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Abstract 
High energy price and the increasing requirements of quality and low cost of 

products have created an urgent need to implement new technologies in current 

automated manufacturing environments. Condition monitoring systems of 

manufacturing processes have been recognised in recent years as one of the essential 

technologies that provide the competitive advantage in many manufacturing 

environments.  

This research aims to develop an effective sensor fusion model for turning processes 

for the detection of tool wear. Multi–sensors combined with a novelty detection 

algorithm and Learning Vector Quantisation (LVQ) neural networks are used in this 

research to detect tool wear and provide diagnostic and prognostic information. 

A novel approach, termed ASPST, (Automated Sensor and Signal Processing 

Selection System for Turning) is used to select the most appropriate sensors and 

signal processing methods. The aim is to reduce the number of sensors needed in the 

overall system and reduce the cost. The ASPST approach is based on simplifying 

complex sensory signals into a group of Sensory Characteristic Features (SCFs) and 

evaluating the sensitivity of these SCFs in detecting tool wear. A wide range of 

sensory signals (cutting forces, strain, acceleration, acoustic emission and sound) and 

signal processing methods are also implemented to verify the capability of the 

approach. A cost reduction method is also implemented based on eliminating the 

least utilised sensor in an attempt to reduce the overall cost of the system without 

sacrificing the capability of the condition monitoring system. The experimental 

results prove that the suggested approach provides a responsive and effective 

solution in monitoring tool wear in turning with reduced time and cost. 

 I



Acknowledgements 

 

From the initial stages of this work, to the final draft, I owe an immense debt of 

gratitude to my director of studies Dr. Amin Al-Habaibeh for his careful guidance, 

continued encouragement and support throughout my research. 

I could not have imagined having a better advisor and mentor for my PhD, and 

without his common-sense, knowledge, perceptiveness and assistances I would never 

have finished. He will be my ideal mentor in my career. 

 

I would like express my sincere appreciation to Professor Daizhong Su for his 

advice, motivational support, kindness and friendship. 

 

I would also like to thank all the rest of the academic and support staff of the 

Advance Design and Manufacturing Engineering Centre (ADMEC) for their 

kindness and friendship. 

 

I would also like to acknowledge my parents, brothers and sisters for their constant 

encouragement for everything. 

 

My highest appreciation goes to my wife for her unconditional support and love that 

continuously fed my strength and desire to succeed. She was beside me regardless of 

good and bad times making my life happy and complete and my sons Homood, 

Mohammad, Ahmad and lovely daughters Tahreer, Shaima, Amnah and Fatmah  

who filled my life with joy. 

 

Finally, I thank all those who have honoured me with their friendship, guided me 

with wisdom, helped me with their kindness, and tolerated me out of their love. 

 II



List of Tables 
 
Table 5.1: Optical Sensor. 64 

Table 5.2: Force Sensor. 65 

Table 5.3: Vibration Sensor. 65 

Table 5.4: Acoustic Emission Sensor. 66 

Table 5.5: Sensor-Fusion. 66 

Table 9.1: Example of ASM for Tool 1. 121 

Table 9.2: ASM matrix for tool wear test. 126 

Table 9.3: First system with the SCFs sensitivity (SCIV). 129 

Table 9.4: Second system with the SCFs sensitivity (SCIV). 129 

Table 9.5: Third system with the SCFs sensitivity (SCIV). 129 

Table 9.6: Sensors utilisation. 132 

Table 9.7: The optimised system (1st and 2nd system). 132 

Table 10.1: Example of ASM for Tool 1. 140 

Table 10.2: ASM matrix for tool wear test. 143 

Table 10.3: First system with the SCFs sensitivity (SCIV). 145 

Table 10.4: Second system with the SCFs sensitivity (SCIV). 145 

Table 10.5: Third system with the SCFs sensitivity (SCIV). 146 

Table 10.6: Sensors Optimisation. 148 

Table 10.7: The optimised system (from systems 1 and 2). 148 

Table 10.8: Example of ASM for Tool 1. 155 

Table 10.9: ASM matrix for tool wear test. 158 

Table 10.10: First system with the SCFs sensitivity. 160 

Table 10.11: Second system with the SCFs sensitivity. 160 

Table 10.12: Third system with the SCFs sensitivity. 161 

Table 10.13: Sensors utilisation. 162 

Table 10.14: The optimised system (from systems 1 and 2). 163 

Table 11.1 Part of the ASM matrix (using SCIV). 181 

Table 11.2: First system with the SCFs sensitivity. 183 

Table 11.3: Second system with the SCFs sensitivity. 184 

 III



Table 11.4: Third system with the SCFs sensitivity. 184 

Table 10.5: System 26 with the SCFs sensitivity. 184 

Table 11.6: Sensor optimisation. 187 

Table 11.7: The optimised system (form 1st and 2nd systems). 187 

 

 IV



List of Figures 
Figure 2.1:  (a) Orthogonal cutting; (b) Oblique cutting. 10 
Figure 2.2: Orthogonal cutting. 11 
Figure 2.3: Deformation zones in metal cutting. 12 
Figure 2.4: Oblique cutting geometry. 12 
Figure 2.5: Terms used in metal cutting. 13 
Figure 2.6: Single-point tool classifications 14 
Figure 2.7: Turning schematics. 20 
Figure 2.8: Nomenclature for right hand-cutting tool. 22 
Figure 3.1: Schematic of the effect wear on the tool geometry. 25 
Figure 3.2: Schematic of edge depression due to plastic deformation. 27 
Figure 4.1: Stages of a condition monitoring system for turning. 37 
Figure 4.2: Signals emitted from the machining process. 39 
Figure 4.3 Sensor market developments for the major application sector. 40 
Figure 5.1: Cutting forces in turning operations. 53 
Figure 6.1: The Basic Structure of the ASPST approach. 77 
Figure 6.2: Simplification of complex sensory signal into simple SCFs. 79 
Figure 6.3: Example of two measuring sensitivity methods of the SCFs. 80 
Figure 6.4: Examples of SCFs using linear regression and SCIV method 81 
Figure 6.5: Structure of sensors, signal processing methods and SCFs. 83 
Figure 6.6: Diagram of the basic structure of the subsequent chapters. 88 
Figure 7.1: Photo of the Kistler Dynamometer (9257). 92 
Figure 7.2: Photo of the Kistler accelerometer. 93 
Figure 7.3: Photo of the Kistler AE sensor (8152B). 95 
Figure 7.4: Kistler strain sensor (9232A). 95 
Figure 7.5: Sound sensor (microphone). 96 
Figure 7.6: The application of novelty detection. 102 
Figure 7.7: Artificial neural networks. 105 
Figure 7.8: LVQ network architecture. 108 
Figure 8.1: Colchester Student (1800) Lathe Machine. 109 
Figure 8.2: Schematic diagram of the complete monitoring system. 111 
Figure 8.3: The sensors installed on the lathe machine. 112 
Figure 8.4: Shows the equipment used in the monitoring system. 113 
Figure 8.5: The configuration panel used for channel selection. 114 
Figure 8.6: An example of a saved data file. 115 
Figure 9.1: The basic principles of the ASPST approach. 117 
Figure 9.2: Schematic diagram of the monitoring system. 118 
Figure 9.3: The machining signals for fresh tool. 119 
Figure 9.4: The machining signals for worn tool. 120 
Figure 9.5: Example of the SCFs of the signals. 120 
Figure 9.6: Example of the SCFs images of the signals. 121 
Figure 9.7: The practical steps of the ASPST approach. 123 
Figure 9.8: Example of high sensitivity features. 125 
Figure 9.9: Example of low sensitivity features. 126 
Figure 9.10: Example of the SCFs images of the signals using SCIV. 127 
Figure 9.11: Comparison between the systems sensitivity. 128 

 V



Figure 9.12: The sensors set-up used to calculate the cost of the system. 131 
Figure 9.13: As values for the sensory signals. 134 
Figure 9.14: Asp values for the signal processing methods. 134 
Figure 10.1:   A schematic diagram of the monitoring system. 138 
Figure 10.2: Signals from a fresh tool. 139 
Figure 10.3: Signals for the worn tool. 139 
Figure 10.4: Example of the SCFs images of the signals. 140 
Figure 10.5: Example of high sensitivity SCF. 142 
Figure 10.6: Example of low sensitivity SCF. 142 
Figure 10.7: Example of the SCFs images of the signals using SCIV. 143 
Figure 10.8: Comparison between the systems sensitivity. 144 
Figure 10.9: The sensor set-up used to calculate the cost of the system. 147 
Figure 10.10: As values for the sensory signals. 149 
Figure 10.11: Asp values for the signal processing methods. 149 
Figure 10.12: The result of the LVQ neural network to detect tool wear. 150 
Figure 10.13: Sensory Characteristic Features of tool 1. 151 
Figure 10.14: Sensory Characteristic Features of tool 2. 152 
Figure 10.15:   Photo of the sensors installed on the machine. 153 
Figure 10.16: Signals from a fresh tool. 154 
Figure 10.17: Signals from a worn tool. 154 
Figure 10.18: Example of the SCFs images of the signals. 155 
Figure 10.19: Example of two sensory features with high sensitivity. 157 
Figure 10.20: Example of two sensory features with low sensitivity. 157 
Figure 10.21: Example of the SCFs images of the signals using SCIV. 158 
Figure 10.22: Comparison between systems’ sensitivity. 159 
Figure 10.23: The sensors set-up used to calculate the cost of the system. 162 
Figure 10.24: As values for the sensory signals. 164 
Figure 10.25: Asp values for the signal processing methods. 164 
Figure 10.26: Results of the novelty detection of all tools. 166 
Figure 10.27: The dynamic threshold for tools 1 and 2. 167 
Figure 10.28: The dynamic threshold for tools 3 and 4. 167 
Figure 10.29: The dynamic threshold for tools 5 and 6. 168 
Figure 10.30: The dynamic threshold for tools 7. 168 
Figure 11.1: Schematic diagram of the complete monitoring system. 172 
Figure 11.2: Machining signals of the fresh tool. 173 
Figure 11.3: Machining signals of the worn tool. 173 
Figure 11.4: Example of SCFs with high sensitivity using range value. 175 
Figure 11.5: Example of SCFs with high sensitivity using range value. 175 
Figure 11.6:   Example of  SCFs using range value method. 176 
Figure 11.7: Example of features with high sensitivity using regression. 177 
Figure 11.8: Example of features with low sensitivity using regression. 178 
Figure 11.9:   Example of the result for all the SCFs using linear regression. 179 
Figure 11.10: Example of two features with low sensitivity using SCIV. 180 
Figure 11.11: Example of two features with high sensitivity using SCIV. 180 
Figure 11.12:   Example of the result for all the SCFs for one tool (SCIV). 181 
Figure11.13: Comparison between the systems and their sensitivity. 183 
Figure 11.14: The sensor set-up used to calculate the cost of the system. 185 
Figure 11.15: Comparison between the 26 systems according to their cost. 186 

 VI



Figure 11.16: A comparison between the cost and the sensitivity. 188 
Figure 11.17: A comparison between the sensitivity and their cost. 188 
Figure 11.18: As values for the sensory signals. 189 
Figure 11.19: Asp values for the signal processing methods. 190 
Figure 11.20: The result of the LVQ to detect tool wear (tools 1-5). 193 
Figure 11.21: The result of the LVQ to detect tool wear (tools 6-10). 193 
Figure 11.22: The result of the LVQ to detect tool wear (tools 11-15). 194 
Figure 11.23: The result of the LVQ to detect tool wear (tools 16-20). 194 
Figure 11.24: Sensory Characteristic Features of tool 2. 195 
Figure 11.25: Sensory Characteristic Features of tool 19. 195 
Figure 11.26: Top view of worn tool edges. 196 
Figure 11.27: The result of the Novelty Detection of tool 2. 198 
Figure 11.28: The result of the Novelty Detection of tool 19. 198 
Figure 11.29: The result of the Novelty Detection (tool 1). 199 
Figure 11.30: The result of the Novelty Detection (tool 2). 200 
Figure 11.31: The result of the Novelty Detection (tool 3). 200 
Figure 11.32: The result of the Novelty Detection (tool 4). 201 
Figure 11.33: The result of the Novelty Detection (tool 5). 201 
Figure 11.34: The result of the Novelty Detection (tools 1-5). 202 
Figure 11.35: The result of the LVQ to detect tool wear (tools 1-5). 203 
Figure 11.36: The result of the LVQ to detect tool wear (tools 6-10). 203 
Figure 11.37: The result of the LVQ to detect tool wear (tools 11-15). 204 
Figure 11.38: The result of the LVQ to detect tool wear (tools 16-20). 204 
Figure 11.39: Comparison between low sensitivity SCF and LVQ result. 205 
Figure 11.40: The result of the Novelty Detection for tool 1. 206 
Figure 11.41: The result of the Novelty Detection for tool 2. 206 
Figure 11.42: The result of the Novelty Detection for tool 3. 207 
Figure 11.43: The result of the Novelty Detection for tool 4. 207 
Figure 11.44: The result of the Novelty Detection for tool 5. 208 
Figure 11.45: The result of the Novelty Detection for (tools 1- 5). 208 
Figure 11.46: Comparison between low sensitivity SCF and ND result. 209 
Figure 12.1: Summary of the overall structure of the thesis. 211 
Figure 12.2: The automated simplification process. 213 

 VII



Nomenclature 
 

Sensory Signals and Sensors 
Fx = Cutting force in the x direction measured by a dynamometer (N). 

Fy = Cutting force in the y direction measured by a dynamometer (N). 

Fz = Cutting force in the z direction measured by a dynamometer (N). 

AE = Acoustic Emission Signal/Sensor (V). 

AE_RMS = Root Mean Square of the AE signal (V). 

Sd = Sound Signal (dB). 

Vb = Vibration Signal . )/( 2sm

DOC = Depth of Cut (mm). 

 

Signal Processing Methods 
std = standard deviations. 

FFT (f1,f2) = Average value of the FFT between frequencies f1and f2. 

FFT1= FFT (20 Hz, 200 Hz) 

FFT2= FFT (200 Hz, 400 Hz) 

FFT3= FFT (400 Hz, 600 Hz) 

FFT4= FFT (600 Hz, 800 KHz) 

FFT5= FFT (800 KHz, 1 KHz) 

FFT6= FFT (1 KHz, 1.2 KHz) 

FFT7= FFT (1.2 KHz, 1.4 KHz) 

FFT8= FFT (1.4 KHz, 1.6 KHz) 

FFT9= FFT (1.6 KHz, 1.8 KHz) 

FFT10= FFT (1.8 KHz, 2 KHz) 

FFT11= FFT (2 KHz, 2.2 KHz) 

FFT12= FFT (2.2 KHz, 2.5 KHz) 

Wav_i = Standard deviations of the ith level of the wavelet analysis. 

S = Sensor. 

SP = Signal Processing Method. 

 VIII



ASPST Terminology 
ASPST = Automated Sensory and Signal Processing Selection System for Turning. 

SCF = Sensory Characteristic Feature. 

SFM = Sensory Feature Matrix 

ASM = Association Matrix 

RV= Range Value Detection Method. 

SCIV = Sudden Change In Value Detection Method 

SU = Sensor Utilisation coefficient (%). 

SUA = Overall average utilisation of a monitoring system (%). 

S= Number of SCFs used from the sensor. 

T= Total number of features in the system. 

P= Number of signals produced by the sensor. 

ASPK = Average sensitivity of the kth signal processing method. 

ASP = Average sensitivity of all signal processing methods implemented in a system. 

ASK = Average sensitivity of the kth sensor (or sensory signals). 

AS = Average sensitivity of all sensors (or sensory signals) implemented in a system. 

Ac = Average of the summation of sensitivity coefficients of the ASM matrix. 

dij = Sensitivity coefficient of a SCF obtained using the machining signal of the ith 

sensor and the jth signal processing method. 

fij = The SCF obtained using the machining signal of the ith sensor and the jth signal 

processing method. 

 

Classification Systems 
ND = Novelty Detection Algorithm. 

LVQ = Learning Vector Quantisation Neural Networks. 

 IX



 1

CHAPTER 1.............................................................................6 

INTRODUCTION...................................................................................... 6 
1.1 General Introduction ................................................................ 6 
1.2 Research Background .............................................................. 7 
1.3 Problem Definition................................................................... 8 
1.4 Research Aims and Objectives .............................................. 11 
1.5 Thesis Structure ..................................................................... 12 

CHAPTER 2...........................................................................14 

METAL REMOVAL AND MACHINING PROCESSES............................... 14 
2.1 Introduction............................................................................ 14 
2.2 Fundamentals of Metal Removal........................................... 14 
2.3 Procedure of Orthogonal Cutting........................................... 15 
2.4 Procedure of Oblique Cutting ................................................ 17 
2.5 General Terms and Definitions.............................................. 18 
2.6 Tool Geometry ....................................................................... 19 

2.6.1 Clearance Angle ............................................................................. 19 
2.6.2 Nose Radius ................................................................................... 19 
2.6.3 Side Rake Angle............................................................................. 19 
2.6.4 Back Rake Angle ........................................................................... 20 
2.6.5 Positive Rake Angle....................................................................... 20 
2.6.6 Negative Rake Angle ..................................................................... 20 

2.7 Essential Features of Metal Cutting....................................... 21 
2.7.1 Chip Formation .............................................................................. 21 
2.7.2 Types of Chips ............................................................................... 22 
2.7.3 Discontinuous Chip........................................................................ 22 
2.7.4 Continuous Chip ............................................................................ 23 
2.7.5 Continuous Chip with Built-Up Edge............................................ 24 

2.8 Turning Characteristics and Terminology ............................. 25 
2.9 Conclusion ............................................................................. 27 

CHAPTER 3...........................................................................29 

TOOL WEAR AND TOOL LIFE ............................................................. 29 
3.1 Introduction............................................................................ 29 
3.2 Wear in Metal Cutting ........................................................... 30 

3.2.1 Progress of Tool Wear ................................................................... 30 
3.2.2 Tool Failure Due to Excessive Temperature.................................. 32 

3.3 Forms of Tool Wear............................................................... 33 
3.3.1 Flank Wear ..................................................................................... 33 
3.3.2 Crater Wear .................................................................................... 33 
3.3.3 Nose Wear...................................................................................... 34 

3.4 Factors Affecting Tool Life ................................................... 34 
3.4.1 Effect of Tool Geometry ................................................................ 34 



 2

3.4.2 Effect of Workpiece Material......................................................... 35 
3.4.3 Effect of Tool Material................................................................... 35 
3.4.4 Effect of Cutting Conditions .......................................................... 35 
3.4.5 The Effect of Built-up Edge on Tool Life...................................... 36 

3.5 Additional Comments on Tool Wear ................................ 36 
3.6 Tool Wear Monitoring ........................................................ 37 
3.7 Conclusion............................................................................ 38 

CHAPTER 4...........................................................................39 

CONDITION MONITORING SYSTEMS................................................... 39 
4.1 Introduction .......................................................................... 39 
4.2 Monitoring Systems ............................................................ 39 
4.3 Machine and Process Monitoring .......................................... 40 
4.4 Monitoring Methods .............................................................. 42 

4.4.1 Direct Method ................................................................................ 43 
4.4.2 Indirect Method.............................................................................. 43 

4.5 Structure of Condition Monitoring Systems.......................... 44 
4.5.1 Signals and Sensors........................................................................ 44 
4.5.2 Signal Processing ........................................................................... 47 
4.5.3 Artificial Intelligence and Pattern Recognition.............................. 48 

4.6 Sensor Fusion......................................................................... 51 
4.7 Conclusion ............................................................................. 52 

CHAPTER 5...........................................................................54 

REVIEW OF IMPLEMENTED CONDITION MONITORING SYSTEMS IN 
TURNING PROCESSES .......................................................................... 54 

5.1 Introduction............................................................................ 54 
5.2 Monitoring Methods .............................................................. 54 
5.3 Direct Methods....................................................................... 55 

5.3.1 Optical measurement...................................................................... 55 
5.3.2 Workpiece Dimensions .................................................................. 55 
5.3.3 Electrical Resistance Measurement................................................ 56 
5.3.4 Tool-workpiece Distance Measurement ........................................ 56 
5.3.5 Radioactivity .................................................................................. 57 

5.4 Indirect Methods .................................................................... 57 
5.4.1 Force Sensor................................................................................... 57 
5.4.2 Sound Sensor.................................................................................. 60 
5.4.3 Power/Motor Current Sensor ......................................................... 61 
5.4.4 Acoustic Emission Sensor.............................................................. 62 
5.4.5 Vibration Sensor............................................................................. 64 
5.4.6 Temperature Sensor ....................................................................... 65 
5.4.7 Infrared Sensor ............................................................................... 66 

5.5 Single Sensor ......................................................................... 67 
5.6 Sensor Fusion......................................................................... 68 



 3

5.7 Conclusion ............................................................................. 73 

CHAPTER 6...........................................................................74 

METHODOLOGY................................................................................... 74 
6.1 Introduction............................................................................ 74 
6.2 Problem Definition................................................................. 74 

6.2.1 Problems in Condition Monitoring ................................................ 75 
6.3 Problem Domain and Objectives ........................................... 78 

6.3.1 Aim and Objectives........................................................................ 79 
6.3.2 How the ASPST Approach is Conceived ...................................... 80 

6.4 The General Concept of the ASPST Approach ..................... 81 
6.4.1 The ASPST Approach.................................................................... 82 

6.5 Techniques Developed within the ASPST Approach............ 83 
6.5.1 Simplification of Complex Signals ................................................ 83 
6.5.2 Automated Sensitivity Detection ................................................... 83 
6.5.3 Sudden Change in Value Method (SCIV)............................................. 85 
6.5.4 Association Matrix (ASM).................................................................... 87 
6.5.5 Sensor Fusion and Cost Reduction ....................................................... 88 
6.5.6 The Sensitivity of a Group of SCFs ...................................................... 90 

6.6 Criteria for Sensor Selection .............................................. 90 
6.7 The Application of the ASPST Approach for Turning.......... 92 
6.8 Structure of Subsequent Chapters.......................................... 93 
6.9 Conclusion ............................................................................. 95 

CHAPTER 7...........................................................................96 

ELEMENTS OF THE IMPLEMENTED CONDITION MONITORING 
SYSTEMS .............................................................................................. 96 

7.1 Introduction............................................................................ 96 
7.2 The Implemented Sensors...................................................... 96 

7.2.1 Force dynamometers ...................................................................... 96 
7.2.2 Accelerometer ................................................................................ 97 
7.2.3 Acoustic Emission.......................................................................... 98 
7.2.4 Strain ............................................................................................ 100 
7.2.5 Sound ........................................................................................... 101 

7.3 Signal Processing ................................................................. 101 
7.3.1 Time Domain Methods ................................................................ 102 
7.3.2 Frequency Domain Analysis Methods ......................................... 103 
7.3.3 Statistical Methods....................................................................... 105 

7.4 Data Analysis and Pattern Recognition ............................... 106 
7.4.1 Novelty Detection ........................................................................ 106 
7.4.2 Learning Vector Quantisation Neural Networks (LVQ).............. 109 

7.5 Conclusion ........................................................................... 113 

CHAPTER 8.........................................................................114 



 4

EXPERIMENTAL SET-UP .................................................................... 114 
8.1 Introduction.......................................................................... 114 
8.2 Machine Tools and Process ................................................. 114 
8.3 Workpiece and Tool Insert .................................................. 115 
8.4 Sensors ................................................................................. 116 
8.5 Data Acquisition Card ......................................................... 118 
8.6 Data Acquisition Software................................................... 118 
8.7 Conclusion ........................................................................... 120 

CHAPTER 9.........................................................................121 

ASPST INITIAL EVALUATION........................................................... 121 
9.1 Introduction.......................................................................... 121 
9.2 Experimental Work.............................................................. 122 
9.3 Signal Simplifications.......................................................... 124 

9.3.1 Visual Inspection Method ............................................................ 124 
9.3.2 Sudden Change In Value (SCIV) Method ................................... 127 

9.4 Selection of Sensory Characteristics Features (SCFs)............. 132 
9.5 System Cost and Utilisation................................................. 135 

9.5.1 System Optimisation ........................................................................... 137 
9.5.2 System Evaluation............................................................................... 138 

9.6 Conclusion ........................................................................... 140 

CHAPTER 10.......................................................................141 

THE APPLICATIONS OF ASPST APPROACH USING PATTERN 
RECOGNITION SYSTEMS.................................................................... 141 

10.1 Introduction ...................................................................... 141 
10.2 General Experimental Set-Up .......................................... 142 
10.3 LVQ Investigation ............................................................ 142 

10.3.1 Signals Simplifications ..................................................................... 143 
10.3.1.1 Visual Inspection Method .............................................................. 143 
10.3.1.2 Sudden Change In Value (SCIV) Method ..................................... 146 
10.3.2 System Cost and Utilisation.............................................................. 152 
10.3.2.1 System Optimisation ...................................................................... 152 
10.3.2.2 System Evaluation.......................................................................... 154 
10.3.3 Performance of LVQ Neural Networks ............................................ 155 

10.4 Novelty Detection Investigation....................................... 157 
10.4.1 Signals Simplifications ..................................................................... 158 
10.4.1.1 Visual Inspection Method .............................................................. 158 
10.4.1.2 Sudden Change In Value (SCIV) Method ..................................... 161 
10.4.2 System Cost and Utilisation.............................................................. 166 
10.4.2.1 System Optimisation ...................................................................... 167 
10.4.2.2 System Evaluation.......................................................................... 168 
10.4.3 Performance of Novelty Detection Algorithm.................................. 170 

10.5 CONCLUSION ................................................................ 174 



 5

CHAPTER 11.......................................................................175 

THE APPLICATION OF ASPST APPROACH USING MULTI- SENSOR 
FUSION ............................................................................................... 175 

11.1 Introduction ...................................................................... 175 
11.2 Experimental Work .......................................................... 176 
11.3 Signal Simplifications ...................................................... 177 

11.3.1 Range Value (RV) Method .......................................................... 179 
11.3.2 Linear Regression Slope Method................................................. 182 
11.3.3 Sudden Change In Value (SCIV) Method ................................... 184 

11.4 Selection of Sensory Characteristics Features (SCFs)........... 187 
11.5 Cost and Performance ...................................................... 190 

11.5.1 System Optimisation ......................................................................... 191 
11.5.2 System Evaluation............................................................................. 194 

11.6 The Performance of the Pattern Recognition Systems..... 195 
11.6.1  Learning Vector Quantisation (LVQ) using High Sensitivity SCFs
 196 
11.6.2  Novelty Detection using High Sensitivity SCFs......................... 202 
11.6.3 Learning Vector Quantisation (LVQ) using Low Sensitivity SCFs
 207 
11.6.4  Novelty Detection using Low Sensitivity SCFs ......................... 210 

11.7 Conclusion.............................................................................. 215 

CHAPTER 12.......................................................................216 

DISCUSSION AND CONCLUSIONS ....................................................... 216 
12.1 Introduction ...................................................................... 216 
12.2 Quantifiable Objectives.......................................................... 217 
12.3 Discussion .............................................................................. 217 

12.3.1 Automated Simplification Method.................................................... 218 
12.3.2 Automated Sensitivity Detection Method.................................... 219 
12.3.3 The Selection of Sensors and Signal Processing Methods. ......... 219 
12.3.4 Cost Reduction............................................................................. 219 
12.3.5 System Evaluation........................................................................ 220 

12.4 Contribution to Knowledge.................................................... 220 
12.4.1 Conceptual Contributions: ................................................................ 220 
12.4.2 Technical Contributions:................................................................... 221 

12.5 Final Conclusion .................................................................... 222 
12.6 Research limitation and Further Work................................... 223 

REFERENCES.....................................................................224 

APPENDICES......................................................................239 

APPENDIX A: REFEREED PUBLICATIONS ......................................... 239 
APPENDIX B: NOVELTY DETECTION ALGORITHM RESULTS........... 239 



 6

Chapter 1 

Introduction 

1.1 General Introduction 

Global competition and increased requirements for high quality, low cost and 

increased volatility in the surroundings create an urgent need for implementing new 

technologies and using existing commercial technologies for industrial survival. In 

modern competitive manufacturing industry, machining processes are expected to 

have high accuracy, improved reliability and excellent quality with reduced costs. 

From the technical side, new demands are being placed on monitoring systems in the 

manufacturing environment because of recent developments and trends in machining 

technologies such as high speed machining, hard cutting and dry cutting. Condition 

monitoring systems of manufacturing processes have been recognised in recent years 

as one of the essential technologies that provide the competitive advantage in many 

manufacturing environments. Such a system is capable of providing an essential 

means to reduce cost, increase productivity, improve quality and prevent damage to 

the machine or work-piece. Machining such as milling, turning, grinding and drilling 

are material removal processes which have been widely used since the industrial 

revolution.  

In the 20th century there has been a major advancement in machining processes 

technology, from a single machine tool to computerised machining processes, 

leading to fully automated and independent manufacturing operations. In order to 

fully recognise the potential of these systems it is essential to monitor and control the 

performance of the machine intelligently [1]. Among the parameters to be monitored, 

is tool wear which is clearly one of the most significant faults.  

Conventional condition monitoring procedures can be utilised using as off-line 

method that is by determining the amount of tool wear when the tool is at rest or at 

station. Once the determined tool wear gets to a predefined level, the worn tool is 

replaced by a fresh tool. This direct method is costly and time consuming due to 

equipment cost and the time necessary for careful measurement. Therefore, an on- 

line method would be extremely useful in terms of cost, quality and performance 
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effectiveness. It is thus necessary to develop an on-line monitoring system which can 

recognise different levels of tool wear monitoring [2]. 

 

1.2 Research Background 

Machining processes have played an important role in recent manufacturing history. 

In addition, to being a primary manufacturing process, the machining process is also 

a finishing operation implemented to achieve very high dimensional precision and 

close to a preferred surface finish. The most general machining processes are 

drilling, turning, milling and grinding. These machining processes relied on highly 

skilled human operators until the last 60 years when automated machining began to 

replace human operators with more efficient and less costly automated machining 

processes. Moreover, automated machining, soon, captured a great deal of 

consideration from the main manufacturers, who were looking for product with 

reduced costs and improved quality. Manufacturers recognised that automated 

machining processes could replace the human operator to increase productivity, 

minimise costs and improve the quality of the product [3-5]. Thus, automated 

machining processes soon replaced highly skilled operators in many conventional 

industrial environments. 

For the time being, the industry also demanded an additional task of manufacturers. 

Product demands became more varied and the complexity of manufacturing 

processes increased. Manufacturers needed new technologies and methods that 

would allow small production to gain the economic advantages of mass production 

[6, 7]. The expansion of automated manufacturing systems seemed to be the perfect 

solution for many of these problems. Although, the automated technologies showed 

great promise as a cost-effective solution to meet new demands, automated 

manufacturing systems could not be implemented until certain requirements were 

met. One major requirement is continuous machining. Manufacturing processes must 

be non-stop to achieve maximum efficiency [8]. On the other hand, faulty process 

conditions frequently force manufacturers to stop machining processes to react to 

faulty production conditions such as tool wear. Therefore, developing an effective 
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method of monitoring tool conditions has become one of the most important issues in 

the automation of the machining process [9]. 

 

1.3 Problem Definition 

Among the many possible tool conditions that can be monitored, tool wear is the 

most significant for ensuring continuous machining. Any effective monitoring 

system must sense tool conditions, allow for effective tool change strategies when 

tools fail, and keep proper cutting conditions throughout the process [10]. If the 

monitoring function cannot maintain proper cutting conditions, the cutting process 

can result in poor surface quality, dimensional workpiece damages, and even 

machine damage [9]. 

Manufacturers have required methods to monitor tool wear. These methods are an 

area of active research because tool condition strongly influences the surface finish 

and dimensional reliability of the workpiece. In addition, a consistent tool wear 

monitoring system can decrease machine downtime caused by changing the tool, 

hence leading to fewer process disturbances and higher efficiency. The information 

obtained from the tool wear sensors can be used for several reasons, including the 

tool change policy, online process actions to compensate for tool wear and the 

avoidance of catastrophic tool failure. 

On-line tool wear monitoring is one of the main problems in automating turn-

ing processes. Several attempts have been made previously to develop on-line 

tool wear monitoring methods in the machining process domain. 

Condition monitoring system methods can be classified into direct and indirect 

methods, depending on the source of signals collected by sensors. Direct methods 

sense tool conditions by direct measurement of the tool. Direct methods include 

optical, radioactive and electrical resistance. On the other hand, indirect methods 

sense the tool condition by measuring secondary effects of the cutting process, such 

as cutting force, acoustic emission (AE), motor current, sound and vibrations. Direct 

methods are advantageous because they take close readings directly from the tool 

itself. However, direct methods are limiting because the machining process must be 

stopped to make the direct measurements [11]. As a result, machine downtime 
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increases and the costs of the tool condition monitoring. Researchers then have 

desired indirect methods to study on-line tool condition monitoring systems.  

Recent research findings show that no single process variable (such as force, 

temperature, acoustic emission, or vibration) by itself is sufficient to monitor 

tool wear states under all conditions [12]. 

A limited number of sensors have been adopted in most studies involving indirect 

sensing systems. The most widely used indirect sensor is the dynamometer, which 

has been used to measure the forces during the cutting processes [10, 13-15]. 

However, applying the dynamometer is not practical because of its high cost and lack 

of overload protection [16]. On the other hand, temperature is good for tool wear 

monitoring under certain conditions but not for tool wear detection. The 

acoustic emission (AE) sensor is another sensing technology that has been used in a 

number of studies [17, 18], but it is limited in its application by its noise integrity 

[19]. Machining processes are one of the most complex manufacturing processes. 

The variability in the process parameters, material types, machine types, fault 

variation and machined features makes it one of the most difficult processes to be 

monitored. Using one sensor might be insufficient to detect the required fault for a 

specific process or all the required faults. Single sensory systems have often proven 

to be ineffective due to the relatively large number of parameters and the complexity 

of manufacturing processes reliability, etc [20].  

There has been a significant number of researches in on-line condition monitoring 

systems of machining operations, and specifically on turning operations using several 

sensor fusion models [12]. Many types of sensor fusion models have been already 

suggested in research, see for example [12, 21-26]. However, the success in the 

industrial application of such systems has been limited. So far, little success has been 

reported on the implementation of condition monitoring systems for turning 

operations in industry. This is mainly caused by the absence of sensor-fusion models 

that provide effective information about the process in a hostile machining 

environment [12, 23] and the effective flexible pattern recognition and classification 

system. More research is needed in this area to construct an effective approach 

towards the development of indirect online monitoring for turning processes using an 

efficient sensor fusion model and effective pattern recognition system. This is 
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becoming important due to the fact that many new sensor technologies are available 

for researchers to use in developing new sensor fusion systems [27]. 

The sensor fusion approach described in reference [28] uses a combination of several 

sensors (e.g. acoustic emission, vibration, power, infrared, temperature, and force) to 

improve the reliability of the diagnostic and prognostic capabilities in milling 

operations. Because of its importance, the proposed research will focus on the 

turning process and its associated family of processes that could be performed on a 

lathe machine. There are many types of faults associated with turning processes 

including high surface roughness, catastrophic cutter breakage, gradual tool wear and 

collision. 

This requires the development of techniques for using multiple sensors and 

classification methods. Therefore, in the present research a method based on 

sensor data fusion and artificial intelligent classification systems (Novelty 

Detection, Neural Networks) for fault detection is developed. The present 

method is based on the understanding that a machining process produces 

dynamic signals which contain information about the changing process 

conditions such as high surface roughness, catastrophic cutter breakage, gradual 

tool wear and collision, and that this information can be extracted and related to 

the type of failure. The proposed method relies on the possibility that these 

dynamic signals from the machining process can be measured and processed in 

real-time to obtain on-line tool wear monitoring. 

The main issue addressed in this research is development of an efficient sensor 

fusion model for a condition monitoring system for the turning process, minimising 

cost, decreasing down time and increasing product quality. This includes the 

selection of multi-sensors signals and signal processing methods which give the 

minimum error for the decision-making system. This research work is building on 

the available information in condition monitoring systems to advance the state of the 

art and present a more comprehensive, simple and efficient sensor fusion model for 

condition monitoring of manufacturing operations. 
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1.4 Research Aims and Objectives 

The aim of this research is to develop an effective condition monitoring system for 

turning processes with reduced time and improved performance. 

The nature of the problem suggests that to develop a method for practical and 

accurate tool wear monitoring, the following four criteria should be 

considered:  

1. The capability to develop a self-learning approach. 

2. The approach could be used for different machining parameters and 

different faults (i.e. fault and parameters independent). 

3. No understanding necessary regarding the process/fault mechanism. 

4. Learning could be developed from experience. 

 

The aim of the research is supported by the following objectives: 

1. To perform a literature review of machine and process condition monitoring 

systems and their applications. 

2. To determine the process variables in turning processes that contain useful 

information related to tool wear. 

3. To determine the appropriate sensors that can be used for monitoring the 

process variables that are related to tool wear. 

4. To design a data acquisition system for machine and process condition 

monitoring including a data acquisition card and computer selection, data 

acquisition software, sensors installation and an overall system calibration. 

5. To design and implement an effective sensor fusion model for turning 

processes for the detection of the most common industrial faults (e.g. gradual 

wear). 

6. To design the experimental investigation needed to obtain the necessary 

machining data. 

7. To integrate a wide range of sensory systems and their signal processing 

methods into a novel and effective sensor fusion model. The sensors to be 

used are: force, acoustic emission, strain, vibration, and sound. 

8. To investigate an efficient pattern recognition and classification system. 

9. To test and evaluate the novel sensor fusion model. 
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1.5 Thesis Structure 

The structure of the thesis is designed to cover the background of the subject, the 

suggested methodology and results of the experimental work as follows: 

 

Chapter 1: Introduces the competitive global market and the need for condition 

monitoring systems. This chapter states the current problems in process condition 

monitoring and the aims and objectives of this reported research. 

