; SD – Same local/Different global – locally similar; DS
– Different local/Same global – globally similar; DD – Different local/Different glo-
bal). Bars show standard error of the mean.
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condition. In order to avoid a response bias or associated ‘ex-
pectancy’ effects in the ERPs we equated the number of ‘Same’ and
‘Different’ trials by including 96 ‘Same’ response filler trials in each
block. These used 3D object models constructed and rendered
identically to the experimental stimulus set. These items were not
included in the analyses. In total (including fillers) there were 144
‘Same’ and 144 ‘Different’ response trials across blocks, with equal
numbers of trials per condition for the analysis. Fig. 3 shows the
basic trial structure.

A chin rest was used to maintain a viewing distance of 60 cm.
Before the main task, observers completed 12 practice trials using
three additional novel objects and masks that were not included in
the main experiment. Each trial started with a centrally presented
black fixation cross (Courier New, 18 point font; 500 ms) followed
by S1 (1s), a mask (1s) and then S2. S2 remained on the screen
until the participant responded by pressing one of two keys (f or j)
on a standard PC keyboard labelled ‘Same’ and ‘Different’(max 3s).
A blank ISI of 100 ms separated each visible screen display event
(Fixation, S1, Mask, and S2). There was a blank inter-trial interval
of 1 s. At the end of each trial feedback was provided in the centre
of the monitor for 500 ms. This indicated incorrect responses only
accompanied by a short beep. Half of the participants responded
‘Same’ with their left index finger and ‘Different’ with their right
index finger. This order was reversed for the other half. Trial order
was randomised. The total duration of the testing session was
approximately 90 min.

2.5. EEG-ERP acquisition

EEG signals were sampled at 1024 Hz from 64 Ag/AgCl elec-
trodes referenced to Cz and placed according to the extended 10–
20 convention (American Electroencephalographic Society, 1991:
TP7, FT7, AF7, FCz, AF8, FT8, TP8, C5, F5, AF3, CPz, AF4, F6, C6, CP3,
C1, FC3, POz, FC4, C2, CP4, TP9, PO7, P5, Oz, P6, PO8, TP10, P1, PO3,
PO4, P2, FT9, F7, Fp1, AFz, Fp2, F8, FT10, T7, FC5, F3, Fz, F4, FC6, T8,
CP5, C3, FC1, Pz, FC2, C4, CP6, P7, P3, CP1, O1, CP2, P4, P8, Iz, PO9,
O2, PO10). Impedances were below 9 kΩ. Signals were filtered on-
line between 0.01 and 100 Hz, data was filtered off line using a
30 Hz low pass filter with a slope of 12 db/oct. Ocular artifacts
were mathematically corrected using Scan 4.3 software (Neu-
roscan, Inc.) based on an algorithm developed by Gratton et al.
(1983). Remaining artifacts were manually rejected upon visual



Fig. 5. (a) Grand average ERPs (top) and associated topographies (bottom) as a function of stimulus type for the (a) P1 (70–145 ms; recorded at electrode Oz; topography at
115 ms), (b) N1 (146–215 ms; PO8; topography at 180 ms), (c) P2 (216–275 ms, PO4; topography at 250 ms), and (d) N2 (276–330 ms, P8; topography at 310 ms). Arrows
indicate the position of the electrode shown for each component.
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inspection. EEG epochs ranging from �100 (prior to S2 onset) to
1000 ms relative to stimulus onset were baseline corrected in re-
ference to pre-stimulus activity before ERP averaging. Finally, ERPs
were re-referenced to the global average reference. Peak detection
was carried out automatically, time-locked to the latency of the
peak at the electrode of maximal amplitude on the grand average
ERP (Picton et al., 2000). Triggers were recorded during EEG data
acquisition marking the onset of S1 and S2, stimulus condition and
response accuracy.

