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ABSTRACT 20 

Purpose Sarcopenia can begin from the 4-5th decade of life and is exacerbated by obesity and 21 

inactivity. A combination of resistance exercise (RE) and endurance exercise is recommended 22 

to combat rising obesity and inactivity levels. However, work continues to elucidate whether 23 

interference in adaptive outcomes occur when RE and endurance exercise are performed 24 

concurrently. This study examined whether a single bout of concurrent RE and high-intensity 25 

interval training (HIIT) alters the satellite cell response following exercise compared to RE alone.  26 

Methods Eight sedentary, overweight/obese, middle-aged individuals performed RE only (8x8 27 

leg extensions at 70% 1RM), or RE+HIIT (10x1 min at 90% HRmax on a cycle ergometer). Muscle 28 

biopsies were collected from the vastus lateralis before and 96 h after the RE component to 29 

determine muscle fiber type-specific total (Pax7+ cells) and active (MyoD+ cells) satellite cell 30 

number using immunofluorescence microscopy.  31 

Results Type-I-specific Pax7+ (P=0.001) cell number increased after both exercise trials. Type-I-32 

specific MyoD+ (P=0.001) cell number increased after RE only. However, an elevated baseline 33 

value in RE+HIIT compared to RE (P=0.046) was observed, with no differences between 34 

exercise trials at 96 h (P=0.21). Type-II-specific Pax7+ and MyoD+ cell number remained 35 

unchanged after both exercise trials (all P≥0.13).  36 

Conclusion Combining a HIIT session after a single bout of RE does not interfere with the 37 

increase in type-I-specific total, and possibly active, satellite cell number, compared to RE only. 38 

Concurrent RE+HIIT may offer a time-efficient way to maximise the physiological benefits from a 39 

single bout of exercise in sedentary, overweight/obese, middle-aged individuals.  40 

KEYWORDS 41 

Concurrent exercise; resistance exercise; high-intensity interval training; obesity; acute 42 

responses; interference; satellite cell; mRNA expression; human skeletal muscle.  43 
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ABBREVIATIONS 44 

1RM  One-repetition maximum 45 

BMI  Body mass index (kgm2) 46 

HIIT  High-intensity interval training 47 

HRmax  Heart rate maximum 48 

Myf5  Myogenic factor 5 49 

Myf6  Myogenic factor 6 50 

MyoD  Myogenic differentiation 1 51 

MyoG  Myogenin 52 

Pax7  Paired box transcription factor 7 53 

RE  Resistance exercise  54 

RE + HIIT Concurrent resistance exercise and high-intensity interval training 55 

RPE   Rate of perceived exertion 56 

SEM  Standard error of mean   57 

V̇O2 peak Peak oxygen uptake (mLkgmin-1) 58 

W  Watts (W)  59 
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INTRODUCTION 60 

Ageing often results in the degenerative loss of significant muscle mass and strength, known 61 

as sarcopenia (Bijlsma et al. 2013), a process starting as early as the 4th or 5th decade (Marcell 62 

2003; Jackson et al. 2012). Exercise can lessen the effect of sarcopenia, however, 45% of 63 

women and 33% of men do not meet the current physical activity guidelines (Health & Social 64 

Care Information Centre 2013). Sarcopenia is further accelerated in the presence of obesity and 65 

can result in physical disability and a lower quality of life (Dominguez and Barbagallo 2007; 66 

Stenholm et al. 2008) and in England, 58% of women and 65% of men are classified as 67 

overweight or obese (Health & Social Care Information Centre 2016). The combination of 68 

physical inactivity and obesity underpins a number of chronic diseases (e.g., type 2 diabetes and 69 

cardiovascular disease) (Rana et al. 2007; Reddigan et al. 2011), and are considered major 70 

global public health issues. Strategies to encourage increased physical activity in these 71 

populations, which may in turn reduce obesity, could slow the aging process and development 72 

of chronic disease. 73 

Exercise is an effective stimulus for inducing increases in muscle mass, weight loss and 74 

cardio-metabolic health irrespective of age, and therefore could play a major role in combatting 75 

the fight against the increase in obesity and obesity-related diseases. Current exercise guidelines 76 

recommend that middle-aged individuals (~40-65 years) should engage in a combination of 77 

endurance and resistance exercise (RE), in order to improve cardio-metabolic health and quality 78 

of life (Chief Medical Office 2011; Garber et al. 2011). It is often recommended that individuals 79 

should complete five 30 min sessions of moderate-intensity endurance exercise and two 80 

sessions of RE per week, therefore requiring up to seven days of exercise engagement per week, 81 

which may provide a significant barrier to some. 82 

The design of a concurrent training program incorporating RE and endurance exercise within 83 

a single session provides a practical, time-efficient protocol that may be more appealing to 84 

individuals, particularly those who are not “natural exercisers”, and therefore increase motivation 85 

and adherence. In support of this viewpoint, Larose et al. (2012) implemented a 6 month 86 
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concurrent training program with sedentary, overweight/obese, middle-aged individuals with type 87 