Chapter 2:  Describes the fundamental information of metal removal processes with 

special emphasis on turning operations and turning characteristics and terminology. 

 Chapter 3:  Outlines tool wear and chip formation in metal cutting with emphasis 

on turning processes.  

Chapter 4: Describes the basic concepts of machine and process condition 

monitoring. It presents an overall survey of the condition monitoring technologies 

that have been implemented in research and industry in recent years.  

Chapter 5: Presents a review of condition monitoring methods that have been 

developed or implemented in industry. It displays the problems in current monitoring 

methods to obtain an understanding of the current research on condition monitoring 

systems in turning processes. In addition, this chapter briefly reviews the potential 

sensors available for monitoring turning processes. 

Chapter 6: Presents the methodology and the requirements of the research. It 

provides a description of how the project aims and objectives are developed and how 

the condition monitoring methodology is conceived. The chapter also explains the 

main steps of the suggested methodology and the assumptions which require testing 

as a part of the study. The chapter also provides a detailed description of how the 

subsequent chapters are organised to prove the proposed methodology. 

Chapter 7: Describes the components and stages of condition monitoring 

system implemented in this research. The chapter briefly explains the sensors 

and signal processing methods used in this research to produce the required 

sensory characteristic features. In addition, it explains the implemented neural 

networks and novelty detection systems.  

Chapter 8: Includes a detailed description of the main experimental set-up of 

the research. It includes a description of the machine tools and the condition 
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monitoring system including sensors and related hardware, the data acquisition 

system, and sensors placement. 

Chapter 9: Presents a practical description of the implemented ASPST (Automated 

Sensor and Signal Processing Selection System for Turning) approach and the way it 

can be used to systematically develop a condition monitoring system for multi-

sensors. The ASPST approach is explained through a gradual wear of a turning 

cutting tool. 

Chapter 10:  Shows the implementation of different applications of the ASPST 

approach to detect tool wear with different multi-sensory signals groups and different 

classification systems. 

Chapter 11: This chapter presents the full capabilities and testing of the 

implemented ASPST approach. The application of the ASPST approach to detect 

tool wear for several sensors and two classification systems is described. It includes a 

description of how the ASPST approach can be used to detect wear in cutting tools. 

Twenty similar sets of experiments are used to evaluate the system and to optimise 

cost and performance. Neural networks and novelty detection are also used to 

evaluate the design process. The ASPST approach is also expanded in this chapter to 

show how to use the ASM matrix as an evaluation of signal processing methods 

which can be used as independent features for condition monitoring design. 

Chapter 12: Present a summary of the thesis and a discussion of the results 

obtained. It explains how new knowledge has been generated and tested. It includes 

the contribution to knowledge and outstanding problems and constraints on methods, 

testing and findings. It also contains general conclusions and further work in the filed 

of condition monitoring systems. 
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Chapter 2 

Metal Removal and Machining Processes 

2.1 Introduction 

The final shape of most mechanical parts is obtained by a machining operation. 

Metal removal operations in their various forms contribute to over 70% of 

manufacturing processes practised in industry. Machining is the process of removing 

unwanted material from a workpiece in the form of chips. The process is called metal 

removal or metal cutting if the workpiece is metal. Industries spend significant 

money to perform metal removal operations because the huge majority of 

manufactured products require machining at some stage in the production to high 

precision. This chapter describes the fundamental information of a metal removal 

process with special emphasis on turning operations and turning characteristics and 

terminology. In addition, it outlines the wear and chip formation in turning. 

 

2.2 Fundamentals of Metal Removal 

Metal removal forms include turning, boring, forming, facing, drilling, shaping and 

milling. Generally, cutting tools can be grouped into two groups: single point tools 

such as turning, planning, and shaping which have one and only one cutting part and 

a shank, while multiple tool points have more than one cutting part such as milling, 

drilling and broaching. This research will focus on turning processes, where turning 

is defined as a machining process of producing external surfaces by engagement of a 

cutting tool on a turning workpiece, regularly done on a lathe machine [29, 30]. 

The final shape of most mechanical parts is obtained by a machining operation. 

Metal removal operations in their various forms contribute to over 70% of 

manufacturing processes practised in industry [30, 31]. The machining operations 

can be classified under two major categories: cutting and grinding processes. In 

cutting operations the material is removed by shear action. The most common cutting 

operations are turning and milling. All metal cutting operations can be linked to the 
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process shown in Figure 2.1, where the tool has a straight cutting edge and is 

constrained to move relative to the workpiece in such a way that a layer of metal is 

removed in the form of a chip. Figure 2.1 (a) shows the case known as orthogonal 

cutting where the cutting tool approaches the workpiece at right angles to the 

direction of cutting, with the cutting edge parallel to the uncut surface. Figure 2.1 (b) 

shows the general case of cutting known as oblique cutting, where the chip flows 

over the rake face and have an angle more than zero with the normal to the cutting 

edge. Since orthogonal cutting represents a two-dimensional rather than three-

dimensional problem, it lends itself to research investigations where it is desirable to 

eliminate as many of the independent variables as possible. The relatively simple 

arrangement of orthogonal cutting is therefore widely used in theoretical and 

experimental work. It could be argued that orthogonal cutting is the most common 

form of cutting and represents a reasonable approximation of cutting on the major 

cutting edge [30]. 
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Figure 2.1: (a) Orthogonal cutting; (b) Oblique cutting. 

 

2.3 Procedure of Orthogonal Cutting  

Orthogonal cutting is a two-dimensional cutting process. In orthogonal cutting, as 

shown in Figure 2.2, the material is removed by a cutting edge that is perpendicular 
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to the direction of relative tool/workpiece motion. Orthogonal cutting resembles a 

shaping process with a straight tool whose cutting edge is perpendicular to the 

cutting velocity (V). A chip with a width of cut (w) and depth of cut (d) is sheared 

away from the workpiece. 
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Figure 2.2: Orthogonal cutting. 

 

In orthogonal cutting, the cutting is assumed to be uniform along the cutting edge. 

Therefore, it is a two-dimensional plane strain deformation process without side 

spreading of the material. Hence, the cutting forces are applied only in the directions 

of velocity and uncut chip thickness, which are called tangential (Ft) and feed forces 

(Ff). There are three deformation zones in the cutting process as shown in the cross-

sectional view of the orthogonal cutting in Figure 2.3. As the edge of the tool goes 

through into the workpiece, the material ahead of the tool is sheared over the primary 

shear zone to form a chip. The contact area between the chip and the rake face of the 

tool is called the secondary deformation zone. The friction area, where the flank of 

the tool rubs the newly machined surface, is called the third zone (Tertiary zone) 

[32].  
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Figure 2.3: Deformation zones in metal cutting. 

 

2.4 Procedure of Oblique Cutting  

Oblique cutting is a three-dimensional cutting operation that is widely used in 

industry. In oblique cutting, the cutting edge is oriented with an inclination angle and 

there is an additional third force acts in the radial direction (Fr) as shown                  

in Figure 2.4.  
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Figure 2.4: Oblique cutting geometry. 
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2.5 General Terms and Definitions 

The wedge-shaped cutting tool basically consists of two surfaces intersecting to form 

the cutting edge as shown in Figure 2.5. The surface along which the chip flows is 

known as the rake face, and the surface that is ground back to clear the new or the 

machined workpiece surface is known as the flank. The unreformed chip thickness is 

the depth of the layer of the material removed by the action of the tool as illustrated 

in Figure 2.5. The slope of the tool face is considered as one of the most important 

variables and is specified in orthogonal cutting by the angle between the tool face 

and a line perpendicular to the new work surface as shown in Figure 2.5. This angle 

is known as the rake angle.  
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Figure 2.5: Terms used in metal cutting. 

 

The tool flank has no serious influence on the process of chip removal. However, the 

angle between the flank and the new workpiece surface can significantly affect the 

rate at which the cutting tool wears and is defined as the "clearance angle". As shown 

in Figure 2.5 the sum of the rake, clearance, and wedge angles is equal to 90° degrees 

where the wedge angle is the angle included between the face and the flank [33].  
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2.6 Tool Geometry  

The geometrical aspects, terms and definitions relating to single-point cutting tools 

are illustrated in Figure 2.6.  

2.6.1 Clearance Angle  

It is the angle between the flank face and the newly generated surface.  

2.6.2 Nose Radius  

The nose radius strengthens the finishing point of the tool and improves the surface 

finish on the workpiece. The nose radius of most cutting tools should be more or less 

double the amount of feed per revolution. An over-sized nose radius may cause 

chatter and under-sized radius weakens the tool tip [34].  

2.6.3 Side Rake Angle  

In order to allow the chips to run away from the workpiece readily, without 

weakening the cutting edge, the side rake angle should be as large as possible as 

shown in Figure 2.6. The type and grade of the cutting tool, the type of material 

being cut, and the feed per revolution will determine the amount of side rake. The 

included angle formed by the side rake and side clearance is called the angle of 

keenness. This angle will vary depending on the material being cut. For difficult to 

machine metals, it may be advisable to use a small side rake angle or at times even a 

negative side rake [34].  
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Figure 2.6: Single-point tool classifications. 
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2.6.4 Back Rake Angle  

The angle formed between the top face of the tool and the top of the tool shank, is 

known as the back rake angle. It may be positive, negative, or neutral. When a tool 

has negative back rake angle, the top face of the tool slopes upward away from the 

point. Negative back rake angle protects the tool point from the cutting pressure. 

When a tool has positive back rake angle, the top face of the tool slopes downward 

away from the cutting point. This allows chips to flow away freely from the cutting 

edge. For tools with inserts, the cutting inserts are usually flat, because the 

manufacturer builds the required side and back rake angles into the tool holder. The 

type of rake angle used depends on the machining operation performed and the 

characteristic of the work material, as each type of rake angle serves a specific 

purpose. Rake angles can be ground on cutting tools or, in the case of cutting tool 

inserts, they can be held in suitable holders, which provide the rake angle      

preferred [34].  

2.6.5 Positive Rake Angle  

A positive rake angle is considered to be the best for an efficient removal of the 

metal. It creates a large shear angle at the shear zone, reduces friction and heat, and 

allows the chip to flow freely along the chip-tool interface. Positive-rake angle 

cutting tools are not too hard or abrasive, thus they are used for continuous cuts on 

ductile materials. Even though positive rake angle tools remove metal efficiently, 

they are not recommended for all work materials or cutting applications [34].  

The following factors must be considered when the type and the amount of rake 

angle of a cutting tool are being determined:  

• The type of the cutting operation (continuous or interrupted). 

• The strength of the cutting edge. 

• The shape and material of the cutting tool.  

• The hardness of the workpiece material.  

2.6.6 Negative Rake Angle  

A negative rake angle is used for interrupted cuts and whenever the metal is hard 

(brittle) or abrasive. It creates a small shear angle and a long shear zone on the tool; 

hence more friction and heat are created. Although the increase in heat may seem to 
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be a disadvantage, it is desirable when tough metals are machined with carbide 

cutting tools. Cutters with carbide tool inserts are a good example of the use of 

negative rake for interrupted and high-speed cutting [34].  

The advantages of negative rake on cutting tools are:  

• Surfaces with interrupted cuts can be readily machined.  

• Higher cutting speeds can be used.  

• The outer hard scale on the metal does not come into contact with the cutting 

edge.  

• The shock from the workpiece meeting with the cutting tool is on the tool's 

face, not on its point or edge, which extend the life of the tool.  

 

2.7 Essential Features of Metal Cutting  

While metals and alloys are too hard, therefore, tool materials must be strong enough 

to withstand the stresses, which are imposed on a very fine part of the cutting edges. 

The cutting layer must be thin enough to allow the tool and the work to withstand the 

forced stress and a clearance angle must be formed on the tool to ensure that the 

clearance face does not make contact with the newly-formed work surface.  

In practical machining, the angle included between the tool edges varies from 55° to 

90°, so that the chip which is the removed layer is diverted through an angle of at 

least 60° as it moves away from the workpiece, across the rake face of the tool. In 

this process, the whole volume of the metal removed is "plastically deformed"; 

therefore a large amount of energy is required to form the chip and to move it across 

the tool face. In this process, two new surfaces are formed, the new surface of the 

workpiece and the lower surface of the chip. The formation of new surfaces requires 

energy. In metal cutting, the theoretical minimum energy required to form the new 

surfaces is insignificant when compared to that required to plastically deform the 

metal removed [35].  

2.7.1 Chip Formation  

Similar to other machining processes the chip is formed in turning by a localised 

shear process that takes place over a very narrow region. The process is characterised 

by large strain with high strain rates such that the stress state evolves from elastic 
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compression to plastic compression and finally to shear when the work hardening 

reaches a saturated condition. The shear takes place along a shear zone, which is 

usually referred to as the shear plane [36, 37]. 

Generally, in turning, the chip is formed by the main cutting edge, the nose and a 

small part of the secondary cutting edge of the tool. The shape and type of chips that 

are produced control significantly the surface finish, the tool life, vibration and 

chatter.  The chip is extremely variable in shape and size. Forming a chip involves a 

shearing of the work material in the region of a plane extending from the tool edge to 

the position where the upper surface of the chip leaves the work surface. Most strain 

takes place in this region in a very short interval of time, but not all metals can 

withstand this strain. For example, grey cast iron chips are always fragmented and 

the chip of more brittle materials may be produced as segments, particularly at very 

low cutting speeds. This "discontinuous chip" is one of the principal classes of chip 

form that is easily cleared from the cutting area and has a practical advantage; under 

a majority of cutting conditions, the ductile metals and alloys do not fracture on the 

shear plane and a "continuous chip" is produced.  

2.7.2 Types of Chips  

Three basic types of chip are produced by the machining operations performed on 

lathe machines as follows [35]: 

• Discontinuous. 

• Continuous. 

• Continuous Chip with Built-Up Edge.  

2.7.3 Discontinuous Chip  

When brittle metals such as cast iron and hard bronze are cut, and even when some 

ductile metals are under poor cutting conditions, a discontinuous or segmented chip 

is produced. As the point of the cutting tool contacts the metal some compression 

occurs, and the chip begins flowing along the chip-tool interface. The stress applied 

to brittle metal by the cutting action increases until it reaches a point where it breaks, 

and the chip separates from the un-machined portion. When this cycle is repeated the 

break (split) of each segment occurs on the shear plane. As a result of these 

succeeding breaks, a poor surface is produced on the workpiece. Machine tool 
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chatter or vibration sometimes causes a discontinuous chip, which is produced when 

ductile metal is cut [34]. The following conditions help the production of 

discontinuous chips:  

• Low cutting speed. 

• Large chip thickness. 

• Excessive machining chatter. 

• Brittle work material. 

• Small tool rake angle. 

2.7.4 Continuous Chip 

The second type of chip is a continuous chip produced when the flow of metal next 

to the tool face is not highly retarded by friction at the chip-tool interface. This chip 

is considered ideal for efficient cutting action because it results in better surface 

finishes. The crystal structure of the ductile metal is extended when it is compressed 

by the action of the cutting tool and as the chip separates from the metal. The process 

of chip formation occurs in a single plane extending from the cutting tool to the un-

machined work surface; and the area where plastic deformation of the crystal 

structure and shear occurs is called the "shear zone". The angle on which the chip 

separates from the metal is called the "shear plane or shear angle".  

As the cutting action progresses, the metal instantly ahead of the cutting tool is 

compressed, with a resultant deformation of the crystal structure. This deformation 

takes place in the direction of shear. As this process of compression and deformation 

continues, the material above the cutting edge is forced along the chip-tool interface 

and away from the work [34]. Machining steel generally forms a continuous chip 

(unbroken) with little or no built-up edge when machined with a cemented-carbide 

cutting tool or a high-speed steel tool bit. To reduce the amount of resistance 

occurring as the compressed chip slides along the chip-tool interface, a suitable rake 

angle created on the tool and cutting fluid is used during the cutting operation. These 

features allow the compressed chip to flow relatively freely along the chip-tool 

interface. A shiny layer on the back of a continuous chip type shows ideal cutting 

conditions with little resistance to chip flow.  
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The conditions that produce a continuous chip are:  

1. Sharp cutting-tool edge.  

2. High cutting speeds.  

3. Cutting tool and workpiece are kept cool by using cutting fluids. 

4. Small chip thickness. 

5. Ductile work material.  

6. A large rake angle on the cutting tool.  

7. A minimum resistance to chip flow by: -  

• Use of cutting fluids to prevent the formation of a built-up edge. 

• Free-machining materials (those alloyed with elements such as lead, 

phosphor and sulphur).  

• A high polish on the cutting-tool face.  

• Use of cutting-tool materials, such as cemented carbides, which have 

a low coefficient of friction.  

2.7.5 Continuous Chip with Built-Up Edge  

When cutting low-carbon steel material at a low cutting speed with a high speed steel 

cutting tool and without the use of cutting fluids, a continuous-type chip with a built-

up edge is generally produced. The metal ahead of the cutting tool begins to flow 

along the chip-tool interface, which is compressed and forms a chip. As a result of 

the high temperature, high pressure and high frictional resistance against the flow of 

the chip along the chip-tool interface, small particles of metal begin adhering to the 

edge of the cutting tool while the chip shears away. As the cutting process continues, 

more particles adhere to the cutting tool; a larger buildup results, which affects the 

cutting action. The built-up edge increases in size and becomes unstable; to a point 

where fragments are torn off. Portions of the fragments that break off stick to both 

the chip and the newly generated surface. The buildup and breakdown of the built-up 

edge occur rapidly during cutting action and cover the machined surface with a 

multitude of built-up fragments usually identified by a rough and grainy surface. 

These fragments adhere to and score the machined surface, resulting in a poor 

surface finish [34]. The main cause of the poor surface roughness is the continuous 

chip with the built-up edge. It also shortens the cutting-tool life. When a cutting tool 
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starts dulling, it creates a rubbing action on the workpiece and a work-hardened 

surface is produced [38]. This type of chip affects cutting-tool life in two ways:  

 

• A cratering effect is caused a short distance back from the cutting edge where 

the chip contacts the tool face. As this cratering continues, it eventually 

extends closer to the cutting edge until fracture or breakdown occurs 

• The fragments of the built-up edge scrape the tool flank as they escape with 

the workpiece and chip [36, 37]. 

 

2.8 Turning Characteristics and Terminology  

The basic operation of turning is the most commonly employed metal removal 

process. In turning, the workpiece is clamped in a lathe using a chuck or other 

workholding device and subjected to a rotary motion around the spindle axis. The 

tool is fed into the workpiece at a certain rate to generate an external or internal 

surface concentric with the axis of rotation. Figure 2.7 presents the schematics of a 

simple turning operation with the representation of the main forces acting on the 

cutting tool. 

 
 

n (rpm)

Fz

Fy

FeedTool

W orkpiece

Lathe Machine

Fx

n (rpm)

Fz

Fy

FeedTool

W orkpiece

Lathe Machine

Fx

 
Figure 2.7: Turning schematics. 
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In addition, Figure 2.8 presents the nomenclature of a basic cutting tool used in 

turning. The cutting speed is the rate at which the uncut surface of the workpiece 

passes the cutting edge of the tool. The distance moved by the tool in axial direction 

at each revolution of work is the feed rate, in turning machine. The thickness of 

metal removed from the bar is the depth of cut and measured in the radial direction. 

Mainly, these three parameters determine how quickly or slowly the metals are 

removed, and their product, the metal removal rate measured as a volumetric 

quantity, could be considered an efficiency indicator of the cutting operation [33]. A 

large quantity of energy is needed to shape the chip creating two new surfaces by 

shearing, during the orthogonal cutting, the new surface of the workpiece and the 

underside of the chip. Most of the energy in metal removal is used to plastically 

deform and remove the chip. Therefore, considerable research investigation is 

needed to understand the phenomenon [33]. It is not intended here to discuss the full 

understanding of the mechanics of the orthogonal cutting process, as it is out of the 

focus of the research. However, it is reasonable to assume that high strain and stress 

rates developed as the cutting tool works through the workpiece give rise to high 

temperatures, complicated forces and dynamic behaviour across a broad spectrum of 

frequencies. Orthogonal cutting causes considerable amounts of heat and energy at a 

rate proportional to both the cutting speed and the consequential tool force. The 

elastically deforming materials cause a small quantity of energy which is 

accumulated in the material strain energy. The plastically deforming materials 

generate large amounts of heat as the workpiece material is subjected to high strain 

levels that is changed to heat energy at the sections of primary and secondary 

deformation [33]. Due to friction between the tool and the new workpiece surface 

some heat also arises. Static and dynamic forces make up the cutting forces in any 

metal cutting processes; the dynamic force represents the degree of fluctuation in the 

cutting force, where the static force gives an indication of force magnitude levels. 
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Figure 2.8: Nomenclature for right hand-cutting tool. 

 

The cutting force become larger as the depth of cut increases and should be therefore 

limited to the available power of the machine. Feed rate depends on the rigidity, 

strength of the machine and the finish desired. Roughing cuts are often large with the 

cutting speed dependent totally on workpiece hardness whereas finish cuts require a 

light feed rate. Many other machining processes can be carried out in combination 

with turning like reaming, facing, boring. In turning the only limit may be the 

accessibility of equipment size to grasp and swivel the workpiece with difficulties in 

holding and handling as size and weight rises [29].  

 

2.9 Conclusion 

As most manufacturing systems are increasingly converting into fully automated 

environments (such as computer integrated manufacturing (CIM), flexible 

manufacturing systems (FMS) and computerised numerical control (CNC) 

machines), condition monitoring without doubt will become an automated aspect of 

such a manufacturing environment. A protective detection to recognise a worn tool 

and have it replaced as soon as possible becomes necessary to implement a condition 

monitoring system. Failure might lead to damage to the machine and the workpiece. 

In view of the damage that tool could cause to machine and workpiece material, there 
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has been a need to develop and implement systems aimed at providing early 

warnings of imminent tool failure such as condition monitoring systems.  

In this chapter, the fundamental of metal removal and machining processes are 

described. This chapter summaries the fundamental information of a metal removal 

process with special emphasis on turning operations. The chapter has also described 

the turning characteristics and terminology. In addition, it has outlined the wear and 

chip formation in turning. From condition monitoring point of view, there are many 

parameters and cutting conditions that could influence the signal of the process for 

the design of a condition monitoring system. 
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Chapter 3 

Tool Wear and Tool Life 

3.1 Introduction  

Tool wear is a result of physical and chemical interactions between the cutting tool 

and workpiece as a consequence of the removal of small parts of the cutting material 

from the edge of the tool. To determine the real cause of tool wear is very difficult 

because the wear mechanisms in cutting tools are highly non-linear and complicated 

processes associated with many variables such as contact stress, nature and 

composition of the workpiece and cutting tool, temperature on the cutting edge, 

cutting speed, feed and cutting fluid, etc. Basically a cutting tool wears because of 

higher loads on the wear surface than normal loads and because of rapid movement 

of cutting chips and workpiece over the wear surface. 

If tool wear reaches a certain limit, then it may cause catastrophic failure of the tool 

and can result in high forces. This is a highly undesirable situation in machining 

since severe damage may occur to the workpiece material or the machine. To solve 

this problem and to determine the time when a cutting tool should be changed, 

condition monitoring systems are needed to monitor the machining processes [34]. 

Tool life is an important cost factor in manufacturing operations. It is one of the most 

important economic considerations in metal cutting. In roughing operations the 

various tool angles, cutting speeds, and feed rates are usually chosen to give an 

economical tool life. Conditions giving a very short tool life are uneconomical 

because tool replacement and tool grinding costs are high. In addition, the use of 

very low speeds and feeds to give long tool life is uneconomical because of the low 

production rate. Clearly, any tool or work material improvements that increase tool 

life will be useful. This chapter discusses wear in metal cutting, forms of tool wear 

and modes of tool wear such as flank, crater and nose wear. In addition, it describes 

the factors affecting tool life.   
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3.2 Wear in Metal Cutting  

Cutting tool failures can be classified into two main groups according to the 

processes by which failure occurs [35]:-  

1. Gradual tool wear that progressively develops on the tool flank face (flank 

wear) or on the tool rake face (crater wear).  

2. Failure mechanisms that bring the life of the cutting tool to a sudden, early 

end.  
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Figure 3.1: Schematic of the effect wear on the tool geometry. 

 

The gradual wear of a cutting tool occurs mainly in the two areas as shown in Figure 

3.1. The second group can be subdivided into failure modes based on either 

excessive temperatures or excessive stresses. 

3.2.1 Progress of Tool Wear  

Wear in a cutting tool is a regular incident, which cannot be avoided and is a function 

of time. In metal cutting, three main forms of wear are likely to occur: adhesion, 

abrasion, and diffusion [35].  

 

Adhesion wear is caused by the fracture of welded roughness junctions between the 

two metals. In metal cutting, junctions between the chip and tool materials are 
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formed as part of the friction mechanism. When these junctions are fractured, small 

fragments of tool material can be torn out and carried away on the underside of the 

chip or new workpiece surface. The conditions that exist in metal cutting are suited 

to adhesive wear as new material surfaces uncontaminated with oxide films are 

continually produced, and this facilitates the formation of welded roughness 

junctions [34]. This mechanism contributes to flank wear as well as to the formation 

of the crater wear.  

 

Another form of wear which is known as "abrasion wear" occurs when hard 

particles underside of the chip pass over the tool face and remove tool material by 

mechanical action. These hard particles may be high strain hardened fragments of an 

unstable built-up edge, fragments of the hard tool material removed by adhesion 

wear, or hard constituents in the work material. This mechanism is significant for 

tool wear only in those instances where the workpiece material is very hard or 

contains hard particles. The machined surface is cooler than the tool flank and it may 

happen that the tool material is softened more than some of the constituents of the 

workpiece materials, and this creates the conditions for abrasion.  

 

The third form of wear which is known as "diffusion wear" occurs when atoms in a 

metallic crystal lattice move from a region of high atomic concentration to one of 

low concentration. This process is dependent on the existing temperature and the rate 

of diffusion increases exponentially with increases in temperature. In metal where 

close contact between the work and tool materials occurs and high temperatures 

exist, diffusion can occur where atoms move from the tool material to the work 

material. This process takes place within a very narrow reaction zone at the interface 

between the two materials and causes a weakening of the surface structure of the tool 

[34]. Diffusion plays a significant role at higher cutting speeds in some 

workpiece/tool material combinations. The diffusion rate depends on the affinity of 

the materials in contact, very strongly on temperature, and on the gradient of 

concentration of the penetrating atoms in the solvent material. Diffusion plays an 

important role in the development of crater wear.  
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3.2.2 Tool Failure Due to Excessive Temperature  

The high temperatures that take place in the primary and secondary deformation 

zones could cause an initially sharp cutting tool to lose some of its strength and flow 

plastically under the pressures developed by the cutting force. The flow of the tool 

material along the flank surfaces causes the cutting tool to assume a configuration 

resembling that shown in Figure 3.2. 
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Figure 3.2: Schematic of edge depression due to plastic deformation. 

 

As shown in Figure 3.2, the clearance angle of the cutting tool is reduced to zero for 

a portion along the flank and for some period of time, the contact area between the 

tool and workpiece increases. Throughout this period, layers of the tool material in 

contact with the workpiece gradually separate. For a short period of time, the tool 

may carry on cutting with this form, for stability. The large area of close contact 

results in greater friction between the cutting tool and workpiece, causing the 

temperature to increase rapidly. The cutting tool after that loses its form stability and 

fails quickly because of additional softening of the tool material in the cutting area 

due to the increased temperature level. This kind of tool failure is not limited to high-

speed steel cutting tools; even though cemented carbide cutting tools are relatively 
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brittle, they have a certain amount of ductility under the high compressive loads and 

high temperatures which happen during cutting [34]. 

  

3.3 Forms of Tool Wear  

Cutting tools are subjected to an extremely severe rubbing process. They are in metal 

to metal contact with the chip and workpiece under conditions of very high stress and 

high temperature. The situation is further forced by the existence of great stress and 

temperature gradients near the surface of the tool. Cracks on both the flank and the 

rake face are usually due to irregular cutting. Three types of wear are generally 

associated with cutting tools: flank wear, crater wear and nose wear [30, 34, 35]: 

3.3.1 Flank Wear 

Wear on the flank of a cutting tool occurs on the side of the cutting edge as a result 

of friction between the newly machined workpiece surface and the contact area on 

the tool flank. The damaged area, referred to as the flank wear land, is parallel to the 

resultant cutting direction [34]. Too much flank wear increases friction energy along 

the tool workpiece interface and deteriorates the machined surface. 

3.3.2 Crater Wear 

The crater formed on the tool face conforms to the shape of the chip underside and is 

restricted to the chip-tool contact area. In addition, the region near the cutting edge 

where sticking friction or a built-up edge occurs is subjected to relatively slight wear. 

Crater wear starts at a certain distance from the tool point and grows deeper. It 

should be noticed that once the crater is established, its depth grows more rapidly 

than its top width. The edge of the crater approaches the cutting edge, both by crater 

wear and by flank wear. This weakens the tool close to the cutting edge and a major 

failure may occur by fracture from the crater through to the clearance face. This 

scenario is more likely to occur under discontinuous cutting conditions. In metal 

cutting, the highest temperatures along the chip tool interface is located at some 

distance along the tool face; at high cutting speeds these temperatures can easily 

reach the order of 1000o c. Under these high-temperature conditions high-speed steel 

tools wear very rapidly because of thermal softening of the tool material. In 
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experimental work, the maximum depth of the crater is usually a measure of the 

amount of crater wear and can be determined by a surface-measuring instrument. The 

rate of wear is high at the tool nose, generally under very-high-speed cutting 

conditions; crater wear is often the factor that determines the life of the cutting tool 

[30, 34]. 

3.3.3 Nose Wear 

This kind of wear occurs on the nose or point of the cutting tool as a result of friction 

between the nose and the metal being machined. Wear on the nose of the cutting tool 

affects the quality of the surface finish on the workpiece. A small reduction in speed 

may eliminate excessive nose wear and could give a large increase in the tool's life 

[34].  

 

3.4 Factors Affecting Tool Life  

The following factors affect the life of a cutting tool [34]:  

• Tool geometry. 

• Work material. 

• Cutting fluid. 

• Tool material. 

• Cutting conditions (i.e., speed, feed, and depth of cut). 

• Built-up edge. 

3.4.1 Effect of Tool Geometry  

Tool geometry will influence tool life. Increasing the normal rake angle reduces the 

cutting forces and the heat generated during cutting. This would suggest that the 

cutting temperatures are lowered so that tool life is increased. Generally an increase 

in rake angle usually leads to an improvement in cutting conditions; a longer tool life 

would be expected. On the other hand, large rake angles will also reduce the 

mechanical strength of the cutting tool. So, that, although the forces are lowered, tool 

failure by chipping of the cutting edge or fracture can occur. However, when the tool 

rake is large, the cutting edge is mechanically weak, resulting in higher wear rates 
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and shorter tool life. Build-up-edge formation, which may develop at low speeds, can 

be more detrimental to the mechanically weaker large rake angle tools [34, 39].  

It is common practice to:  

• Increases in side cutting edge angle, results in some improvements in tool life 

(load per unit length of edge is better). 

• For the same wear land, larger clearance angles require greater tool wear by 

volume so that longer tool life values are obtained. Using large clearance 

angles, on the other hand, may reduce the tool mechanical strength.  

• Use small or negative rake angles for the harder and relatively more brittle 

cutting tools such as carbides and ceramics.  

3.4.2 Effect of Workpiece Material  

The common variables considered are workpiece material composition and 

microstructure (heat treatment), its hardness and work-hardening properties. The 

workpiece material hardness is the easiest variable to measure and relate to tool life. 

As might be expected the harder the work material, the shorter the tool life [34]. It 

should also be noted that the hardness of the work material constituents and their 

proportions would influence the average hardness and the tool life.  

3.4.3 Effect of Tool Material  

The requirements of cutting tools are high hardness and toughness, good wear 

resistance, mechanical and thermal shock resistance, and the ability to maintain these 

properties at the temperatures occurring during cutting [34]. High hardness usually 

gives the tool good wear resistance, but may be associated with low toughness and 

poor mechanical shock resistance. The lack of chemical similarity between the tool 

and work material will also improve wear resistance. Thermal shock resistance is 

obtained when the tool material has high thermal conductivity and specific heat, a 

low coefficient of thermal expansion and high tensile strength.  

3.4.4 Effect of Cutting Conditions  

The variables, feed, speed, and depth of cut are of significant importance since they 

control the metal removal rate (MRR) and the production rate. If we begin with 

Taylor's equation [39]:  
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=    3.3 

Alike trends happen for the feed and depth of cut. So, the tool life may be expressed 

as:     2/11/1/1 nnn afV
KT =     3.4 

Where    T= Tool Life       min               V = Cutting speed        ft/min 

   f = Feed     inch/rev                a=    Depth of cut        inch 

  n= Constant               C=   Cutting speed for T = 1 min 

  K = Constant for a given tool-work combination and tool geometry  

                 (1/n, 1/n1, 1/n2) are exponents. 

3.4.5 The Effect of Built-up Edge on Tool Life  

The presence of a built-up edge on the tool face during cutting can affect the tool-

wear rate in different ways [34, 40]:  

• In the presence of a stable built-up edge, it would protect the tool surface 

from wear and perform the cutting action itself, which would be beneficial 

and increase the tool's life especially when very hard materials are being cut.  

• Due to an unstable built-up edge the highly strain-hardened fragments, which 

adhere to the chip undersurface and the new workpiece surface, can increase 

the tool-wear rate by abrading the tool faces [34, 38, 40]. 

  

3.5 Additional Comments on Tool Wear  

Crater wear, flank wear and chipping of the cutting edge affect the performance of 

the cutting tool in various ways:  

• The cutting forces normally increase due to tool wear. Crater wear may, 

however, under certain circumstances, reduce forces by effectively increasing 

the rake angle of the tool. Flank wear and chipping increase the cutting forces 

as a result of more rubbing forces.  

• The surface finish produced in a machining operation usually deteriorates as 

the tool wears.  

• Flank wear influences the geometry of the tool, which may affect the 

dimensions of the components produced.  
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The final result of tool wear is the complete removal of the cutting point. This may 

come about by temperature rise, which causes the tool tip to soften until it flows 

plastically at very low shear stress. An alternative mechanism by which failure may 

take place is that of mechanical fracture of a relatively large portion of the cutting 

tip. This often results from a weakening of the tool by crater formation[34, 39].  

 

3.6 Tool Wear Monitoring 

Although in many machining processes the cutting tool is the least expensive 

component of the cutting system, compared to the machine and workpiece, most of 

the monitoring effort is concentrated on ensuring that the tool is in good working 

condition. This is because damage to the cutting tool results in unproductive time 

which is costly. Therefore, an essential part of an untended machining system is the 

ability to change cutting tools before they are worn or broken. The cutting tools need 

to be changed before catastrophic failure damages the workpiece and the machine. 

For this reason a conventional approach is mostly used at present which estimates 

expected tool life based upon past wear data such as Taylor’s equations. Tools are 

then replaced when this tool life is reached, regardless of the actual tool condition. 

This, however, means that in many cases tools are underutilised and down time has 

been unnecessarily increased. 

Tool wear is an important factor in assuring the quality of the machined product. In 

particular, finish turning requires close attention to the cutting tools condition. A 

worn tool produces a poor surface finish. If deterioration of the tool is not monitored 

continually, the workpiece surface finish may be insignificantly degraded, with the 

consequent loss of the workpiece and associated machining time. Tool wear, if 

undetected, can also result in catastrophic failure and damage to the machine and 

workpiece resulting in significant down times and loss in productivity. This again 

requires a tool condition monitoring system. Frequently, subjective wear levels are 

set which translate on the workpiece as the maximum or minimum permitted 

tolerance. If this value of wear is replaced, a costly result could occur in the rejection 

of the workpiece during quality control assessment and probably an increase in 

scrapped material levels. Tool wear examinations focus on common tool wear forms 
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such as flank, crater and nose wear. Different mechanisms could be responsible for 

these failures, such as diffusion wear, plastic deformation and built-up edge. These 

mechanisms depend partly on a combination of the type of the required shape, 

cutting condition, workpiece material and the nature of the cutting tool. 

As most manufacturing systems are increasingly adapting and changing into fully 

automated environments, tool wear monitoring certainly would become an 

automated aspect of such a manufacturing environment. Defensive measures are 

needed to recognise a worn cutting tool and have it replaced as soon as possible. 

Failures might lead to a catastrophic tool breakage causing excessive power 

overloads and damage to the machine tool and the workpiece. In cases of high 

replacement costs, prevention or limitation of such a failure becomes paramount. In 

view of the damage that tool failure can cause to a machine tool and its marginal 

components, there has been a big drive to develop a system aimed at providing 

advanced warnings of coming up tool failure. These devices have taken the form of 

tool wear detection and identification mechanisms, referred as Condition Monitoring 

Systems (CMS). 

 

3.7 Conclusion 

Tool wear and tool life in metal cutting are described in this chapter. The chapter 

covers the main forms of tool wear that occur in machining processes. The chapter 

summarises the modes of tool wear and the factors affecting tool life. It could be 

concluded that the complexity of the cutting process necessitates the utilisation of a 

condition monitoring system. In addition, tool failure and wear in turning could be 

complex phenomena for condition monitoring systems. Therefore, a system that 

would ease the variety of underlying effects occurring during such a machining 

process is required for flexible monitor because different types of wear could have 

different effects on the cutting signals. Therefore, the use of a condition monitoring 

system is needed in machining processes and has to be explored. 
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Chapter 4 

Condition Monitoring Systems 

4.1 Introduction 

In competitive manufacturing, condition monitoring provides a powerful means in 

the manufacturing operation to improve productivity and reduce cost. Condition 

monitoring technologies can be used in order to determine the machining process 

condition, and potentially predict failure. It gives a fast and accurate picture of what 

is happening in the machining processes. In addition, it can help to reduce machine 

downtime, maximise equipment performance, increase reliability, save operating cost 

and prevent catastrophic failure of machinery. In this chapter, a review of the 

condition monitoring concept, basic stages and elements is presented. The review 

seeks to show machine and process condition monitoring and monitoring methods. In 

addition, it shows the condition monitoring system structures. 