2.6. ERP analysis

The four main early visual ERP components P1, N1, P2 and N2,
were identified based on the topography, deflection and latency
characteristics of the respective grand average ERPs time-locked to
stimulus presentation. Epochs of interest for each component
were defined on the basis of deflection extrema in the mean global
field power (MGFP) (Picton et al., 2000). Peak detection was time-
locked to the electrode of maximal amplitude for each component;
P1: 70–145 ms maximal at electrode Oz (mean peak 115 ms); N1:
146–215 ms maximal at electrode PO8 (mean peak 180 ms); P2:
216–275 ms maximal at electrode P3 (mean peak 245 ms); and N2:
276–330 ms maximal at electrode PO8 (mean peak 305 ms). Peak
mean amplitudes and latencies were analysed using Stimulus Type
(SS, DS, SD, DD)�ELECTRODE LATERALITY (right, left) as factors in
repeated measures ANOVA. Electrodes used for each component
were: P1: O1, Oz, O2; N1: PO7, O1, P7, PO8, O2, P8; P2: P1, P3, PO3,
P2, P4, PO8; and N2: P3, P5, PO3, PO7, P4, P6, PO4, PO6. Channel
selection was based on initial inspection of the topographies with
electrode clusters centred on the site showing the peak



Fig. 5. (continued)

1 The patterns of behavioural and ERP data for the left-handed participant and
the group were the same across conditions.
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amplitudes within the selected time window for each component
with a corresponding cluster in the opposite hemisphere. Green-
house-Geisser corrections were applied to all ERP data analyses.
Unless otherwise stated only significant main effects and interac-
tions are reported where corrected αo0.05. Exact values of p are
reported, except where po0.001 (two tailed).

2.7. Source localisation

To explore the underlying neural generators for the scalp to-
pographies we used the Standardised Low Resolution Brain Elec-
tromagnetic Tomography linear inverse solution (sLORETA; Pasc-
ual-Marqui, 2002). sLORETA provides a single linear solution that
has been shown to estimate the underlying source of surface EEG
topographies with high localisation accuracy (e.g., Sekihara et al.,
2005; Vitacco et al., 2002; Wagner et al., 2004). Intra-cerebral
cerebral volume is partitioned into 6239 voxels of 5 mm3 spatial
resolution, and standardized current density per voxel is com-
puted within a realistic head model (Fuchs et al., 2002) using the
Montreal Neurological Institute MNI152 template (Jurcak et al.,
2007; Mazziotta et al., 2001).
3. Results

3.1. RTs and accuracy

Overall accuracy was high (M¼96.69%, SD¼1.25). There were
no significant differences in mean accuracy across conditions.
Analyses of RTs involved data from correct responses only.1

Fig. 4 shows mean RTs per condition.
A one-way ANOVA across conditions (SS, DS, SD, DD) was sig-

nificant, F (4, 16)¼62.11, po0.001, ηp2¼0.93. Mean RTs for SS base
objects (M¼651.28 ms, SD¼183.31) were significantly faster than



Fig. 5. (continued)
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the SD (locally similar: M¼709.85 ms, SD¼191.54), t (19)¼3.19,
p¼ .004; and DS (globally similar: M¼730.07 ms, SD¼198.75), t
(19)¼5.97, po0.001; different object conditions, but not DDs
(M¼685.80 ms, SD¼180.86), t (19)¼1.7, ns.). There was also a
significant difference between SD (locally similar) and DS (globally
similar) stimuli, (t (19)¼2.36, p¼02) indicating faster responses to
SD (locally similar) over DS (globally similar) objects.

3.2. Event-related potentials

3.2.1. Standard waveform analyses
Peak detection was time-locked to the electrode of maximal

amplitude for each component within the epochs of interests (see
above). Fig. 5a–d shows the grand average ERP traces and asso-
ciated topographies for each of the four components of interest
(P1, N1, P2, N2).

3.2.1.1. P1 (70–145 ms)
3.2.1.1.1. Latencies. Mean peak latencies were: SS¼114.5 ms

(SD¼8.2), SD¼(locally similar) 117 ms (SD¼7.39), DS (globally
similar)¼115.7 ms (SD¼8.2) and DD¼115.9 ms (SD¼7.27). There
were no significant differences between conditions.
3.2.1.1.2. Amplitudes. There were no significant differences.