2 diabetes. The participants were given the option as to when they performed each exercise 88 

component. Remarkably, all participants chose to perform both RE and endurance exercise 89 

components within a single session. However, there is evidence to suggest that combining RE 90 

and endurance exercise will impair strength development and muscle size (Hickson 1980; Craig 91 

et al. 1991; Hennessy and Watson 1994; Coffey et al. 2009a,b; Babcock et al. 2012; Kikuchi et 92 

al. 2016; Fyfe et al. 2016), although such evidence is equivocal (Bell et al. 1991; Shaw et al. 93 

2009; Donges et al. 2012; Lundberg et al. 2012, 2013; Apró et al. 2013; Kazior et al. 2016). We 94 

have recently shown that using an acute bout of high-intensity interval training (HIIT) in 95 

combination with RE, as an alternative to moderate-intensity endurance exercise with RE, does 96 

not impede acute (<6 h) gene expression and protein signalling markers of muscle growth 97 

compared to a single bout of RE alone in young, healthy individuals (Pugh et al. 2015). 98 

Furthermore, concurrent RE + HIIT resulted in greater increases in the expression of PGC-1α 99 

mRNA suggesting parallel endurance-type adaptations (Olesen et al. 2010). Thus, an exercise 100 

protocol that combines both RE and HIIT, as an alternative form of endurance exercise, into a 101 

single session, may help individuals meet current exercise guidelines in a time-efficient manner 102 

without compromising RE and endurance exercise-induced adaptations. Although this evidence 103 

provides indicative responses, it is unlikely that the mechanism behind the impaired adaptations 104 

following concurrent training can be fully explained by the initial molecular interference between 105 

the signalling proteins, AMPK and mTOR (Hamilton and Philp 2013). 106 

Satellite cell content has been shown to be correlated with an improvement in cross-sectional 107 

area of the quadriceps muscle following RE training (Bellamy et al. 2014). Utilising this 108 

methodology, following an acute concurrent exercise protocol of RE plus moderate-intensity 109 

endurance exercise Babcock et al., (2012) demonstrated an impairment in satellite cell response 110 

after concurrent exercise (-6% change from baseline) compared to RE only (38% increase) in 111 

young, healthy males. This disparity in the satellite cell response was reported to occur in a fiber-112 

type-specific manner. There was a suppression in type I muscle fiber-specific satellite cell density 113 

four days (96 h) after both endurance exercise (-7%) and concurrent exercise (-8%), compared 114 
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to RE only (46% increase). In type II muscle fibers, satellite cell density remained unchanged 115 

after endurance exercise and concurrent exercise while increasing after RE only. The authors 116 

concluded that concurrent exercise, comprising of RE and moderate-intensity exercise, impairs 117 

the acute satellite cell response to single bout of RE, thus implicating that this combination could 118 

impede muscle growth. 119 

While an increase in satellite cell response to RE is widely accepted (Crameri et al. 2004, 120 

2007; Dreyer et al. 2006; O’Reilly et al. 2008; McKay et al. 2009; Mikkelsen et al. 2009) the 121 

response to endurance exercise is limited and inconclusive. Evidence suggests that exercise 122 

intensity, rather than duration, may play a key role in the expansion of the satellite cell content 123 

(Kurosaka et al. 2012) with studies using moderate-intensity endurance exercise finding no 124 

changes in the satellite cell content (Snijders et al. 2011), whereas, studies using high-intensity 125 

exercise have shown an increase (Charifi et al. 2003; Verney et al. 2008; Nederveen et al. 2015). 126 

Based on these findings, together with our previous study (Pugh et al. 2015), the present study 127 

investigated the fiber type-specific satellite cell response to a single bout of RE immediately 128 

followed by a bout of high-intensity interval cycling compared to RE alone in sedentary, 129 

overweight/obese, middle-aged individuals. It was hypothesised that there would be no 130 

interference in the muscle fiber type-specific satellite cell response when a single bout of HIIT is 131 

performed immediately after RE. 132 

 133 

METHODS 134 

Participants 135 

Of the 14 participants enrolled in the study, eight sedentary, overweight/obese, middle-aged 136 

male (n = 3) and female (n = 5) individuals completed both trials and were included in the analysis 137 