 

4.2 Monitoring Systems 

The global manufacturing competition in recent years has attracted the 

manufacturer's attention to the application of condition monitoring systems as a 

method of enhancing manufacturing productivity, eliminating inspection, and 

improving quality of products. An effective condition monitoring system depends 

mainly on the ability of the system to identify any faults and react, in real time, with 

a suitable action.  

Manufacturing systems have become automated and more complex but generally 

become more reliable because of the new and improved design and the 

implementation of improved condition monitoring and maintenance strategies [31, 

41]. Condition monitoring involves the process, the machine characteristic and the 

health of the machine. In terms of machine health, this could be divided into [42]:  
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• General maintenance: Technical and any associated actions intended to 

keep the machine perform its required function. 

• Unplanned maintenance: Maintenance carried out to no programmed plan 

or when a fault occurs. 

• Preventive maintenance: Maintenance carried out at programmed intervals 

or corresponding to predescribed criteria and intended to reduce the 

probability of failure. 

• Condition based maintenance (CBM): Preventative maintenance based on 

the condition of the machine using condition monitoring techniques. Under 

this approach, maintenance is only conducted as and when it is needed. 

• Condition monitoring: Continuous or periodic measurements and 

interpretation of data captured using a condition monitoring system to 

indicate the condition of an item to determine the requirements for 

maintenance. Condition monitoring includes the monitoring of machine tools 

and machining processes to ensure the quality of the products and the health 

of the machine during production. This is different from maintenance since 

that objective is to define the state of the product based on the 

health/characteristic of the machine tool and the process. It also can be used 

for condition monitoring and diagnostic systems in machining processes to 

detect machine and process failure. Machine and process condition 

monitoring and diagnostic can be defined as “providing a manufacturing 

system with the reasoning capability and knowledge to adaptively control its 

actions and thereby optimise its operations in response to given criteria, 

environmental and system stimuli” [43]. 

 

4.3 Machine and Process Monitoring 

Machine tools are extremely complex systems which include electronics, electrical, 

hydraulic and pneumatic drive systems, mechanical systems, control systems, 

measurement systems, gears, bearings, ball screws, lubrication systems and coolant 

systems. Therefore, there is a great complication in dealing with the large number of 

parameters that determine the process characteristics without the use of a condition 
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monitoring system [44]. To fully understand and attempt to control the behaviour of 

a machine tool and the machining process, effective condition monitoring systems 

should be developed which guarantee the reliability of the system operations and 

quality of products. These signals can provide useful inputs to a machine and process 

condition monitoring and diagnostic system. The evaluation process of the signals 

may be used to determine the health of the machining process and the machine tool 

in addition to the kind of feed-back that can be used for on-line control. 

In order to extract useful information from machine condition monitoring data, 

several stages are normally needed. The original machining signals, such as force, 

vibration, AE, temperature, sound, etc., contain noise and extra unusable information 

for monitoring purposes. It is extremely difficult technically and mathematically to 

derive any information from such signals. A pattern recognition strategy, which 

includes signal processing and data analysis, is therefore needed to simplify and 

analyse machining data for pattern recognition and classification of the signals. The 

ultimate goal of data analysis is to search for the needed structure in the data for 

patterns that can relate to a physical event [45]. Generally, data analysis can be 

considered as a task in which starting from some given data set, information about a 

specific unit can be extracted [46]. In machining, signals are described by some 

sensory characteristic features or attributes. Such features are essential to classifying 

or recognising the physical phenomena. This leads to complexity simplification in 

the considered application which permits enhanced decisions based on the extracted 

information. 
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Figure 4.1: Stages of a condition monitoring system for turning. 

 

A condition monitoring system consists of sensors, signal processing stages, and 

decision-making systems to interpret the sensory information and to decide on the 

essential corrective action as shown in Figure 4.1.  The capability of a condition 

monitoring system relies on two basic elements: firstly, the number and type of 

sensors used and secondly, the associated signal processing and simplification 

methods utilised to extract the important information from signals. The first element 

involves expensive hardware which influences the cost of the system. The second 

element affects the efficiency and the speed of the system. The main issue addressed 

in condition monitoring is the efficient design of a condition monitoring system, 

minimising cost, development time and the number of sensors used [47]. This 

includes the selection of sensors and associated signal processing methods which 

provide the minimum error for the pattern recognition system. 

 

4.4 Monitoring Methods 

On-line and off-line are two methods that can be implemented for the condition 

monitoring of the machine tools and machining processes.  
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4.4.1 Direct Method 

Off-line monitoring is performed when the machine is not running or machining. It 

could also be performed by measuring the work-piece dimensions. [28]. Off-line 

monitoring also includes calibration routines that can be done on the machine tool 

[28]. The main use of off-line monitoring is not for condition monitoring of the 

machine, but to correct the error in dimension by adjustment on the machine. It also 

could be used to condition monitoring the process. It is the normal quality 

monitoring method used in all processes at some stage. The advantages of the off-

line monitoring methods which include simplicity of use, direct measurement in most 

cases and measurement principles, are well recognised. However, there is one major 

disadvantage: the process is considered unproductive and could waste considerable 

time and resources. In addition, errors are recognised long after the product has been 

completed. The direct method is also unable to determine the cause of some specific 

failures. Direct methods measure the real values of certain characteristic such as wear 

parameters (the size of wear area) [12]. The measurement technology of direct 

methods is expensive and these methods are liable to faults due to environmental 

conditions in a machine tool (chips, coolant, etc.) [12]. The direct technique can be 

implemented using procedures such as optical sensors, touch trigger probes and 

proximity sensors to measure the cutting edge [48].    

4.4.2 Indirect Method 

The on-line method monitors the parameters while the machine is in actual 

production. On-line simply means that the monitoring process does not occur at a 

particular time and there is no need to stop the production to perform on-line 

monitoring. The monitoring process in this case occurs independently from the 

production schedule. The advantage of this is saving time and improves productivity. 

Moreover, on-line monitoring has the benefit of more real-time diagnosis of machine 

faults and provides competitive advantage for automation [49]. Indirect methods 

measure some process parameters which are associated with process faults. For 

example, for tool wear some signals (such as cutting forces, AE, vibration, etc.) can 

be used for monitoring [12, 48]. Indirect methods utilise parameters which are easier 

to measure, but the computer computational efforts could be extremely demanding 
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[12, 48, 50]. The indirect techniques are based on the acquisition of signal features 

from which process/machine condition can be determined when compared to healthy 

known signal features.  

 

4.5 Structure of Condition Monitoring Systems 

As described in Figure 4.1, condition monitoring systems includes three main 

components: sensors, signal processing methods, and pattern recognition and 

identification systems. This section will discuss in some detail modern development 

and difficulties associated with each component. 

4.5.1 Signals and Sensors 

When a machine tool is operating, several types of signals are produced from the 

machine tool and the machining process. Figure 4.2 shows some of the signals 

produced during machining process. These signals can provide significant inputs to 

the condition monitoring system. The evaluation process of the signal could be used 

to establish the condition of the machining process. 
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Figure 4.2: Signals emitted from the machining process. 
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To carry out a condition monitoring system effectively and rapidly, the machine must 

be fixed with sensors that convert the status of the manufacturing process into 

measurements. The success of a condition monitoring system depends on the type, 

suitability and reliability of information captures by the sensors [51]. According to 

the “Sensor Markets 2008” report, the sensor market, under very conservative 

assumptions, is expected to reach $50–51 billion by 2008. Figure 4.3 shows an 

overview of the sensor market development for the major application sector. 
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Figure 4.3 Sensor market developments for the major application sector. 

 

In the sensors manufacturing sector the leading sectors are motor vehicles with 

around 20% of the global demand for sensors in 1998. A 30% price reduction for 

sensors in the motor vehicle industry is expected over the next 10 years. The sensors 

market for the manufacturing industries is about 18.5 % of the total market. For 

example, the process industries market is expected to grow from US $ 6 billion in 

1998 to US $ 9.1 billion in 2008.  Different types of sensors have been commercially 

available, see for example [51, 52]. The sensors should be sufficiently durable to 

survive the hostile environment and they should be simple to operate and robust and 

comply with the expected requirements in manufacturing operations. They should 

also be close to the machining point, supporting the static and dynamic solidity on 

the machine tool, maintain the working space and cutting parameters, wear and 

maintenance free, be easily replaceable and cost-effective, resistant to dirt, chips and 
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mechanical, electromagnetic and thermal influences, functionally independent of tool 

and work-piece and reliable in signal transmission [23, 51]. New and diverse 

technologies have been reached over the last two decades in the area of sensor 

technology [42]. Reliable sensors are required to identify the behaviours of the 

machine tool and the process. Various sensors have been developed and 

implemented for the monitoring of tool failure, part dimensions, surface roughness, 

surface burn, chatter, etc. The selected sensor depends on the particular fault to be 

monitored as well as on the type of machine. Therefore, a large variety of sensors 

and signals have been investigated in literature [53]. The type and the nature of the 

signal being monitored will determine the most appropriate sensor to capture that 

particular signal.  

The selection of sensor and signal processing in the field of condition monitoring 

systems is essential for setting up a reliable system [54]. This is due to the fact that 

manufacturing processes are difficult to model mathematically and sensors are used 

to provide the data that are needed to describe the process. It is possible by using this 

data to describe the process through different approaches where these include 

empirical modelling expert systems, neural networks and fuzzy logic [23]. Many 

types of sensors have been implemented in condition monitoring research. The types 

of sensory signals such as force, temperature, vibration, sound, acoustic emission, 

motor current, coolant pump pressure, motor voltage and speed, have been verified to 

be effective for condition monitoring applications [55]. Also other off-line 

monitoring techniques using tool probing have been found useful [2, 56]. Many 

sensors have been developed to meet their demand. For a given process and fault, a 

minimum number of sensors that are most sensitive to the measured parameters need 

to be selected. However, the problem of selecting suitable sensors for a specific 

process remains under investigation or untested in some areas. Solving this problem 

requires a thorough understanding of the monitoring process, types of failure and the 

sensory system [47]. The ASPS  method [57-63] has been modified and implemented 

in this thesis to ease the turning processes by providing an automated method for 

selecting the most appropriate sensor and signal processing method for monitoring 

tool wear. The ASPS approach helps to design a condition monitoring system for a 

machining process using an automated simple procedure to detect the sensory 
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characteristic features which are most sensitive to process faults but less sensitive to 

other machining variables and parameters. The sensory characteristic features 

provide essential information for the detection or classification of machining faults. 

The ASPS approach uses the “black box” concept where the monitoring system is 

designed based on the inputs and outputs of the process rather than its mechanics and 

the faults mechanism. More details will be mentioned in Chapter 6 section 6.4.  

4.5.2 Signal Processing  

The sensory data acquired usually includes high level of noise and some random 

characteristic. Therefore, signal analysis is required to simplify and abstract the 

meaningful characteristics for the decision-making process. Pre-processing methods 

such as filtering and amplifying are sometimes used to reduce noise and improve 

signal-to-noise ratios. Once complete, the next step is to gain an understanding of 

what type of data is being measured. Monitoring systems rely on data analysis. 

Industrial problems of machine condition monitoring demand sufficient 

interpretation of data which occurs in particular applications such as: process 

monitoring and diagnostics; quality control; and tool condition prediction. An 

effective tool wear monitoring system, for example, should have a good signal 

processing algorithm able to identify the signals of tool wear from those due to 

changes in cutting conditions, such as a change in depth of cut. Filtering signals is 

important to be performed, when needed, to solve the noisy input problems and 

aliasing. Generally, signal processing methods include frequency domain, time 

domain and the other statistical methods. Frequency domain analysis produces 

frequency spectrum analysis such as FFT which has been a commonly applied signal 

processing technique in engineering applications [64]. Discrete wavelet 

transformation (DWT)  is a signal processing technique in the time–frequency 

domain which gives signal decomposition with reasonable resolutions in both the 

time and the frequency domains and a better reconstruction of the original signal in 

terms of the decomposition results [57]. Time domain methods include RMS, peak 

level value [57], kurtosis analysis [57], crest factor analysis [60, 61], moving average 

techniques [64], time domain average (TDA) [62, 63] and shock pulse counting [65]. 

Singular spectrum analysis (SSA) is a new non-parametric technique of time series 

analysis based on principles of multivariate statistics [47]. The role of signal 
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processing could be described as a tool which tries to pick up the meaningful 

knowledge out of the mass of information [57, 59]. Investigations have shown the 

signals of particular conditions normally have particular spectral distributions [61]. A 

relatively modern approach to conventional signal processing techniques is the 

application of wavelet transformation. [66]. Statistical methods are also used to 

discover relations within a data set describing a special kind of application. In this 

area, correlation analysis and regression analysis could be applied [67].   

The type of the signal processing technique is important for a successful condition 

monitoring system. Some researchers believe that if the calculated signal includes the 

needed information about the process, then it could be possible with an intelligent 

diagnostic tool to produce successful prognostic and diagnostic results. Processing of 

the signal data from the sensors is very significant for precise estimation of the 

condition of the cutting tool. Several algorithms are applied for condition monitoring 

systems. Lately, more than one algorithm has been used for improving the efficiency 

of the system [68]. New signal processing methods appear frequently in literature 

that could also be used to improve the signal processing methods. 

4.5.3 Artificial Intelligence and Pattern Recognition  

The majority of manufacturing processes are basically noisy and non-deterministic 

[69, 70]. Because of this complex nature, it is difficult to build a perfect 

mathematical model from captured and processed signals. With the increases in 

computer technology, the last decade has monitored the development of several 

artificial intelligence methods to the area of condition monitoring systems [71]. 

Artificial Intelligence (AI) is a broad term used to explain computerised approaches 

that use knowledge, reasoning, self learning and decision-making to make machines 

operate or ‘think’ as human beings. Generally, artificial intelligence may be 

separated into two groups: symbolic intelligence contain expert systems, knowledge 

based systems, case-based reasoning, etc; and the second is computational 

intelligence which contains artificial neural networks (ANN) [72, 73]. The problem 

of the machine can be identifying from the signals gained from the sensors by the 

pattern recognition to identify the condition of the manufacturing process. Many 

artificial intelligence techniques which have been developed for manufacturing 

systems have been found reasonably successful [74]. In addition, all pattern 
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recognition techniques described in the literature have disadvantages, not all are 

absolute. Measurements have to be made on the healthy system to store the healthy 

response [66] and in most cases the information contained in the data is not utilised 

adequately or the data base is uncertain [75]. In the pattern recognition technique the 

response of some parameters is recorded and it is repeated over time as the failure 

generates and the record will be changed over that time. If the parameter which has 

been chosen is good then the record will change in a different shape if a different 

fault is generated, though, the response demonstrates different patterns depending on 

the fault. If the pattern is recognised then the fault can be diagnosed [75-77]. In this 

work, two unsupervised approaches have been selected. The approaches are Novelty 

Detection (ND) and Learning Vector Quantisation (LVQ). 

Novelty detection [77] requires no comparison between healthy and unhealthy 

signals. Only normal conditions are needed to characterise the normal process.  Any 

deviation from normal conditions will be identified as novel. Novelty detection [77] 

is a classification technique that recognises a presented data as novel (i.e. new) or 

non-novel (i.e. normal). The training data for the novelty detection algorithm consists 

of only the normal class which is often much easier to obtain than data for multiple 

classes. Since a degree of overlap is normally expected between different classes, 

classification problems have a probabilistic nature [78]. Novelty detection involves 

estimating the probability-density–function (PDF) of a normal class from the training 

data and then estimating the probability that a new set of data belongs to the same 

class. The accuracy of novelty detection classification is dependent on the accuracy 

of the modelled density functions [79]. Three main methods are normally used to 

model the PDF: parametric methods [80], non-parametric methods [77] and semi-

parametric methods [81]. The parametric methods assume sufficient statistical 

information about the training data set which is not normally available. In non-

parametric methods no assumptions are made regarding the underlying density 

functions and they depend on the training data to find the probability-density-

function for a new input. Reference [82] classifies such methods as being Kernel 

based techniques and K-Nearest Neighbour techniques. The K-Nearest Neighbour 

method depends on the probability that K number of data points of a vector fall 

within a specific volume. The Kernel-based technique calculates the volume by 
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defining width parameters for a number of known probability distribution functions 

(Kernels) to provide a general model for the training set. However, non-parametric 

methods require long computations for every input vector. Semi-Parametric density 

estimation is used in this research for novelty detection because it combines the 

advantage of both parametric and non-parametric techniques and does not require 

extensive computational effort. Semi parametric methods use fewer numbers of 

Kernels. A Gaussian Mixture Model (GMM) is used in this research to estimate the 

PDF. Unlike non-parametric methods the training data are used only during the 

process of construction of the density model and are not needed for calculation of the 

PDF for new vectors. Different novelty detection algorithms and applications have 

been reported. Reference [83] generalised radial basis function neural networks. 

These are used to form a Bayesian classifier that is capable of detecting novel data. 

The advantage of novelty detection comes from the ability to distinguish between 

training data and new data that have not been seen before. Reference [84] uses the 

novelty detection approach to diagnose failure in structure. In reference [85], novelty 

detection is used for the detection of special causes in multivariate statistical process 

control. 

Learning Vector Quantisation neural network (LVQ), which implements competitive 

neural network, is an unsupervised neural network which uses Associative Learning 

Rules which allow the network to learn the association between the inputs and the 

outputs in reply to the data presented to them. A competitive neural network belongs 

to Self-Organising neural networks where such networks can learn to detect 

regularities and correlation in their inputs and adapt their future responses according 

to that input. A competitive neural network basically learns to recognise similar input 

vectors and to classify them together in one group. The basic structure of this 

network is that the input vector to the competitive layer is obtained by calculating the 

negative distance between an input vector p and the weight vector w and adding the 

bias b. For any layer, the neurons are in competition, all the output of the neuron will 

be zero, except the winner neuron, which its output will be one. When the weight w 

of a neuron is the closest to the input vector p, it will have least negative input, and 

then it will win the competition and its output will equal to 1. The user has to select 

the length of the input vector and the number of layers and then the network will 
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group the inputs according to the needed groups. The advantage of using LVQ is that 

it learns to classify input vectors into target classes chosen by the user. Though, the 

learning rules are done according to the competitive layers depending on the distance 

between the input vectors and the weight and not according to the error between the 

output and the target unlike to back propagation neural networks [86]. Therefore, 

there is no mechanism in the network to dictate whether or not any two input vectors 

belong to the same category. LVQ has an input layer, a competitive layer, and a 

linear output layer. The competitive layer learns to classify the input vectors to 

subclasses while the output linear layer transforms the competitive subclasses into 

the desired target classes. The results of a literature review shows that novelty 

detection and LVQ have the potential to be applied successfully in many 

applications. More details about novelty detection and LVQ will be described in 

Chapter 7 section 7.4. 

 

4.6 Sensor Fusion 

Monitoring methods based on a single sensor may not be accurate for the 

identification of the nature and the location of tool wear because tool wear is a very 

complex process and dependent on diverse machining factors such as cutting velocity 

and feed rate which affect the reliability of detecting tool wear and failure. For 

example, cutting forces are a function of cutting velocities and in the case of 

significant change of the cutting velocity, thrust and torque signals change 

remarkably. This may not result in meaningful information on the tool condition 

monitoring [87]. Hence, there must be another type of sensor, e.g. vibration or 

acoustic emission (AE) sensors, which can complete the force sensors. Besides, some 

sensors are sensitive to particular types of fault. Thus, the information from a single 

sensor may simply not be good enough to make a reliable decision on tool condition 

monitoring. 

In order to increase the predication reliability sensor fusion is used. Multiple sensors 

are combined to measure the same phenomena. This is called sensor fusion. The 

integration of various sensors and therefore the analysis of rich data from several 

different sources may improve the success of the condition monitoring system. Other 
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typical applications of sensor fusion are robotic systems, automatic target 

recognition, autonomous vehicle navigation, etc. 

Because of the rising complexity of recent machines and the increasing demand for 

reliability, availability, cost effective and safety, condition monitoring has become an 

ordinary strategy in industry. Successful condition monitoring is becoming  

extremely dependent on the ability to interpret multi-sensor data based on advanced 

signal processing methods [88]. Sensor fusion has already been widely used in 

various applications in which multiple sources of information are presented. It is well 

known from recent research that employing multiple sensors using sensor fusion 

methods provides improved and robust estimates.  

If the quantitative relationships between simple sensor measurements and physical or 

chemical characteristics of a sample are known, or can be empirically calibrated, 

these relationships can be used to determine the characteristics of a new sample from 

sensor measurements on that sample. Simple sensors are easily calibrated using 

standards, and occasionally, calibrations made by the sensor manufacturer can be 

used. When two or more sensors are used jointly, the calibration is called 

multivariate calibration. Two or more characteristics can be determined at the same 

time if at least the same number of sensors is used. However, there are advantages in 

using more sensors than the minimum number. Not only will the precision in the 

determination of a characteristic be increased, but also error control is possible, for 

example, to detect a malfunctioning sensor or a process failure [89]. 

Sensor fusion is capable of producing an improved model for system estimation by 

using a set of independent data sources [90]. It manages to make full use of 

information and can effectively increase the fault signal to noise ratio, and improve 

the information quality and strength and thus help improve diagnosis accuracy [91]. 

 

4.7 Conclusion 

Condition monitoring systems are widely used in research and industry for condition-

based maintenance activities as well as process and machine monitoring for fault 

diagnostic and to maintain an acceptable product’s quality. Condition monitoring 

systems include three main stages: sensors, signal processing methods, and decision-
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making. The success of the condition monitoring system depends on the integrated 

results produced by the complete system. This chapter has presented an overall 

concept of the condition monitoring technologies that have been implemented in 

research and industry in recent years. 
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Chapter 5 

Review of Implemented Condition Monitoring 

Systems in Turning Processes 

5.1 Introduction 

A broad range of monitoring methods have been proposed and developed in the last 

decades. Only a limited number of methods, however, have been implemented in a 

real industrial environment. This chapter presents a review of condition monitoring 

methods that have been developed or implemented in industry and research. The 

review seeks to display the problems in current monitoring methods and to obtain an 

idea about the current research in condition monitoring systems in turning processes. 

A wide variety of direct and indirect methods of condition monitoring systems are 

described. Some successful and descriptive references found in the field of condition 

monitoring systems have been analysed and introduced. In addition, this chapter 

briefly reviews the potential sensors for monitoring process output variables 

useful for tool wear monitoring in turning processes and discusses the criteria 

for sensor selection based on their applicability, robustness, and reliability in a 

real industrial environment. This chapter concludes with a summary of the current 

problems in condition monitoring systems. 

 

5.2 Monitoring Methods 

As mentioned earlier, tool condition monitoring methods can be classified into direct 

and indirect methods, depending on the source of signals collected by sensors. Direct 

methods sense tool conditions by direct measurement of the tool. Direct methods 

include contact switched, optical, radioactive and electrical resistance. Alternatively, 

indirect methods sense the tool condition by measuring the secondary effects of the 

cutting process, such as vibration, sound, acoustic emission (AE), cutting force, 

spindle and feed motor current. Direct methods are beneficial because they take close 
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reading directly from the tool itself. By contrast, indirect methods must rely on 

conditions other than the tool itself to judge tool condition. However, direct methods 

are limited because the machining process must be interrupted to make the direct 

measurement[92]. As a result, machine down time increases, as does cost for tool 

condition monitoring. Researchers therefore have preferred indirect methods to 

examine on-line tool condition monitoring systems. Since indirect methods do not 

require access to the tool itself to measure tool condition, signals that indicate tool 

condition can be gathered in real time, while the machine is running [11]. In the 

following sections some of the more successful direct and indirect methods of tool 

wear monitoring will be introduced and their merits and shortcomings will be 

discussed. Because of the large amount of literature in this area, the following section 

aims to provide the reader with a general outline of the state-of-the-art. 

 

5.3 Direct Methods 

5.3.1 Optical measurement 

Since the tool wear land has a higher reflectivity than its surface, optical and electro-

optical methods can be used to measure tool wear directly by using contrast. Using 

the increased computing power and reliability of electronic devices, optical systems 

have been designed to analyse the image of the illuminated wear zone. A system 

which employs CCD cameras coupled to an expert system has been proposed for tool 

life management in flexible manufacturing cells [93, 94]. This method has the 

advantage of being persistent and interference with machining hardware is kept to a 

minimum. One problem with this approach is that optical sensing can only be used 

between cutting cycles when the tool is removed from the workpiece (i.e. off line 

process). In addition, distinguishing the worn area is made difficult when a built-up 

edge or metal deposit is present. This kind of method is inflexible and cannot be 

applied to on-line monitoring. 

5.3.2 Workpiece Dimensions 

As the cutting tool wears, particularly on the edge in contact with final machined 

surface, the workpiece size changes. For example, the depth of cut will be decreased 
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with tool nose and flank wear in turning. Therefore, by measuring the workpiece 

size, tool wear can be estimated directly. Reference [94] planned a method for tool 

wear monitoring based on measurement of workpiece difference. Two 

electromagnetic probes are employed on opposite sides of the workpiece so that the 

electromagnetic waves flow from the probe to the metal thus allowing precise 

measurements of the workpiece diameter. The sensor outputs a voltage directly 

related to the gap between the sensor and the workpiece. Since the machine has to be 

stopped in order to measure the workpiece size, systems of this type cannot be 

implemented on line. These systems are not able to diagnose different tool failure 

modes. For example, it is not possible to distinguish between flank or nose wear. 

Moreover, errors can be introduced by thermal expansion or lead screw inaccuracies. 

5.3.3 Electrical Resistance Measurement 

It has been observed that the electrical resistance of the tool/workpiece interface 

decreases with progression of wear due to increases in the contact area. Measurement 

of this change in electrical resistance has, therefore, been used as a tool wear 

monitoring method. Simply measuring the electrical resistance has proved ineffective 

because of the resistance change due to the variations in temperature and cutting 

forces during the machining process. A more accurate method has been found to be 

one in which a thin film conductor is bonded to the tool flank. As the tool flank wear 

progresses, part of the conductor is also worn, increasing the resistance. This increase 

is then correlated to flank wear. The problems with this method include the need for 

special tooling, the high level of noise due to high temperatures and plastic 

deformation and the possible separation of the conductor from the flank surface due 

to high pressure and temperature. In addition, this method cannot be used to measure 

other modes of wear [96]. 

5.3.4 Tool-workpiece Distance Measurement 

As the turning tool wears, the distance between the tool holder and the workpiece 

decreases as the tool wears. To use this observation for tool wear monitoring, the 

distance between tool holder and workpiece can be measured by a variety of sensors 

such as electronic micrometers, reflected ultrasonic waves and pneumatic gauges. 

The distance can be measured by proximity sensors such as feeler micrometers and 
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touch trigger probes and sensed by using an electronic micrometer fixed on the tool 

post or a stylus attached to the tool post [97]. However, these methods are not 

suitable for use in condition monitoring systems because the measurement of this 

distance is influenced by the thermal expansion of the tool, surface quality, vibration 

of the workpiece, cutting fluid and the deflection of the tool due to the cutting force, 

etc.  

5.3.5 Radioactivity 

It is well known that, in turning processes, most of the wear particles of cutting tools 

are carried away adhering to the surface of the chip. Therefore, a practical way for 

measuring wear could be to track these lost particles. Radioactive sensors have been 

used to measure the volumetric overall loss of the tool material. In most cases, the 

tools are made radioactive by irradiation in atomic reactors [98]. Tool wear is then 

monitored by measuring the radioactivity transferred to the chip. Since the total 

amount of wear at the normal wear rate is very small, the chips have to be collected 

and their radioactivity measured. This means that radioactive methods cannot be 

used as an on-line wear monitoring system. Environmental and health considerations 

also limit use of radioactive material on the shop floor. 

 

5.4 Indirect Methods 

5.4.1 Force Sensor 

One of the more common indirect tool wear monitoring methods is the use of cutting 

force measurements. Typical cutting force components are shown in Figure 5.1. It 

has been reported that cutting force signals are more sensitive to tool wear than 

vibration or power measurement [99]. The reliability of force measurements is 

another factor for their popularity in tool wear monitoring applications. The 

relationship between cutting force components and tool wear has been investigated 

by many researchers. Reference [100] found that the tangential force decreased as the 

insert broke while the feed force might decreases or increases depending on the 

cutting edge. Reference [101] recognised the relationship between the wear and the 
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tangential force. The amplitude of the dynamic force increased with tool wear and 

decreased before tool failure.  
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Figure 5.1: Cutting forces in turning operations. 

 

Reference [102] proposed and implemented a model for tool wear prediction using 

cutting force signals. Turning tests are performed on a lathe and the required data 

collected and resulting wear measured. A number of tests are initially performed 

under a variety of cutting conditions. From these tests, the force components least 

sensitive to process parameter change but most sensitive to tool wear are identified. 

The results showed close correlation between actual data and estimated values. With 

varying cutting speed and depth of cut, an error estimate of 6-9.5% is reported for 

constant feed-rate, chip breaker and workpiece data. Therefore, this error is high for 

tool wear prediction. 

Reference [103-105] proposed a combined method of cutting tool flank and crater 

wear estimation. In the implementation stage of their method, data from experiments 

performed on a vertical lathe were used. The experiments involved recording the pre-

processed (low pass filtering) components of the cutting forces from two sets of tests 

conducted. For the first set, used coated carbide inserts and carried out the tests at 

low cutting speeds. The second set of tests used ceramic inserts and was carried out 

at higher speeds. The same workpiece material, feed-rate and depth of cut were 

utilised in both test sets. Force-wear relationships partly based on the same principle 
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as reported in [3, 103] were employed to select the input coefficients for training the 

network. Results showed relatively good flank wear estimation but poor crater wear 

estimation. Overall, the proposed method demonstrated an ability to estimate tool 

wear closely, over a wide range of cutting conditions but lacked vital accuracy. The 

inaccuracies could be attributed to poor input coefficient estimation; researchers 

related the cutting forces to tool wear with linear equations. It is therefore misleading 

to contemplate combining the two data types and expect unanimity. 

References [3, 101, 102, 106] performed cutting tests from which researchers 

recorded the dynamic cutting force signature. A dimensional space features selection 

process and three different implementations were carried out. In [102] researchers 

used a wavelet technique to extract such features from the convoluted force signal. 

Results obtained showed inaccuracies due to changed chip shape as a result of tool 

state change. The main reason for this, the researcher claimed, is the fact that in any 

cutting process more than two classes of cutting states actually exist, and a network 

with just one output can only recognise two of them. Thus, the final classification 

results would not be entirely correct.  

References [107] also used the cutting forces signal. The net output gave an 

indication of the product surface finish established earlier as representative of the 

tool state. Effectively, reference [107, 108] used this experiment to relate tool wear, 

surface finish and cutting forces, and reported a high but un-quantified achievement 

rate. Reference [3] approach and methodology was similar to that of [109], but 

differed in terms of sensor signal inputs, data processing. Reference [3] argued that 

there is no need to use dimensionally selected features. Instead, the amplified 

components of the cutting force signal are used as samples, together with the three 

cutting parameters [110].  

Reference [111] utilised the cutting forces as sensor signal inputs with an additional 

component, depiction of the occurrence of tool breakage to monitor the cutting 

process. The reference incorporated the cutting condition parameters (cutting speed, 

radial and axial depth of cut) with the chosen sensor signals and workpiece material. 

Reference [112] utilised the integration of cutting forces and AE signals in their 

studies of the influence of flank wear on the individual signals. Machining test cuts 

were performed from which the cutting forces and the AE signals were recorded. 
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Researchers concluded that by combining different source signals for tool wear and 

classifying their success rate significantly improved the performance of the system. 

Reference [112] carried out single-point cutting test experiments and measured and 

recorded the tool tip temperature, the true root mean squared value (RMS) of the AE 

signal, and the three components of the cutting forces. The reference reportedly 

achieved very precise wear evaluation but no quantification of the results was 

provided.  

Reference [107, 108, 112] used the vibration and cutting forces from both turning 

and milling tests to perform tool state classification, continuous estimation of tool 

wear and the inverse modelling of the cutting process. Reference [113] experiments 

involved carrying out milling and turning test cuts utilising both fresh and worn 

inserts, recording the cutting forces, and vibration components from each cut. Using 

the measured signals, statistical and spectral features were computed, followed by 

performance of a sequential forward search or feature selection process using the 

same selection criteria as [114] used the force data to perform classification tests.  

5.4.2 Sound Sensor 

The concept of sensing tool wear from the sound signal during a cutting process goes 

back more than thirty years. Sound from a machining operation contains a variety of 

information on cutting. There have been several studies using sound signals in this 

situation [6], and their results confirm the correlation between tool wear and the 

sound emitted during the turning process.  

It has been reported that tool wear is correlated with an increase in the amplitude of 

the high frequency bands of the sound signal [115]. In this research work, a sound 

signal was used to extract valuable information correlated with tool wear.  

The main problem of using this signal in the development of a tool condition 

monitoring system is the ambient noise, as has been identified and studied in several 

research studies [116]. These studies concluded that in the region between 0 and 

2 kHz the influence of the surroundings and of the noise from adjacent machines, 

motors, conveyors, etc. or processes may contaminate the signals. However, they 

concluded that this effect can be moderated by using noise cancellation methods in 

the signal processing algorithm. In this way, several researchers focused their studies 

on certain frequency bands in the region 2–20 KHz. Tool failure can be detected also 
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by using the noise spectra resulting from the rubbing action of the tool and the 

workpiece. Reference [117] discovered that noise in the 2.75 – 3.5 kHz frequency 

range is significantly increased from 9 to 24 dB as the sharp tool becomes worn. 

Reference [118] developed a pattern recognition analysis of sound radiation as basis 

for tool condition monitoring. They recorded the sound pressure signals radiation 

using a sharp tool, a worn tool and a broken tool. They used the spectral component 

in the 0 – 10 kHz range as a feature with the fresh and worn tool resulting in a 100% 

classification with just two features and an average of (0-5 kHz) and a high of (5-15 

kHz) range. Reference [115] used a microphone sensor to detect the nearest 

approaching point of the workpiece. The investigations showed that ultrasonic and 

AE sensors are good enough for detecting the nearest approaching point. Reference 

[91] presented research work based on texture analysis of machined surfaces and 

signal processing of sound generated by the machining process. They investigated 

the correlation between tool wear and the quantity of the machined surfaces and 

sound patterns. The results indicate that tool condition monitoring in this 

investigation between sharp, semi-worn and worn tool can be successfully 

accomplished by combining sensory data from a camera and microphone.  

5.4.3 Power/Motor Current Sensor 

Reference [119] studied the relationship between the power or the current of the 

main drive motor of the spindle and tool breakage and tool wear. He found that the 

motor current dropped and then improved to a level before the drop as the tool broke. 

At the steady spindle speed of the cutting state, the percentage increase of the motor 

current from the start to the end of the tool life was almost constant when similar 

material was machined. The spindle motor power from a vertical milling machine is 

measured by [24] as well as the power spectral density. It was proven that the 

variation of the spectral energy of the motor power was linearly linked to the tool 

wear rate and that these were affected by the tool geometry and the cutting 

conditions. 

Reference [24] carried out cutting tests in order to examine tool breakage detection 

and compared success rates achieved by these methods on a lathe machine. The 

sensor signal inputs used included the fusion of vibration ultrasonic energy, and 

current inputs to the carriage drive motors. Additional to these signals, the feed-rate 
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and the spindle speed were used as further inputs. Data having the breakage 

signatures were recorded as cutting progressed until a breakage happened. The 

recorded signals were then analysed by application of selective time windowing and 

block averaging, to reduce the data size. Using four methods of measurements from 

each test the relative success of each method was evaluated. Reference [24] used AE 

and motor power sensors to detect the tool breakage in the turning machine. To 

process different AE signals emitted from cutting process, reference [65] used time–

frequency analysis and observed four types of power signal variation in the 

experiments when tool breakage occurred. Reference [120-122] suggested that the 

change of power signals in the time domain is stochastic and proposed a delayed 

variance to extract features from the power signals. 

5.4.4 Acoustic Emission Sensor 

Acoustic emission (AE) can be defined as the transient elastic energy released in 

materials undergoing deformation, fracture or both. In metal cutting processes, AE is 

attributed to many sources, such as elastic and plastic deformations of both the 

workpiece and the cutting tool, friction, fracture of the workpiece, wear and failure 

of the tool. AE provides a means of sensing tool wear or tool fracture, since it is 

generated from the process that causes tool failure. The emission signal is usually 

detected by transducers, then amplified and transmitted to a processing device. 

Spectral analysis has been found to be the most informative analysis tool for 

monitoring tool failure in turning. In [123] burst type AE and continuous AE waves 

are the two kinds of acoustic emission waves that can in general be met during the 

machining processes. The burst type of AE is a sign of discrete actions with its main 

source being tool and chip breakage. The other is the continuous kind which results 

from the shear of the workpiece, the contact between the workpiece and the cutting 

tool, and tool and chips are the main area of focus of the continuous AE type. During 

the machining process considerably AE is thought to be produced compared to the 

larger amount accompanying tool fracture and breakage [124]. 

Consequently, AE has been found to for more dependent on the workpiece structure 

than on the cutting tool. The signals of AE reflect more the behaviour response from 

the machine tool set up than the cutting tool [93] since AE may be available on the 

whole machining area. The disadvantage of the application of AE as an indicator of 
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tool failure is that the signals are more sensitive to variation in the cutting conditions 

and the noise more than the tool itself. Therefore, the use of the AE sensor by itself 

to monitor the condition of the tool is difficult [125]. AE is suitable to be used as an 

additional sensing technique to increased reliability.  