3.2.1.2. N1 (146–215 ms)
3.2.1.2.1. Latencies. Mean peak latencies were: SS¼181 ms

(SD¼11.5), SD (locally similar)¼183.4 ms (SD¼11.86), DS (globally
similar)¼180.3 ms (SD¼11.69) and DD¼183.65 ms (SD¼9.56).
There were no significant differences.

3.2.1.2.2. Amplitudes. There were significant main effects of
Stimulus type (SS, SD, DS, DD), F (3, 19)¼15.66, po0.001,
ηp2¼0.45, and Laterality, F (1, 19)¼4.821, p¼ .041, ηp2¼0.20, but
no significant interactions. Further planned comparisons showed
significant differences between: SS-SD (locally similar): F (1, 19)¼
24.64, po0.001, ηp2¼0.565; SS-DS (globally similar): F (1, 19)¼
5.24, p¼ .034, ηp2¼0.216; SS-DD: F (1, 19)¼29.28, po0.001,
ηp2¼0.60; SD-DS: F (1, 19)¼9.988, p¼ .005, ηp2¼0.345; DS-DD: F
(1, 19)¼17.844, po0.001, ηp2¼0.60, but not SD-DD.

3.2.1.3. P2 (216–275 ms)
3.2.1.3.1. Latencies. Mean peak latencies were: SS¼244.5 ms

(SD¼17.63), SD (locally similar)¼252.95 ms (SD¼19.65), DS
(globally similar)¼248.6 ms (SD¼15.51) and DD¼253.6 ms
(SD¼19.67). There were no significant differences.
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3.2.1.3.2. Amplitudes. There was a significant main effect of
Stimulus type, F (3, 19)¼6.19, p¼ .002, ηp2¼0.24, but no main
effect of laterality and no interaction. Further planned contrasts
showed significant differences between: SS-SD (locally similar): F
(1, 19)¼7.47, p¼ .013, ηp2¼0.28; SS-DD: F (1, 19)¼8.94, p¼ .008,
ηp2¼0.32; SD-DS: F (1, 19)¼6.35, p¼ .021, ηp2¼0.25; DS-DD: F (1,
19)¼11.64, p¼ .003, ηp2¼0.38. The contrasts between SS-DS
(globally similar) and SD-DD were not significant.

3.2.1.4. N2 (276–330 ms)
3.2.1.4.1. Latencies. Mean peak latencies were: SS¼300.15 ms

(SD¼13.30), SD (locally similar)¼298.75 ms (SD¼16.62), DS
(globally similar)¼305.2 ms (SD¼11.83) and DD¼299.15 ms
(SD¼15.11). There were no significant differences.

3.2.1.4.2. Amplitudes. There was a significant main effect of
Stimulus type, F (3, 19)¼20.09, po0.001, ηp2¼0.51, but no main
effect of laterality and no interaction. Further planned contrasts
showed significant differences between all pairs of conditions: SS-
SD (locally similar): F (1, 19)¼23.40, po0.001, ηp2¼0.55; SS-DS
(globally similar): F (1, 19)¼7.29, p¼ .014, ηp2¼0.27; SS-DD: F (1,
19)¼28.03, po0.001, ηp2¼0.59; SD-DS: F (1, 19)¼16.00,
po0.001, ηp2¼0.45; SD-DD: F (1, 19)¼4.81, p¼ .04, ηp2¼0.20; DS-
DD: F (1, 19)¼23.717, po0.001, ηp2¼0.72.

There was no statistical evidence of any pre-motor effects
whether in the form of a slow negativity or a sharp ipsilateral
positivity corresponding to the hand of response.