(Table 1). A participant flow diagram is reported in Figure 1. Sedentary status was defined as no 138 

planned or regular patterns of physical activity or exercise on one or more days per week in the 139 

preceding six months. Overweight/obese classification was based on a BMI between 27 and 35 140 



Page 7 of 34 
 

kgm2, and the presence of abdominal obesity (male ≥94 cm; female ≥80 cm). All participants 141 

provided full written informed consent. Prior to participation, all participants underwent 142 

comprehensive medical assessment, including an electrocardiogram and physical examination 143 

to confirm that there were no underlying contraindications to exercise and to confirm that all were 144 

free from any medication. A capillary blood sample was taken to analyse fasting glucose, 145 

triglycerides, total cholesterol and high-density lipoprotein (HDL)-cholesterol (CardioChek, 146 

Polymer Technology Systems, Indianapolis, IN, USA). Participants had no history of diabetes, or 147 

presence of the metabolic syndrome. Diagnostic criteria for metabolic syndrome were the 148 

presence of any three (or more) of the following factors (Alberti et al. 2005): increased waist 149 

circumference (male ≥94 cm; female ≥80 cm); raised triglycerides (≥1.7 mmolL-1); reduced HDL-150 

cholesterol (male <1.03 mmolL-1; female <1.29 mmolL-1); raised blood pressure (systolic ≥130 151 

mmHg; diastolic ≥85 mm Hg) and/or raised fasting plasma glucose (≥5.6 mmolL-1). The local 152 

Human Research Ethics Committee approved all study procedures. 153 

 154 

*** Table 1 near here *** 155 

 156 

*** Figure 1 near here *** 157 

 158 

Study design and rationale 159 

A schematic of the study design is displayed in Figure 2. This study adopted a counter-160 

balanced crossover design. In one session participants completed a single bout of resistance 161 

exercise (RE) and in the other session participants performed RE followed by a single HIIT 162 

session (RE + HIIT), each trial was separated by a minimum of 14 days (range: 14 – 36 days), 163 

during which time the participants were instructed to maintain their habitual lifestyle. Preliminary 164 

tests (maximal strength and V̇O2 peak test) were completed followed by a separate session where 165 
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participants were familiarised with the RE and HIIT sessions at least two weeks before the first 166 

experimental trial. 167 

The current project was designed to determine if HIIT performed immediately after RE impairs 168 

the satellite cell response to RE. The exercise order was chosen to maximise the anabolic 169 

response following RE, which has previously been shown to be diminished when endurance 170 

exercise precedes RE (Coffey et al. 2009a, b). Whereas, as we have previously shown no initial 171 

molecular interference on gene expression and protein signalling markers of muscle growth with 172 

concurrent RE followed by HIIT compared to RE alone (Pugh et al. 2015). Skeletal muscle 173 

biopsies were taken before and 96 h after exercise to capture the peak in the RE-induced satellite 174 

cell content (Martin and Lewis 2012; Snijders et al. 2015). The timing of the biopsies also allowed 175 

direct comparison to Babcock et al. (2012), which is the only other known study to investigate 176 

the effects of a single bout of concurrent exercise on the satellite cell response. The present 177 

study used a realistic exercise program in order to elicit an exercise-induced satellite cell 178 

response, in comparison to other studies (Crameri et al. 2004; Mikkelsen et al. 2009) using 179 

extreme workloads that are unfeasible and result in an exaggerated satellite cell response due 180 

to muscle damage. While no measure of muscle damage was made in current study, others using 181 

a similar workload have shown that the acute satellite response to a single bout of RE correlates 182 

with the degree of muscle hypertrophy following training (Bellamy et al. 2014). Therefore, the 183 

acute satellite cell response to a single bout of exercise, irrespectively of the stimuli (exercise-184 

/damage-induced), is still relevant to the potential impact of muscle adaptations to concurrent 185 

exercise. 186 

 187 

*** Figure 2 near here *** 188 

  189 
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Preliminary testing 190 

Maximal strength. Participants were asked to arrive fasted (at least 4 h) and having avoided 191 

any strenuous physical activity 48 h before the preliminary tests. Each participant performed a 192 

unilateral one-repetition maximum (1RM) on each leg using a leg extension machine 193 

(Technogym, Cesena, Italy). Participants were familiarised with the movement and warmed up 194 

prior to testing by performing 6 repetitions (at ~40% of estimated 1RM) and 4 repetitions (at ~60% 195 

of estimated 1RM) through a full range of motion with 1 min recovery. After each successful lift, 196 

3 min recovery was given, subsequently the weight was increased until a failed attempt occurred. 197 