Reference [126] utilised acoustic analysis to predict tool wear in the turning process. 

The parameters chosen were recorded at the same time and the resultant tool wear 

length measured. Analysis showed that the AE signals can determine clearly the 

cutting condition of a sharp, worn or damaged tool. Reference [127, 128] reviewed 

AE sensing methods in machining processes. Among other methods mentioned, it 

reported that tool wear detection in machining process could be done by applying 

AE. Reference [129] used AE and force signals combined with a pattern recognition 

analysis system to carry out progressive tool breakage detection and tool wear 

monitoring. References [108] applied the combination of AE and force sensors to 

gradient adaptive lattice analysis and pattern recognition. Reference [130], inspired 

by previous successful works by [131] and others, proposed and investigated an in-

process method of tool condition monitoring. The method principally involved 

monitoring the progressive increase of tool wear during a turning operation. Cuttings 

tests were conducted using a lathe machine from which 300 samples of raw 

AE_RMS, signals were recorded at three seconds intervals. From the recorded 

AE_RMS, four dimensional features were extracted: integral (energy), skew, kurtosis 

distribution and the auto-regressive coefficients. Reference [132, 133] extended 

[134] work by conducting turning experiments from which the cutting forces and AE 

signals were recorded under different cutting conditions. They continued to extract 

100 features from all the measured force and AE signals and these were used as 

inputs. References [89] proposed four methods for integrating several sensor signals 

from a machining process. Test cuts were performed from which the cutting forces, 

temperature, and acoustic emission were recorded for known tool conditions. 

Reference [132, 133]  proposed an approach based on sensing the AE signals from 

carbide inserts to develop a new method for the automatic detection of cutting tool 

wear and life in turning operations, making use of its characteristic features for worn 

and sharp states. The results confirmed that tool wear and life were correctly 

identified. However, no clear justifications of the findings were provided. Reference 
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[135] proposed, examined, and compared the performance of two approaches of 

multi-sensor information from a machining process. These approaches concerned the 

fusion of multiple sensor signals through ANN and compared the results with those 

gained from methods based on statistical analysis. This is an addition of the work 

reported in [136]. Test cuts were performed using a CNC lathe, and the cutting 

forces, tool-workpiece interface temperature, and AE signals were recorded for 

identified values of tool wear. The recorded signals were processed through a 

combination of techniques. Initially, four sets of tests were performed at a constant 

feed rate, depth of cut and cutting speed. Each set consisted of machining 

experiments with each experiment in turn consisting of a particular machining time 

period.  

Reference [137] investigated data from spindle power and acoustic emission sensors. 

Face milling and drilling processes were combined to successfully identify a state of 

tool wear, workpiece hardness, and a stock size dimensional variation. The results 

showed that the system is capable to correctly identify the correct state.  

5.4.5 Vibration Sensor 

Vibration is a method that has been widely used in tool failure detection. The 

vibration sensor can be installed easily on the tool holder. The vibration signals vary 

with tool failure in some ranges of frequency. Vibrations are created due to the 

rotation difference in the dynamic components of the cutting forces. Regularly 

vibration action starts as small chatter, practical for the roughness on the finished 

surface and chip thickness irregularity and development to what has come to be 

normally called vibration. Because of the periodic wave motion, it generally 

produces mechanical vibration. The vibration produced in the machining processes is 

a mix of different types such as forced, free, random and periodic [138]. Because of 

the dependent frequency of the vibration, it is difficult to achieve a direct 

measurement of the vibration because of its determining characteristic features. 

Therefore, a parameter like the acceleration is measured and obtained the vibration 

from the pattern. Reference [138] studied and discussed the detection and estimation 

of groove wear at the minor cutting edge of the total monitor vibration. An 

accelerometer attached to a lathe machine was used to perform the cutting test. 

Measurement of the wear was taken after each cut when it was interrupted. The 
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analysis showed the cutting and thrust vibration components. Reference [139] 

performed turning tests using a CNC lathe machine and measured the vibration 

signals on the tool holder. An extensive feature selection process utilising the 

sequential forward selection algorithm with respect to clustering properties was 

performed. It concluded that the main disadvantage in the investigation was the large 

amount of data and required extensive time for analysis. Reference [140] mostly 

concentrated on the problems related with varying the cutting conditions for tool 

condition recognition using vibration and force features fuse all the way through a 

neural network. The concern was in classifying whether or not the tool condition had 

been damaged or not. The main disadvantage in this study is its limited validity over 

a broader range of machining parameters. 

Reference [141] argued that tool wear levels alone were responsible for the level of 

chattering on a machine tool. To examine this, a test was carried out on a 

conventional lathe machine using carbide inserts, and existing records of the 

vibration and AE signals. Time displays of the recorded signals clearly showed the 

coupling between chatter and tool wear with the surface outline becoming rougher as 

the AE and acceleration signals increased.  

5.4.6 Temperature Sensor 

As a cutting tool wears, the temperature developed at the tool edge increases due to 

increased forces, contact area and friction. In most cases the final breakdown of the 

tool is due to this increased temperature. Therefore, the cutting temperature can be 

used to indicate the condition of the tool wear, and the rapid increase in temperature 

near the end of tool life could be used to predict the final breakdown.  

During the machining processes, heat is generated within the primary and secondary 

shear zones due to plastic deformation of the material. Along the tool chip interface, 

heat is generated. If the cutting edge is not perfectly sharp, an additional frictional 

heat is generated due to ploughing. Thermocouple is an application to monitor 

temperature at the tool chip interface that may be practical for an on-line monitoring 

system [142]. 

In the tool-workpiece thermocouple technique both the tool and workpiece are 

electrically isolated from the machine tool structure. This technique is used for tool 

failure detection, controlling the machining process, and tool wear monitoring. It has 
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been found that the reliability of the tool-workpiece thermocouple method is affected 

by the material properties at a junction and by the noisy thermocouple voltage signal 

which is sensitive to cutting conditions. On the other hand, in embedded or remote 

thermocouple technique, one or more thermocouples are located on the cutting tool 

remote from the cutting edge. Usually thermocouples are located at the seat of the 

tool inserts. This approach can be used for predicting tool wear from temperature 

measurements. Using this approach, it is difficult to measure temperature at the 

cutting edge because the thermocouples are embedded within the cutting tool a 

distance away from the cutting edge. Temperature measurement in this method tends 

to have errors primarily because the temperature gradients near the edge are steep, 

and the heat conduction characteristics in the cutting tool are alerted by presence of 

holes in which the thermocouples are embedded [143]. Moreover, there are two more 

drawbacks associated with the application of this type of sensor. First, the 

relationship between cutting temperature and wear must be known in advance with 

great reliability and under various cutting conditions. Secondly, due to the time lag 

during heat transfer, the response time is very poor. In summary, the reliability of the 

temperature signal is affected by material properties and noisy thermal voltage 

signals. The on-line application of temperature sensors is generally difficult due to 

the inaccessibility of the cutting zone. 

5.4.7 Infrared Sensor 

There has been significant progress into the development of infrared technologies for 

the measurement of temperature. An infrared sensor is a non-contact technology of 

measuring the temperature of an object based on its emitted infrared energy. The 

radiation emitted by the tool/work-piece includes the infrared radiation which can be 

detected by an infrared sensor. The amount of infrared emitted by the tool is partly a 

function of the temperature of the tool. The infrared energy emitted increases as 

temperature increases. Infrared radiation is electromagnetic waves of a length 

between 0.7µm and 1000µm. However, the available infrared cameras in the market 

normally work between 0.7µm and 20µm. [144]. The temperature information of the 

tool or work-piece is extracted by an infrared sensor and analysed using a variety of 

signal processing methods to extract the necessary information to identify the tool 

condition. The extracted information is the key information to recognise faults and 
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classify signals. Reference [145] used an infrared sensor to measure the shear plane 

temperature in a metal chip and the clearance face temperature of the cutting tool. 

Reference [146] used an infrared sensor to measure the temperature distribution in 

the tool during cutting. An improved design of this detection equipments and 

calibration was introduced by [147] which decreased the amount of setup time and 

improved the reliability of the method.  

Reference [148] used an infrared camera to relate wear of a cutting tool, to the 

cutting temperature. This was done by measuring the chip back temperatures as well 

as the tool chip interface temperature using cutting tools with different wear values. 

Reference [149] used the infrared camera successfully to study the temperature 

effects in chip formation. Reference [150] also used an infrared camera to determine 

the temperature distribution during turning process. 

Reference [21] described several cases studies which showed that the new low-cost 

technology could provide an inexpensive and autonomous methodology for 

monitoring machining processes. A novelty detection technique was used to compare 

normal and faulty conditions to provide an automated system for fault detection. 

Reference [151] devised a direct method of tool wear monitoring based on infrared 

images of the cutting tool utilising a sensor system for optical tool wear monitoring 

comprising a camera and infra-red flashlight. The set-up was such that an external 

trigger system synchronous with tool wear was selected.  

Clearly none of these measurements can be applicable in industrial condition 

monitoring of tool wear/faults. The suggested off-line methods are time consuming, 

inflexible, highly inaccurate and cannot be applied on-line. 

 

5.5 Single Sensor  

The use of a single sensor signal in the development of a tool condition monitoring 

system fails to recognise the complex and diverse nature of the cutting process [108]. 

Such models are often less robust, unreliable and generally not capable of total tool 

condition monitoring (ability to recognise incipient, partial, complete or catastrophic 

tool failure). The adoption of feature space dimensioning as a means of increasing 

input dimension whereby various wear sensitive features are identified and extracted 
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from a single signal, is debatable. This is because multi-feature extraction from a 

single signal does not constitute multi-sensing. Feature space dimensioning involves 

the representation of statistically independent probability distribution in just a single 

signal with minimal common information acquired compared to features extracted 

from more than one different source signal [27, 28, 126]. As a result, it is better to 

employ more than one singular sensor as they will hold more information, 

particularly when they are used as an input to decision-making. 

If the noise level in a sensor signal totally contains its tool wear sensitivity feature 

without the attendance of other sensor signals, its tool wear sensitivity is lost. If 

several sensors are positioned the loss of sensitivity information from one sensor 

could be off-set and substituted if dependable information can be obtained from the 

other sensors i.e. improved and enhanced performance of such a system could be 

expected. Monitoring methods based on a single sensor may not be accurate for the 

identification of the nature and the location of tool failure because tool failure is a 

very complex process and dependent upon diverse machining factors such as cutting 

speed, feed rate and depth of cut which affects the reliability of detecting tool failure. 

For example, cutting forces are a function of cutting velocities and in the case of 

significant change of the cutting velocity, thrust and torque signals change extremely. 

This may not result in meaningful information on the tool condition monitoring. 

Hence, there must be another type of sensor, for example, an acoustic emission 

sensor, which can complement the force [16]. Thus, the information from a single 

sensor may simply not be good enough to make a reliable decision on tool condition 

monitoring [152, 153]. 

 

5.6 Sensor Fusion  

Tool condition monitoring methods are categorised into direct and indirect methods, 

based on the type of sensor technology used. Direct methods collect information 

from the tool itself. A number of studies using optical sensors (e.g., CCD camera, 

optical fiber, laser, etc.) showed the accuracy of the information directly related with 

the amount of tool wear. However, these studies were limited because they could not 

be used on-line and were affected greatly by the presence of other materials, such as 
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coolant and debris. Therefore, direct methods have no benefit for use in this proposed 

tool condition monitoring system in a non-laboratory environment. In contrast, 

indirect methods sense secondary details of the machining process such as vibration, 

sound, cutting forces, acoustic emission, temperature, etc, to determine tool 

condition. Indirect methods are optimal for integration into on-line tool condition 

monitoring systems. However, indirect methods require additional processes to 

determine the relationship between the signal and the amount of tool wear. Indirect 

methods rely on sensors, for example, among which the dynamometer sensor has 

achieved the greatest correlation with tool condition. However, the dynamometer is 

limited because it may affect the tool capability when it is installed on the machine. 

In addition, it is limited because of its high cost and lack of overlap protection      

[13, 18, 154-157]. 

Acoustic emissions (AE) also have been used in tool condition monitoring 

researches. However, AE is limited as a sensing technology because noise 

contamination interferes with accurate data collection [158]. To overcome the 

limitations of sensor methods, many investigations have proposed the use of multi-

sensors to create a stronger correlation between indirect signals and actual tool 

condition [157, 159]. These investigations demonstrate that multi-sensor systems 

could give additional signals for better prediction results. However, the distribution 

of different weights to each signal brings more complexity to the tool condition 

monitoring system. Tables 5.1-5.5 summarise some of the sensor methods employed 

by other researches. 

 

          Table 5.1: Optical Sensor. 

Author(s) Sensor Year Ref. 

Cao et al. Optical Sensor 2006 [158] 

Bouzakis, et al. SEM 2001 [159] 

Lanzetta CCD 2001 [160] 

Zawada et al. CCD 2001 [161] 

Kassim et al. CCD 2000 [163]  
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          Table 5.2: Force Sensor. 

Author(s) Sensor Year Ref. 

Bhattacharyya, et al. Dynamometer 2007 [64] 

Huang et al. Dynamometer 2007 [162] 

Martinho et al. Dynamometer 2007 [164] 

Shi et al. Dynamometer 2007 [165] 

Ghosh Dynamometer 2007 [166] 

Devillez et al. Dynamometer 2007 [167] 

Cakir et al. Dynamometer 2005 [22] 

Topal et al. Dynamometer 2005 [168] 

Choudhury et al. Dynamometer 2004 [169] 

Oraby et al. Dynamometer 2004 [170] 

Devillez et al. Dynamometer 2004 [171] 

özel et al. Dynamometer 2002 [172] 

Choudhury et al. Dynamometer 2000 [173] 

Liu et al. Dynamometer 1999 [174] 

Grabec et al. Dynamometer 1998 [175] 

Purushothaman et al. Dynamometer 1998 [3] 

Szecsi Dynamometer 1998 [176] 

Lee et al. Dynamometer 1998 [10] 

Venkatesh et al. Dynamometer 1997 [8]  

Zhou et al. Dynamometer 1997 [103] 

Obikawa et al. Dynamometer 1996 [177] 

 

           

                     Table 5.3: Vibration Sensor. 

Author(s) Sensor Year Ref. 

Alonso et al. Accelerometer 2008 [136] 

Devillez et al. Accelerometer 2007 [178] 

Orhan et al. Accelerometer 2007 [179] 

Salgado et al. Accelerometer 2006 [65] 

O’Donnell et al. Accelerometer 2001 [5] 

Li et al. Accelerometer 2000 [9]  

Jun et al. Accelerometer 1999 [180] 

         Table 5.4: Acoustic Emission Sensor. 
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Author(s) Sensor Year Ref. 

Marinescu et al. AE 2008 [181] 

Lee et al. AE 2005 [182] 

Guo et al. AE 2005 [183] 

Nakao et al. AE 2003 [184] 

Li et al. AE 2002 [18] 

Al-habaibeh et al. AE 2001 [185] 

Chiou et al. AE 2000 [186] 

Govekar et al. AE 2000 [187] 

Liang et al. AE 1989 [17]  
 

          
         

                   Table 5.5: Sensor-Fusion. 

Author(s) Sensor Year Ref. 

Lin et al. Force, Temp. 2008 [188] 

Aliustaoglu et al. AE &Acc. 2008 [189] 

Ghosh,  et al. AE & Dynamo 2007 [166] 

Salgado et al. Sound, Current 2007 [6] 

Chung et al. Force, AE 2003 [21] 

Chungchoo et al. Force, AE 2002 [190]  

Mannan et al. Sound, Temp. 2002 [91]  

Scheffer et al. Acc & Strain 2001 [154] 

Chen et al. Dynamo & Acc. 2000 [157] 

Dimla et al. Dynamo & Acc. 2000 [152] 

Dimla et al. Dynamo & Acc. 1999 [191] 

 

 

As discussed previously, each method has its advantages and disadvantages. The 

optical measurement methods disadvantage is the off-line method because 

measurement can be taken only when the machine is not running or when the tool is 

not cutting. However, the method looks to be accurate and reliable. The disadvantage 

of the other method, the radioactive method, is that safety and good protection are 

needed to eliminate or minimise the effects of radiation on the operator and the shop 

floor. The disadvantage of the changing size method is the movement of the machine 
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tools and the heat of the workpiece expansion. The disadvantage of the use of cutting 

forces is the dependence on the properties of the workpiece and the cutting tool 

materials and changes in the cutting conditions. The sound method has limitation 

because the noise on the shop floor is higher than that of the tool. The on-line direct 

methods are mainly unachievable in a continuous moving system [108, 109, 194]. 

Indirect methods have been tried and used by many researchers in order to improve 

reliability and sensitivity. Multi-sensor data fusion is used where the loss of 

sensitivity in one sensor can be made up for by another sensor. Reference [130, 138] 

concluded that where several tool failure monitoring methods had been developed in 

laboratories few of these methods were being used effectively in industry. In order to 

increase the prediction reliability, multiple sensors are combined to measure the 

same phenomena. The integration of various sensors, and therefore the analysis of 

rich data from several different sources, may improve the success of tool failure 

monitoring systems. Other typical applications of sensor fusion are robotic systems, 

autonomous vehicle navigation, automatic target recognition, etc. Multiple sensors 

can be advantageously used in a complex system, such as tool condition monitoring 

for manufacturing operations, to get opposite information about the process. This 

helps to improve the assurance factor of the resulting diagnosis. The use of multiple 

sensors, though, requires integration and fusion of the sensory information to draw 

the necessary features from the data by removing the redundancy present in the data 

[107, 108, 195]. 

Sensor fusion serves the following purposes: 

• Enhances the richness of the underlying information contained in each signal. 

• Increases the reliability of the monitoring process as loss of sensitivity in one 

signal could be offset by that from other. 

• Sensitivity of failure potentially increases number of times for number of 

sensors fused [153]. 

• Confirms that previous effort to find a unique signal for all tool condition 

monitoring applications have failed [9]. 

On the other hand, focusing on non-linear principles and foundations of metal cutting 

would be useless, as the tool condition monitoring system could become fully 

sophisticated. Therefore, as substitute for the use of a single sensor, the integration of 
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a number of sensors has been investigated. This has led to what is now normally 

termed a multiple sensor tool condition monitoring system [196]. There are still some 

problems with tool monitoring systems and the issues which need serious 

consideration are the sensitivity and reliability. This will involve research into multi-

sensor data fusion and multi-sensor planning and multi-sensors system structural 

design. 

 

5.7 Conclusion 

The chapter has outlined the current knowledge in condition monitoring of turning 

processes. Several sensors have been suggested in literature including forces, 

vibration, acoustic emission, temperature and sound. Each suggested technique 

seems to have its own drawbacks and practical problem. The literature survey carried 

out seems to suggest that most of the surviving tool condition monitoring systems 

have not been successfully implemented in industry because adequate sensor 

information and machining models have been utilised, even though they do not 

satisfactory reflect the process complexity. There is still a need to design and 

evaluate more comprehensive approaches to condition monitoring. The outlined 

study involves the utilisation of not one sensor but several. While it is difficult to 

emulate the human operator who is subjective and inaccurate in order to develop a 

tool condition monitoring system, multi-sensors are evaluated for monitoring faults 

in the turning process combined with artificial neural networks and novelty detection 

algorithms to detect the difference between a normal and novel condition for 

automating the machining process. This literature review has demonstrated a need 

for a new tool condition monitoring system that can provide accurate information 

using modem sensing and signal processing technologies  
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Chapter 6 

Methodology 

6.1 Introduction 

This chapter presents current problems found in the area of the development of 

condition monitoring systems and compares them with current best practice in the 

field. It provides an explanation of the research aim, objectives and the condition 

monitoring methodology used. It also seeks to explain in detail important 

assumptions behind these aims and objectives which are described both definitively 

and in experimental terms. The chapter describes the general stages of the approach. 

In addition, it explains how the following chapters are structured to assess the 

planned methodology. 

 

6.2 Problem Definition 

Among the many possible tool conditions that could be monitored, tool wear is the 

most significant for ensuring continuous machining. Any effective monitoring 

system must sense tool conditions, allow for effective tool change strategies when 

tools fails, and keep proper cutting conditions throughout the process [10]. If the 

monitoring function cannot maintain proper cutting conditions, the cutting process 

could result in poor surface quality, dimensional workpiece accuracy, and even 

machine damage [196]. 

Researchers have attempted to develop reliable methods to monitor tool wear. These 

methods are an area of active research because tool condition strongly influences the 

surface finish and dimensional reliability of the workpiece. In addition, a consistent 

tool wear monitoring system can decrease machine downtime caused by changing 

the tool, hence leading to fewer process disturbances and higher efficiency. The 

information obtained from the tool wear sensors can be used for several reasons, 

including tool change policy, online process action to compensate for tool wear and 

the avoidance of catastrophic tool failure. In order to identify the problems in 



 75

condition monitoring development and the draw-backs of current practice, it is 

important to describe the basic structure of a monitoring system. 

In order to monitor an on-line machining process the system must provide for [185]: 

1. The selection of suitable sensory signals. 

2. The selection of suitable signal processing methods. 

3. The extraction of valuable information from the suitable sensitive sensors and 

the suitable signal processing methods. 

4. The improvement of a classification system strategy. 

Machining processes can produce different types of information. Consequently, it 

has to be possible to select one or a set of sensors to recover information about the 

process which recognises the condition of the machining process. The selection of a 

suitable sensor is a difficult task. When the process to be monitored on-line is 

complex, such as tool wear, it is difficult to instantly recommend a suitable sensor 

for on-line monitoring the condition of the machining process. Hence, the selection 

of appropriate sensors is most important. The selection of an appropriate signal 

processing technique is necessary as well. The information extracted by a sensor 

could be set for use directly or it might include noise or other unnecessary 

information. Therefore, certain signal processing techniques are required to extract 

the essential information. The classification system is an extremely important stage 

in categorising the extracted information by the sensors and taking the decision 

regarding the condition of the machining process. The decision-making approach 

changes according to the application of a simple threshold value to more complex 

strategies. Machining processes have dissimilar levels of complication. Therefore, 

direct measurements which are found useful in some simple processes might not be 

successful, or even applicable, for more complex machining processes. 

6.2.1 Problems in Condition Monitoring 

Based on the previous argument and the review of literature, the following common 

problems and needs are: 

1. How to choose a suitable sensor or group of sensors.  

2. How to choose efficient signal processing techniques. 

3. How to choose an efficient and cost effective sensor fusion model. 
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These problems are general problems in the development of condition monitoring 

systems. Some problems have been solved in some areas of condition monitoring 

while others remain unsolved due to differentiation and complications of the 

monitored machining processes. Complications in the second group, due to indirect 

measurement, make it more difficult to solve the technical problems. In addition, the 

decision-making stage is normally dependent on the process to be monitored and the 

form of reaction required.  

The existing practices in condition monitoring design cover all aspects of the 

monitoring design but with different levels of success in different areas. The 

decision-making stage has been well investigated in the monitoring area using 

different approaches such as statistical methods, artificial neural networks, etc. But it 

has been found that the decision making stage is not considered as the main difficulty 

in condition monitoring design for the following reasons [185, 196, 197]:  

1. The achievement of any decision-making method is governed by the quality 

of the information. When the data extracted from the process and fed to the 

decision-making stage is useful and contains the required information about 

the process and its conditions, the decision-making stage is normally 

expected to produce acceptable results. However, whatever decision-making 

method is used, it is expected to produce misleading results when the data 

used does not include helpful information about the process and its 

conditions. 

2. The methods used can be assessed by general means. In spite of the source of 

data used in the decision stage and what it presents, the decision-making 

technique can still be used to evaluate the processed data and make a decision 

on the essential prediction or classification and any further decision-making. 

3. The response required from this stage is application dependent. For the same 

processes and faults, different techniques can be used based on the 

requirements or the outputs of every technique. Therefore, it has been found 

from the literature that the success of a condition monitoring system relies on 

two significant aspects [27]: 

• The selection of appropriate sensors. 

• The selection of appropriate signal processing techniques. 
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Research in condition monitoring systems has examined and assessed most of the 

major types of sensors existing in today’s commercial market. Some common 

methodologies have been found practical in selecting the sensors used in a condition 

monitoring system. The techniques described provide broad guidance on which 

sensors can be used, and how to maximise the failure coverage and minimise the 

number of sensors used. However, these techniques do not provide practical 

information or a structured methodology on how to select sensors which can provide 

high quality information about the process with minimal costs. When investigating 

sensor selection in machining processes in particular, this point becomes more 

significant. The selection of sensors based on previous research can provide a 

primary point to start from. However, it might not be good engineering practice in 

this field to assume that the same types of sensor can provide the same results. This 

is because machining processes show high complexities and differences which make 

dependency on previous research in selecting suitable sensors a starting point in the 

design process rather than a perfect solution [47]. 

The next problem to be solved in the design of condition monitoring systems is the 

selection of appropriate signal processing techniques. The selection of these 

techniques is reliant on the type of sensor used. If the selected sensors are not useful, 

then the applied signal processing techniques are not expected to give satisfactory 

information. Different signal processing techniques have been suggested and 

implemented in condition monitoring systems including statistical methods, time 

domain and frequency domain methods. The current practice in selecting the signal 

processing techniques is normally done in a manual procedure of visual inspection to 

search for the information within the signals. This approach, although it is successful, 

can be considered costly and time consuming. Another current practice is to build a 

complete monitoring system in order to test the applicability of the sensors and the 

associated signal processing techniques. Therefore, if the system performance is 

acceptable, then the sensors and the signal processing techniques are assumed 

appropriate and satisfactory. When the system does not work as effectively as 

expected, then another search for other sensors or signal processing techniques is 

restarted. This technique of constructing a complete system could also include a 

detailed examination of fault processes to view the signals and search for the sensory 
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features which allow the pattern recognition system to provide better results. In 

addition, when automated pattern recognition methods are used, such as neural 

networks, the training and testing procedures recur and require lengthy periods of 

time and computational effort. If the sensors or signal processing methods are not 

appropriate, the recurring training methods could take longer to reach different 

results. 

From the above discussion and the literature review in Chapter 5, it can be concluded 

that the research which examines the design problem of condition monitoring is 

limited. Even if a wide range of monitoring methods has been examined, not many 

have been implemented in complex industrial environments. All the methods 

reviewed so far look to have variable capabilities. A method found to be successful 

in one situation may not give an adequate outcome in another. The methods found in 

the literature cannot provide an automated design methodology of monitoring 

systems even when providing sufficient results. There is a need to use methods in 

order to reduce the experimental work in turning processes. Moreover, cost of the 

implemented systems is rarely considered in current practice during the design 

process. Hence, current practice in condition monitoring design, particularly in 

machining, does not provide structured and automated design methodology which 

can provide practical selection criteria of sensors and signal processing methods with 

reduced experimental work, time and cost. 

A novel method, called ASPS (Automated Sensor and Signal Processing selection) 

has been presented in [196]. This methodology, which will be described in section 

6.4, depends on a self-learning multi-sensor approach. The method has been tested 

for milling. This thesis modifies and develops the approach for turning and defines a 

new automated sensor and signal processing selection for a turning (ASPST) 

approach which deals with turning processes. 

 

6.3 Problem Domain and Objectives 

The aim of the investigation is the development of condition monitoring systems for 

machining operations with specific emphasis on turning processes. The domain of 

this research is in implementing the ASPS approach in selecting the sensors and 
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signal processing techniques essential for monitoring turning processes and 

conditions. This new modified methodology is called ASPST (Automated Sensor and 

Signal Processing selection for Turning). The use of the decision-making stage is to 

confirm and assess this methodology for selecting sensors and signal processing 

methods. 

6.3.1 Aim and Objectives 

The aim of this research is to develop an effective sensor-fusion model for turning 

processes using a cost-effective methodology with reduces experimental work. This 

research is supported by the following objectives: 

1. To perform a literature review of machine and process condition monitoring 

systems and their applications. 

2. To determine the process variables in turning processes that contain useful 

information related to tool wear. 

3. To determine the appropriate sensors that can be used for monitoring the 

process variables related to tool wear. 

4. To determine the appropriate signal processing methods. 

5. To design a data acquisition system for machine and process condition 

monitoring including data acquisition card and computer selection, data 

acquisition software implementation, sensor installation and overall system 

calibration. 

6. To design and implement an effective sensor-fusion model for turning 

processes to detect the most common industrial faults (e.g. gradual wear). 

7. To design an investigatory model to obtain the necessary machining data. 

8. To integrate a wide range of sensory systems and their signal processing 

methods into a novel and effective sensor fusion-model. The sensors to be 

used are: force, acoustic emission, strain, vibration, and sound. 

9. To implement the ASPST (Automated Sensor and Signal Processing 

Selection for Turning) approach and investigate an efficient pattern 

recognition and classification system. 

10. To test and evaluate the novel sensor fusion-model. 
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In order to achieve these objectives within the problem domain, the methodology is 

implemented in turning processes. The turning process is selected to implement and 

evaluate the ASPS approach [47] as this approach has been implemented and 

evaluated in an end-milling process in previous research. In addition, the turning 

process is selected for the following reasons: 

1. The turning process is an important process in manufacturing environment as 

one of the main metal removal processes. 

2. It is a complex process where signals show high variations and complexity 

and information cannot be extracted directly from the sensors. 

3. ASPST is used to develop an effective sensor-fusion model for turning 

processes based on ASPS approach. 

6.3.2 How the ASPST Approach is Conceived 

This research builds on the recent knowledge in industrial environment and current 

practice in condition monitoring for advanced performance. In addition, it does not 

recommend new sensors or signal processing methods. Nor does it suggest new 

classification methods. The tools used in this methodology have already been 

examined and investigated in different fields’ of condition monitoring [196]. The 

suggested approach (ASPST) utilised sensors, signal processing methods and 

classification methods to develop an automated methodology of condition 

monitoring for turning processes. 

The methodology of the ASPST approach meant is to be generic for turning with 

reduced time and cost. In addition, it provides quality of information regarding the 

turning process and its conditions.   

The ASPST approach is utilised to discover the best combination of sensitive sensors 

and signal processing methods to design a monitoring system with reduced cost and 

experimental work. The objective is to extract sensory characteristic features (SCFs) 

obtained from the sensory signals using different signal processing methods and to 

find out the sensitivity of such features on the machine which has gone faulty. If a 

specific feature from a specific sensor shows high sensitivity to the fault this simply 

means this SCF is useful in detecting or evaluating the fault. This research extends 

the methodology into monitoring gradual tool wear in turning. In this section a 

description of how the suggested condition monitoring design methodology is 
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conceived is based on previous evaluation and implementation of this approach in 

end milling process [185]. In addition, it is based on enhancing the design tools and 

methods of previous research described in the literature.  

The author's main contribution is to implement the ASPST approach and to combine 

previous points with the idea of developing a generic structured sensor-fusion model 

using the following three techniques:  

1. Evaluating the new ASPST approach (Automated Sensor and Signal 

Processing Selection for Turning). 

2. The automated simplification of complex signals into simple sensory 

characteristic features (SCFs). 

3. Automated detection techniques of sensitive SCFs and hence the associated 

sensors and signal processing methods. 

4. Testing novelty detection and neural networks for turning processes. 

5. The technique of cost-reduction based on removing the unused sensors when 

possible. 

The details of the main techniques developed will be described in the following 

sections with more technical description and examples in the subsequent chapters. 

 

6.4 The General Concept of the ASPST Approach 

The main idea of the implemented approach is described in general terms in this 

section. The detailed procedure for using the implemented approach for turning 

operations will be described in section 6.5 of this chapter and with more detail and 

experimental examples in the subsequent chapters of this thesis. The implemented 

approach aims to design a condition monitoring system for turning processes using 

an automated simple procedure to detect the sensory characteristic features which are 

most sensitive to the process states or faults and show less sensitivity to other process 

operating variables and parameters. The ASPST approach is based on the ASPS 

approach and on conducting studies to prove that there is a dependency between a 

measured sensory value (SCF) and the monitored state or physical phenomenon 

[196]. The cost of the system should also be considered; if a low-cost sensor can be 
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used to do the same task instead of an expensive sensor, then the expensive sensor 

should be eliminated from the system. 

6.4.1 The ASPST Approach  

The implemented approach is named ASPST, Automated Sensor and Signal 

Processing Selection System for Turning. Figure 6.1 shows the basic principle of an 

ASPST approach. It systematically relates the sensory signal and the signal 

processing methods used to the state or the physical phenomenon which needs to be 

detected or evaluated. 
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Figure 6.1: The Basic Structure of the ASPST approach. 

 

The ASPST approach starts by defining the process to be monitored and its states 

(e.g. healthy or faulty condition). Then, a wide range of sensors is installed for 

process monitoring in order to produce sensory signals that contain information 

about the process. The following stage of the proposed approach is for extracting 

sensory characteristic features (SCFs) obtained from the sensory signals using a wide 

range of signal processing methods and then discovering the sensitivity of such 

features on the investigated process state. If a specific feature from a specific sensor 

shows high sensitivity to the fault, this means this sensory characteristic feature is 

useful in detecting or evaluating that fault. A particular number of sensitive sensors 
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and signal processing methods are then selected as an initial monitoring system. Cost 

reduction can then be performed based on the number of SCFs extracted from the 

selected sensors. If insignificant numbers of SCFs are extracted from a sensor, then 

that sensor might be eliminated from the monitoring system to reduce its cost. More 

details about the main concept of the ASPST approach are followed in the next 

sections of this Chapter. 

 

6.5 Techniques Developed within the ASPST Approach 

6.5.1 Simplification of Complex Signals 

For a complex process such as the turning process with different signals to be 

processed to extract the required information, the first stage is to remove signals 

from a complex shape into a group of simplified sensory signals called Sensory 

Characteristic Features (SCFs). SCFs can be obtained from any signal processing 

technique or combination of signal processing techniques as long as the output is, or 

can be presented as, a real number. The complex sensory signals and the machining 

process are presented as a function of time. Consider the machining process begins 

gradually or in an unexpected way with a fresh cutting tool and moves to worn 

condition. It is difficult to consider the condition of the process from the generated 

complex signal and a simplification method is needed to take out the sensory 

characteristics features (SCF). Several numbers of SCFs can be calculated when 

taking samples of the complex signals at constant intervals and processes these 

signals using a broad variety of signal processing methods. These sensory signals, 

during the processing time, can be simplified into a number of SCFs. The SCFs 

could be a perfect tool to investigate the essential information regarding the 

presented process conditions. SCFs can be attained from any or a number of 

processing methods since the output is a real number or entered as a real number. 

6.5.2 Automated Sensitivity Detection   

A sensitive sensory characteristic feature (SCF) is a SCF which includes an 

important amount of information about the state of the process which should lead to 

superior recognition. It is expected to react to the change in a process condition by an 
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important change in its values. The sensitivity of a SCF can be evaluated by several 

methods such as:  

1. The use of manual observation and visual inspection of the signals. 

2. The use of a classification system as they are automated processes with 

complete independence such as novelty detection, neural networks, etc 

3.  The use of statistical techniques to detect the change in the SCFs levels.  
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Figure 6.2: Simplification of complex sensory signal into simple SCFs. 

 

The sensory signals information, simplified signals, can be detected visually. Figure 

6.2 shows a simplification of a complex sensory signal into simple sensory 

characteristic features (SCFs), SCF1 is increasing gradually between the two 

conditions of the process. In addition, SCF2 is decreasing gradually between the 

conditions of the process when the process changes from one condition to the other. 

SCFN-1 and SCFN are changing randomly between the process conditions with time. 

These sensory characteristics features (SCFN-1 and SCFN) are identified as insensitive 

SCFs while both SCF1 and SCF2 are identified as sensitive SCFs.  The detection of 

the sensitivity of the SCFs has to be automated in order to develop a rapid and 

structured methodology of selecting sensors and signal processing methods. Several 
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methods can be utilised for sensitivity measurements. For example, Figure 6.3 shows 

an example of two methods which can be used for sensitivity detection measurement. 
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Figure 6.3: Example of two measuring sensitivity methods of the SCFs. 

 

It is essentially a detection of a change in the SCF level forming a precise pattern or 

trend as a function of time. In order to keep the automated sensitivity measurement 

simple, the Sudden Change In Value (SCIV), the difference between the initial 

minimum and the final maximum values, is developed in this work as a sensitivity 

detection method, a sensitivity indicator. For a turning process with several sets of 

machining parameters, detecting the change of the level of the SCFs with time 

should be sufficient to detect their sensitivities. More details about the equations to 

calculate the average difference are described in Chapter 7. 

6.5.3 Sudden Change in Value Method (SCIV) 

There is an essential assumption to be made that the change in the SCF value is due 

to the change in the process condition. For example, if the cutting force is increasing 

gradually during a machining process, this could be due to a specific reason such as 

gradual tool wear. The possibility that a SCF demonstrates a specific and clear trend 

and change in values as a random behaviour is rather low and it is ignored in this 

study mainly when using several SCFs. As shown in Figure 6.4 when utilising a 

linear regression method to detect the sensitivity and to monitor SCFs with time, the 

values of an SCF can behave randomly producing high and low values of the SCF as 
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a function of time. When a SCF changes randomly then it is described as being a 

Low-Sensitivity SCF, which means that it includes no information about the process, 

and expected to have relatively low-Sensitivity which does not change in a specific 

pattern. The ASPS approach [47] used linear regression method which is not an 

accurate and sensitive measure for turning processes in this work while SCIV is more 

sensitive and accurate measure.  
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Figure 6.4: Examples of SCFs using linear regression and SCIV method. 