3.2.2. Source localisation analysis
In light of the significant laterality effect on N1 amplitudes, we

wanted to explore potential differences in the focal neural gen-
erators of the processes underlying processing of SD (locally si-
milar) and DS (globally similar) objects during the N1 time win-
dow. Fig. 6 shows the sLORETA inverse solutions for the N1 com-
ponent using 5 mm slices on the MNI2009 T1 scan from Z¼�20
to Z¼0. The SD and DS conditions are highlighted in the dashed
red box for ease of comparison. This shows a pattern of asym-
metrical bilateral activity across conditions. In particular, the DS
(globally similar) condition elicited greater activity relative to the
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SD (locally similar) condition in the left posterior temporal-occi-
pital cortex encompassing the medial lingual gyrus and posterior
fusiform gyrus. To explore this further sLORETA was used to
compute voxel-wise contrasts between the SD (locally similar) and
DS (globally similar) conditions during the N1 time window. This
was based on 5000 permutations using statistical non-parametric
mapping tests for paired samples with correction for multiple
comparisons (Holmes et al., 1996). Voxels with significant differ-
ences (p o0.05, corrected; t-threshold¼6.58) between SD (locally
similar) and DS (globally similar) were located in MNI coordinates.
Table 1 lists locations of the voxels exceeding criterion threshold
for significance. For each region the MNI coordinates, Brodmann
area and associated t-values are given.

Fig. 7 shows the t-map distribution using the sLORETA head
model. This indicates that processing of the DS (globally similar)
relative to SD (locally similar) stimuli is more strongly associated
with left hemisphere posterior temporal-occipital sites. Finally, we
also computed the inverse solutions associated with the N2
component during the 276–330 ms time window. During this time
window the ERP amplitudes for each condition were reliably dis-
tinguishable from each other, indicating a possible temporal
marker for image classification.
Fig. 8 shows the sLORETA inverse solutions for the N2 com-
ponent plotted using the MNI1152-2009 T1 template for each
stimulus condition. This shows very similar bilateral patterns of
activity across conditions that are more strongly localised to the
right inferotemporal cortex. Unlike the N1, voxel-wise contrasts
between the SD (locally similar) and DS (globally similar) condi-
tions during the N2 showed no statistically significant differences.

To further explore the N2 inverse solutions we also used
sLORETA to compute pairwise voxel-by-voxel contrasts between
the SS/SD (locally similar), SS/DS (globally similar) and SS/DD
conditions.

The t maps (showing locations of maximal values) for these
contrasts are shown in Fig. 9. The SS/DS (globally similar) contrast
showed significant (po0.05) corrected differences in activity
(SS4DS) along the occipito-temporal ventral pathway of the right
hemisphere encompassing the inferior and middle temporal gyri,
fusiform gyrus and parts of the parahippocampal gyrus. Neither
the SS/SD (locally similar) nor SS/DD contrasts showed maximum t
values exceeding the corrected significance threshold (ps40.1).
An additional analysis contrasting the SD (locally similar) and DS
(globally similar) conditions also failed to show any significant
differences.



Table 1
Summary of regions showing significantly greater activity in the DS relative to the
SD condition during the N1 time window (146–215 ms). All statistics are derived
from the sLORETA inverse solutions (po0.05, corrected, t-threshold¼6.58). The
table shows the anatomical label, Brodmann area (BA), MNI coordinates and as-
sociated t-value of the voxels within each region showing maximal values.

Region BA X Y Z t-value

Left hemisphere
Occipital lobe Fusiform gyrus 18 �20 �95 �20 �7.12
Occipital lobe Fusiform gyrus 18 �25 �95 �20 �6.83
Temporal lobe Fusiform gyrus 37 �55 �55 �25 �6.77
Temporal lobe Fusiform gyrus 37 �50 �60 �25 �6.62
Temporal lobe Fusiform gyrus 37 �55 �50 �25 �6.60
Temporal lobe Fusiform gyrus 37 �50 �55 �25 �6.60