The 1RM was attained within 5 attempts.  198 

V̇O2 peak. Following a 30 min rest, a continuously ramped V̇O2 peak test was performed on an 199 

electrically braked cycle ergometer (Lode Excalibur, Groningen, Netherlands). After a 5 min warm 200 

up at 30 W (females) or 50 W (males), workload progressively increased at 16 Wmin-1 until the 201 

participant reached volitional exhaustion. Oxygen consumption (V̇O2) was obtained through 202 

breath-by-breath sampling (Cortex MetaLyzer 3B, Leipzig, Germany) that was calibrated prior to 203 

each test using gases of known concentrations (17.10% O2 and 5% CO2) and a 3 L Hans Rudolph 204 

syringe. V̇O2 peak was determined as the highest value achieved over an 11 breath average. Heart 205 

rate was continuously recorded during the exercise (RS300, Polar, Finland) and participants were 206 

asked to maintain a cadence between 80-100 rmin-1.  207 

Diet and physical activity control 208 

Participants were instructed to avoid alcohol and caffeine during the 48 h period prior to the 209 

two main experimental trials and the 96 h follow-up visit. A physical activity diary and weighed 210 

food diary was recorded 48 h and 24 h before and throughout the first experimental trial, 211 

respectively. Participants were asked to replicate both physical activity levels and diet prior to 212 

each visit in the second experimental trial.  213 
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Experimental trials 214 

On the morning of each trial, participants arrived at laboratory at 0800 following an overnight 215 

fast (~10 h). A resting skeletal muscle biopsy sample was obtained from the middle portion of the 216 

vastus lateralis muscle of one leg. The participants then performed either the RE or RE + HIIT 217 

session. During both exercise sessions, participants received continuous verbal encouragement. 218 

For all trials, rating of perceived exertion (RPE, Category-Ratio 10 Scale) (Borg 1998) was 219 

recorded after each set of leg extensions and each 1 min bout of high-intensity cycling. 220 

Participants were allowed to consume water ad libitum throughout. Following the exercise 221 

session, the participant was free to leave and asked to return 4 days later after an overnight fast 222 

(~10 h) for a subsequent muscle biopsy taken 96 h after the RE component.  223 

Resistance exercise (RE) protocol 224 

Participants completed a standardised warm up consisting of 2 sets of 8 repetitions of 225 

unilateral leg extensions at 30% 1RM, immediately followed by the contralateral leg. This was 226 

followed by 8 sets of 8 repetitions at 70% 1RM on each leg. Constant feedback and visual 227 

markers were provided in an attempt to match all repetitions for velocity (2-s concentric and 228 

eccentric phases) and range. Each set was separated by a 2 min recovery.  229 

Concurrent resistance exercise and high-intensity interval training (RE + HIIT) protocol 230 

Immediately after an RE protocol identical to that described above, participants completed a 231 

3 min warm up at 30-50 W on the cycle ergometer. This was followed by the completion of 10 232 

repetitions of 1 min cycling at an intensity designed to elicit 90% of their heart rate maximum 233 

(HRmax), with each repetition separated by 1 min of cycling at 30 W (females) or 50 W (males). 234 

Participants were instructed to maintain a cadence between 80-100 rmin-1 during each interval. 235 

Muscle biopsies 236 

Skeletal muscle samples were obtained from the middle portion of the vastus lateralis muscle 237 

using a 5-mm Bergström needle (Dixons Surgical Instruments, Essex, UK) modified with suction. 238 
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Four millilitres of local anaesthesia (1% lidocaine) was administrated into the skin and 239 

subcutaneous tissue above the muscle belly of the vastus lateralis. Upon excision of a specimen, 240 

any visible fat and/or connective tissue was removed and excess blood was blotted on filter 241 

paper. Immediately after, samples were dissected into pieces that were either snap frozen in 242 

liquid nitrogen, or embedded in Tissue-Tek optimum cutting temperature (OCT) compound (Agar 243 

Scientific, Essex, UK), immersed in liquid nitrogen-cooled isopentane, and stored at -80˚C until 244 

later analysis. 245 

Immunofluorescence microscopy 246 

Muscle cross sections (9 μm) from OCT-embedded tissue were cut at -20˚C using a cryostat 247 

microtome (Thermo Scientific, Runcorn, UK), and allowed to air dry for 30 min at room 248 

temperature, before being stored at -80˚C until subsequent analysis. Tissue sections were fixed 249 

in 4% paraformaldehyde fixing solution for 10 min at room temperature, washed with phosphate-250 

buffered saline (PBS) containing 1% tween-20 (PBST) for 3 x 5 min, and then blocked in PBS 251 

containing 2% bovine serum albumin, 2% goat serum, and 0.2% Triton X-100 for 60 min at room 252 

temperature. After blocking, sections were incubated with the primary antibodies diluted in PBS 253 

blocking solution overnight. Samples were then washed in PBST for 3 x 5 min before secondary 254 

antibodies diluted in PSB block were applied and incubated for 2 h. Subsequently, samples were 255 

washed in PBST for 4 x 5 min and then covered with a drop of FluoromountTM aqueous mounting 256 

medium (Sigma-Aldrich, Dorset, UK) and a cover slip, and stored in the dark at 4˚C until viewing.  257 