 

As shown in Figure 6.4 both signals (SCF1 and SCF2) have high sensitivity when 

utilising the SCIV method. The SCIV method calculates the difference between an 

average of 5% of the first sample and 5% of the last sample maximum value. On the 

other hand, utilising a linear regression method shows high sensitivity of one of the 

signals while the other shows low sensitivity. However, the problem with the 

utilisation of a linear regression method is its sensitivity to the number of data points 

used to calculate the linear regression and the position of the data to the condition to 

be monitored.  

The SCIV is a relative measure and it depends on the process information. The 

advantage of using SCIV can be summarised as follows: 

1. Relatively accurate, simple to calculate and automated. 
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2. Easy to compare the results of several SCFs obtained from different sensors 

and signal processing methods by normalising the SCF values during the 

same period of time. 

3. SCIV can present a good indication of the sensitivity of the SCFs by 

indicating the average change in the SCF values (i.e. the higher the difference 

in values the higher the sensitivity of the SCFs). 

6.5.4 Association Matrix (ASM) 

After calculating the sensitivity of each sensory characteristic feature on the 

machining conditions, another matrix is constructed called the Association Matrix 

(ASM). The Association Matrix (ASM) is a matrix which associates the obtained 

sensitivity values for the corresponding sensory features. It gives a simple 

presentation of the sensitivity values associated with each feature. The ASM for a 

fault Y is defined as follows: 

        

               d11     d12    d13     d14    … d1m 

                      d21     d22     d23       d24   … d2m 

 ASMY =         d31     d32    d33       d34   … d3m          =   dij  
    …       …      ...           …           … 

   dn1   dn2     dn3       dn4   … dnm 

 

 Where 1≤ i ≤n and 1≤ j ≤ m  

 

The element dij is called the sensitivity coefficient of the machining feature obtained 

using the machining signal of the ith sensor and the jth signal processing method. 

The ASM gives the essential evaluation for the most appropriate sensor and signal 

processing method to be used since each column is associated with one signal 

processing method while each row is associated with one sensor. Basically, the 

sensory characteristic features with relatively high sensitivity coefficient are the most 

sensitive to the cutting conditions and they are the most appropriate features to be 

used. Therefore, the related sensory signals and signal processing methods are the 

most appropriate ones to be used. 
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6.5.5 Sensor Fusion and Cost Reduction 

In order to design a monitoring system with high sensitivity and constancy, a group 

of high-sensitivity SCFs should be used in combination. When all SCFs extracted 

from the sensors are ranked according to their sensitivity values, the highest sensitive 

number of SCFs can be used together to form the initial monitoring system. The cost 

of the system can be easily calculated according to the number and type of sensors 

used. The value of the highest sensitive number of SCFs can be selected based on the 

cost of the system, the required quality of interpretation, the speed of signal 

processing and the implemented decision making method. The value chosen in this 

research is 10 based on a previous implementation of the ASPS approach for end-

milling processes and on using a decision-making method in the end-milling process 

[198]. The last value is also found satisfactory in providing sufficient monitoring 

capability with reasonable signal processing speed. 

Consider Figure 6.5 where n sensors are processed by m signal processing methods 

to produce (n × m) sensory characteristic features. These features need to be 

calculated during the process in order to identify the sensitivity of the SCFs to the 

process states. The SCFs are arranged in order of sensitivity and the most sensitive 

number of SCFs are selected to create the initial condition monitoring system, the 

cost of the system can be calculated based on the sensors of the selected SCFs. 
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Figure 6.5: Structure of sensors, signal processing methods and SCFs. 
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A cost reduction stage can also be implemented in order to minimise the cost of the 

system. This might or might not decrease the monitoring capability of the system. 

The cost reduction of the system is performed by eliminating sensors which do not 

significantly contribute to the selected number of SCFs by removing their SCFs from 

the system and replacing them from SCFs which come next on the rank, see Figure 

6.5, from sensors already in the system without having to significantly reduce the 

overall sensitivity of the system (i.e. the new SCFs should still have relatively high 

sensitivity). The contribution of a sensor in a system is defined as the utilisation of a 

sensor. It is defined as the number of SCFs used in a system from that sensor relative 

to the total number of SCFs used in the overall system. The utilisation is also defined 

in this research to be dependent on the number of signals produced from a sensor. 

More details are described in the following chapters. Assume, for the process shown 

in Figure 6.5, that the first sensitive number SCFs are found from sensors (S1, S3, S5, 

Si, Sn-1, Sn). Therefore, the cost of the hardware will be the cost of the sensors in 

addition to their signal conditioning devices. Assume CSj is the cost of the jth sensor 

and its signal conditioning devices and all the associated hardware. 

 

Therefore, the cost of the system will equal to: 

 

Cost = CS1 + CS3 + CS5 + CSi + CSn-1 + CSn 

 

Assume that the sensor Sn-1 contributes in only h SCFs where h is much less than the 

contribution of the other sensors. Then that SCF from the Sn-1 can be removed from 

the system and exchanged by another h SCF from the other sensors (S1, S3, S5, Si, Sn) 

as long as these new SCFs have relatively high sensitivity on the rank. Now, the cost 

of the new system will be: 
 

Cost = CS1 + CS3 + CS5 + CSi + CSn 

 Where the new system is reduced by CSn-1 

The number of SCFs in the system is still not changed, even though, the number of 

sensors is reduced and therefore the cost of the system is also reduced. This removal 

process can be very efficient as long as:  
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• The new SCFs have high sensitivity so that the overall system performance 

does not deteriorate. 

• The removed sensor is relatively expensive. 

The previous discussion will be explained in much more detail in the subsequent 

chapters. 

6.5.6 The Sensitivity of a Group of SCFs 

Since the ASPST approach is based on using different types of sensitive SCFs 

together in order to form the required monitoring system, an assumption should be 

made regarding the sensitivity of a group of SCFs with relation to the sensitivity of 

an individual SCF in the system. A group of sensitive SCFs should form a 

monitoring system with minimum sensitivity equal to the sensitivity of the most 

sensitive SCF within that group, which means that the system should have more or 

equal sensitivity to the maximum sensitivity of the most sensitive SCF. The 

sensitivity values are calculated in this research work using the sudden change in 

value (SCIV) method. The overall sensitivity of a monitoring system is the average 

sensitivity of the SCFs in the system. The explanation of the assumption is based on 

the definition of the sensitivity of SCFs, where sensitive SCFs include more 

information than low sensitivity features. If the information is totally independent, 

then the overall system sensitivity will increase as a reason of more information 

included in the system. When high sensitive SCFs include the same information, then 

the overall system will have the sensitivity of the most sensitive one only. This fact 

will be proven practically in the next chapters. For low sensitivity SCFs, the 

monitoring system of low sensitivity SCFs could still have high sensitivity in some 

cases when a group of SCFs develop unexpectedly a unique combination of patterns 

when fused together.  

 

6.6 Criteria for Sensor Selection 

The methodology in this thesis considers multiple sensors for tool wear monitoring 

because more reliable and consistent tool wear monitoring is possible through sensor 

fusion. Sensor fusion refers to the combination of information from multiple sensors 
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into a single result. The potential advantages of integrating information from 

multiple sensors are as follows [89]:  

1. The quality of decisions will be better if the information comes from 

multiple sensors rather than from a single sensor because using 

information from multiple sensors means using more information at the 

same time. Using information from several sensors is similar to taking 

several samples from a random population. This clearly narrows the mean 

confidence interval and reduces uncertainty in a decision.  

2. The decisions based on multiple sensors will be more fault-tolerant 

because even if some of the sensors fail, the other sensors will 

compensate for the lack of information from the defective sensors.  

3. The reliability of information from different sensors might change relative 

to another depending on the process input parameters. If this change can 

be correlated, a sensor integration scheme can be designed to selectively 

weight the appropriate sensors at different conditions to make the 

decision more reliable for a wide range of cutting conditions. 

Most of the techniques for tool wear monitoring described in the literature use 

one or more combination of cutting force, temperature, vibration, and acoustic 

emission sensors. To a lesser degree, other process variables such as power/motor 

current, sound, and workpiece surface roughness have also been used for the 

same purpose. All these possible sensors for the present application are evaluated 

using the following criteria [199]: 

• The process variable being monitored by a sensor should have a good 

correlation with tool wear.  

• A sensor should be able to give consistent and reliable measurements of 

the process variable being measured.  

• A sensor should be able to provide a signal of high signal to noise ratio. 

Even if the signal carries noise, it should be possible to filter out the noise 

from the signal.  

• A sensor should have a short response delay. This is necessary to 

implement on-line tool wear monitoring.  
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• It should be possible to physically locate a sensor on the tooling set up 

without obstructing the machining operation. The sensor should be robust 

enough to resist the impact of chips and temperature fluctuations.  

• A sensor should have a long life and be cost efficient.  

 

6.7 The Application of the ASPST Approach for Turning 

The ASPST approach has been implemented in this thesis over the following three 

stages: 

1. Initial implementation of the ASPST approach. 

This part can be considered as a self-learning methodology for the classification of 

the system normal and faulty states and the selection of the most appropriate sensors 

and signal processing methods for detecting machining faults in turning. The ASPST 

approach is performed by installing multi-sensors (force and strain) on the machine 

tool. The experimental evaluation will be described in Chapter 9. 

 

2. Initial implementation of the ASPST approach using pattern recognition 

 systems. 

The ASPST approach for turning operations, similar to the previous section, is 

performed by installing another group of multi-sensory signals on the machine tool. 

The ASPST approach is performed by installing acoustic emission, accelerometer 

and sound sensors using Learning vector quantisation (LVQ) neural networks in the 

first investigation and acoustic emission, accelerometer and strain sensors using 

novelty detection algorithm in the second investigation. The experimental evaluation 

will be described in Chapter 10. 

 

3. ASPST approach using multi-sensor fusion model and pattern 

 recognition systems. 

In this part the ASPST approach is performed by installing a group of sensors (force, 

acoustic emission, strain, accelerometer and sound) on the machine tool. The 

experimental evaluation will be described in Chapter 11. 
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6.8 Structure of Subsequent Chapters 

The subsequent chapters of this thesis are organised to investigate the applicability of 

the ASPST approach for designing condition monitoring systems for turning 

processes and to explain, in detail, the main steps for the approach. The subsequent 

chapters are outlined in order to provide a logical basis for testing the assumptions 

and describing the findings. Figure 6.6 shows a simplified flow diagram of the basic 

structure of the subsequent chapters. 
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Figure 6.6: Diagram of the basic structure of the subsequent chapters. 

 

Chapter 7 describes the components of the implemented monitoring system. It 

presents the tools used in designing the monitoring system including:  

• Sensors. 

• Signal processing and simplification methods. 

• Classification techniques including neural networks and novelty detection. 

The chapter outlines the tools which have been used to prove the applicability of the 

methodology for turning processes.  

Chapter 8 describes the general experimental set-up which has been performed to 

prove the capability of the ASPST approach for turning processes. It describes the 

machine tools used, the faults investigated and the data acquisition software.  
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Chapter 9 explains how the ASPST approach can be used to design a monitoring 

system for a turning process with four sensory signals (force and strain). The main 

aim of the chapter is to describe the details of the ASPST approach in a practical way 

aided by real experimental tests. The chapter presents a monitoring design for 

monitoring gradual tool wear in turning processes. The chapter introduces the 

following points: 

1. The common problem of selecting the most appropriate sensors and signal 

processing method for designing a condition monitoring system in turning. 

2. The basic main steps of the ASPST approach for two sensory signals. It 

describes how the SCFs are created and how they can be arranged in order to 

calculate their sensitivity for gradual tool wear detection.  

3. The capability of sudden change in value (SCIV) analysis to detect the 

sensitivity of SCFs. The response of the SCFs is visually investigated and 

compared to the sudden change in value (SCIV) analysis.  

4. The method of choosing the most sensitive SCFs to form the required 

condition monitoring system. 

Chapter 10 presents further applications of the suggested ASPST approach 

described in Chapter 9. The chapter presents more experimental work to prove the 

capability of the ASPST approach in designing a condition monitoring system by 

selecting the most sensitive sensors and signal processing methods with reduced cost 

and less experimental work. The aim of this chapter is to confirm the theory and the 

technique established in Chapter 9 using pattern recognition systems. 

Chapter 11 presents the full capability of the ASPST approach and confirms the 

results obtained in Chapter 9 and 10. It builds on the results found using two types of 

pattern recognition systems (LVQ and Novelty Detection). The chapter addresses the 

following key issues:  

1. A group of SCFs with high average sensitivity produce a high sensitivity 

system compared with a group of SCFs with low average sensitivity. 

2. The reduced cost of the system based on sensor utilisation and overall SCF 

sensitivity. Novelty detection and neural networks (LVQ) are used to prove 

the results. 
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Chapter 12 summarises the use of the design methodology. It also investigates 

whether the results in previous chapters indicate that ASPST is a re-usable structured 

methodology for selecting sensors and signal processing methods with reduced cost 

and experimental work in the turning process. It explains how new knowledge has 

been generated and tested, and what remains to be tested. It also describes the 

contribution of the author, quotes outstanding problems and identifies constraints on 

the methods. Tests and finding are clearly stated and future work is suggested to 

assist subsequent researchers. 

 

6.9 Conclusion 

This chapter has summarised the methodology used and the investigations of this 

research work. The aim is to develop a systematic structured methodology for the 

design and implementation of the ASPST approach of condition monitoring systems 

for machining operations with experimental conformation for turning processes. The 

problems of condition monitoring design have been described and compared with the 

current practice in the field. Not only the way the ASPST approach is conceived has 

been described but also techniques modified as a result of previous research and 

more recent development. The chapter has explained the general steps of the ASPST 

approach and described its applicability for turning processes with multi-sensor 

fusion. The chapter has also described how the subsequent chapters are organised to 

prove the proposed methodology.  
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Chapter 7 

Elements of the Implemented Condition 

Monitoring Systems 

7.1 Introduction 

This chapter covers the elements and stages of the machine condition monitoring 

system implemented in this research. It includes a brief description of sensors, signal 

processing methods and pattern recognition systems utilised for developing the 

proposed model. Force dynamometers, accelerometers, sound, strain and acoustic 

emission sensors are used for monitoring the machining processes. Signals are 

processed in the time and frequency domains using different types of signal 

processing methods to extract the sensory characteristic features. Statistical methods 

are used to calculate the sensitivity of the sensory characteristic features of the 

monitored physical phenomena. The last part of this chapter addresses all pattern 

recognition techniques used in developing the model including neural networks and 

the novelty detection classification method. More details regarding the experimental 

set-up, sensor positioning, and the complete data acquisition system can be found in 

Chapter 8. 

 

7.2 The Implemented Sensors 

The sensors used in this research are force dynamometer, strain sensor, 

accelerometer sensor, acoustic emission sensor and microphone for measuring sound.  

7.2.1 Force dynamometers 

Force dynamometers have been used widely in research for the following reasons 

[200]: 

• Less dependent on the structure of the machine tool. 

• Cutting forces can be easily simulated. 
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In addition, there are investigations on implementing force dynamometers in real 

industrial environments [200], though, since the ASPST approach is an experimental 

model which does not use simulation, the earlier mentioned advantages are not the 

only reason for using an expensive sensor such as force dynamometer sensor. The 

main reason is to compare how useful an expensive sensor could be compared with 

much cheaper ones (e.g. strain, sound) in developing an effective condition 

monitoring system. 

 

 

 
Figure 7.1: Photo of the Kistler Dynamometer (9257) [200]. 

 

Figure 7.1 shows a photo of the Kistler Dynamometer (9257) used in this research 

which is attached to the tool holder. The force dynamometer is simply a piezoelectric 

transducer for measuring forces in three directions perpendicular to each other. The 

charge produced from the piezoelectric transducer is proportional to the force applied 

on the device. Hence, the charge can be measured as an output voltage following an 

amplification stage by a charge amplifier. The tool is mounted on the dynamometer 

to allow direct measurement of the turning forces to which it is subjected. 

7.2.2 Accelerometer 

The significant relationship between tool conditions and vibrations during machining 

is well recognised, and the comparably low noise implication of the vibration sensors 

is discussed in other tool condition monitoring investigations. Accelerometers are 

used to measure acceleration and vibration. Among the several vibration detection 

techniques, piezoelectric accelerometers are often adopted for tool wear 
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investigations for measuring vibrations. These instruments rely on the piezoelectric 

effect of quartz or ceramic crystals to generate an electronic output related to 

acceleration. The piezoelectric effect produces an opposed accumulation of charged 

particles on the crystal. This charge is proportional to the applied force or stress. The 

main advantage of using vibration based monitoring systems for monitoring machine 

tools and industrial machinery is that they are simple, accurate and inexpensive. 

Moreover, they are easy to use and no modification to the machine or the work-piece 

fixture is normally required. However, vibration methods do have drawbacks such as 

dependency of the vibration signals on work-piece materials, cutting conditions, and 

machine structure. 

The accelerometer mounting position in turning operations has been proposed in a 

number of studies. In this study, the sensor is mounted on the top of the shank, 

determined to be an efficient position to detect the vibration from the cutting tool. 

After the mounting position is decided, a thread hole is cut in the shank, and a thread 

pin is installed to connect the sensor and the shank. Vibration has been found useful 

in machine tools as well as continuous process industries [39]. Figure 7.2 shows a 

photo of the Kistler accelerometer (8704B) used in this research. 

 

 
Figure 7.2: Photo of the Kistler accelerometer [200]. 

7.2.3 Acoustic Emission 

Acoustic emission (AE) refers to the generation of transient elastic waves during the 

rapid release of energy from localised sources within a material. The source of these 
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emissions in metals is closely associated with the dislocation movement 

accompanying plastic deformation and the start and extension of cracks in a structure 

under stress. Other sources of acoustic emission include: melting, phase 

transformation, thermal stresses, cool down cracking, and stress build up. Reference 

[200] classified the source of acoustic emission during metal cutting process into the 

following categories: 

• Plastic deformation of a workpiece. 

• Plastic deformation of the chip. 

• Frictional contacts of workpiece and tool having flank wear and crater wear. 

• Collisions between chip and tool.  

• Chip breakage. 

• Tool fracture.  

In recent years, AE instruments have been adopted for use in structure integrity 

valuation, non-destructive testing, and quality testing for advanced material 

industries. AE is also proposed as a possible signal source to detect the tool condition 

in a number of studies. AE can be defined as: low amplitude, high frequency elastic 

stress wave generation due to a rapid release of strain energy within a solid material 

associated with the plastic deformation, fracture and phase transformation of the 

material. Frequency analysis of measured AE levels during machining shows that 

vibrations of the tool and work-piece due to shear, friction, and impact forces are the 

main sources of this AE radiation. An AE sensor is attached to the tool holder to 

monitor AE signals transmitted during machining. The proposed sensor provides an 

improved installation method since it does not require close setup to workpiece. As a 

result, it can avoid frictional damage caused by chips formed during the cutting 

process.  Recently, acoustic emission (AE)-based monitoring systems are finding 

increased applications in condition monitoring. Acoustic emission and audible sound 

waves produced during cutting have been found useful in several researches for the 

identification of process condition. Figure 7.3 shows a photo of the Kistler AE sensor 

(8152B) used in this research. 
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Figure 7.3: Photo of the Kistler AE sensor (8152B) [200]. 

7.2.4 Strain 

The strain sensor is suitable for measuring dynamic and quasistatic forces on fixed or 

moving machine parts. The sensor measures the force-proportional strain at machine 

or structural surfaces (indirect force measurement). The high sensitivity and 

acceleration-compensated design of the sensor allows process monitoring on fast-

running process machinery (e.g. presses, automatic assembly machines). The strain 

of the basic material acts via the two contact surfaces on the sensor as a change in 

distance. The sensor enclosure serves as an elastic transmission element and converts 

the change in distance into a force. The particular advantages compared with the 

familiar wire strain gauge technology rest in the high sensitivity, large overload 

resistance and practically unlimited life even under fluctuating loads. The measuring 

signal can be further processed as a relative value [201]. Figure 7.4 shows a photo of 

the Kistler strain sensor (9232A) used in this research. 

 

 
Figure 7.4: Kistler strain sensor (9232A) [200]. 
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7.2.5 Sound 

The concept of sensing tool wear from the sound signal during a cutting process goes 

back more than thirty years [202, 203]. There have been several studies using sound 

signals in this context, and their results confirm the correlation between tool wear 

and the sound emitted during the turning process [202, 204, 205].  

It has been reported that tool wear is correlated with an increase in the amplitude of 

the high frequency bands of the sound signal [196]. In this thesis, a sound signal is 

used to extract valuable information correlated with tool wear. The main problem of 

using this signal in the development of a tool condition monitoring system is the 

ambient noise, as has been identified and studied in several research papers [196]. 

These papers conclude that in the region between 0 and 2 kHz the influence of the 

surroundings and of the noise from adjacent machines, motors, conveyors, etc. or 

processes may contaminate the signals. However, they conclude that this effect can 

be moderated by using noise cancellation methods in the signal processing algorithm. 

Figure 7.5 shows a photo of the microphone used in this research 

 

 
Figure 7.5: Sound sensor (microphone). 

 

7.3 Signal Processing 

To utilise the information (or signal) obtained from the sensor mounted on a machine 

tool (e.g., turning machine in this research), a signal processing technique is required. 
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The signal processing methods applied in this work are chosen carefully from the 

most commonly used methods. The ASPST approach utilise similar methods used in 

the ASPS. However, it is not limited to those methods only and is general enough to 

allow other methods to be used. The signal processing methods used in this research 

are: average value, standard deviations (std), maximum, minimum, range, power, 

kurtosis value, skew value, wavelet analysis and Fourier Transformation (FT). In the 

case of wavelet analysis, the standard deviation of the sub-signals, as will be 

described later, are used as system sensory characteristic features. More details are 

described below. 

 

7.3.1 Time Domain Methods 

Standard Deviations (std) 

The standard deviation (std) which is normally represented by the Greek symbol σ, 

where σ measures the variation of the data from the average. It is defined as: 
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Power (P) 

Power is a measure of the amplitude of a signal. The power value is proportional to 

the square of the amplitude of the signal values. The power value can be defined as 

follows [128]: 
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N
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       7.2 

Average (μ) 

The average value of a signal is the mean of the values of the vector. It is one of the 

simplest signal processing methods. Mathematically, the average value of a signal 

can be defined for a vector of length (N) as follows: 
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Skew Value 

The skew of a signal measures the symmetry of the distribution about its mean level. 

The skew value can be defined for an assumed β distribution as [52]: 
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Kurtosis Value 

Kurtosis values are useful in identifying transients and spontaneous events within 

signals. The kurtosis value of a time series is defined as the fourth central moment of 

Gaussian distribution. The Kurtosis value simply measures the sharpness of the 

peaks in the signals [64] and can be calculated as follows [52]: 
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7.3.2 Frequency Domain Analysis Methods 

Fourier Transformation 

It is essential to break down the signal into its frequency spectrum in order to 

confirm the presence of certain frequencies. Because of this the frequency content of 

a signal is not regularly clear from the time domain. The discrete Fourier 

transformation (DFT) algorithm is used to exchange a digital signal from time 
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domain into a signal in the frequency domain. The discrete Fourier transformation is 

a very computationally intensive algorithm which contains a huge number of 

mathematical operations, though when the length of the signal is a power of two, 

then Fast Fourier Transformation (FFT) can be used which reduces the computation 

necessary to make the transformation from time domain to frequency domain [83, 

206].  

 ∑
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Wavelet Analysis  

Fourier transformation has an important disadvantage. The transformation process 

from the time domain to frequency domain removes the time information. 

Consequently, when looking at a frequency spectrum, it is not possible to know when 

an exact event has happened. Wavelet analysis provides an alternative technique of 

breaking a signal down into sub-signals or levels with different frequencies which 

carry the time information. In wavelet analysis, the length of the signal, i.e. number 

of values contained in the signal, determines how many wavelet levels there will be 

in the decomposition. In general, for a signal of length N, where N = n2  there are 

n+1 wavelet levels. The shape of the wavelet levels depends on the mother wavelet 

signal which is used to build these levels. Wavelet analysis involves breaking the 

signal into sub-signals, each of which is generated from a combination of shifted and 

scaled wavelet signals. For every level the number of wavelet signals used to 

construct the signals equals n2  where n is the level number. The standard deviation 

(std) of the wavelet levels is used as sensory characteristic features for the condition 

monitoring system. The standard deviation of each level reflects the actual 

contribution of that level in building the original signal [77]. 
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7.3.3 Statistical Methods 

Linear Regression 

Linear regression is used to find the linear equation which best represents the linear 

relationship between two variables. The first variable is the independent variable 

which could be the degree of cutter wear, etc. The second variable is the dependent 

variable and this variable is a sensory characteristic feature which changes according 

to the change in the independent variable. The line is obtained by using the least 

squares straight line fitting. The least squares line is defined as: 
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Equation 7.8 represents the slope of the least squares straight line. The absolute value 

of b1 is to find out the most sensitive sensory feature to the independent variables 

(e.g. degree of cutter wear) of machining parameters. 

 

Range Value (RV) 

The Range Value (RV) statistical method is used in this research to find the 

difference between the highest value and the lowest value. RV is defined as: 

 

RV= Highest Value – Lowest Value. 

 

Sudden Change in Value (SCIV) 

The Sudden Change In Value (SCIV) statistical method is used in this research to 

find the average difference between the firs points and the last points. The first 

variable is the minimum average value of the first values (5%). While the second 

variable is the maximum value of the last values (95%). The sudden value is the 

difference between the last value and the first values. SCIV is defined as: 
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Last values = maximum of (Last point - (0.05* Last point)). 

First values = mean of the (0.05* Last point). 

SCIV = Last values – First values. 

 

This method has been found the best statistical method to use in this research for 

turning. The theory behind using this method is described in Chapter 6, section 6.5.3. 

More details regarding the application of this method and the reason for using it are 

shown in Chapter 9. 

 

7.4 Data Analysis and Pattern Recognition 

A machine condition monitoring problem will be finally transformed into a pattern 

recognition problem to identify, from the sensory signals, the machine or process 

conditions. Two types of pattern recognition systems are used to demonstrate the 

application of the ASPST approach. The application of two systems is used to 

compare their result in order to evaluate the ASPST approach independently from 

specific pattern recognition. Novelty detection and Learning vector quantisation 

neural networks (LVQ) are implemented in order to compare their result directly. 

These methods are implemented to compare the result of each one. More details 

about these methods are briefly described. The ASPST approach is not limited to 

these methods but can be implemented with other methods such as the Back 

Propagation Neural Network (PB) and the Radial Basis Neural Network (RB), etc.  

7.4.1 Novelty Detection 

Novelty detection is used in this research as a self-learning approach to characterise 

the “fresh” or normal state of the cutter. Novelty detection [83] is a classification 

technique that recognises a presented data as novel (i.e. new) or non-novel (i.e. 

normal). The training data for the novelty detection algorithm consists of only the 

normal class which is often much easier to obtain. Since a degree of overlap is 

normally expected between different classes, classification problems have a 

probabilistic nature [78]. Novelty detection involves estimating the probability-

density–function (PDF) of a normal class from the training data and then estimating 
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the probability that a new set of data belongs to the same class. The classification 

decision in novelty detection is based on Bayes’ theorem as shown in equation 7.9. 
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Figure 7.6: The application of novelty detection. 
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The Posterior Probability, the probability that a given vector, x , 

belongs to class iC . 

The Prior Probability, the probability that a future input, x belongs to 

a class, iC , based on the ratio of training examples that belong to the 

same class. 

The Class-Conditional Probability Density, the probability of 

obtaining an input vector from a given class based on estimating the 

PDF of a class. 

Unconditional Probability Density, probability density of x regardless 

of which class it belongs to. 
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The Unconditional Probability Density should also satisfy the following equation: 
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The accuracy of novelty detection classification is dependent on the accuracy of the 

modelled density functions [79]. Three main methods are normally used to model the 

PDF: parametric methods [80], non-parametric methods [77] and semi-parametric 

methods [77]. The parametric methods assume sufficient statistical information about 

the training data set which is not normally available. In non-parametric methods no 

assumptions are made regarding the underlying density functions and they depend on 

the training data to find the probability density function for a new input. Reference 

[83] classified such methods as being Kernel based techniques and K-nearest 

neighbour technique. The K-nearest neighbour method depends on the probability 

that K number of data points of a vector fall within a specific volume. The Kernel-

based technique calculates the volume by defining width parameters for a number of 

known probability distribution functions (Kernels) to provide a general model for the 

training set. However, non-parametric methods require long computations for every 

input vector. Semi-parametric density estimation is used in this research for novelty 

detection because it combines the advantage of both parametric and non-parametric 

techniques and does not require extensive computational effort. Semi-parametric 

methods use fewer numbers of Kernels. A Gaussian Mixture Model (GMM) is used 

in this work to estimate the PDF. Unlike non-parametric methods the training data 

are used only during the process of construction of the density model and are not 

needed for calculation of the PDF for new vectors.  

The probability density estimation of GMM is obtained by Bayes’ theorem, similar 

to equation (7.10), as follows [207] : 
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M is the number of components in the mixture model 

)( jp  is the Prior probability of selecting the jth kernel function 

)|( jxp  is the conditional density of  x  on the jth kernel. 

 

 

For a Gaussian Mixture Model, the following equation is derived: 
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Where  

φ j
 is the response of the jth Gaussian component 

jα  is the mixing coefficient (priors) of φ j
 

 

When the probability distribution function is calculated, a threshold value can be 

used to define the boundaries between a novel vector and a normal data set [77, 207]. 

Figure 7.6 explains the methodology through which the novelty detection is used in 

this work to detect faulty conditions. Novelty detection software NETLAB [208] is 

incorporated with Matlab programs as a decision-making algorithm for the 

diagnostic and prognostic of tool wear. More details regarding the novelty detection 

can be found in [84]. 

7.4.2 Learning Vector Quantisation Neural Networks (LVQ)  

Neural networks, or artificial neural networks to be more specific, represent an 

emerging technology rooted in many disciplines. They are endowed with some 

unique attributes: universal approximation (input–output mapping), the ability to 
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learn from and adapt to their environment, and the ability to invoke weak 

assumptions about the underlying physical phenomena responsible for the generation 

of the input data. The operation of a neural network can be divided into two steps. 

The first step is called the learning phase, whilst the second step is called the 

retrieving phase. During the learning phase, the learning rule can be also divided into 

supervised learning and unsupervised learning. The supervised learning rule includes 

the error correction rule and delta algorithm, and the unsupervised learning rule 

includes the competitive learning rule. The back propagation algorithm is one of the 

supervised learning rules. The other algorithm used in this research is LVQ, which is 

one of the competitive learning rules. 
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Figure 7.7: Artificial neural networks. 

 

An artificial neural network (ANN), is a mathematical model or computional model 

based on biological neural networks. It consists of an interconnected group of 

artificial neurons and process information using a connectionist approach of 

compution. In most cases the ANN is an adaptive system that changes its structure 

based on external or intenal information that flows through the network during the 

learning phase. Neural networks are an expanding field of interest in the area of 

condition monitoring. In machine condition monitoring, there is a complication in 
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dealing with the large number of signals and data that determine the condition of the 

cutter, process, and the machine itself. In theory, neural networks are able to learn 

complex relationships between inputs and outputs without a preceding knowledge of 

the system or any of its mathematical models. Neural networks can be a very 

effective signal analyser for pattern recognition systems in condition monitoring. 

They can be implemented to optimise the control system used. Neural networks in 

this research are used for pattern recognition and data fusion. However, neural 

networks have been mentioned in literature to be used in other applications such as: 

function approximation and complex regression, data reduction, process control and 

unfamiliarity detection. The main advantage of using neural networks is the full 

automation of the learning and classification processes. Therefore, neural networks 

can be implemented in fully automated condition monitoring systems to recognise 

and classify patterns without human involvement. The basic issues in the application 

of neural networks are the selection of the neural architecture type and choice of the 

most appropriate sensory features to be introduced to the neural networks. Selecting 

the best architecture with the most appropriate input information is a key factor in 

establishing a successful application [209]. Many different neural network structures 

have been developed to achieve different learning and processing speed capabilities. 

Neural networks are classified as supervised and unsupervised according to their 

learning characteristics. The decision is greatly dependent on the data obtainable for 

training the networks. If there is a target class or output for each pattern, then a 

supervised neural network can be used. However, when the input data do not have 

target output specified previously, then “unsupervised” neural networks have to be 

implemented. Unsupervised neural networks, such as LVQ use a special algorithm to 

group similar patterns in the input data space into similar output classes.  

The functional behaviour of the whole system is determined mainly by the pattern of 

connectivity of the nodes. As a system, they are capable of performing some high 

level functions such as adaptation, generalisation and target learning. These 

capabilities are particularly attractive for tool wear monitoring applications. The one 

developed and applied in this work, is the Learning Vector Quantisation (LVQ) [210] 

which implements a competitive neural network. LVQ constitutes a particularly 



 112

intuitive and simple though powerful classification scheme which is very appealing 

for the following reasons: 

1. The method is easy to implement. 

2. The complexity of the resulting classifier can be controlled by the user. 

3. The classifier can naturally deal with multi-class problems. 

For these reasons, LVQ has been used in a variety of academic and commercial 

applications such as image analysis, telecommunication, robotics, etc. A competitive 

neural network is an unsupervised neural network which uses Associative Learning 

Rules which allow the network to learn the association between the inputs and the 

outputs in reply to the data presented to them. A competitive neural network 

basically learns to recognise similar input vectors and to classify them together in 

one group. The basic structure of this network is that the input vector to the 

competitive layer is obtained by calculating the negative distance between an input 

vector p and the weight vector w and adding the bias b. For any layer, the neurons are 

in competition. All the output of the neurons will be zero, except the winner neuron, 

whose output will be one. When the weight w of a neuron is the closest to the input 

vector p, it will have least negative input, and then it will win the competition and its 

output will equal 1. The user has to select the length of the input vector and the 

number of groups and then the network will group the inputs according to the needed 

groups. LVQ has an input layer, a competitive layer and a linear output layer. The 

competitive layer learns to classify the input vectors to subclasses while the output 

linear layer transforms the competitive subclasses into the desired target classes. The 

advantage of using LVQ is that it learns to classify input vectors into target classes 

chosen by the user. Nevertheless, the learning rules are done according to the 

competitive layers depending on the distance between the input vectors and the 

weight and not according to the error between the output and the target unlike back 

propagation neural networks. Therefore, there is no mechanism in the network to 

dictate whether or not any two input vectors belong to the same category. LVQ is a 

very useful network in the application of classification because its output is logically 

‘0’ and ‘1’.Figure 7.8 shows the LVQ network architecture. LVQ neural networks 

can be seen in reference [84].   
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Figure 7.8: LVQ network architecture. 

 

7.5 Conclusion 

This chapter covers the components and stages used to implement the experimental 

condition monitoring systems, including: sensors, signal processing methods and 

artificial intelligence recognition systems. Different types of signals, including force, 

AE, sound, strain and vibration, are used to obtain the process information. Time and 

frequency domain signal processing methods are used to extract sensory features for 

the design process of the monitoring system. The most appropriate sensory features 

are chosen by the ASPS approach to be introduced to the pattern recognition system 

to identify process faults. Two types of pattern recognition system learning vector 

quantisation neural networks and novelty detection are used in this research to 

classify process states independently. 
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Chapter 8 

Experimental Set-up 

8.1 Introduction 

In order to develop a condition monitoring system, it is necessary to undertake 

cutting tests from which the chosen process parameters can be measured and their 

trend used in accessing their true indication of on-line monitoring. This chapter 

describes the main experimental set-up for this research work. It covers a description 

of the machine tools and the condition monitoring system set-up including the 

placement of sensors, the data acquisition system and programmed software. 
 

8.2 Machine Tools and Process 

The type of machining process used in this research is a turning process on a lathe 

machine as it is the most common and flexible machining process. Like any other 

machining process, the ultimate economic performance of a lathe depends on the 

cutting tool that actually takes the chip off the workpiece. The experimental work is 

done on a Colchester Student (1800) Lathe machine shown in Figure 8.1. 
 

 

Figure 8.1: Colchester Student (1800) Lathe Machine. 
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8.3 Workpiece and Tool Insert 

The experimental work is designed to present and simulate a real industrial 

environment. The work mainly involved turning processes of stainless steel material 

for the gradual tool wear test. The tool inserts used, Sandvik Coromant P25 (SCMT 

120408 UM), is cemented carbide coated via chemical vapour deposition and 

consisting of grades of “throw-away” indexable inserts with integral chip-breaker 

geometry, held in place by a negative rake tool holder. P25 had a thick layer on top 

of titanium carbon nitride (TiCN) giving it a high wear resistance and good edge 

security. This combination gives P25 excellent wear resistant properties. No cutting 

fluid is used. The workpiece material used is stainless steel which is relatively hard 

in order to accelerate tool-wear at the expense of a shorter tool life. In addition, 

stainless steel is used in this research as it is a very common material used in 

domestic applications, application in automotive market and other industrial 

applications. The stainless steel work piece had a diameter of 30 mm. 

The type of machining process carried out is semi-orthogonal turning on a lathe as it 

is the most regular and adaptable form of machining process. Similar to any other 

machining process equipment, the ultimate economic performance of a lathe depends 

on the cutting tool that actually takes the chips off the workpiece. Productivity and 

economy have made indexable inserts the primary tooling method for lathes. With 

due thought to the power limitations of the machine and the tool/workpiece 

combination, the tool manufacturers particularly recommend cuts be carried within 

the following ranges (minimum–maximum) for each cutting parameter to incorporate 

various tool wear modes[185].  