Occipital lobe Lingual gyrus 18 �10 �100 �15 �7.77
Occipital lobe Lingual gyrus 18 �5 �95 �20 �7.51
Occipital lobe Lingual gyrus 17 �10 �95 �20 �7.38
Occipital lobe Lingual gyrus 17 �15 �95 �20 �7.32
Occipital lobe Lingual gyrus 17 �10 �95 �15 �7.03
Occipital lobe Lingual gyrus 18 10 �100 �10 �6.97
Occipital lobe Lingual gyrus 18 �10 �100 �10 �6.88
Occipital lobe Lingual gyrus 17 �15 �95 �15 �6.86
Right hemisphere
Occipital lobe Fusiform gyrus 18 20 �95 �20 �6.68

Occipital lobe Lingual gyrus 18 5 �95 �15 �7.07
Occipital lobe Lingual gyrus 17 10 �95 �15 �6.80
Occipital lobe Lingual gyrus 18 15 �100 �10 �6.75
Occipital lobe Lingual gyrus 17 15 �95 �15 �6.69

2 At the same time, it remains unclear what specific aspects of global shape
configuration underlie the early perceptual sensitivity found on the N1 component.
This could reflect the 2D global outline derived from bounding contour, the 3D
spatial configuration of object parts or (most likely) both (e.g., Arguin and Saumier,
2004; Behrmann et al., 2006; Behrmann and Kimchi, 2003; Lloyd-Jones and Luc-
khurst, 2002).
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4. Discussion

The main findings can be summarised as follows: First, the ERP
data showed differential sensitivity to local part structure and
global shape configuration as early as the N1 component on pos-
terior electrodes 146–215 ms post-stimulus onset. Second, the
patterns of amplitude modulation during the N1 showed greater
similarity between SS (base) and DS (globally similar) objects, than
between SS (base) and either SD (locally similar) or DD objects
that shared neither local parts nor global shape configuration.
Third, the behavioural data showed longer RTs in the DS (globally
similar) than the SD (locally similar) condition, and also longer RTs
in the SD (locally similar) relative to SS (same object) trials. Fourth,
an N2 component between 276 and 330 ms showed differentiation
in ERP amplitude among all stimulus conditions. Fifth, source lo-
calisation analyses on the ERP data for the N1 time window
showed asymmetric bilateral activity with stronger left hemi-
sphere involvement in the DS (globally similar) relative to the SD
(locally similar) condition. This left hemisphere activity was lar-
gely associated with left posterior temporal-occipital cortex en-
compassing the medial lingual and posterior fusiform gyri. Ana-
lyses of the N2 showed stronger activity in the right occipito-
temporal ventral pathway for the SS versus DS (globally similar)
condition.

4.1. Early differential sensitivity to local part structure and global
shape configuration

These findings support the hypothesis that the perception of
complex 3D object shape involves differential processing of local
part structure and global shape configuration. This conclusion is
supported by three empirical observations from the current study:
the differential sensitivity of N1 ERP amplitudes to object simi-
larity defined by local part structure and global shape configura-
tion; the different patterns of behavioural responses to the SD
(locally similar) and DS (globally similar) conditions reflected in
RTs; and the differences in the distributions of cortical activation
revealed by the source localisation analysis. The rationale was that
ERP amplitudes can be taken to reflect the degree of perceptual
similarity between stimulus pairs in terms of the local part
structure and global shape configuration. During the N1 the ne-
gative deflections for the SS base objects were more similar to the
DS (globally similar) condition than to the SD (locally similar)
condition. The behavioural response data also showed that ob-
servers took longer to discriminate between SS (base) and DS
(globally similar) objects, than between SS (base) and SD (locally
similar) objects. This overall pattern extended into the P2. Since
the DS (globally similar) condition shares global shape configura-
tion with the SS objects we take these data to reflect (a) early
differential sensitivity to global and local shape properties, and
(b) more pronounced sensitivity to global shape attributes.