Two serial cross sections were stained; (1) for satellite cell content [paired box transcription 258 

factor 7 (Pax7), laminin and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI)], and (2) for the 259 

number of active satellite cells [myogenic differentiation 1 (MyoD), laminin and DAPI]. Mouse 260 

anti-human antibodies directed against Pax7 [1:200; Developmental Studies Hybridoma Bank 261 

(DSHB), Iowa City, IA, USA] and MyoD (clone 5.8A; M351201-2; 1:50; Dako, Burlington, ON, 262 

Canada) with goat anti-mouse Alexa Fluor 488-conjugate IgG (A11029; 1:500; Invitrogen, 263 

Paisley, UK) secondary antibodies were used to detect quiescent and active satellite cells, 264 

respectively. All slides were counterstained with rabbit anti-human antibodies directed against 265 
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laminin (AB11575; 1:500; Abcam, Cambridge, MA, USA) with goat anti-rabbit Alexa Fluor 647-266 

conjugate IgG (A21245; 1:1000; Invitrogen) secondary antibodies to detect cell border, and DAPI 267 

(F4680; 1:20000; Sigma-Aldrich) to reveal myonuclei.  268 

Double staining of all samples was performed to determine muscle fiber type-specific 269 

localisation of satellite cells. Samples were washed in PBST for 4 x 5 min, re-fixed, and blocked. 270 

Mouse anti-human antibodies directed against myosin heavy chain I (MHC I; A4.951; 1:1000; 271 

DSHB) with goat anti-mouse Alexa Fluor 488-conjugate IgG secondary antibodies were used to 272 

detect type I muscle fiber isoforms. Rabbit anti-human antibodies directed against MHC II 273 

(AB91506; 1:2000; Abcam) with goat anti-mouse Alexa Fluor 647-conjugate IgG secondary 274 

antibodies were used to detect type II muscle fiber isoforms.  275 

Imaging and quantification  276 

Images were viewed at 20x magnification (Leica DM2500, Leica Microsystems, Milton 277 

Keynes, UK) and captured with a digital camera (Leica DFC360 FX, Leica Microsystems). At 278 

least 50 type I and 75 type II muscle fibers were counted to ensure accurate assessment of the 279 

muscle fiber-specific satellite cell content (Mackey et al. 2009). In this study, 63 ± 4 type I and 92 280 

± 6 type II muscle fibers were evaluated for each muscle biopsy per participant. Image processing 281 

and quantitative analyses were completed using ImageJ version 1.49 software (Schneider et al. 282 

2012). All quantitative analyses were conducted in a blinded fashion to the participant coding and 283 

experimental trial. The identification of Pax7+ and MyoD+ cells were determined by the co-284 

localisation of either Pax7 or MyoD with DAPI, and located at the periphery of each muscle fiber. 285 

Double stained muscle cross sections (first stained for satellite cell and then fiber type) were 286 

superimposed to determine the satellite cell response in a muscle fiber-specific manner. This is 287 

important as previous studies have shown changes in RE-induced satellite cell response occur 288 

in a muscle fiber type-specific manner (Snijders et al. 2012; Cermak et al. 2013).  289 
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RNA extraction and reverse transcription 290 

Skeletal muscles samples were homogenised at 20 Hz for 2 x 3 min using a TissueLyser II 291 

(Qiagen, Limbury, Netherlands) in 1.0 mL of ice-cooled TRI Reagent (Sigma-Aldrich). Following 292 

centrifugation at 13,000 x g for 15 min at 4˚C the supernatant was incubated for 5 min at room 293 

temperature. Next, 200 µL of chloroform was added and mixed for 20 s then allowed to stand for 294 

a further 10 min at room temperature before centrifugation. The upper, clear, aqueous phase 295 

containing total RNA was mixed with one volume of isopropanol and incubated for 30 min at room 296 

temperature before further centrifugation. The RNA pellet was washed in 1.0 mL of ice-cooled 297 

70% ethanol, centrifuged at 7,500 x g for 5 min and then repeated, before air-drying. Precipitated 298 