The selection of these parameters for any particular turning operation requires a 

complex variety of considerations involving the interaction of the workpiece, 

machine tool and tooling material as a system [196]. Using the tool insert 

manufacturer's guidelines, a cutting range is selected based on the insert type and the 

resulting cutting parameters are chosen accordingly. This involves reading the 

maximum and minimum values of the feed-rate and depth of cut values of ISO charts 

that corresponded to the chosen tool inserts. For the tool selected, the recommended 

values are as follows: feed-rates, 0.1–0.5 mm/rev while DOC varied from 0.5 to 3 

mm. Cutting speed is selected based on the toughness of the workpiece to be 
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machined. The recommended cutting conditions for the workpiece-tooling geometry 

configuration are as follows: feed-rate of 0.5 mm/rev; DOC of 2 mm, and cutting 

speed of 500 m/min. A decision is made to conduct the wear tests at a fixed cutting 

condition to achieve significant wear within a short time. 

 

8.4 Sensors 

The chosen process parameters monitored are the cutting forces (three axes), strain, 

vibration, acoustic emission (RMS and AE signal), and sound. Figure 8.2 shows a 

schematic diagram of the complete monitoring system. 
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Figure 8.2: Schematic diagram of the complete monitoring system. 

 

The force signals are monitored using 3-component Dynamometer (Kistler 9257A) 

and the cutting tool is fixed on the dynamometer bolted rigidly on the tool turret so 

that the turret speed and the feed components of the cutting forces can be measured. 

The vibration signals are monitored using an accelerometer (Kistler 8704B) which is 

mounted close to the tool holder in order to measure the radial acceleration due to the 

workpiece-cutting tool system vibration. Both the force dynamometer and the 

vibration accelerometer are connected to a 4-channel charge amplifier (Kistler 
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5070A). The acoustic emission signals are monitored using an AE-Piezotron Sensor 

(Kistler 8152B) which is mounted close to the tool holder and is connected to AE-

Piezotron Coupler (Kistler 5125B) which gives the AE signals and the RMS of the 

AE signals. The dynamic and quasistatic force signals are monitored using a strain 

sensor (Kistler 9232A) which is mounted at the side of the tool and it is connected to 

a charge amplifier (Kistler 5855A).  The sound signals are monitored using a Back 

Electret Condenser Microphone (Yago EM-400) which is mounted in a post on the 

tool turret and is connected directly to the DAQ card. The signals are monitored 

using data acquisition card NI PCI-6071E from National Instruments using special 

data acquisition software written using the National Instrument CVI programming 

package and a computer. Matlab software is used for the complete analysis of this 

research. Figure 8.3 shows a photo of the sensors installed on the machine.   
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Figure 8.3: The sensors installed on the lathe machine. 
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Figure 8.4: Shows the equipment used in the monitoring system. 

 

8.5 Data Acquisition Card 

The data acquisition card used is the NI PCI-6071E from National Instruments, a 

multifunction analogue, digital, and timing I/O boards for PC AT. The card has 12-

bits ADCs with 64 analogue input single ended or 32 differentials with a guaranteed 

sampling rate up to 500k sample. The analogue input used was configured as 

differential inputs because of the low voltage levels involved, the noisy environment, 

and long wires used in connecting the signals to the data acquisition card. The 

analogue channel is used to acquire the machining data using a sampling rate of 

15000 or 16000 samples per channel. The card is used in a bipolar mode of +10V or 

-10V with a board gain of 0.5. Hence, for 12-bit data samples the resolution is up to 

9.76 mV. 

 

8.6 Data Acquisition Software 

The data acquisition card is programmed using LabWindows/CVI from National 

Instruments, a developed software package for data acquisition and monitoring. The 

data acquisition software is flexible multipurpose data acquisition software using the 

LabWindows/CVI package from National Instruments. The software also has simple 

GUI panels which give the user a friendly and fast interaction. The software loads the 
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acquired data to the computer memory first, draws it on the screen and then gives the 

user the option to save the data. Consequently, it gives the user more flexibility for 

data analysis, but at the same time, it limits the maximum number of samples which 

can be acquired. The Configuration Panel is used to choose the channels to monitor 

their colour, save the configuration to a file and load any configuration file to the 

program. Figure 8.5 shows the Configuration Panel. 
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Figure 8.5: The configuration panel used for channel selection. 

 

The configuration file contains the sampling rate, number of channels, their colour, 

and description. The configuration panel allows the user to enable or disable any 

channel monitored, either on line or off line, just by clicking the toggle button. The 

LED indicator next to the channel will indicate if the channel is active or not. The 

user can add the description of each channel and the required colour. All these 

configurations can be either saved to a configuration file or loaded from a 

configuration file. The software also utilises an option to start the acquisition process 

after the value of one of the operating channels exceeds a specific threshold value 

with an option to delay the acquisition until the cutting process reaches a steady state. 

An example of a data file format is shown in Figure 8.6. Each data file includes the 

original configuration information contained in the configuration panel. The data file 
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also includes any description the user would like to add such as the date of the test, 

and the time. 

 

number of channels, number of samples, sampling rate
8,               5000,                  40000.000000  

upper limit, lower_limit, Back_colour, and grid colour
10.00,       -10.00,           11579568,        14737632  

Channel number,     colour,                 and description
0,                   16711680,             FX
1,                   255,                       FY
2,                   16750848,             FZ
3,                   2105376,               ST
4,                   10053120,             VB
5,                   16777215,             AE
6,                   16724889,             AER
7,                   6750003,               MIC

Data:
-0.693359, 0.771484,-0.004883,-0.161133,-0.717773

.

. 

.  
-0.566406, 0.170898,-0.336914,-0.112305, 0.03418…

Cut1tool3
Date 03-24-2006   Time: 11:58:44

Configuration
File Information

Machining 
Data

Text 
Information

number of channels, number of samples, sampling rate
8,               5000,                  40000.000000  

upper limit, lower_limit, Back_colour, and grid colour
10.00,       -10.00,           11579568,        14737632  

Channel number,     colour,                 and description
0,                   16711680,             FX
1,                   255,                       FY
2,                   16750848,             FZ
3,                   2105376,               ST
4,                   10053120,             VB
5,                   16777215,             AE
6,                   16724889,             AER
7,                   6750003,               MIC

Data:
-0.693359, 0.771484,-0.004883,-0.161133,-0.717773

.

. 

.  
-0.566406, 0.170898,-0.336914,-0.112305, 0.03418…

Cut1tool3
Date 03-24-2006   Time: 11:58:44

Configuration
File Information

Machining 
Data

Text 
Information

 
Figure 8.6: An example of a saved data file. 

 

8.7 Conclusion 

This chapter outlined the general experimental set-up of this research work. The 

descriptions dwelled on the lathe machine tool. Similarly, it also describes the sensor 

types and their position focusing on cutting tools, workpiece materials, software and 

the data acquisition system. 
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Chapter 9 

ASPST Initial Evaluation 

9.1 Introduction 

This chapter explains the initial evaluation and implementation of the Automated 

Sensor and Signal Processing Selection for Turning (ASPST). The chapter shows 

how the ASPST approach can be utilised to develop a sensor fusion model of a 

condition monitoring system to detect tool wear in turning processes in an efficient 

way. The chapter introduces the details of the ASPST approach using a gradual tool 

wear fault with multi-sensor signals during a turning process. This chapter uses force 

and strain sensors to examine the suitability of the ASPST condition monitoring. It 

covers the main stages of the ASPST approach, the Association Matrix (ASM) of the 

wear test, the sensitivity detection, the selection of the most sensitive SCFs for a 

condition monitoring system and the cost of the implemented monitoring system. 

More experimental work for the evaluation of the ASPST approach for other sensors 

will be described in the following chapters. The implementation of the ASPST 

approach will answer the following questions: 

 

1. What is the difference between the two groups of signals for monitoring 

turning processes? 

2. Which is the most sensitive signal to tool wear for turning processes?  

3. Is one machining signal sufficient to monitor tool wear or is more than one 

sensor needed? 

4. If a signal is chosen for the condition monitoring system, how can it be fed to 

the pattern recognition system? 

5. How can we choose between those sensors so that we can design an efficient 

monitoring system? 
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Figure 9.1: The basic principles of the ASPST approach. 

 

Figure 9.1 shows the basic principles of the ASPST approach. It is designed to 

systematically relate the sensory signal and the signal processing methods utilised to 

the fault which is to be detected.  

 

9.2 Experimental Work 

The experimental work in this chapter is conducted to examine the behaviour of the 

signals for fresh and worn tools and to find the most sensitive sensory characteristic 

features to tool wear. The experimental work is performed on a turning process using 

a stainless steel workpiece. It is a relatively hard material in order to accelerate tool-

wear at the expense of a shorter tool life. In addition, stainless steel used in this 

research as it is a very common material used in domestic applications, application in 

automotive market and other industrial applications. The stainless steel work piece 

has a diameter of 30 mm; and a total machining distance of 1500 mm is machined 

during the full tests to transfer the tool from fresh to completely worn. The machined 

distance are divided into 6 machining samples with lengths of 250 mm each (i.e. 6 

machining samples are obtained during the test for analysis). In total, 6 independent 

experiments are conducted on the turning of stainless steel bars with a fresh tool used 

for each experiment, all with the same basic configuration. The tool insert used, 
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Sandvik Coromant P25 (SCMT 120408 UM), is cemented carbide coated via 

chemical vapour deposition and consisting of grades of indexable inserts with 

integral chip-breaker geometry, held in place by a negative rake tool holder. Care is 

taken to ensure that all experimental conditions remained the same. The machining 

parameters are selected to resemble industrial practice. The experimental cutting 

conditions are chosen to cover the manufacturer's recommended interval for inserts 

type. Figure 9.2 shows a schematic diagram of the implemented monitoring system 

for this chapter. For more details see Chapter 8, section 8.3. 
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Figure 9.2: Schematic diagram of the monitoring system. 

 

The chosen process parameters monitored are the cutting forces (three axes) and 

strain. The force signals are monitored using 3-component Dynamometer (Kistler 

9257A) and the cutting tool is fixed on the dynamometer bolted rigidly on the tool 

turret so that the turret speed and the feed components of the cutting forces could be 

measured. The dynamic and quasistatic force signals are monitored using strain 

sensor (Kistler 9232A) which is mounted at the side of the tool. Both the force 

dynamometer and the strain sensor are connected to a 4-channel charge amplifier 

(Kistler 5070A). The level of tool wear is visually monitored in this experimental 

work and the experimental work shows that wear increases with machining time.  
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9.3 Signal Simplifications  

For a complex machining process such as turning, the first step is to transfer signals 

from its complex form into a group of simplified sensory signals denoted Sensory 

Characteristic Features (SCFs). For example, if a turning process sensory signal can 

be transformed into a group of SCFs with relatively simple nature with less variation, 

then it is expected to be much easier to retrieve the necessary information which 

presents the state of the process based on the change in the level of the extracted 

SCFs. As explained in Chapter 6, a sensitive SCF is a SCF which includes a 

significant amount of information regarding the state of the process. This should lead 

to better recognition. The sensitivity of the SCFs for this experimental work in this 

chapter is evaluated by the following methods: 

1. Visual inspection of the signals. 

2. Using Sudden Change In Value (SCIV) method. 

9.3.1 Visual Inspection Method 

In this section the simplified sensory information are detected visually. Figure 9.3 

and 9.4 shows examples of the machining signals for the fresh and worn tool 

respectively. 
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Figure 9.3: The machining signals for fresh tool. 
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Figure 9.4: The machining signals for worn tool. 

 

It can be observed from Figures 9.3 and 9.4 that the vibration level of some signals 

has decreased for the worn tool, as in the cutting forces signals. In addition, the level 

of some sensory signals has changed such as the strain signal. Because turning has 

complex machining signals, it has been found difficult to predict the most sensitive 

signals to tool wear directly from the raw data.  
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Figure 9.5: Example of the SCFs of the signals. 
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Figure 9.5 presents an example of the general visual observation of the sensory 

signal which includes the sensitivity of SCFs of the force sensor. Looking at Figure 

9.5, it is apparent that the force signal (Fx) has three different sensitivity levels, low, 

medium and high, with different signal processing methods. It shows low sensitivity 

with the std, medium sensitivity with the skew and high sensitivity with the power. It 

can be observed that among the signals, some signal processing methods are more 

sensitive with the sensory signal than others. Therefore, it can be concluded that 

manual investigation could help in finding the sensitivity of the sensory signal. Table 

9.1 shows general visual observation of the Association Matrix (ASM) which 

includes the sensitivity of all SCFs implemented in this monitoring system. Figure 

9.6 presents an image of the SCFs of the signals. 

 

         Table 9.1: Example of ASM for Tool 1. 
Signal Processing Methods Sensory 

Signal Std Avg. Max Min Range Kurtosis Skew Power 
Fx L H L H M L M H 
Fy M H H H L L L H 
Fz M M H H H L L H 

Strain L H H H H M H H 

(H: High sensitivity, M: Medium sensitivity, L: Low sensitivity). 
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Figure 9.6: Example of the SCFs images of the signals. 
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Table 9.1 shows general visual observation of the Association Matrix (ASM) which 

includes the sensitivity of all SCFs implemented in this monitoring system. In 

addition, Figure 9.6 presents an image of the SCFs of the signals. For example, the 

strain sensor shows high sensitivity with the skew signal processing method, while 

the force sensor (Fy and Fz) shows low sensitivity with the same signal processing 

method. Although such general visual observations as shown above might helps to 

find some sensory features which are sensitive to the tool wear. But it still does not 

provide a systematic method to study the system and there could be more sensitive 

sensory characteristic features which are obtained from less expensive sensors than 

the force dynamometer, for example strain sensor in this experimental work. From 

the above discussions it may be concluded that manual investigation of the 

monitored signals is time consuming and should be automated in order to develop a 

faster and more structured methodology for selecting sensors and signal processing 

methods. In this research, the Sudden Change In Value (SCIV) automated sensitivity 

method is utilised to automate the system. 

 

9.3.2 Sudden Change In Value (SCIV) Method 

The discussion in the previous section suggests that manual investigation of the 

monitored signals could be time-consuming and the system should be automated. 

Therefore, in this section the practical steps of the ASPST approach for the same four 

(Fx, Fy, Fz, strain) sensory signals are described. The theoretical ideas of the ASPST 

approach are presented in Chapter 6. In general, assuming that the monitoring system 

has n number of sensory signals which can be processed by m number of signal 

processing methods to produce a sensory characteristic features (SCFs). For 

example, a sensory characteristic feature extracted from the skew value of the Fy 

sensory signal can be presented as SCF (Fy, skew). The sensory feature matrix 

(SMF) can be calculated for every set of signals, or machining samples, during the 

machining process. For any sensory characteristic feature, it is possible to study its 

behaviour in relation to tool wear. There are different mathematical ways to study the 

effect of a machining fault as an independent variable on a sensory characteristic 

feature as a dependent variable. 
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Figure 9.7: The practical steps of the ASPST approach. 

 

Figure 9.7 shows a schematic diagram of the practical steps of the ASPST approach. 

The sensory signals are simplified and processed to give specific sensory 

characteristic features arranged in the SFM which can be used to calculate the 

sensitivity of every feature on tool conditions. The sensitivity coefficients are then 

arranged in the ASM matrix for further analysis. After calculating the sensitivity of 

each sensory characteristic feature on the machining conditions, tool wear level in 

this case, another matrix is constructed. This is Association Matrix (ASM). It is a 

matrix which associates the obtained sensitivity values for the corresponding sensory 

features. It gives a simple presentation of the sensitivity values associated with each 

feature. The sensitivity coefficient of the machining feature is obtained using the 

machining signal of the sensor and the signal processing method. The ASM gives the 

key evaluation for the most appropriate sensor and signal processing method to be 

used since each column is associated with a signal processing method while each row 

is associated with a sensor. Therefore, the sensory characteristic features with 

relatively high sensitivity coefficient are the most sensitive to the cutting conditions 

and they are the most appropriate features to be used. Therefore, the related sensory 

signals and signal processing methods are the most appropriate ones to use. 

For the described cutting tool wear test, 8 signal processing methods are used to 

process 4 sensory signals. The signal processing methods are standard deviations 
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(std), the average (μ), maximum (max), minimum (min), the range, kurtosis value 

(K), skew value and power. For more details regarding the signal processing methods 

see Chapter 7. The sensory signals monitored during this test are the cutting forces in 

three directions and the strain sensor. Therefore, the ASM for this system has a 

dimension of (4 × 8) which makes a total of with 32 sensory characteristic features 

for the selection process. The sensors and signal processing methods used here are 

just an example and the ASPST approach is not limited to the used sensory 

characteristic features. More signal processing methods and sensory signals will be 

used to develop condition monitoring systems in the following chapters. 

The statistical method used in this research is the Sudden Change In Value (SCIV) 

instead of the line regression methods used in ASPS for end-milling [47] process as 

this has some drawbacks when applied to turning processes. The linear regression 

method is not sensitive to turning processes and the SCIV method found to be 

appropriate. The application of the sudden change in value method will be described 

in this section.  

From the previous discussion, there is a need to find a method to calculate the 

sensitivity of every feature to the wear of the cutting tool. Since the importance of a 

feature is in its relative value compared to others, a normalising process is performed 

using equation 9.1 below so that any sensory characteristic feature will have a value 

between 0.1 and 0.9 making it possible to compare all calculated sensory features 

relative to each other [196]. There is no specific reason for using this type of 

normalising and any other normalising values could be used. The only reason is that 

such values are expected to have better effect on the classification systems [196]. 

Also, in order to be able to compare the sensitivity of SCFs of this test with the 

sensitivity of SCFs in similar tests, all features are normalised using the same 

equation [211]. 

 

min)(
minmax

8.01.0 −
−

+= ixx       9.1 

Where: 

max: is the maximum value of a sensory characteristic feature. 

min: is the minimum value of a sensory characteristic feature . 
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The sensitivity coefficient for this type of test is the Sudden Change In Value (SCIV) 

(i.e. absolute value) using the difference between the maximum and the minimum of 

the data (see Chapter 7, section 7.3.3). Hence, features which have high relative 

value are sensitive to tool wear. The SCFs are visually tested for their sensitivities to 

gradual tool wear. Figure 9.8 shows an example of two sensory characteristics 

features with high sensitivity to tool wear. 
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Figure 9.8: Example of high sensitivity features. 

 

Figure 9.9 shows two features with low sensitivity to the tool wear. As can be 

observed from the figures, the absolute value of the difference of the maximum and 

minimum presents a good indication of how sensitive a sensory feature is to tool 

wear. 
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Figure 9.9: Example of low sensitivity features. 

 

Table 9.2 shows the ASM matrix for this particular tool wear test where sensitivity 

values are the Sudden Change In Value (SCIV) of the normalised features. 

 

    Table 9.2: ASM matrix for tool wear test. 

  Std Avg. Max Min Range Kurtosis Skew Power 
Fx 0.1348 0.7826 0.0875 0.7519 0.1915 0.0485 0.6602 0.7879 
Fy 0.402 0.7797 0.7806 0.7363 0.1588 0.0634 0.1698 0.7788 
Fz 0.3001 0.3666 0.5953 0.6916 0.5645 0.01 0.008 0.7867 

Strain 0.0144 0.7832 0.765 0.7786 0.7055 0.334 0.7254 0.7756 
 

Figure 9.10 shows images of the ASM matrix for the tool wear test where sensitivity 

values are the Sudden Change In Value (SCIV) of the normalised features. The 

numbers with small value in Table 9.2 are shown in navy in the images in Figure 

9.10. This mean low sensitivity, numbers with medium values are shown in blue 

which means medium sensitivity, and numbers with high values are shown in red 

which means high sensitivity. 
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Figure 9.10: Example of the SCFs images of the signals using SCIV. 

 

As can be observed from Table 9.2 and Figure 9.10 using the SCIV and Table 9.1 

and Figure 9.6 using manual investigations, there is significant similarity between the 

two methods. This proves that using an automated sensitivity detection method such 

as Sudden Change In Value (SCIV) to calculate the ASM matrix could minimise 

time and effort. For example, if we take the SCF of the strain and power signal 

processing method and investigate it manually it shows that it has high sensitivity 

(H) as in Table 9.1 and Figure 9.6. On the other hand, when applying the automated 

method, SCIV ASM matrix, it shows that SCF for Strain and power signal 

processing method is 0.7756; this means high relative sensitivity as in Table 9.2 and 

red in Figure 9.10 which means high sensitivity also. It can be concluded from this 

discussion that using the automated method, Sudden Change In Value (SCIV) 

analysis method, and utilising the Association Matrix (ASM) to find out the most 

sensitive features to detect tool wear in turning processes, is useful and less time-

consuming when compared to manual investigation. 

 

9.4 Selection of Sensory Characteristics Features (SCFs) 

To enable the classification system to be fast and to give good classification, it has 

been decided based on previous applications of the ASPS approach (end milling 
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process) [211] to base the implementation and the design of the ASPST condition 

monitoring system of this test on a set of 10 SCFs. The sensory characteristic 

features are grouped into 3 systems, with 10 features in each. A Matlab computer 

program is used to arrange the ASM features according to the absolute Sudden 

Change In Value (SCIV) and arrange every 10 as a separate system. The three 

systems have the average sensitivity as shown in Figure 9.11. It can be observed that 

the first system has the most sensitivity features for tool wear detection compared to 

the other systems.  
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Figure 9.11: Comparison between the systems sensitivity. 

 

The first system which includes the most sensitive 10 features is shown in Table 9.3. 

In addition, Table 9.4 shows the next 10 features and Table 9.5 shows the least 

sensitive 10 feature to tool wear.  

The first system is found to have relative sensitivity (SCIV average of 0.782) which 

is much more than the average sensitivity of the second. In addition, the third system 

is found to have the lowest sensitivity for the detection of the tool wear. 
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                     Table 9.3: First system with the SCFs sensitivity (SCIV). 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fx Power 0.7879 
Fz Power 0.7867 
St Maximum 0.7865 
St Average 0.7832 
Fx Average 0.7826 
Fy Maximum 0.7806 
Fy Average 0.7797 
Fy Power 0.7788 
St Minimum 0.7786 
St Power 0.7756 

Average 0.7820 
 

                    Table 9.4: Second system with the SCFs sensitivity (SCIV). 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fx minimum 0.7519 
Fy minimum 0.7363 
St Skewness 0.7254 
St Range 0.7055 
Fz minimum 0.69165 
Fx Skewness 0.66025 
Fz maximum 0.5953 
Fz Range 0.5645 
Fy Std 0.4021 
Fz average 0.3666 

Average 0.6199 
       

                     Table 9.5: Third system with the SCFs sensitivity (SCIV). 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

St kurtosis 0.3342 
Fz Std 0.3001 
Fx Range 0.1915 
Fy Skewness 0.1698 
Fy Range 0.1588 
Fx Std 0.1348 
Fx maximum 0.0875 
Fy Kurtosis 0.0634 
Fx Kurtosis 0.0485 
St Std 0.0144 

Average 0.1503 
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As can be observed from the above tables, the first system has the highest sensitivity, 

for example, the force (Fx) and power have the highest sensitivity (0.7879). The 

second system has a medium to high level of sensitivity and third system has the 

lowest sensitivity. For example, strain sensor and standard deviation have the lowest 

SCFs (0.0144) in the third system. Looking at the above tables, it can be seen that the 

first 16 SCFs are almost the same but then the sensitivity of the other SCFs drops 

considerably. Therefore, the ASM matrix is found very useful in predicting the 

sensitivity of the SCFs. The sensitivity of the SCFs is proven to be measurable. 

The details of the first few SCFs structure can be used to optimise system cost 

without significantly affecting system performance. It is important to notice that the 

statement of high sensitivity means high information is based on the visual 

inspection of each feature and the way it behaves during the fault's development. 

Therefore, a statement is made that the average sensitivity of a system is a reflection 

of the expected behaviour of the system. The proof of this statement will be 

described in the next chapters using neural networks and novelty detection 

classification systems. 

 

9.5 System Cost and Utilisation 

It is necessary in real industrial applications to control the cost of a condition 

monitoring system. In an industrial environment, the main target is not only to 

develop and implement a successful condition monitoring system, but to minimise 

cost. The ASPST approach can be used to minimise the cost of a condition 

monitoring system without significantly affecting its performance. The cost of the 

monitoring system can be easily calculated according to the number and type of 

sensors used. It is important to reduce the cost of the system by eliminating sensors 

which do not significantly contribute to the selected SCFs. This is achieved by 

removing their SCFs from the system and replacing them by SCFs which come next 

on the rank from sensors already in the system. This cost reduction is possible 

without having to significantly reduce the overall sensitivity of the system (i.e. the 

new SCFs should still have relatively high sensitivity). The contribution of a sensor 
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in a system is defined as the sensor utilisation (U). The U for a sensor is defined as 

shown in equation 9.2: 
 

         9.2 

 

S: number of SCFs used from the sensor. 

T: total number of features in the system (10 in this case) 

P: number of signals produced by the sensor (e.g. 3 for the 3-components force 

dynamometer, 1 for the strain, 1 for Vibration). 

The UA, the overall sensor utilisation average factor for a system, is defined as the 

average value of the sensor utilisation (U) of all the sensors used in the system. 

When removing the least used sensors in the system, it has been found that the sensor 

utilisation (U) factor is useful in minimising the cost of the system. The changeable 

supposed cost of each system is calculated and compared to optimise the 

performance of the system related to its cost. The cost reduction process is discussed 

in Chapter 6, section 6.5.5. It explains and evaluates the cost reduction process with 

the aid of the tool wear experimental work. Figure 9.12 shows the sensor set-up for 

the experimental work in this chapter. In this work, cost means the supposed variable 

cost of the monitoring system since the objective is to compare systems. 
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Figure 9.12: The sensors set-up used to calculate the cost of the system. 
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9.5.1 System Optimisation 

From Tables 9.3 and 9.4, it can be observed that there is no significant difference in 

the average sensitivity for both systems. The cost of both systems is the same 

(£19,040). But it is still can be optimised by increasing the system utilisation. By 

replacing the sensory characteristic features of the strain sensor from the first system 

with the forces sensory signals from the second system to reduce the cost and still 

have the sensitivity level.  
 

                  Table 9.6: Sensors utilisation. 

Sensors U 
1st System 

U 
2nd System 

Optimised 
System 

Dynamometer 20% 23.3% 33.3% 

Strain 40% 30% ------ 
UA 

Utilisation Average 30% 26.65% 33.3% 

System Cost £19,040 £19,040 £18,620 
Average Sensitivity 0.7820 0.6199 0.7537 

 

As shown in Table 9.6, the overall average utilisation has increased in the first 

system from 30% up to 33.3% and from 26.65% up to 33.3% in the second system 

and the cost is reduced by 3% from £19040 to £18620. In addition, the average 

sensitivity of the system did not significantly change as can be seen in Table 9.7. In 

fact the average sensitivity has increased to 0.7537 compared with the second 

system. 

                    Table 9.7: The optimised system (1st and 2nd system).  

Sensory Signal  Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fx Power 0.7879 
Fz Power 0.7867 
Fx Average 0.7826 
Fy Maximum 0.7806 
Fy Average 0.7797 
Fy Power 0.7788 
Fx minimum 0.7519 
Fy minimum 0.7363 
Fz minimum 0.69165 
Fx Skewness 0.66025 

Average 0.7537 
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From the previous discussion, it has been found that the force sensor is the most 

appropriate sensor to monitor tool wear based on the ASPST approach. The above 

results prove that the ASPST approach can be used to reduce the cost and the number 

of sensors while keeping high sensitivity.   

9.5.2 System Evaluation 

The ASM matrix could be utilised to evaluate the effectiveness of a sensor or signal 

processing method based on the sensitivity of every sensor and signal processing 

method to the fault which is embedded in the ASM matrix. 

 

The average sensitivity of all the sensory characteristic features, for a Signal 

Processing method SPk, obtained using all the sensory signals (ASP) can be used as 

an indication of how relatively the signal processing method is valuable. The average 

value of the kth column of the ASM matrix for a signal processing SPk is the average 

sensitivity of the kth signal processing method and can be defined as [211]: 
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where n is the number of rows in the ASM. 

In addition, the average sensitivity of the kth signal (As) can represent the general 

sensitivity of a signal to the failure and can be defined as: 
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where m is the number or columns in the ASM.  

 

For the ASM matrix, the average of the summation of sensitivity coefficients (AC) 

can provide an evaluation of the condition monitoring system sensitivity in the 

detection of the failure under investigation. And can be defined as: 
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The As values for the sensory signals used in the system are shown in Figure 9.13 

and the Asp values for the signal processing methods used in the system are shown in 

Figure 9.14. As can be noticed from the figures, the results reflect what is found in 

the optimum system where the strain sensor is the most sensitive sensor to tool wear. 
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Figure 9.13: As values for the sensory signals. 
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Figure 9.14: Asp values for the signal processing methods.  

 

The Ac factor of this system is found to be (0.48). However, to find the effectiveness 

of the selection of the utilised sensors and signal processing methods, the evaluated 

values can be compared with other systems. The high Ac value mean high sensitivity 
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level, meaning high information and low Ac, means low sensitivity value and less 

information. But a low Ac could include features with high sensitivity. 

9.6 Conclusion 

In this chapter, the practical details of the ASPST approach are introduced. The 

ASPST approach for four sensory signals is explained using an experimental 

machining test to monitor a gradual tool wear in turning process. The implemented 

ASPST approach utilises a matrix, named the Association Matrix (ASM), to compare 

the sensitivity of the features to the fault under investigation and also to evaluate the 

overall monitoring system using the average sensitivity of sensors and signal 

processing methods. The sudden change in value (SCIV) analysis is used to find out 

the most sensitive features to detect tool wear. The SCFs are visually examined and 

examples of high-sensitivity and low sensitivity SCFs are presented. Sensory 

utilisation is implemented within the ASPST approach to reduce the cost of the 

system without affecting the sensitivity of the system. The ASPST approach is found 

useful in selecting the most sensitive sensors and signal processing methods to 

design a condition monitoring system for turning process. 
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Chapter 10 

The Applications of ASPST Approach Using 

Pattern Recognition Systems 

10.1 Introduction 

In this chapter, different applications for the implementation of the ASPST approach 

for different groups of multi-sensor fusion models are presented. The chapter 

provides more experimental work to prove the capability of the implemented ASPST 

approach in developing and designing a sensor fusion model of a condition 

monitoring system for turning process by selecting the most sensitive sensors and 

signal processing methods using pattern recognition systems. It presents the same 

implemented methodology and steps discussed in the previous chapter for the 

following investigations: 

 

• LVQ Investigation: The chosen process parameters monitored are acoustic 

emission (AE), accelerometer and sound sensors using Learning Vector 

Quantisation (LVQ) neural networks. 

• ND Investigation: The chosen process parameters monitored are strain, 

acoustic emission and accelerometer sensors using a Novelty Detection 

Algorithm (ND). 

Both investigations present the same methodology and experimental work to detect 

tool wear and provide diagnostic and prognostic information. This chapter seeks to 

confirm the methodology and the technique implemented in Chapter 9 for the turning 

process with different multi-sensors using different pattern recognition systems. The 

main assumption to be tested is that sudden change in value (SCIV) method is 

capable of detecting the sensitivity of the SCFs. 
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10.2 General Experimental Set-Up 

The experimental work for both investigations in this chapter is performed on the 

lathe machine tool for machining stainless steel. Gradual tool wear is examined as 

the fault to be monitored. The stainless steel work piece used in this experiment has a 

diameter of 30 mm and a total machining distance of 1750 mm is machined during 

the full tests to transfer the tool from fresh to completely worn. The machined 

distance is divided into 7 machining samples with lengths of 250 mm each (i.e. 7 

machining samples are obtained during the test for analysis for each investigation). 

In total, 7 independent experiments are conducted in the machining of stainless steel 

workpieces for each investigation. Every test starts with a fresh tool and finishes with 

a completely worn tool. The tool inserts used are Sandvik Coromant P25 (SCMT 

120408 UM). The machining parameters are selected to resemble industrial practice. 

The experimental cutting conditions are chosen to cover the manufacturer's 

recommended interval for insert type. For more details see Chapter 8, section 8.3. 

 

10.3 LVQ Investigation 

The chosen process parameters monitored in the first investigation are vibration, 

sound and acoustic emission (AE and AE-RMS signal). The vibration signals are 

monitored using an accelerometer (Kistler 8704B) which is mounted close to the tool 

holder in order to measure the radial acceleration due to the workpiece-cutting tool 

vibration and it is connected to a charge amplifier (Kistler 5855A). The acoustic 

emission signals are monitored using an AE-Piezotron sensor (Kistler 8152B) which 

is mounted close to the tool holder and it is connected to an AE-Piezotron coupler 

(Kistler 5125B) which gives the AE signals and the Root-Mean-Square (RMS) of the 

AE signals. The sound signals are monitored using a Back Electret Condenser 

Microphone (Yago EM-400) which is mounted in a post on the tool turret and it is 

connected directly to the DAQ card. The level of tool wear is visually monitored in 

this experimental work and shows that wear increases with machining time. Figure 

10.1 shows a schematic diagram of the implemented monitoring system for the first 

(LVQ) investigation. 
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Figure 10.1:  A schematic diagram of the monitoring system. 

 

10.3.1 Signals Simplifications 

10.3.1.1 Visual Inspection Method 

Examples of the machining signals for the fresh and worn tool for a turning process 

are shown in Figure 10.2 and 10.3 respectively. It can be noticed that the vibration 

level has decreased for the worn tool. In addition, the level of the other signals has 

changed. The acoustic emission signals have less variation. However, the sound 

signal has included more audible vibration noise. The microphone signal level is 

relatively low, and the variation could have been related to external noise. In 

addition, the level of some sensory signals has changed such as the AE (RMS) 

signal. Because turning has complex machining signals, it has been found difficult to 

predict the most sensitive signals to tool wear directly from the raw data. Therefore, 

the ASPST approach should be able to detect if the variation is random or consistent 

due to tool wear. Although such general observations can help to find some sensory 

features which are sensitive to tool wear, signal processing and analysis is needed to 
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extract the important information from the signals (i.e. Sensory Characteristic 

Features (SCFs)). 
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Figure 10.2: Signals from a fresh tool. 
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Figure 10.3: Signals for the worn tool. 

 



 145

Table 10.1 shows general visual observation of the Association Matrix (ASM) which 

includes the sensitivity of all SCFs implemented in this monitoring system. Figure 

10.4 presents an image of the SCFs of the signals.  

 

         Table 10.1: Example of ASM for Tool 1. 

Signal Processing Methods Sensory 
Signal Std Avg. Max Min Range Kurtosis Skew Power 

Vibration L H H M L H L H 
AE L H H H L L L H 

AE_RMS L H H H L M L H 
Sound H H H M H H M H 

(H: High sensitivity, M: Medium sensitivity, L: Low sensitivity). 
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Figure 10.4 Example of the SCFs images of the signals. 

 

Table 10.1 shows a general visual observation of the Association Matrix (ASM) 

which includes the sensitivity of all SCFs implemented in this monitoring system. In 

addition, Figure 10.4 presents an image of the SCFs shown in Table 10.1. For 

example, sound sensor shows high sensitivity with all signal processing methods 

except the minimum and Skewness signal processing methods show medium 

sensitivity, while the vibration sensor shows medium sensitivity levels with 
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minimum signal processing methods even though such general visual observations as 

shown above could help to find some sensory features which are sensitive to the tool 

wear. But it still does not provide a systematic method to study the system and there 

could be more sensitive sensory characteristic features to be obtained from less 

expensive sensors than the acoustic emission sensor such as sound sensor in this 

experimental investigation. It can be observed that among the signals, some signal 

processing methods are more sensitive with the sensory signal than others. Therefore, 

it can be concluded that manual investigation could help in finding the sensitivity of 

the sensory signal. In this research, the implementation of the ASPST for tool wear 

detection in the turning process will be tested to automate the system.  

10.3.1.2 Sudden Change In Value (SCIV) Method 

The raw signals are processed using several time-domain signal processing methods 

to extract 8 SCFs form every sensory signal. The 8 signal processing methods are 

used to process the 4 sensory signals establishing an ASsociation Matrix ASM of (4 

× 8) which allows the investigation of 32 sensory characteristic features (SCFs) for 

the design of the monitoring system. The ASM matrix for this test has 4 sensory 

signal and 8 signal processing methods. The 32 sensory characteristic features of the 

ASM matrix for this work are calculated for the 7 tools and then the Sudden Change 

In Value (SCIV) method is calculated from the normalised features. The SCFs are 

arranged according to their sensitivity to tool wear based on the SCIV method. The 

SCFs are visually inspected and it has been observed that the features which show a 

high value of the (SCIV) have better sensitivity for the wear of the cutting tool. 

Figure 10.5 shows an example of two sensory characteristic features with high 

sensitivity and Figure 10.6 shows an example of two features with low sensitivity to 

wear. 
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Figure 10.5: Example of high sensitivity SCF. 
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Figure 10.6: Example of low sensitivity SCF. 

 

As it can be observed from the above figures, the absolute value of the Sudden 

Change In Value (SCIV) method presents a good indication of how sensitive a 

sensory feature is to tool wear. 

Table 10.2 shows the ASM matrix for this particular tool wear test where sensitivity 

values are the Sudden Change In Value (SCIV) of the normalised features. 

 



 148

    Table 10.2: ASM matrix for tool wear test. 

  Std Avg. Max Min Range Kurtosis Skew Power
Vibration 0.0893 0.6812 0.6222 0.5771 0.2301 0.65245 0.01697 0.6815

AE 0.1463 0.6816 0.6752 0.6356 0.1376 0.01409 0.0078 0.6818
AE_RMS 0.0762 0.6590 0.6481 0.6624 0.0996 0.09265 0.0007 0.6807

Sound 0.6803 0.6743 0.6814 0.6221 0.6807 0.6457 0.5989 0.6817
 

Figure 10.7 presents images of the ASM matrix for the tool wear test where 

sensitivity values are the Sudden Change In Value (SCIV) of the normalised features. 

The numbers with small values in Table 10.2 which appear in navy in the images 

figure mean low sensitivity; numbers with medium values which appear in green 

mean medium sensitivity; and numbers with big values which appear in red in the 

images mean high sensitivity. 
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Figure 10.7: Example of the SCFs images of the signals using SCIV. 