More broadly, the results are consistent with theoretical mod-
els that explicitly incorporate distinct levels of representation of
higher-order part structure and global spatial configuration (e.g.,
Behrmann et al., 2006; Behrmann and Kimchi, 2003; Biederman,
1987; Hummel and Stankiewicz, 1996; Marr and Nishihara, 1978).
In contrast, the findings challenge models which do not attribute
functional significance to these local and global shape properties
(e.g., Serre et al., 2007; Ullman, 2006).2 One interpretation of our
results is that processing of local and global shape information
during the perception of 3D object shape proceeds in a ‘global-to-
local’ or ‘coarse-to-fine’ order – consistent with other proposals
related to the coarse-to-fine analysis of scene context across spa-
tial scales (e.g., Hegde, 2008; Lamb and Yund, 1993; Peyrin et al.,
2003; 2004; 2010; Schyns and Oliva, 1994), and global precedence
effects in hierarchical displays (e.g., Navon, 1977). This hypothesis
also fits with our observation of late sensitivity to shared local part
structure: the SD (locally similar) objects were indistinguishable
from the DD objects (in terms of ERP amplitude) during the N1,
and were only uniquely identifiable during the N2 between 276–
330 ms post-stimulus onset. The ‘coarse-to-fine’ hypothesis need
not imply serial analyses of visual input, but is rather more likely,
in the present context, to reflect parallel derivation of local and
global shape structure across different time courses (e.g., Bar,
2003; Bar et al., 2006; Bullier, 2001; Heinz et al., 1994, 1998;
Peyrin et al., 2003; 2004; 2010). On this account, rapid, coarse,
analyses support the derivation of global shape information more
quickly than fine-grained local shape information. Image classifi-
cation decisions may be taken whenever sufficient information has
accumulated from either or both processing streams – and in some
instances may be based solely on fast, coarse-grained, global shape
properties. Such processing may potentially underlie previous
observations of ultra-rapid image classification (e.g., Kirchner and
Thorpe, 2006; Mouchetant-Rostaing and Giard, 2003; Oram and
Perrett, 1992; Thorpe et al., 1996; VanRullen and Thorpe, 2001;
Vogels, 1999). Such parallel perceptual analyses of local and global
shape attributes provides a further source of recurrent information
flow that is consistent with other recent proposals regarding the
interaction between feedforward ‘bottom-up’ analyses of sensory
input, and ‘top-down’ constraints on perceptual processing (e.g.,
Bar, 2003; Bar et al., 2006; Goddard et al., 2016; Schendan and
Ganis, 2015).

In other work, ERP modulations related to local and global
processing in hierarchical display (i.e., Navon) tasks have been
reported to occur as early as the posterior P1 (Han et al., 2000), but



Fig. 7. sLORETA inverse solutions for a pairwise voxel-by-voxel contrast for the SD (locally similar) vs DS (globally similar) conditions during the N1 (180 ms post-stimulus
onset). Significant t values (corrected, po0.05) indicated by the colour coding and plotted in the head model. The axial section shows the left hemisphere on the right (and
vice versa). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

E.C. Leek et al. / Neuropsychologia 89 (2016) 495–509 505
more frequently around N1/P2 components approximately 150–
240 ms post-stimulus onset (e.g., Beaucousin et al., 2013; Pro-
verbio et al., 1998; Yamaguchi et al., 2000). These latter findings
are broadly consistent with the present results. However, as noted
earlier, it is difficult to determine whether the local/global pro-
cesses that support performance with hierarchical displays are the
same as those involved in the perceptual analysis of 3D object
shape at local and global spatial scales. In the standard Navon
paradigm, unlike in the present study and in everyday object re-
cognition, observers are explicitly instructed to attend to, and re-
port, incongruent local or global display elements. This incon-
gruence in hierarchical displays is not a typical property of com-
plex 3D objects found in the real world. Even so, our finding of
differential N1 sensitivity to the local and global structure of 3D
objects converges well with some of this previous work using
hierarchical displays, suggesting that these very different tasks
(and stimuli) may be tapping into common underlying perceptual
mechanisms for the processing of local and global properties of
visual sensory input.