RNA was then re-suspended in nuclease-free water. One microliter of each RNA sample was 299 

analysed on a NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Scientific, Rockford, IL, USA) 300 

to determination RNA concentration and purity. RNA concentration was 166.1 ± 18.3 ngµL-1, 301 

and the A260/A280 ratio, as a measure of purity was 1.86 ± 0.06. An Agilent 210 Expert Bioanalyser 302 

with RNA 6000 Nano LabChip kits (Agilent Technologies, Palo Alto, CA, USA) was used to 303 

analyse the size and distribution of extracted RNA molecules. An RNA Integrity Number (RIN) 304 

was calculated for all samples based on the RIN algorithm of the Agilent 2100 Expert software 305 

(version B.02.08). The RIN was 6.6 ± 0.2. Reverse transcription of 20 µL of cDNA was performed 306 

using 1 µg of RNA with a high-capacity RNA-to-cDNA kit (Invitrogen). The cDNA samples were 307 

then stored at -20˚C until further analysis. 308 

Real-time quantitative Polymerase Chain Reaction (PCR) 309 

Real-time quantitative PCR was performed on a ViiA 7 real-time PCR system (Applied 310 

Biosystems, Forest City, CA, USA) under the following PCR cycle conditions; 50˚C for 2 min + 311 

95˚C for 10 min + ((95˚C for 15 s + 60˚C for 1 min) x 40 cycles). PCR reactions with 2 x TaqMan 312 

Universal Master Mix II with UNG (Invitrogen) and 20 x TaqMan Gene Expression assays 313 

(Invitrogen) according to the manufacturer’s instructions were used to determine mRNA 314 

expression levels for myogenic differentiation 1 (MyoD1, Hs00159528_m1), myogenic factor 5 315 

(Myf5, hs00929416_g1), myogenin (MyoG, Hs00231167_m1), myogenic factor 6 (Myf6, 316 
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Hs01547104_g1), myostatin (Hs00976237_m1) and β-2-microglobulin (β2M, Hs00984230_m1). 317 

In addition, PCR reactions with 2 x SYBR Green JumpStart Taq Ready Mix (Sigma-Aldrich), 318 

forward and reverse primers (Sigma-Aldrich) at 500 nmolL-1 were used to determine the mRNA 319 

expression levels for β-actin (Primer Design, Southampton, UK) and DNA topoisomerase 1 320 

(TOP1, Primer Design). A melt curve was run on all SYBR Green PCR reactions to assess the 321 

amplification specificity. All samples were run in triplicate, and all samples from each participant 322 

were run together on the same plate to allow for relative comparison. Data were analysed by 323 

cycle threshold values, calculating relative expression using the 2-∆∆CT method. Gene expression 324 

was normalised using the geometric mean of three reference genes (β2M, β-actin, TOP1). 325 

Statistical analysis 326 

Data were analysed using IBM SPSS version 22 statistical software (IBM Corp., Armonk, NY, 327 

USA). All outcomes were examined using linear mixed models with repeated-measures and each 328 

participant as a random effect. This statistical model allows use of all available data, while 329 

avoiding imputation of missing data (RE at baseline in one male participant). A linear mixed model 330 

was used to examine differences in RPE responses with exercise trial included as a fixed factor. 331 

Changes in satellite cell content (Pax7+ cells), active satellite cell number (MyoD+ cells), mRNA 332 

expression and muscle fiber type distribution were analysed using a linear mixed model with time 333 

and exercise trial included as fixed effects. Muscle fiber types were analysed separately. When 334 

an interaction was identified a pairwise multiple comparisons with a Bonferroni correction was 335 

used to locate differences. Differences in all data sets were considered statistically significant at 336 

a two-tailed critical level of P<0.05. Data are expressed as mean ± standard error of mean (SEM). 337 

A priori sample size calculation was performed using G*Power software (Version 3.1.7; Faul et 338 

al. 2007). Based on previously published data (Babcock et al. 2012), it was determined that a 339 

sample size of six participants would be necessary. This sample size would allow detection of a 340 

mean change of 0.024 in satellite cell content (Pax7+) per muscle fiber. Sample size calculation 341 

was performed with an alpha error of 0.05, and a power of 80%.  342 

 343 
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RESULTS 344 

Exercise trial responses 345 

All participants completed the same number of sets and repetitions (8 sets x 8 repetitions at 346 

70% 1RM). The RE workload was 38.8 ± 2.0 kg for males and 21.3 ± 2.5 kg for females. The 347 

HIIT workload during the 60 s effort was 245 ± 38 W for males and 120 ± 16 W for females. Heart 348 

rate during HIIT intervals corresponded to 90 ± 2% of HRmax. No differences for RPE scores (all 349 