 

As can be observed from Figure 10.4, using manual investigation, and Figure 10.7, 

using the SCIV, there is a similarity between the two methods. This proves that using 

an automated sensitivity detection method such as Sudden Change In Value (SCIV), 

ASM matrix, could minimise time and effort. For example, if we take the SCF of the 

sound and average signal processing method and investigate it manually, it shows 
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that it has high sensitivity (H) as in Table 10.1 and Figure 10.4. On the other hand, 

when applying the automated method, SCIV, it shows that the SCF for the sound and 

average signal processing method is 0.674; this means high value as in Table 10.2 

and red as in Figure 10.6 which means high sensitivity also. In addition, using the 

SCIV method shows more accuracy than visual investigation. For example, when 

investigating the SCF of sound and skew visually it shows medium sensitivity and 

appears as light green colour in Table 10.1, but when utilising the SCIV method it 

shows light red. When comparing these two colours it can be observed that their 

values are between 0.4 and 0.5 which is not too far from the value shown in Table 

10.2. It can be concludes from the discussion that using the automated method, 

Sudden Change In Value (SCIV) analysis and utilising the Association Matrix 

(ASM), to find out the most sensitive features to detect tool wear in turning 

processes, is found useful and time-consuming compared to manual investigation. 

As in the previous chapter, it is decided to base the implementation and the design of 

the ASPST condition monitoring system on a set of 10 SCFs. The sensory 

characteristic features are grouped into 3 systems, 10 features each. A computer 

program is used to arrange the ASM features according to the absolute Sudden 

Change In Value (SCIV) and arrange every 10 as a separate system. The three 

systems have the average sensitivity as shown in Figure 10.8. It can be observed 

from that the first system has the most sensitivity features for tool wear detection 

compared to the other systems.  
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Figure 10.8: Comparison between the systems sensitivity. 
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The first system which includes the most sensitive 10 features is shown in Table 

10.3. In addition, Table 10.4 shows the next 10 features and Table 10.5 shows the 

least sensitive 10 features to tool wear. The first system is found to have relative 

sensitivity (SCIV average of 0.6806) which is much more than the average 

sensitivity of the second. In addition, third system is found to have the lowest 

sensitivity for the detection of the tool wear. 

 

                     Table 10.3: First system with the SCFs sensitivity (SCIV). 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

AE Power 0.6818 
Sound Power 0.6817 

AE Average 0.6816 
Vibration Power 0.6815 

Sound Maximum 0.6814 
Vibration Average 0.6812 
AE_RMS Power 0.6807 

Sound Range 0.6806 
Sound Std 0.6803 

AE Maximum 0.6752 
Average 0.6806 

 

                    Table 10.4: Second system with the SCFs sensitivity (SCIV). 

Sensory Signal  Signal Processing 
Methods Sensitivity (SCIV) 

Sound Average 0.6743 
AE_RMS Minimum 0.6624 
AE_RMS Average 0.6590 
Vibration Kurtosis 0.6523 
AE_RMS Maximum 0.6481 

Sound Kurtosis 0.6457 
AE Minimum 0.6356 

Vibration Maximum 0.6222 
Sound Minimum 0.6221 
Sound Skewness 0.5989 

Average 0.6421 
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                   Table 10.5: Third system with the SCFs sensitivity (SCIV). 

Sensory Signal  Signal Processing 
Methods Sensitivity (SCIV) 

Vibration Minimum 0.5771 
Vibration Range 0.2301 

AE Std 0.1463 
AE Range 0.1376 

AE_RMS Range 0.09965 
AE_RMS Kurtosis 0.09265 
Vibration Std 0.08933 
AE_RMS Std 0.07624 
Vibration Skewness 0.01697 

AE Kurtosis 0.01409 
Average 0.1480 

 

As can be observed from the above tables, the first system has the highest sensitivity; 

for example, the AE signal and power has the highest sensitivity. In addition, the first 

and second systems have no significant difference between them in the average 

which means that it is excellent when optimising the system with low cost sensors 

and high sensitivity. On the other hand, the third system has the lowest sensitivity. 

For example, the AE signal and Kurtosis signal processing method are the lowest 

SCFs in the system. Looking at the above tables and figures, it can be observed that 

the first 21 SCFs have similar sensitivity. Then the sensitivity of the other SCFs 

drops to the lowest value. Therefore, the ASM matrix is found very useful in 

predicting the sensitivity of the SCFs. The previous discussion proved that high 

sensitivity of the SCFs means high information and low sensitivity means low 

information. 

The details of the first few SCFs structure can be used to optimise the system cost 

without affecting the system performance significantly. It is important to notice that 

the statement of high sensitivity means high information is based on the visual 

inspection of each feature and the way it behaves during the fault's development. 

Therefore, a statement is made that the average sensitivity of a system is a reflection 

of its expected behaviour. The proof of this statement will be described in the next 

sections using Learning Victor Quantisation (LVQ) neural networks. 
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10.3.2 System Cost and Utilisation  

The same method used in Chapter 9 to calculate the cost of the system is used here 

again. Figure 10.9 shows the sensor set-up for the experimental work in this section. 
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Figure 10.9: The sensor set-up used to calculate the cost of the system. 

10.3.2.1 System Optimisation 

The same method used before to optimise the system is used here again. From Table 

10.3 and Table 10.4, it can be seen that there is no significant difference in the 

average sensitivity for both systems. The cost of both systems is the same. But it can 

still be optimised by increasing system utilisation. By replacing the sensory 

characteristic features of the vibration sensor from the first system with the sound 

and acoustic emission sensors from the second system to reduce the cost and have no 

affects on the sensitivity level.  
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                    Table 10.6: Sensors Optimisation. 

Sensors U 
1st System 

U 
2nd System 

Optimised 
System 

Vibration 20% 20% -------- 

AE 40% 40% 50% 
Sound 40% 40% 50% 

UA 
Utilisation 
Average  

33.33% 33.33% 50% 

System Cost £4095 £4095 £3107 

Average 
Sensitivity 0.6806 0.6421 0.6780 

 

As shown in Table10.6, the overall average utilisation has increased from 33.33% up 

to 50% in the first and the second systems and the cost is reduced by 25% from 

£4095 to £3107. On the other hand, the average sensitivity of the systems did not 

significantly change; the average sensitivity has increased in the second system from 

0.6421 to 0.6780. 

                    Table 10.7: The optimised system (from systems 1 and 2). 

Sensory Signal  Signal Processing 
Methods 

Sensitivity 
(SCIV) 

AE Power 0.6818 
Sound Power 0.6817 

AE Average 0.6816 
Sound Maximum 0.6814 

AE_RMS Power 0.6807 
Sound Range 0.6806 
Sound Std 0.6803 

AE Maximum 0.6752 
Sound Average 0.6743 

AE_RMS Minimum 0.6624 
Average 0.6780 

 

From the previous discussion, it has been found that the sound and acoustic emission 

sensors are appropriate sensors to monitor tool wear in turning processes based on 

the ASPST approach. The above results prove that the ASPST approach can be used 

to minimise system cost and to reduce the number of sensors while keeping 

sensitivity high. 
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10.3.2.2 System Evaluation 

The same method used previously to evaluate the system is used here again.  
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Figure 10.10: As values for the sensory signals.  
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Figure 10.11: Asp values for the signal processing methods.  

 

The Ac factor of this system is found to be (0.46). However, to find the effectiveness 

of the selection of the utilised sensors and signal processing methods, the values 

obtained can be compared with other systems. A high Ac value means a high 

sensitivity level meaning high information, and low Ac means low sensitivity value 

and less information. But a low Ac value could include features with high sensitivity. 
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10.3.3 Performance of LVQ Neural Networks 

The sensitivity of a sensory characteristics feature to detect tool wear in the turning 

process is visual and using automated method (SCIV) tested for several sensors and 

signal processing methods. It is noticed that sensitive characteristics features will 

indicate the fault with a significant change in their values. In order for the ASPST 

approach to be a useful methodology, the sensory characteristics features which are 

assumed to have a higher sensitivity on the tool wear should result in better 

identification when it is tested by a pattern recognition system. For this purpose a 

Learning Vector Quantisation (LVQ) neural network is used to test the complete 

monitoring system. The details of the LVQ neural network are briefly explained in 

Chapter 7 section 7.4.2. The SCFs from the first tool are used to train the LVQ neural 

networks. Then SCFs from all tools are fed to the neural networks for testing. 

Figures 10.12 present the result of using the LVQ for detecting tool wear in turning 

process. It can be seen that the arrows show the maximum number of cuts for each 

tool (i.e. tool-life) until complete wear or failure.  The number 0 means that the tool 

is in normal condition where 1 means that the tool is in worn condition.  
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Figure 10.12: The result of the LVQ neural network to detect tool wear. 
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For example, for tool 1 the LVQ neural networks has identified that cut/sample 25 is 

the start of tool failure. However, the actual tool failure happened at 38 cuts/samples. 

The ASPST approach has been found successful in detecting tool wear in the turning 

process. However, looking at Figure 10.13, there has been early warning regarding 

the end of the tool life. When examining the signals, it has been found that there is 

less stability on the nature of the signal for tool 1. This explains the early warning.  

In some cases, unexpected wear or tool breakage does occur. However, the 

subsequent machining cuts could re-sharpen the tool and extend its life for a specific 

period before total failure. 
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Figure 10.13: Sensory Characteristic Features of tool 1. 
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Figure 10.14: Sensory Characteristic Features of tool 2. 

 

For tool 2 as shown in Figure 10.14, the maximum number of cut is 60, and failure is 

identified at sample 59.  The number of cuts/samples needed to produce a worn tool 

is significantly different for each tool. This proves that using statistical methods is 

not a suitable option. Also the system has been found successful in detecting tool 

wear before the end-of-life of the tool. Because this approach uses the ‘black-box’ 

concept (i.e. looking at the process signals and outputs without studying the 

intermediate tool conditions), it is difficult to confirm the conditions of the tool at 

every stage of the process. 
 

10.4 Novelty Detection Investigation 

This part of this chapter presents the second investigation of the experimental work 

using Novelty Detection. The same experimental set-up is conducted. The sensors 

used to monitor the process in this investigation are vibration, acoustic emission (AE 

and AE-RMS signal) and strain. The vibration signals are monitored using an 

accelerometer (Kistler 8704B) which is mounted close to the tool holder in order to 

measure vibration. The acoustic emission signals are monitored using AE-Piezotron 

Sensor (Kistler 8152B) which is connected to AE-Piezotron Coupler (Kistler 5125B) 

which gives the AE signals and the AE-RMS of the AE signals. The dynamic and 
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quasistatic force signals are monitored using strain sensor (Kistler 9232A) which is 

mounted at the side of the tool. Both the vibration accelerometer and strain sensor are 

connected to a charge amplifier (Kistler 5070A). Figure 10.15 shows a photo of the 

sensors installed on the machine.  
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Figure 10.15:  Photo of the sensors installed on the machine. 

10.4.1 Signals Simplifications 

10.4.1.1 Visual Inspection Method 

The level of tool wear is visually monitored in this experimental work and it shows 

that wear increases with machining time. Examples of the machining signals of a 

fresh and worn tool of turning process are shown in Figure 10.16 and Figure 10.17 

respectively. 
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Figure 10.16: Signals from a fresh tool. 
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Figure 10.17: Signals from a worn tool. 

 

It can be observed from Figure 10.16 and Figure 10.17 that the signals have more 

variation when a worn tool compared with a fresh tool. This could be related to a 

worn edge of the tool. Because turning has complex machining signals, it has been 

found difficult to predict the most sensitive signals to tool wear directly from the raw 

data. Therefore, the ASPST approach should be able to detect if the variation is 

random or consistent due to tool wear. As has been discussed previously, although 
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such general observations can help to find some sensory features which are sensitive 

to tool wear, signal processing and analysis are needed to extract the important 

information from the signals (i.e. Sensory Characteristic Features (SCFs)). Table 

10.8 shows general visual observation of the Association Matrix (ASM) which 

includes the sensitivity of all SCFs implemented in this monitoring system. In 

addition, Figure 10.18 presents an image of the SCFs shown in Table 10.8. 

 

         Table 10.8: Example of ASM for Tool 1. 
  Std Avg. Max Min Range Kurtosis Skew Power 

Strain L H H H M M L H 
Vibration M H H H M M L H 

AE M H H H M L L H 
AE_RMS L H H H L M L H 

(H: High sensitivity, M: Medium sensitivity, L: Low sensitivity). 
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Figure 10.18: Example of the SCFs images of the signals. 

 

As can be observed from Table 10.8 and Figure 10.18, all the sensory signals have a 

high sensitivity level with power, average, minimum and maximum signal 

processing methods. Even though such general visual observations as shown above 

could help to find some sensory features which are sensitive to the tool wear, but it 
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still does not provide a systematic method to study the system and there could be 

more sensitive sensory characteristic features which are obtained from less expensive 

sensors than the acoustic emission sensor, such as the strain sensor in this 

experimental investigation. It can be observed that among the signals, some signal 

processing methods are more sensitive with the sensory signal than others. Therefore, 

it can be concluded that manual investigation could help in finding the sensitivity of 

the sensory signal. 

10.4.1.2 Sudden Change In Value (SCIV) Method 

In order to extract the sensory characteristic features (SCFs), the test from the first 

tool is used to investigate the process characteristic and to select the sensitive 

Sensory Characteristic Features (SCFs) using the ASPST approach. The raw signals 

are processed using several time domain signal processing methods to extract 8 SCFs 

form every sensory signal. The 8 signal processing methods are used to process the 4 

sensory signals establishing an ASsociation Matrix ASM of (4 × 8) which allows the 

investigation of 32 sensory characteristic features (SCFs) for the design of the 

monitoring system. The ASM matrix for this test has 4 sensory signal and 8 signal 

processing methods. The 32 sensory characteristic features of the ASM matrix for 

this work are calculated for the 7 tools and then the Sudden Change In Value (SCIV) 

is calculated from the normalised features. The SCFs are arranged according to their 

sensitivity to tool wear based on Sudden Change In Value (SCIV) method. The SCFs 

are visually inspected and it has been observed that the features which show a high 

value with the SCIV method have better sensitivity for the wear of the cutting tool. 

Therefore, the ASPST approach is used to find out the most appropriate sensors and 

signal processing methods for the detection of tool wear in turning using other sensor 

and novelty detection. Figure 10.19 shows an example of two sensory characteristic 

features with high sensitivity and Figure 10.20 shows an example of two features 

with low sensitivity to the wear. 
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Figure 10.19: Example of two sensory features with high sensitivity. 
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Figure 10.20: Example of two sensory features with low sensitivity. 

 

As can be seen in Figure 10.19 and 10.20, the absolute value of the difference of the 

maximum and minimum presents a good indication of how sensitive a sensory 

feature is to tool wear. 

Table 10.9 shows part of the ASM matrix for this particular tool wear test where 

sensitivity values are the Sudden Change In Value (SCIV) of the normalised features. 
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     Table 10.9: ASM matrix for tool wear test. 

  Std Avg. Max Min Range Kurtosis Skew Power
Strain 0.107 0.676 0.676 0.67 0.132 0.216 0.061 0.781 

Vibration 0.148 0.602 0.553 0.505 0.187 0.171 0.018 0.601 
AE 0.186 0.603 0.590 0.565 0.177 0.036 0.038 0.603 

AE_RMS 0.105 0.573 0.558 0.580 0.128   0.126 0.028 0.599 
 

Figure 10.21 shows part of the ASM matrix for tool wear test where sensitivity 

values are the Sudden Change In Value (SCIV) of the normalised features. The 

numbers with small values in Table 10.9 which appear in navy in the images figure 

means low sensitivity; numbers with medium values appear in green or yellow 

means medium sensitivity; and numbers with high values which appear in red in the 

images means high sensitivity. 
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Figure 10.21: Example of the SCFs images of the signals using SCIV. 

 

As can be noticed from Table 10.9 and Figure 10.21 utilising the SCIV method, and 

Table 10.8 and Figure 10.17 using the visual method, there is similarity between the 

two methods. This proves that using an automated sensitivity detection method such 

as Sudden Change In Value (SCIV) method could minimise time and effort. For 

example, if we take the SCF of the strain and power signal processing method and 

investigate it manually, it shows that it has high sensitivity (H) as in Table 10.8 and 
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Figure 10.18. On the other hand, when applying the automated method, SCIV 

method, it shows that SCF for strain and power signal processing method is 0.781. 

This means high value in Table 10.9 and the red in Figure 10.21 mean high 

sensitivity also. In addition, using the SCIV method shows more accuracy than visual 

investigation. For example, investigation of the SCFs of vibration sensor and 

minimum signal processing method visually shows high sensitivity and the colour 

red in Table 10.8, but when utilising the SCIV method yellow is shown. When 

comparing these two colours it can be seen that their values are between 0.5 and 0.6 

which is not too far from the value shown in Table 10.9.  It can be concludes from 

the discussion that using the automated method, Sudden Change In Value (SCIV) 

analysis and utilising the Association Matrix (ASM), to discover the most sensitive 

features to detect tool wear in turning processes is found useful and time consuming 

comparing to manual investigation. To enable the classification system to be fast and 

to give a good classification, it is decided, as in the previous sections/chapter, to base 

the implementation and the design of the ASPST condition monitoring system of this 

test on a set of 10 SCFs. The sensory characteristic features are grouped into 3 

systems, 10 features each. A computer program is used to arrange the ASM features 

according to the absolute Sudden Change In Value (SCIV) and arrange every 10 as a 

separate system. It can be seen from Figure 10.22 that the first system has the most 

sensitivity features for tool wear detection in turning process compared to other 

systems.  
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Figure 10.22: Comparison between systems’ sensitivity. 
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Looking at Table 10.10, it can be observed that the first system includes the most 

sensitive 10 features. In addition, Table 10.11 shows the next 10 features and Table 

10.12 shows the least sensitive 10 feature to tool wear. The first system is found to 

have relative sensitivity (SCIV average of 0.6402) which is much more than the 

average sensitivity of the second. In addition, third system is found to have the 

lowest sensitivity for the detection of tool wear. 

 

                       Table 10.10: First system with the SCFs sensitivity.  

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Strain Power 0.7806 
Strain Maximum 0.6760 
Strain Average 0.6758 
Strain Minimum 0.6705 

AE Power 0.6029 
AE Average 0.6029 

Vibration Average 0.6022 
Vibration Power 0.6006 
AE_RMS Power 0.5999 

AE Maximum 0.5905 
Average 0.6402 

 
 

                      Table 10.11: Second system with the SCFs sensitivity.  

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

AE_RMS Minimum 0.5800 
AE_RMS Average 0.5732 

AE Minimum 0.5654 
AE_RMS Maximum 0.5585 
Vibration Maximum 0.5532 
Vibration Minimum 0.5051 

Strain Kurtosis 0.2165 
Vibration Range 0.1868 

AE Std 0.1865 
AE Range 0.1761 

Average 0.4101 
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                     Table 10.12: Third system with the SCFs sensitivity. 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Vibration Kurtosis 0.17138 
Vibration Std 0.14767 

Strain Range 0.13184 
AE_RMS Range 0.12763 
AE_RMS Kurtosis 0.12602 

Strain Std 0.10679 
AE_RMS Std 0.10508 

Strain Skewness 0.06018 
AE Skewness 0.03744 
AE Kurtosis 0.03636 

Average    0.1050 
 

As can be seen from the above tables, the first system shows the highest sensitivity 

level of the SCFs. On the other hand, the third system shows the lowest sensitivity 

level of the SCFs. Therefore, the ASM matrix is found very useful in predicting the 

sensitivity levels of the SCFs. The sensitivity of the SCFs has proved that a high 

sensitivity level of the SCFs means high information and a low sensitivity level 

means low information. In addition, the details of the first few SCFs structure can be 

used to optimise system cost without affecting system performance significantly. 

However, it is important to notice that the statement of a high sensitivity level means 

high information is based on the visual inspection of each feature and the way it 

behaves during the fault's development. Therefore, a statement is made that the 

average sensitivity level of a system is a reflection of the expected behaviour of the 

system. The proof of this statement will be described in the next sections using 

Novelty Detection. 

10.4.2 System Cost and Utilisation  

The same method used in section 10.3.2 to calculate the cost of the system is used 

here again. Figure 10.23 shows the sensors set-up for the experimental work in this 

section. 
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Figure 10.23: The sensors set-up used to calculate the cost of the system. 

10.4.2.1 System Optimisation 

The same method used previously to optimise the system is used here again. It can be 

noticed from Table 10.10 and Table 10.11 that the sensors are utilised in both system 

and cost could be minimised by optimising the systems to increase the system 

utilisation. To optimise the system by replacing the SCFs of the AE sensor from first 

system with SCFs of vibration and strain sensors from second system to minimise 

cost with affecting the sensitivity.  

 
           Table 10.13: Sensors utilisation. 

Sensors U 
1st System 

U 
2nd System Optimised System 

Strain 40% 10% 50% 

Vibration 20% 30% 50% 
AE 40% 60% --------- 
UA 

Utilisation 
Average  

33.33% 33.33% 50% 

System Cost £4485 £4485 £3606 

Average Sensitivity 0.6402 0.4101 0.5467 
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As shown in Table10.13, the overall average utilisation has increased from 33.33% 

up to 50% in the first and the second systems and the cost of the system is reduced 

by 20% from £4485 to £3606. On the other hand, the average sensitivity of the 

systems showed no significant change.  

 

  Table 10.14: The optimised system (from systems 1 and 2). 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Strain Power 0.7806 
Strain Maximum 0.6760 
Strain Average 0.6758 
Strain Minimum 0.6705 

Vibration Average 0.6022 
Vibration Power 0.6006 
Vibration Maximum 0.5532 
Vibration Minimum 0.5051 

Strain Kurtosis 0.2165 
Vibration Range 0.1868 

Average 0.5467 
 

From the above results and discussion, it has been concluded that the strain and 

vibration sensors are appropriate sensors to monitor tool wear in turning processes 

based on the ASPST approach. The above results prove that the ASPST approach 

can be used to minimise system cost and to reduce the number of sensors while 

maintaining high sensitivity. 

10.4.2.2 System Evaluation  

The same method used previously to evaluate the system is used here again. To 

evaluate the effectiveness of the condition monitoring system elements (sensors and 

signal processing methods) the ASM matrix can be used based on the sensitivity of 

every sensor and signal processing method to the faults which are included in the 

ASM matrix.  
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Figure 10.24: As values for the sensory signals.  
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Figure 10.25: Asp values for the signal processing methods.  

 

The Ac factor of this system is found to be (0.36). However, to find out the 

effectiveness of the selection of the utilised sensors and signal processing methods, 

the values obtained can be compared with those of other systems. Therefore, the high 

Ac values mean high sensitivity, high information; and low Ac means low sensitivity 

value and less information. But low Ac values could include features with high 

sensitivity. From results of the first and second investigation and from the previous 

discussions, it can be concluded that the ASM matrix can be helpful to evaluate the 

significance of a sensor or a signal processing method to a monitoring system. In 



 170

addition, it can be employed to evaluate and compare the sensitivity of the 

monitoring system with other similar monitoring systems. 

10.4.3 Performance of Novelty Detection Algorithm 

In order for the ASPST approach to be a useful methodology, the sensory 

characteristics features which are assumed to have a higher sensitivity on the tool 

wear should result in better identification when they are tested by a pattern 

recognition system. For this purpose Novelty Detection is used to test the complete 

monitoring system. The details of the Novelty Detection algorithm are briefly 

explained in Chapter 7 section 7.4.1. 

The SCFs of all the 7 tools are then fed into a novelty detection algorithm to 

investigate the capability of the ASPST approach and the complete monitoring 

system. NETLAB software is used for the implementation of the novelty detection. 

The response of the Gaussian kernels φj is defined by a covariance matrix (a 

spherical matrix in this case) and a centre (i.e. the centroid of the input clusters). A 

single variance parameter for each Gaussian component is calculated using 6 centres 

in the mixture which has been found to be a suitable structure that gives a relatively 

quick learning process and consistent results. 

Following the training of the novelty detection on normal samples from the first test, 

the complete captured of normal and faulty features are tested. Figure 10.26 presents 

the results of using the novelty detection for testing the sensory characteristic 

features. One of the problems of the novelty detection algorithm is the need to 

establish a suitable threshold value; sometimes, because of the variation in the 

machining process parameters, it is difficult to establish this threshold. As shown in 

Figure 10.26 it is difficult to create a threshold value. A single threshold value could 

either give false detection or fail to detect tool wear before complete wear.  
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Figure 10.26: Results of the novelty detection of all tools. 

 

In order to solve the threshold problem, this work suggests a novel approach by 

utilising the moving average ( tX ), and the standard deviation of the novelty 

detection output to create a dynamic threshold value. 

The moving average ( tX ), is defined mathematically as: 

 ( )∑
−

=

−

−=
1

0

1 n

i
tt ix

n
X         10.1 

 

where tx , is the average of the novelty detection output; and n is the number of 

samples. Hence, the dynamic threshold value could be defined as: 

Dynamic threshold value= σmX t −
−

       10.2 

     where,  

σ  is the standard deviation number of samples (4 to 6); and m is a constant.  

The standard deviation, σ , is calculated for the first initial samples (e.g. 4 to 6 

samples) when the tool is still fresh and there is no wear in the first cuts. The 

constant, m, depends on the process and it has a typical value of 2-20 depending on 

the material, and the process (i.e. case dependent). The success of the novelty 
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detection algorithms and the moving average dynamic threshold equation is found to 

be 100%.  Moreover, the dynamic threshold value could be selected for each 

individual tool wear prediction to be efficient before the actual tool wear occurs. 

Figures 10.27 – 10.30 shows the dynamic threshold for the tools. The threshold show 

that the points above the threshold indicate that the tool is normal (fresh tool) and the 

points falling under the dynamic threshold indicates that tool is novel (worn tool). 
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Figure 10.27: The dynamic threshold for tools 1 and 2. 
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Figure 10.28: The dynamic threshold for tools 3 and 4. 
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Figure 10.29: The dynamic threshold for tools 5 and 6. 
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Figure 10.30: The dynamic threshold for tools 7. 

 

From Figures 10.27 -10.30, it can be noticed that the life of each tool is different in 

each case. This proves that it is difficult to use statistical methods to predict tool 

failure time and an ASPST approach implementing for condition monitoring is the 

most suitable technique to predict when a tool will fail. 
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10.5 CONCLUSION 

In this chapter, the ASPST approach for multi-sensors combined with artificial 

neural networks (LVQ) in the first experimental test, and novelty detection in the 

second experimental test, is explained using two experimental machining tests to 

monitor gradual tool wear in the turning process. The ASPST approach utilises the 

Association Matrix (ASM) to compare the sensitivity of the feature to the fault under 

investigation. In addition, it evaluates the overall monitoring system using the 

average sensitivity of sensors and signal processing methods. The Sudden Change In 

Values (SCIV) analysis is used to find the most sensitive features to detect tool wear 

in turning processes. The SCFs are visually examined and examples of low 

sensitivity and high sensitivity SCFs are presented. Sensory utilisation is 

implemented within the ASPST approach to minimise the cost of the system without 

affecting the system sensitivity. The ASPST approach has been found useful in 

selecting the most sensitive sensors and signal processing methods to design a 

condition monitoring system with low experimental work and minimised cost. 
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Chapter 11 

The Application of ASPST Approach Using 

Multi- Sensor Fusion 

11.1 Introduction 

This chapter examines the full capabilities of the ASPST approach using a wide 

range of sensors. The approach is utilised in this chapter to design a condition 

monitoring system which can detect gradual tool wear in turning processes. The 

design process for monitoring tool wear in turning processes is presented. Turning 

cutter tool is used to investigate gradual tool wear using the ASPST approach. The 

chapter shows how the ASPST approach can be utilised in turning processes in an 

efficient way taking into consideration the cost of the implemented monitoring 

system. The chapter builds on the results found in Chapters 9 and 10 to prove the 

following key issues: 

 

1. The sudden change in value (SCIV) method can be used as a measurement of 

sensitivity for group of SCFs. 

2. A group of SCFs with high average sensitivity produce a high sensitivity 

system compared with a group of SCFs with low average sensitivity. 

3. A partial number of tests are adequate to design a condition monitoring 

system for the gradual tool wear tests in turning processes. 

4. The cost of the system can be reduced based on sensor utilisation and overall 

SCF sensitivity. 

5. Novelty detection and learning vector quantisation neural networks (LVQ) 

are used to confirm the results. 
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11.2 Experimental Work 

The experimental work in this chapter is conducted to examine the behaviour of 8 

sensory signals and 33 signal processing methods for fresh and worn tools and to 

find out the most sensitive sensory characteristic features to tool wear in turning 

processes. The experimental work is conducted on a turning process using stainless 

steel workpiece. This is a relatively hard material which can accelerate tool-wear at 

the expense of a shorter tool life. In addition, stainless steel used in this research as it 

is very common material in domestic, automotive market, and other industrial 

applications. The stainless steel work piece which has a diameter of 30 mm and a 

total machining distance of 5000 mm is machined during the full tests to transfer the 

tool from fresh to completely worn. The machined distances are divided into 20 

machining samples each with a length of 250 mm (i.e. 20 machining samples are 

obtained during the test for analysis). In total, 20 independent experiments are 

conducted in the turning of stainless steel bars using a fresh tool in each experiment, 

each with the same basic configuration. The tool inserts used, Sandvik Coromant P25 

(SCMT 120408 UM), are cemented carbide coated via chemical vapour deposition 

and consist of grades of indexable inserts with integral chip-breaker geometry, held 

in place by a negative rake tool holder. The chosen process parameters monitored are 

the cutting forces (three axes), strain, vibration, acoustic emission (RMS and AE 

signal) and sound. Care is taken to ensure that all experimental conditions remain the 

same. The machining parameters are selected to resemble industrial practice. The 

experimental cutting conditions are chosen to cover the manufacturer's recommended 

interval for insert type. Figure 11.1 shows a schematic diagram of the implemented 

monitoring system for this chapter. For more details see Chapter 8, section 8.3. 
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Figure 11.1: Schematic diagram of the complete monitoring system. 

 

11.3 Signal Simplifications  

The Associated Matrix (ASM) for this test has a size of 8x33, and embodies 264 

features. These features are divided into 26 different systems each system contains 

10 features. The features are arranged in descending order so that the system number 

1 containing the features of maximum sensitivity while system number 26 contains 

the feature of minimum sensitivity. As mentioned in Chapter 9, section 9.4, the 

suggested number of features in every system, 10, is based on previous 

implementation of the ASPS in end-milling. However, any other number could be 

used based on the applications. 

The level of tool wear is visually monitored in this experimental work and it shows 

that wear increases with machining time. Figure 11.2 and 11.3 show, respectively, 

examples of the raw machining signals of a fresh and worn tool during the turning 

process. 
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Figure 11.2: Machining signals of the fresh tool. 
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Figure 11.3: Machining signals of the worn tool. 

 

Looking at Figures 11.2 and 11.3, it can be observed that the cutting forces, strain 

and AE_RMS signals include more vibration noise. For example, the AE signal level 

is relatively low, forces Fz and Fy are high and vibration is low. On the other hand, 

the vibration level of some signals has decreased for the worn tool, as in the 
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acoustics emission and cutting forces signals. In addition, the level of some sensory 

signals has changed such as in the sound and strain signals.  

In Chapter 9 and 10, the SCFs are visually inspected and compared with the 

utilisation of the automated detection method. The results prove that using visual 

(manual) inspection is time consuming and the automated method can give better and 

more accurate detection because the turning process has complex machining signals 

and there are too many features, 264 SCFs, in this experimental work. The signals 

cannot easily be interpreted to find the most appropriate signal or sensor for the 

detection of tool wear conditions. Therefore, it has been found difficult to predict the 

most sensitive signals to tool wear manually. From the above discussion it is 

concluded that visual inspection of the monitored signals is time consuming and 

should be automated. In this chapter, the implementation of the ASPST for tool wear 

detection in turning processes will be tested using several sensory signals and signal 

processing methods to automate the system. Therefore, this experimental work 

should provide a basis for the evaluation of the ASPST approach in designing a 

condition monitoring system to detect tool wear in turning processes which develop 

massive data. 

The detection of the sensitivity of the SCFs should be automated in order to develop 

a rapid and structured methodology of selecting sensors and signal processing 

methods. Any method can be used as long as it can indicate a change in the average 

level of the SCF as a function of time and show a reason for change in the process 

condition. It is basically a detection of change in the SCF level forming a specific 

trend with time. The following statistical methods are utilised in this Chapter to find 

the best method to detect sensitivity: 

 

1. The Range Value (RV) method. 

2. The Linear Regression Slope method. 

3. The Sudden Change In Value (SCIV) method. 

11.3.1 Range Value (RV) Method 

The range value (RV) method is used in this test to calculate the sensitivity of every 

feature to the wear of the tool. In this method, the range value is the difference 
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between maximum and minimum values in the SCFs. Hence, features which have 

high values mean high sensitivity and low values mean low sensitivity. Figures 11.4 

and 11.5 show two examples of features with high sensitivity to tool wear according 

to the range value method.  
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Figure 11.4: Example of SCFs with high sensitivity using range value method. 
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Figure 11.5: Example of SCFs with high sensitivity using range value method. 
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Looking at Figure 11.4, it can be noticed visually that applying the range value 

method is significant. On the other hand, Figure 11.5 shows high sensitivity features 

when applying the range value method. But, in fact, when testing the features 

manually it shows that these features have low sensitivity. Therefore, the Range 

Value (RV) method is found insignificant method to detect the sensitivity of the 

SCFs of tool wear in turning processes, which means it is not an appropriate analysis 

method to be utilised in the ASPST approach. For more analysis verification, Figure 

11.6 shows an image of the SCFs using the range value method.  
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Figure 11.6:  Example of the result for all the SCFs using range value method. 

 

It can be observed from Figure 11.6, that the SCF (sound, wavelet_4) has high 

sensitivity. This means that it is reflecting the real feature when investigated 

manually. On the other hand, the SCF of (Fx, wavelet_2) does not reflect the real 

features when it is investigated manually, where it shows low sensitivity when 

investigated visually and high sensitivity when utilising the range value method. 

Figure 11.6 confirms that implementing the range value method in not accurate. 
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Therefore, this confirms that the range value method is not suitable for the ASPST 

approach as an automated sensitivity detection method due to unconfirmed output. 

 

11.3.2 Linear Regression Slope Method 

The linear regression method is used to find the linear equation which best represents 

the linear relationship between two variables. The first variable is the independent 

variable which could be the degree of cutter wear, etc. The second variable is the 

dependent variable and this variable is a sensory characteristic feature which changes 

according to the change in the independent variable. The line is obtained by using the 

least squares straight line fitting. This section presents the utilisation of the linear 

regression method as a sensitivity detection method for the ASPST approach to 

detect tool wear in turning processes. For more information, see Chapter 7, section 

3.3. Figures 11.7 and 11.8 show examples of two features with high sensitivity and 

two features with low sensitivity to tool wear respectively according to the linear 

regression analysis method.  
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Figure 11.7: Example of two features with high sensitivity using linear regression.  

 

Investigating these features manually, it can be noticed that the SCF (Fx, Minimum) 

shows high sensitivity to tool wear. On the other hand, the second feature (Strain, 



 183

Wave_9) shows low sensitivity to tool wear but it shows high sensitivity when 

utilising the linear regression to detect the sensitivity in turning. 

 

In addition, Figure 11.8 shows two SCFs with low sensitivity when utilising the 

linear regression method. It can be seen from the features in Figure 11.8, that the 

(AE, FFT_9) shows low sensitivity which is the same as visual investigation. But, 

the other feature (Sound, Wave_8) shows visually high sensitivity to tool wear. It can 

be concluded that the result from the linear regression method does not provide the 

real sensitivity level of tool wear in turning processes. 
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Figure 11.8: Example of two features with low sensitivity using linear regression. 

 

Figure 11.9 shows the images of the SCFs with the linear regression method. This is 

used as additional proof to confirm that the linear regression methods are not an 

appropriate method to detect tool wear in turning processes. This contradicts the 

milling result found in [20].  
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Figure 11.9:  Example of the result for all the SCFs using linear regression. 

 

It can be noticed from Figure 11.9, that the SCF of (AE, FTT_9) and (sound, 

wavelet_8) appear in navy which means low sensitivity. But the SCF of the (sound, 

wavelet_8) shows high sensitivity in its real feature. This confirms that the linear 

regression slope method is not an appropriate method to be utilised in the ASPST 

approach as an automated detection method to detect tool wear in turning processes.  

11.3.3 Sudden Change In Value (SCIV) Method 

In order to automate the sensitivity detection of the systems and to keep the 

automated measurements simple for a complex machining process such as turning, it 

has been found that the SCIV method is a significant method to be used in this 

research as a sensitivity detection method. The details of SCIV method are presented 

in Chapter 7, section 7.3.3. Figures 11.10 and 11.11show examples of two features 

with low sensitivity and two features with high sensitivity to tool wear respectively.  
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Figure 11.10: Example of two features with low sensitivity using SCIV. 
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Figure 11.11: Example of two features with high sensitivity using SCIV. 

 

As can be observed from the above figures, the absolute value of the Sudden Change 

In Value (SCIV) method presents a good indication of how sensitive a sensory 

feature is to tool wear. 

Table 11.1 shows a part of the ASM matrix for this particular tool wear test where 

sensitivity values are the Sudden Change In Value (SCIV) of the normalised features.  
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   Table 11.1 Part of the ASM matrix (using SCIV). 