4.2. Source localisation

We used source localisation (sLORETA) to provide converging
evidence of differential processing. Given the low spatial resolu-
tion of sLORETA, caution should be taken when interpreting ana-
lyses of the inverse solutions. Even so, the source localisation so-
lutions suggest that the differential sensitivity to local part and
global shape configuration found during the N1 originates from
partially lateralised neural generators. In particular, we found
evidence of asymmetric bilateral activity with stronger left
hemisphere involvement in the DS (globally similar) relative to the
SD (locally similar) condition. This left hemisphere activity was
largely associated with left posterior temporal-occipital cortex
encompassing the medial lingual gyrus and posterior fusiform
gyrus. Our interpretation of these data is based on a consideration
of the types of information that would be most relevant for dis-
tinguishing between objects in each condition. Perceptual dis-
crimination between SS and DS (globally similar) objects might be
assumed to be more reliant on analyses of local part structure than
global shape configuration - since only the former uniquely dis-
tinguishes the SS (base) and DS (globally similar) stimuli. In this
sense, SS-DS stimulus discrimination can be considered to be ‘lo-
cally weighted’. In contrast, discrimination between SS and SD
(locally similar) objects might be assumed to be more reliant on
analyses of global shape configuration – and the SS-SD
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Fig. 8. sLORETA inverse solutions for the N2 (310 ms post-stimulus onset) component plotted using the MNI1152–2009 T1 template for each stimulus condition. Axial slices
(5 mm) shown at Z¼�20 to Z¼0. Colour coding shows standardized current density. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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discrimination globally weighted. Thus, the stronger left hemi-
sphere activity associated with SS-DS discriminations (relative to
SS-SD) may be taken to reflect the weighting of perceptual dis-
crimination in this condition towards local part structure. Inter-
estingly, the SS (‘Same’ object trials) condition elicited pre-
dominantly right hemisphere activity, and was associated with
relatively short RTs. This pattern might be assumed to reflect the
predominant use of global shape information during ‘Same’ object
trials based on a relatively fast, coarse, analysis of shape in-
formation from global processing channels – a hypothesis that is
also consistent with slower RTs for rejecting objects in the DS
(globally similar) condition.

These findings broadly converge with evidence from functional
imaging studies of local and global processing using hierarchical
displays (e.g., Fink et al., 1996; 1997), scenes (e.g. Peyrin et al.,
2003; 2004; 2010), and work with neuropsychological populations
with unilateral brain lesions (e.g., Robertson et al., 1988; Robertson
and Lamb, 1991) - which have associated perceptual analyses at
local spatial scales more strongly with the left hemisphere. In the
current study we found this pattern in a task context involving the
perception of complex 3D objects that did not explicitly require
observers to attend to, or selectively process, local or global shape
information. This supports the hypothesis that the perceptual
mechanisms involved in analyses of sensory information across
local and global spatial scales may be domain general – that is, not
specific to particular stimulus classes.

The left lingual gyrus has been implicated in the processing of
face parts (e.g., McCarthy et al., 1999), and shows sensitivity to
word length during reading (e.g., Mechelli et al., 2000) – consistent
with its involvement in fine scale, parts-based, analyses of sensory
input. Of potential relevance also is the proximity of significant
voxels in the fusiform gyrus to posterior area V4 (e.g., Bartels and
Zeki, 2000 – Table 1; Brincat and Connor, 2004; Pasupathy and
Connor, 2001; Roe et al., 2012; Schiller, 1993; Tootell et al., 1998).
V4 is a functionally complex area and the subject of considerable
current interest. It is thought to play some role in the perception of
shape (and other) features during object recognition (e.g., Brincat
and Connor, 2004; Pasupathy and Connor, 2001; Roe et al., 2012).
Evidence from lesion studies suggests that damage to V4 in
monkeys can lead to difficulties in the discrimination of object