P≥0.11) were observed between exercise components in both trials with RE and RE + HIIT being 350 

rated as equally strenuous [RE only, 6.2 ± 0.6; RE + HIIT, 6.2 ± 0.6; (RE component, 6.7 ± 0.6; 351 

HIIT component, 5.6 ± 0.5)]. 352 

Muscle fiber characteristics 353 

Muscle fiber composition was 40.4 ± 2.6% type I and 59.6 ± 2.5% type II muscle fibers. There 354 

were no statistical differences observed in fiber type distribution between trials or across time (all 355 

P≥0.10).  356 

Satellite cell content (Pax7+ cells) 357 

Representative immunofluorescent images are shown in Figure 3A-D. There was a main effect 358 

of time (P=0.001), but no main effect of trial (P=0.73), or an interaction effect (P=0.45) for satellite 359 

cell content (Pax7+ cells) per type I muscle fiber (Figure 3E). Muscle fiber type-I-specific satellite 360 

cell content increased (78 ± 24%) at 96 h compared to baseline following both exercise protocol. 361 

There were no main effects of time (P=0.71), trial (P=0.36), or an interaction effect (P=0.98) in 362 

satellite cell content per type II muscle fiber (Figure 3F).  363 
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 364 

*** Figure 3 near here *** 365 

 366 

Number of active satellite cells (MyoD+ cells) 367 

Representative immunofluorescent images are shown in Figure 4A-D. There was a main effect 368 

of time (P=0.006) and an interaction effect (P=0.025), but no main effect of trial (P=0.53), in the 369 

number of active satellite cells (MyoD+ cell) per type I muscle fiber (Figure 4E).  Post hoc analysis 370 

revealed an increase (P=0.001) in muscle fiber type-I-specific MyoD+ cells at 96 h compared to 371 

baseline following RE. Conversely, muscle fiber type-I-specific MyoD+ cells remained unchanged 372 

over time for RE + HIIT (P=0.64). There was no difference (P=0.21) between exercise trials at 373 

96 h. However, RE + HIIT demonstrated an elevated (P=0.046) baseline value compared to RE, 374 

which may have impacted the RE + HIIT exercise response. There was a main effect of trial 375 

(P=0.049), but no main effect of time (P=0.13), or an interaction effect (P=0.96) in MyoD+ cell per 376 

type II muscle fiber (Figure 4F). There was an overall higher number of MyoD+ cell per type II 377 

muscle fiber in RE as compared to RE + HIIT.  378 

 379 

*** Figure 4 near here *** 380 

 381 

Intramuscular mRNA expression 382 

There were no main effects of time (all P≥0.49), trial (all P≥0.38) or an interaction effect (all 383 

P≥0.39) for the expression of MyoD, Myf5, MyoG, Myf6 and myostatin mRNA (Figure 5). 384 

 385 

*** Figure 5 near here *** 386 

  387 
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DISCUSSION 388 

The aim of this study was to establish the effect of a single bout of concurrent RE + HIIT 389 

compared to an isolated RE session on the total and active number of satellite cells at rest and 390 

4 days (96 h) after exercise in sedentary, overweight/obese, middle-aged individuals. For the first 391 

time, it is shown that both a single bout of RE and concurrent RE + HIIT results in an increase in 392 

satellite cell content in type-I-specific muscle fibers, with no difference between exercise 393 

regimens. In addition, there was no difference in the number of active (MyoD+ cells) type-I-394 

specific satellite cells at 96 h after both exercise trials. The current findings imply that concurrent 395 

RE + HIIT does not compromise the transient RE-induced increase in total satellite cell content, 396 

and possibly the number of active satellite cells, after 96 h in sedentary, overweight/obese, 397 

middle-aged individuals. Therefore, concurrent RE + HIIT exercise programmes may offer a 398 

potent, time-efficient exercise strategy, which could help those that may not be “natural 399 

exercisers” meet the current exercise guidelines.  400 

Expansion in satellite cell content peaks between 72-96 h following exercise, and declines 401 

thereafter (Martin and Lewis 2012, Snijders et al. 2015). The present study demonstrated a 78 ± 402 

24% increase in the satellite cell content associated with type I muscle fibers 96 h after both 403 

exercise protocols. While previous exercise protocols using higher workloads have elicited 404 

greater increases (>95%) in satellite cell content (Crameri et al. 2004; O’Reilly et al. 2008; McKay 405 

et al. 2009; Mikkelsen et al. 2009), the 78 ± 24% increase in the present study is comparable 406 

with data where similar workloads were used (Babcock et al. 2012; Snijders et al. 2014). The RE 407 

used in the current study was designed to represent a realistic, exercise program for untrained 408 

and overweight/obese individuals, and therefore characterises a real-life exercise-induced 409 

stimulus.  410 

Consistent with the present study, an expansion in satellite cell content following a single bout 411 

of RE has been reported in both young and older adults (Martin and Lewis 2012; Snijders et al. 412 