 Std Avg. Max Min Range Kurtosis Skewness … 
FX 0.72121 0.72611 0.73879 0.72975 0.7397 0.68131 0.53461 … 
FY 0.69115 0.77365 0.73003 0.77532 0.73343 0.58857 0.10311 … 
Fz 0.10487 0.72975 0.75149 0.71418 0.1027 0.56133 0.61405 … 

Strain 0.60758 0.73975 0.77648 0.72336 0.70702 0.602 0.60318 … 
Vibration 0.58458 0.69316 0.74036 0.49323 0.53379 0.75149 0.7464 … 

AE 0.53687 0.59562 0.73369 0.72311 0.73343 0.27331 0.50736 … 
AE_RMS 0.60253 0.64621 0.64673 0.64959 0.6648 0.24121 0.10217 … 

Sound 0.69565 0.59557 0.5657 0.58393 0.69536 0.64988 0.59012 … 
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Figure 11.12:  Example of the result for all the SCFs for one tool (SCIV). 

 

Figure 11.12 shows the result of using the Sudden Change In Value (SCIV) method. 

It can be noticed from Figure 11.10 that the SCFs of (strain, wavelet_8) and (Fx, 

wavelet_3) are not sensitive to tool wear. Looking at the result in Figure 11.12, it is 

noticed that when utilising the Sudden Change In Value (SCIV) method it indicates 

that both have low sensitivity as indicated manually. In addition, looking at Figure 

11.12 it can be observed that the SCFs of (AE_RMS, FTT_2) and (vibration, 

wavelet_2) are very sensitive to tool wear with high sensitivity. Therefore, the 

Sudden Change In Value (SCIV) method is an appropriate method to use as an 

automated detection method with the ASPST approach. From the above figures, it is 
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concluded that the Sudden Change In Value (SCIV) method is a good indicator of 

the automated sensitivity detection. In addition, the SCIV method indicates the same 

result when it is used as an automated sensitivity detection method and gives 

accurate result when it is applied to the massive data of the SCFs. Therefore, the 

Sudden Change In Value (SCIV) method is an excellent method to detect sensitivity 

and to keep measurement automated and simple.    

 

11.4 Selection of Sensory Characteristics Features (SCFs) 

From the results and the discussion in section 11.3 and the previous chapter, it can be 

concluded that the Sudden Change In Value (SCIV) method shows excellent results 

as an automated sensitivity detection method compared with the range value and 

linear regression methods. The result shows that the range value method is not 

suitable as an automated method to detect sensitivity in turning processes. In 

addition, the linear regression method shows good results with some features but is 

insignificant with others. This section presents the selection of the sensory 

characteristics feature (SCFs) using the SCIV method to confirm that the utilisation 

of the SCIV method can also show excellent results in the optimisation of the system. 

To enable the classification system to be fast and to give a good classification, it was 

decided to base the implementation and the design of the ASPST condition 

monitoring system of this test on a set of 10 SCFs. The sensory characteristic 

features are grouped into 26 systems, 10 features each. A Matlab computer program 

is utilised to arrange the ASM features according to the absolute Sudden Change In 

Value (SCIV) to arrange every 10 as a separate system. All systems have the average 

sensitivity as shown in Figure 11.13. It can be observed from that the first system has 

the most sensitivity features for tool wear detection compared to the other systems.  
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Figure11.13: Comparison between the 26 systems according to their sensitivity. 

 

The first system which includes the most sensitive 10 features is shown in Table 

11.2. In addition, Tables 11.3 and 11.4 show the next 10 features and Table 11.5 

shows the least sensitive 10 feature to tool wear. The first system is found to have 

relative sensitivity (SCIV average of 0.7797) which is more than the average 

sensitivity of the second (0.7372). In addition, system number 26 is found to have the 

lowest sensitivity for the detection of the tool wear (0.2210). The following tables are 

examples of the first three systems and system number 26. 
 

                         Table 11.2: First system with the SCFs sensitivity. 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fy Wavelet_3 0.79668 
Fy Wavelet_4 0.79635 

Strain Wavelet_1 0.78646 
Fx Power 0.78141 

Vibration Wavelet_5 0.78058 
Fy Power 0.77813 

Vibration Wavelet_1 0.77648 
Fy Minimum 0.77532 
Fy Average 0.77365 

Vibration Kurtosis 0.75149 
Average 0.7797 

                        
 
 
                       Table 11.3: Second system with the SCFs sensitivity. 
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Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Vibration Skewness 0.74646 
Fy Wavelet_6 0.74039 

Vibration Maximum 0.74036 
Strain Average 0.73975 

Fx Maximum 0.73879 
Sound Wavelet_4 0.73633 

AE Maximum 0.73369 
AE Range 0.73343 
Fy Wavelet_2 0.73245 

Strain Wavelet_6 0.73003 
Average 0.7372 

              

                        Table 11.4: Third system with the SCFs sensitivity. 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fx Minimum 0.72975 
Strain Wavelet_8 0.72747 
Sound Wavelet_5 0.72611 
Strain Wavelet_5 0.72496 

Fx Wavelet_7 0.72336 
AE Minimum 0.72311 

Vibration FFT_1 0.72209 
Fz Wavelet_1 0.71475 

Sound Wavelet_7 0.71418 
Strain Wavelet_9 0.71273 

Average 0.7219 
 
                        Table 10.5: System 26 with the SCFs sensitivity. 

Sensory 
Signal 

 Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fx FFT_1 0.30635 
Fy Wavelet_5 0.29562 
AE Kurtosis 0.27331 
Fx Wavelet_12 0.26596 
Fz FFT_1 0.26562 

Vibration Wavelet_2 0.25142 
Fx Std 0.24121 
Fx Wavelet_3 0.10487 
Fy Skewness 0.10311 

AE_RMS Skewness 0.10217 
Average 0.2210 

 

The details of the first few SCFs structure can be used to optimise the systems cost 

without significantly affecting performance. 
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11.5 Cost and Performance 

The costs of condition monitoring systems are essential in industrial application. The 

aim is not only to produce a successful condition monitoring system, but also to keep 

the system as cheap as possible in order to be economically justifiable. In order to 

keep the monitoring system as cheap as possible, the utilisation of sensors in the 

system should be kept relatively high. The overall Average Sensor Utilisation factor 

for a system, SUA, is defined as the average value of the SU of all the sensors used 

in a system. It has been found that the SU factor is useful in reducing the cost of the 

system by removing the least utilised sensors in the monitoring system. The 

changeable supposed cost of each system is calculated and compared with the 

attempt to optimise the performance of the system relative to its cost. The cost 

reduction process theory is discussed in Chapter 6, section 6.5. This section explains 

and evaluates the cost reduction process with the aid of the tool wear experimental 

work.  
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Figure 11.14: The sensor set-up used to calculate the cost of the system. 

 

Figure 11.14 shows the complete sensor set-up used to calculate the cost of the 

monitoring system for the experimental work in this chapter. The analysis is done 
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using the variable cost of the system, i.e. the cost of the sensors. The cost analysis is 

based on using the same equipment shown in Figure 11.14. The fixed costs such as 

the PC, data acquisition card, and the software should be added to the supposed 

variable cost to obtain the total cost of the system. The variable supposed cost of 

each system is calculated and compared in an attempt to optimise the performance of 

the system relative to its cost.  In this research work, the term "cost” means the 

supposed variable cost of the monitoring system since the aim is to compare systems. 

The sensory characteristics features are grouped into 26 systems, 10 features each. 

Figure 11.15 shows the cost of the 26 systems. 
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Figure 11.15: Comparison between the 26 systems according to their cost. 

 

11.5.1 System Optimisation  

The same method used previously to optimise the system is used here again. From 

Table 11.2 and 11.3, it can be observed that there is no big difference in the average 

sensitivity for both systems. But it can still be optimised by increasing system 

utilisation. By replacing the sensory characteristic features of the strain sensor from 

the first system with the vibration sensor signals from the second system, the cost can 

be reduced and the sensitivity maintained.  

                    Table 11.6: Sensor optimisation. 
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Sensors U 
1st System 

U 
2nd System 

Optimised 
System 

Dynamometer 20% 10% 20% 

Strain 10% 20% ------- 

Vibration 30% 20% 40% 

AE ----- 20% ------- 
Sound ------ 10% ------- 

UA 
Utilisation 
Average  

20% 16% 30% 

System Cost £20028 £20935 £18883 

Average 
Sensitivity 0.7797 0.7372 0.7757 

                 

                    Table 11.7: The optimised system (form 1st and 2nd systems).  

Sensory Signal  Signal Processing 
Methods 

Sensitivity 
(SCIV) 

Fy Wavelet_3 0.79668 
Fy Wavelet_4 0.79635 
Fx Power 0.78141 

Vibration Wavelet_5 0.78058 
Fy Power 0.77813 

Vibration Wavelet_1 0.77648 
Fy Minimum 0.77532 
Fy Average 0.77365 

Vibration Kurtosis 0.75149 
Vibration Skewness 0.74646 

Average 0.7757 
 

Table 11.6 shows sensor utilisation of system numbers 1 and 2, and the optimised 

system (from systems 1 and 2). It can be observed from Table 11.6, that the overall 

average utilisation has increased in the first system from 20% to 30%, from 16% to 

30% in the second system and the cost is reduced by 10% from £20935 to £18883. In 

addition, the average sensitivity of the system has not significantly changed as can be 

seen in Table 11.7. In fact the average sensitivity has increased to 0.7757 compared 

with 0.7372 in the second system. From the previous discussion, it has been found 

that the force and vibration sensors are the most appropriate sensors to monitor tool 

wear based on the ASPST approach. 
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Figure 11.16 shows a comparison between the cost and the sensitivity of systems 1, 2 

and the optimised system. 
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Figure 11.16: A comparison between the cost and the sensitivity. 
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Figure 11.17: A comparison between the sensitivity of the systems and their cost. 

 

Figure 11.17 shows a comparison between the cost and the relative sensitivity 

(Average SCIV) of the 26 systems. From Figure 11.17, it can be seen that system 12 
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has the lowest cost of £19040 and has a sensitivity level of 0.5958. On the other 

hand, system 3 has a sensitivity level of 0.7219 but it has a high cost of £20935. By 

comparing systems 12 and 3, it can be noticed that an improvement in sensitivity of 

0.126 has caused an increase in the system cost of £1895. Therefore, it is essential to 

compromise between cost and sensitivity of the systems if a cheaper system with 

relatively acceptable sensitivity is needed.  

 

11.5.2 System Evaluation  

The same method used in Chapter 10 to evaluate the system is used here again. To 

evaluate the effectiveness of the condition monitoring system elements (sensors and 

signal processing methods) the ASM matrix could be used based on the sensitivity of 

every sensor and signal processing method to the faults which are included in the 

ASM matrix.  
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Figure 11.18: As values for the sensory signals. 
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Average Sensitivity of the Signal Processing Method
(Asp)
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Figure 11.19: Asp values for the signal processing methods. 

 

The Ac factor of this system is found to be 0.56. However, to find out the 

effectiveness of the selection of the utilised sensors and signal processing methods, 

the evaluated values can be compared with other systems. The high Ac value means a 

high sensitivity level and meaning high information and low Ac means low 

sensitivity level and less information. But low Ac values could include features with 

high sensitivity. 

From the results from the first and second investigation and from the previous 

discussions, it can be concluded that the ASM matrix can be helpful to evaluate how 

significant a sensor or a signal processing method is to a monitoring system. In 

addition, it can be employed to evaluate and compare the sensitivity of the 

monitoring system compared with other similar monitoring systems. 

 

11.6 The Performance of the Pattern Recognition Systems 

The sensitivity of a sensory characteristics feature to detect tool wear in turning 

processes for all the tools is investigated automatically using the automated Sudden 

Change In Value (SCIV) sensitivity detection method for the 8 sensors and 33 signal 

processing methods which represent the 264 SCFs. Two tools are selected arbitrarily 

for the analysis and the training of pattern recognition systems and testing the 20 

tools. It is noticed that the sensitive characteristics features will indicate a fault by a 

significant change in their values. In order for the ASPST approach to be a useful 
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methodology, the sensory characteristics features which are assumed to have a higher 

sensitivity to tool wear should result in better identification when it is tested by a 

pattern recognition system. On the other hand, the sensory characteristics features 

which are assumed to have a lower sensitivity to tool wear should result in poorer 

identification when they are tested by a pattern recognition system. For this purpose 

two pattern recognitions are used to test the system: 

 

1. Learning Vector Quantisation (LVQ). 

2. Novelty Detection Algorithm. 

 

The details of the two pattern recognitions are briefly explained in Chapter 7, section 

7.4. The parameters used in both pattern recognitions, LVQ and Novelty Detection, 

are selected to given a practical response. Nevertheless, it is significant to note that 

neither pattern recognitions are optimised for this application since the target here is 

to evaluate the systems to select the most suitable sensor and signal processing 

method. The implemented LVQ and Novelty Detection systems used in this research 

are programmed using Matlab toolbox. 

11.6.1  Learning Vector Quantisation (LVQ) using High Sensitivity SCFs 

The advantage of using LVQ is that it learns to classify input vectors into target 

classes chosen by the user. However, the learning rules are done according to the 

competitive layers depending on the distance between the input vectors and the 

weight and, unlike back propagation neural networks, not according to the error 

between the output and the target. Hence, there is no mechanism in the network to 

dictate whether or not any two input vectors belong to the same category. LVQ has 

an input layer, a competitive layer, and a linear output layer. The competitive layer 

learns to classify the input vectors to subclasses while the output linear layer 

transforms the competitive subclasses into the desired target classes. The parameters 

used are a learning rate 0.05, hidden layer size 50, training iteration 500 and bias 

time constant 0.99. The parameters are chosen in order to give a reasonable response. 

However, it is important to point out that the neural networks are not optimised for 

this application since the objective in this research is to compare systems in order to 

select the most appropriate sensors and signal processing methods. For more details 
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see Chapter 7 section 7.4. Two tools are selected arbitrarily to train the LVQ neural 

networks. In addition, using one tool for the analysis and the training of the neural 

networks could be sufficient to give an excellent result, but in this test the purpose of 

using two tools is due to the mass of production in the industrial environment. 

Therefore, this will confirm that the ASPST approach is suitable for real industrial 

implementation purposes.  

The SCFs from all tools are fed to the neural networks for testing. Figures 11.20 -

11.23 present the results of using the LVQ for detecting tool wear for all tools. For 

example, in Figure 11.20, the arrows show the maximum number of cuts for each 

tool (i.e. tool-life) until complete wear or failure. The number 0 means that the tool is 

in normal condition where 1 means that the tool is in worn condition. For example, 

for tool 2 the LVQ neural networks has identified that cut/sample 27 is the start of 

tool failure. However, the actual tool failure happened at 40 cuts/samples, as shown 

in Figure 11.24.  For tool 3, the maximum number of cuts is 60, and failure is 

identified at sample 59. In addition, the maximum numbers of cuts in tool 19 are 87, 

and failure is identified at sample 86, as shown in Figure 11.25. The number of 

cuts/samples needed to produce a worn tool is significantly different for each tool. 

This proves that using statistical methods is not a suitable option. Also the system is 

successful in detecting tool wear before the end-of-life of the tool. The ASPST 

approach has been found successful in detecting tool wear. However, for tool 2, there 

has been early warning regarding the end of its life. When examining the signals, it 

has been found that there is less stability on the nature of the signal for tool 2. In 

addition, when examining the insert this explains the early warning.  In some cases, 

unexpected wear or tool breakage does occur. However, the subsequent machining 

cuts could re-sharpen the tool and extend its life for a specific period before total 

failure. Because this approach presented in this work uses the ‘black-box’ concept 

(i.e. looking at the process signals and outputs without studying the intermediate tool 

conditions), it is difficult to confirm the conditions of the tool at every stage of the 

process. 
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Figure 11.20: The result of the LVQ to detect tool wear (tools 1-5). 
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Figure 11.21: The result of the LVQ to detect tool wear (tools 6-10). 
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Figure 11.22: The result of the LVQ to detect tool wear (tools 11-15). 
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Figure 11.23: The result of the LVQ to detect tool wear (tools 16-20). 
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Figure 11.24: Sensory Characteristic Features of tool 2. 
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Figure 11.25: Sensory Characteristic Features of tool 19. 
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Figure 11.26: Top view of worn tool edges. 

 

Figure 11.26 shows images of wear modes of four tools out of twenty as an example. 

It can be seen from the images that there are different wear modes. Nose wear and 

notch wear are the main failure modes for tools 2 and 19. Crater wear is the 

predominant failure mode for tool 9 and flank wear for tool 13. From the analysis 

and the images, it is concluded that the mode of the wear could play a major role in 

the result of the sensitivity level. In addition, the mode of the wear could affect the 

sensitivity of the feature as in tool 2 where there is less stability and re-sharpening of 

the tool. In addition, tool wear processes generally occur in combination with the 

predominant wear mode dependant upon the cutting conditions, workpiece and tool 

material and tool insert geometry. Therefore, the early detection could be due to tool 

geometry or chipping which is not an element of wear detection as are the rest of the 

cuts. 

Looking at the above figures, it can be noticed that systems with high sensitivity 

levels produce better identification and less error. In addition, a system with high 

sensitivity levels will be steadier and have less average variation. Thus, it can be 

concluded that the higher the sensitivity level of the system, the better and more 

stable, the classification of the pattern recognition system. Therefore, the ASPST 

approach is found very useful in predicting the behaviour of condition monitoring 
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systems. The result of the LVQ neural networks has proved that high sensitivity 

means better information for the neural networks.  

11.6.2  Novelty Detection using High Sensitivity SCFs 

Novelty detection is used in this work as a self-learning approach to characterise the 

“fresh” or normal state of the cutter. Novelty detection is a classification technique 

that recognises presented data as novel (i.e. new) or non-novel (i.e. normal). The 

details of the Novelty Detection are briefly explained in Chapter 7, section 7.4. The 

SCFs of all the 20 tools are then fed into a novelty detection algorithm to investigate 

the capability of the ASPST approach and the complete monitoring system. 

NETLAB software is used for the implementation of the novelty detection. The 

response of the Gaussian kernels φj is defined by a covariance matrix (a spherical 

matrix in this case) and a centre (i.e. the centroid of the input clusters). A single 

variance parameter for each Gaussian component is calculated using 6 centres in the 

mixture which has been found to be a suitable structure that gives a relatively quick 

learning process and consistent results. 

Figure 11.27 shows the novelty detection result for tool 2. It can be seen that there is 

an early warning before tool wear detected. By comparing this with the results from 

the LVQ and SCFs of tool 2 as shown in Figure 11.20 and Figure 11.24, it can be 

seen that both systems show same detections. This proves that the utilisation of the 

SCIV automated method in ASPST approach is successful. 
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Figure 11.27: The result of the Novelty Detection of tool 2. 

 

In addition, Figure 11.28 shows the novelty detection result for tool 19. Looking at 

Figures 11.23, it can be observed that the result of the LVQ shows gradual tool wear 

detection as well as the Novelty Detection result for the same tool (tool 19). 

Moreover, Figure 11.25 shows the SCFs of tool 19 which prove the results of the 

novelty detection.  
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Figure 11.28: The result of the Novelty Detection of tool 19. 
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The above figures present examples of the Novelty Detection results that verify the 

utilisation of the Sudden Change In Value (SCIV) method in the ASPST approach, 

Figures 11.29 – 11.33 show the novelty detection results and include an analysis of 

the first 5 tools based on the sensory characteristics features for each system where 

the top 10 features are used. The tools used for analysis and training are tools 6 and 

10 as for the LVQ neural networks. By selecting a suitable threshold value the 

success of the novelty detection algorithms is found 100%. Moreover, the threshold 

value could be selected for efficient wear prediction before the actual tool wear 

occurs. Figure 11.34 shows the novelty detection results for tools (1-5). The novelty 

detection results of tools 6-20 are shown in Appendix (B). 
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Figure 11.29: The result of the Novelty Detection (tool 1). 
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Figure 11.30: The result of the Novelty Detection (tool 2). 
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Figure 11.31: The result of the Novelty Detection (tool 3). 
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Figure 11.32: The result of the Novelty Detection (tool 4). 
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Figure 11.33: The result of the Novelty Detection (tool 5). 
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Figure 11.34: The result of the Novelty Detection (tools 1-5). 

 

11.6.3 Learning Vector Quantisation (LVQ) using Low Sensitivity SCFs 

The same method used in section 11.6.1 to test the neural networks is used here 

again. From the previous section, it is concluded that the sensory characteristics 

features with high sensitivity on the tool wear resulted in better identification when 

they are tested by LVQ neural networks. In this section, the sensory characteristics 

features from all tools with low sensitivity to tool wear are fed to the neural networks 

for testing. Figures 11.35 -11.38 present the results of using the LVQ for detecting 

tool wear for all tools. They include an analysis of all the 20 tools analysis based on 

10 sensory characteristics features for each system where the last 10 features are 

used. The tools used for analysis and training are tool 6 and 10. 
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Figure 11.35: The result of the LVQ to detect tool wear (tools 1-5). 
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Figure 11.36: The result of the LVQ to detect tool wear (tools 6-10). 
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Figure 11.37: The result of the LVQ to detect tool wear (tools 11-15). 
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Figure 11.38: The result of the LVQ to detect tool wear (tools 16-20). 
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Figure 11.39: Comparison between low sensitivity SCF and LVQ result. 

 

Figure 11.39 shows the comparison between the behaviour of the SCF (AE_RMS 

sensory signal and the range signal processing method) and the LVQ result for tool 

13. This verifies that the utilisation of the Sudden Change In Value (SCIV) method 

as an automated detection method in the ASPST approach and the performance of 

the LVQ neural networks. 

It can be concluded from the above figures, that systems with low sensitivity level 

produce bad recognition and more error. Furthermore, a system with low sensitivity 

levels will be unsteady and have more variation. Therefore, it can be concluded that 

the lower the sensitivity level of the system, the worse and less stable the 

classification of the pattern recognition system. Therefore, the ASPST approach is 

found very useful in predicting the behaviour of condition monitoring systems. The 

result of the LVQ neural networks has proved that low sensitivity means worse 

information for the neural networks. 

11.6.4  Novelty Detection using Low Sensitivity SCFs 

Figures 11.40 – 11.44 shows the novelty detection results. They include an analysis 

of the first 5 tools based on the sensory characteristics features for each system 

where the last 10 features are used. The tools used for analysis and training are tools 
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6 and 10 as for the LVQ neural networks. The previous figures are an example of the 

Novelty Detection results that verify the utilisation of the Sudden Change In Value 

(SCIV) method in the ASPST approach. Figure 11.45 shows the result of the Novelty 

Detection for tools (1-5).  The novelty detection results for tools 6-20 are shown in 

Appendix (B). 
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Figure 11.40: The result of the Novelty Detection for tool 1. 
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Figure 11.41: The result of the Novelty Detection for tool 2. 



 212

 

0 5 0 1 0 0 1 5 0
-1 0

-5

0

5

1 0

1 5

N o v e lty  D e te c tio n  R e s u lt

M a c h in in g  S a m p le  N u m b e r

N o ve l (W o rn  T o o l)

N o rm a l (F re sh  T o o l)

Lo
g 

(P
(X

))

T h re s h o ld

0 5 0 1 0 0 1 5 0
-1 0

-5

0

5

1 0

1 5

N o v e lty  D e te c tio n  R e s u lt

M a c h in in g  S a m p le  N u m b e r

N o ve l (W o rn  T o o l)

N o rm a l (F re sh  T o o l)

Lo
g 

(P
(X

))

0 5 0 1 0 0 1 5 0
-1 0

-5

0

5

1 0

1 5

N o v e lty  D e te c tio n  R e s u lt

M a c h in in g  S a m p le  N u m b e r

N o ve l (W o rn  T o o l)

N o rm a l (F re sh  T o o l)

Lo
g 

(P
(X

))

T h re s h o ld

 
Figure 11.42: The result of the Novelty Detection for tool 3. 
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Figure 11.43: The result of the Novelty Detection for tool 4. 
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Figure 11.44: The result of the Novelty Detection for tool 5. 
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Figure 11.45: The result of the Novelty Detection for tools (1-5). 
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Figure 11.46: Comparison between low sensitivity SCF and ND result. 

 

In addition, Figure 11.46 shows the novelty detection result for tool 17. The above 

figure is an example of the Novelty Detection results that verify the utilisation of the 

Sudden Change In Value (SCIV) method in the ASPST approach and the pattern 

recognition performance. 

As shown in previous LVQ and Novelty Detection results, there is a clear trend that 

systems with high sensitivity values produce better identification, better information, 

and less error. In addition, systems with low sensitivity values produce worse 

identification, worse information and more error. Furthermore, for systems with high 

sensitivity the results are steadier. Therefore, it can be concluded that the higher the 

sensitivity of the SCFs, the better, and more stable, the classification of the pattern 

recognition system; and the lower the sensitivity of the SCFs, the worse, and less 

stable, the classification of the pattern recognition system. Therefore, the ASPST 

approach is found very useful in predicting the behaviour of condition monitoring 

systems. The results of the LVQ neural networks and Novelty Detection Algorithm 

have proved that high sensitivity means better information and low sensitivity means 

worse information for the neural networks. In general, the behaviour of LVQ neural 

networks and Novelty Detection has shown similar results for the twenty tools for 

both high and low sensitivity. Since the behaviour of both systems is found relatively 
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similar, any one of them can be chosen for further analysis since it shows a stable 

and average performance.  

 

11.7 Conclusion 

This chapter has proved the full capability of the proposed ASPST approach. It has 

been used in this chapter to design a relatively effective and cheap system to monitor 

tool wear in turning processes. A wide range of sensor and signal processing method 

applications to evaluate the ASPST approach for turning processes has been 

presented. The sensors have been carefully chosen to evaluate the generality of the 

ASPST approach (i.e. dynamometer, strain, vibration, sound and AE). The presented 

work has included using a lathe machine to detect wear in a cutting tool when 

machining stainless steel workpiece. 

The Associate Matrix (ASM) is constructed to choose the most sensitive sensory 

characteristic features to detect tool wear in turning processes based on a Sudden 

Change In Value (SCIV) analysis of the sensory characteristic features. Neural 

networks (LVQ) and Novelty Detection Algorithm are used to test and prove the 

capability of the ASPST approach. 

System evaluation and cost analysis have been performed on the tool wear test to 

reduce the cost of the monitoring system without significantly affecting its 

predication capability based on the average sensitivity of the monitoring system. 

Based on the utilisation of sensors and the overall SCFs sensitivity it is possible to 

reduce the cost of the system.  

The results presented in this chapter show that the proposed ASPST approach can be 

utilised to design a condition monitoring system in turning processes. In addition, the 

experiments show that the methodology described in this work can be used to reduce 

the complexity of condition monitoring systems and reduce the number of sensors 

required for tool wear in turning processes without compromising the systems ability 

to detect tool wear. 
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Chapter 12 

Discussion and Conclusions 

12.1 Introduction 

This thesis has developed an effective sensor-fusion model for turning processes 

using a cost-effective methodology with reduced experimental work. Figure 12.1 

shows a summary of the overall structure of the thesis. Chapter 1 presented an 

introduction to the research work. Chapters 2, 3, 4 and 5 presented the literature 

review for the problem domain under investigation. The scope of investigation, the 

aim of the thesis, the suggested ASPST approach and the elements of the 

implemented condition monitoring systems, were presented in Chapters 6 and 7. 

Chapter 8 described the general experimental set-up and the details of the ASPST 

approach and its implementation for turning processes were presented in Chapters 9, 

10 and 11.  
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Figure 12.1: Summary of the overall structure of the thesis. 

 

This chapter provides a summary of the thesis and a discussion of the results 

obtained in this work. It describes how new knowledge has been produced and 

tested. It contains the contribution to knowledge, outstanding problems, testing and 

findings. Moreover, it presents general conclusions and suggested further work. 
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12.2 Quantifiable Objectives 

The aim of this research is to develop an effective sensor-fusion model for turning 

processes using a cost-effective methodology with reduced experimental work. This 

aim has been accomplished by the selection of the most effective and suitable sensors 

and signal processing methods and achieved by the following steps:  

• Simplification of complex signals by transferring the complex sensory signals 

automatically into simplified forms (Sensory Characteristic Features, SCFs). 

• Automated sensitivity detection by assessing the extracted SCFs 

automatically for their quality of information. 

• The selection of a specific number of sensors and signal processing methods 

based on their associated SCFs to produce the required monitoring system. 

• Reducing the cost of the monitoring system by eliminating any sensor which 

comparatively contributes to a limited number of SCFs compared with other 

sensors used in the system.  

The above steps has been performed with taking into consideration the industrial 

environment of self learning or by using reduced experimental tests; and the design 

of the process is based on the inputs and outputs of the system rather than by 

studying the mechanics of the process. 

 

12.3 Discussion 

The applicability of the suggested approach has been demonstrated with respect to 

the condition monitoring of turning processes. A wide range of sensors were installed 

to investigate the applicability and capability of the ASPST approach for turning 

processes. Force, strain, acceleration, acoustic emission and sound sensory signals 

were used to design and develop the condition monitoring systems. The signal 

processing methods used included: standard deviation; range; mean; maximum; 

minimum; power; kurtosis value; skew value; Fourier transformation; and wavelet 

analysis. For more details of the experimental tests, see Chapters 9, 10 and 11. 

The main steps to verify the ASPST approach were explained and verified in Chapter 

9. Furthermore, Chapters 10 and 11 provided more experimental tests and analysis in 

order to confirm the capability of the ASPST approach. This methodology is based 
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on ASPS [47] approach, but it has been implemented in turning taking into 

consideration all the required modifications and improvements. 

 12.3.1 Automated Simplification Method 

Simplification was introduced by processing all the sensory signals produced within 

a period of time by using a wide range of signal processing methods to produce an 

adequate number of sensory characteristic features (SCFs) automatically. The signal 

processing and simplification techniques were selected so that the SCFs produced 

real numbers. The simplification process was successfully implemented for all 

sensory signals using the selected signal processing method. The SCFs were placed 

in a three-dimensional matrix called the Sensory Feature Matrix (SFM), where every 

two dimensional parts presented the SCFs of a machining sample. Figure 12.2 

presents a schematic diagram of the automated simplification process. 
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Figure 12.2: The automated simplification process. 

 

This stage has successfully moved the complex signals into more simplified SCFs to 

look for the required information for the condition monitoring system. The SCFs 

were extracted for all the experimental tests. For more details of the simplification 

method, see Chapter 9 section 9.3. 
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12.3.2 Automated Sensitivity Detection Method 

The research shows that the Sudden Change In Value (SCIV) analysis method is a 

useful automated method for detecting the sensitivity of the SCFs contained in the 

SFM matrix. In Chapter 9, the sensitivity of SCFs to the gradual tool wear was 

inspected visually and compared with the Sudden Change In Value (SCIV) analysis 

method. It shows that sensitive SCFs which show significant change in their levels 

due to gradual tool wear, have relatively high value with the Sudden Change In 

Value (SCIV) method. Similar results for the other experimental tests were 

introduced in Chapters 10 and 11. The sensitivity of the SCFs of all experimental 

tests was visually tested to confirm that the Sudden Change In Value (SCIV) method 

is an appropriate method to measure the sensitivity of SCFs. The reader has been 

provided with a limited number of low sensitivity and high sensitivity SCFs of every 

test due to the high number of SCFs produced in all the experiments. 

12.3.3 The Selection of Sensors and Signal Processing Methods. 

Sensor and a signal processing method were used to produce a SCF. When a SCF is 

found sensitive to a fault it can be concluded that its related sensor and signal 

processing method should be chosen for the monitoring system. The sensitivity 

coefficients were used to make another matrix, named the Association Matrix 

(ASM). The ASM is a two dimensional matrix which includes the sensitivity values 

of all the SCFs obtained using the initial sensors and signal processing method. The 

SCFs with high sensitivity should be selected for the design of a condition 

monitoring system. The most sensitive 10 SCFs were selected to form the foundation 

of the monitoring system. Therefore, the related sensors and signal processing 

methods could be chosen as the most sensitive and appropriate tools to design and 

develop the monitoring system.  

12.3.4 Cost Reduction 

The cost of the monitoring systems, based on the previous step, was calculated by 

adding the costs of the selected sensors and their conditioning devices. Cost 

reduction was performed based on removing sensors which contribute to a relatively 

small number of SCFs into the system. A limited number of SCFs was removed from 

the selected system of SCFs and exchanged with other sensitive SCFs from the 



 220

sensors which were already in the system. The Sensor Utilisation factor (SU) is 

found helpful in identifying the least utilised sensors within the monitoring system 

for the removal process. The cost reduction step was found useful in all the 

experimental tests in reducing the cost of the system without significantly affecting 

the sensitivity of the monitoring system. 

12.3.5 System Evaluation 

The Association Matrix (ASM) matrix can be used for evaluation, based on the 

sensitivity values, the overall sensitivity of the set-up and the average sensitivity of 

every sensor and signal processing method. It was found that the ASM matrix 

includes useful general information to rapidly compare signals and signal processing 

methods and to evaluate how useful they can be to a condition monitoring system. 

See Chapter 11, section 11.5 as an example. 

 

  

12.4 Contribution to Knowledge 

It is a difficult task to find an on-line monitoring method which exactly determines 

tool condition during turning operations. The use of ASPST approach for continuous 

monitoring seems to have as a real-time and data trainable system that does not 

require any mechanical or mathematical model of the machine tool. The main 

contribution of this thesis is in developing a structured and effective sensor-fusion 

model for turning processes with reduced cost and experimental work. The 

development of the approach includes several conceptual and technical contributions. 

These contributions can be summarised as follows: 

12.4.1 Conceptual Contributions: 

The suggested approach includes the following conceptual contributions for the 

development of condition monitoring systems for turning processes: 

1. The ASPST approach has been suggested which takes the ASPS [47] 

approach into a new dimension and different application. 

2. The flexibility and generality of the suggested methodology is based on the 

inputs and outputs of the turning process rather than an investigating the 
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mechanics of the process and fault mechanisms. Thus it is possible to apply 

this methodology to turning processes.  

3. The sensor fusion concept had been broadly investigated in previous research 

in condition monitoring and confirms that the implementation of more than 

one sensor could increase the detection reliability of the system. This thesis 

justifies the previous research by affirming the sensitivity concept of the 

features and the average sensitivity of a system. 

4. The suggested approach does not require any manual or visual examination of 

the sensory signals searching for information. An automatic search for 

information has been proven to be achievable by using automated sensitivity 

detection techniques. 

5. The proposed tool wear estimation method, ASPST approach, is generic 

general enough to extend its application to other sensor-based monitoring 

problems in manufacturing. 

 

12.4.2 Technical Contributions: 

The ASPST approach consists of several new or modified techniques for 

implementing the design methodology: 

 

1. An automated simplification technique has been implemented for turning in 

this thesis to transfer complex signals into a group of simplified SCFs. This 

simplification technique which uses a wide range of signal processing 

methods enables an automated search for information by calculating the 

sensitivity values. 

2. Automated sensitivity detection has been introduced by using the novel 

Sudden Change In Value (SCIV) analysis method. The Association Matrix 

(ASM), which includes the sensitivity values of the SCFs to machining faults 

are used to simplify the analysis and systematically select sensitive sensors 

and, a signal processing method for the design of a condition monitoring 

system. 

3. The utilisation and comparison between the following automated detection 

methods: 
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• The Range Value method (RV). 

• The Linear Regression Slope method. 

• The Sudden Change In Value methods (SCIV). 

4. Comparison between high sensitivity and low sensitivity systems. 

5. A novel approach using dynamic threshold is utilised to improve the accuracy 

of the novelty detection system: 
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6. The sensor utilisation factor was implemented in turning to reduce the cost of 

monitoring system. It has been used to evaluate the contribution of every 

selected sensor in the monitoring system and to eliminate sensors with a 

relatively limited contribution. 

7. The system has been implemented in real-time and several extensive 

experiments were conducted to verify and validate the performance of the 

ASPST approach. 

8. In this research a wide range of the state-of-the-art sensors, force, vibration, 

strain, acoustic emission and sound, are proposed and installed as the sensors 

for on-line monitoring system  

9. The ASPST approach uses novelty detection and LVQ neural networks as 

they require less training time compared to other neural networks and has 

been tested with satisfactory results. 

 

12.5 Final Conclusion 

The main aim of this research work is to develop an effective sensor-fusion model 

for turning processes using a cost-effective methodology with reduced experimental 

work. This has been achieved and successfully tested. A systematic approach, named 

ASPST (Automated Sensor and Signal Processing Selection System for Turning), 

has been introduced to develop an effective sensor-fusion model for turning 

processes. This system will help to find the most sensitive sensors and signal 

processing methods for use in a condition monitoring system. The approach does not 

use any theorises methods in developing the system and it is also combined with a 
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new procedure to reduce the cost of the system without significantly affecting its 

prediction consistency. The experimental results of this research work have shown, 

with clear consistency, that this approach has been successful in developing a 

condition monitoring system for turning processes without the need for involvement 

in the actual mechanics of the process or the mechanism of the faults. 

 

12.6 Research limitation and Further Work   

Due to the time limitation involved in completing this research, further work is still 

needed. It is believed that the following areas need to be considered in more detail in 

developing an ASPST approach: 

1. The suggested methodology has been only tested for one type of fault 

(gradual tool wear). More experimental estimations of the approach for other 

industrial faults such as breakage, collision, and chatter could be done.  

2. Fixed cutting conditions were selected during the evaluation of the approach. 

Thus, several cutting conditions could be selected for a more complete 

evaluation of the approach. 

3. The suggested approach has been only tested for one type of insert and one 

type of material. Different inserts and material types could be tested using the 

ASPST approach. 

4. Limited numbers of sensory signals were utilised. The approach could be 

evaluated using more signal processing methods types and other of sensors 

such as infrared sensors. 

5. Limited numbers of pattern recognition systems have been implemented and 

greater investigation on optimising pattern recognition systems and 

performance comparisons are still needed. This could lead to changing the 

proposed number of SCFs in the designed system. 
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