Fig. 9. sLORETA inverse solutions for the difference contrasts between the: (a) SS/SD (locally similar); (b) SS/DS (globally similar) and (c) SS/DD conditions during the N2
(310 ms post-stimulus onset). Co-registered t map plots are colour coded and overlaid onto the ‘Colin27’ T2 template. The x, y, z coordinate, and t value, of the voxels with the
largest difference for each contrast are shown. Note that only the SS/DS (globally similar) contrast exceeded the criterion level of significance (po0.05) after correction. Maps
for the SS/SD (locally similar) and SS/DD contrasts are included for completeness. a. SS/SD (locally similar), b. SS/DS (globally similar), c. SS/DD. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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shape (e.g., Merigan and Pham, 1998; Schiller, 1993), and in hu-
mans to impairments in the integration of stored ‘top-down’
knowledge and ‘bottom-up’ perceptual analyses of sensory input
during 3D object recognition (e.g., Leek et al., 2012a, 2012b).

4.3. Later components: the N2

Finally, although our primary focus has been on the early dif-
ferential processing of local and global object shape information
reflected in N1/P2 amplitude modulations, the ERPs and inverse
solutions for the N2 component merit further discussion. The N2
occurred between 276–330 ms post-stimulus onset and, unlike the
N1, showed differentiation in ERP amplitudes between all condi-
tions. One interpretation of this effect in the context of the current
task is that it reflects processes related to perceptual discrimina-
tion among stimulus pairs. The inverse solutions showed broadly
similar bilateral patterns across conditions with greater activity in
the right inferior occipito-temporal ventral object pathway. Ad-
ditionally, further analyses showed stronger activity in the right
inferior and middle temporal gyri and fusiform gyrus in the SS
than DS (globally similar) condition. We might hypothesise that
this pattern of activity reflects processes related to the perceptual
matching of global shape attributes.

It is also relevant to consider the similarity of these findings to
the Ncl (or ‘closure negativity’) component reported in other stu-
dies (e.g., Doniger et al., 2000,, 2001; Sehatpour et al., 2006). The
Ncl refers to a bilateral occipito-temporal negativity that com-
mences around 230 ms post-stimulus onset and typically peaks
around 290 ms. It is typically observed in tasks of object identifi-
cation involving the presentation of degraded stimuli, but has also
been related to contour integration (Butler et al., 2013). The Ncl
correlates with identification accuracy and is thought to reflect the
operation of mechanisms associated the recurrent processing of
incomplete sensory input during object recognition (Doniger et al.,
2000, 2001). The Ncl (and P1, but not the N1) has also been shown
to be reduced in schizophrenic patients consistent with a deficit in
recurrent processing related to the perceptual integration of local
and global image features (e.g., Butler et al., 2013; Doniger et al.,
2002). Although the Ncl is typically associated with bilateral oc-
cipito-temporal activation and our N2 also comprised stronger
right hemisphere activity across all stimulus conditions, one might
speculate (Doniger, personal communication) that the differential
ERP amplitude modulations found during the N2 relate to re-
current activity supporting the integration of shape information
across spatial scales during both object recognition (i.e., matching
perceptual input to a long-term memory representation) and, as in
the current task, determining the shape equivalence of two per-
ceptual inputs.
5. Conclusions

We investigated the time course of differential perceptual
processing of local and global shape information during the per-
ception of 3D objects. Observers made shape matching judgments
about pairs of sequentially presented 3D multipart novel objects.
ERPs were used to measure online perceptual sensitivity to 3D
shape differences in terms of local part structure and global shape
configuration. Analyses of the ERP waveforms showed differential
sensitivity to shape similarity defined by local part and global
shape configuration as early as the N1 component approximately
146–215 ms post-stimulus onset, with differentiation of amplitude
modulations among all stimulus types at the N2 component
around 276–330 ms post-stimulus onset. Linear inverse solutions
computed using sLORETA showed hemispheric asymmetry with
stronger involvement of left posterior occipital-temporal cortex in
the processing of local part structure. We propose that 3D object
shape perception involves parallel processing of information at
local and global scales. This processing is characterised by rela-
tively slow derivation of ‘fine-grained’ local shape structure, and
fast derivation of ‘coarse-grained’ global shape configuration.
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