2015), and at least in the young, has been shown to be important in determining changes in 413 

muscle mass to chronic exercise training (Bellamy et al. 2014). While it remains to be determined 414 
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if this is true in middle-aged and older adults, an exercise program resulting in a potent expansion 415 

of satellite cell content is likely to help reduce muscle mass loss with ageing. The satellite cell 416 

content associated with type I fibers has been shown to acutely increase following RE in older 417 

adults. However, in type II fibers this response is blunted (Snijders et al. 2014), or fails to respond 418 

entirely (McKay et al. 2012; Nederveen et al. 2015). An attenuated decline in myostatin 419 

colocalisation with satellite cells has been proposed as one mechanism for this blunted response 420 

in older adults (McKay et al. 2012; Snijders et al. 2014). Similarly, the current study demonstrates 421 

that both exercise programs resulted in an increase in type I associated satellite cell content, but 422 

no expansion in the satellite cell content was noted with type II fibers in sedentary, 423 

overweight/obese, middle-aged individuals. It should be noted that the lack of satellite cell 424 

response in type II muscle fibers could merely be reflective of the timing of the final biopsy. 425 

The data from the current study suggest that concurrent RE + HIIT does not impair the 426 

elevation in satellite cell content, particularly in type I fibers, 96 h after a single bout of RE, which 427 

is in contrast to a similar study that employed moderate-intensity continuous endurance exercise 428 

instead of HIIT (Babcock et al. 2012). However, rodent studies have suggested that the increase 429 

in satellite cell content is related to exercise intensity rather than duration (Kurosaka et al. 2012). 430 

In humans, two recent studies implementing similar HIIT protocols to the current study have 431 

demonstrated that HIIT could offer a greater hypertrophic stimulus than moderate-intensity 432 

endurance exercise in sedentary older men (Bell et al. 2015; Nederveen et al. 2015). Similarly, 433 

an increase in lean mass in leg and groin regions has been observed following 6 weeks of HIIT 434 

in overweight women (Gillen et al. 2013). The anabolic potential of HIIT therefore raises the 435 

hypothesis that incorporating HIIT, rather than moderate-intensity continuous endurance 436 

exercise, concurrently with RE, may act to abolish the interference effect between the different 437 

adaptive responses. 438 

The satellite cell data is supported by that of the myogenic regulatory factor (MRF) MyoD, 439 

which represents an important marker of satellite cell activity. MyoD is expressed during 440 

activation, proliferation and during the early stages of differentiation, but not in quiescent satellite 441 
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cells (Zammit et al. 2004). In the present study, the increase in the number of MyoD+ cells is 442 

similar to that previously reported after a single bout of RE or HIIT (Nederveen et al. 2015). 443 

Specifically, the type I associated MyoD+ cell number showed no difference between exercise 444 

trials at 96 h, reflecting the increase in satellite cell content at 96 h in both exercise trials. 445 

However, no change in type I associated MyoD+ cell number was reported from baseline to 96 h 446 

in RE + HIIT, whereas RE demonstrated an increase. This is likely due to the reported high 447 

baseline value in RE + HIIT compared to RE, which may have masked any change from baseline. 448 

The reason for this difference at baseline is unknown. Furthermore, the reason for the overall 449 

difference in muscle fiber type-II-specific MyoD+ cell number between exercise trials is unknown. 450 

Irrespective of this, muscle fiber type-II-specific MyoD+ cell number remained unchanged across 451 

time in both exercise trials with no evidence of an interference of concurrent RE + HIIT. It is worth 452 

noting that in the current study there were no significant differences in satellite cell content 453 

following RE or RE + HIIT despite a greater workload completed in the concurrent exercise trial. 454 

While this study clearly demonstrates that RE + HIIT does not affect the RE-induced satellite cell 455 

response, it does raise the question as to whether the magnitude of the satellite cell response 456 

could be further increased if the concurrent exercise strategy is optimised.  457 

Myostatin is known to be a negative regulator of muscle growth (McPherron and Lee 1997; 458 

Reisz-Porszasz et al. 2003) through the suppression of muscle protein synthesis and satellite 459 

cell activity (Langley et al. 2002; McCroskery et al. 2003; Welle et al. 2009). A single bout of RE 460 

or endurance exercise, either in isolation or in combination, has been shown to decrease 461 

myostatin mRNA expression (Louis et al. 2007; Lundberg et al. 2012). While the present study 462 

showed no statistical change in myostatin mRNA expression after either exercise trial, we have 463 

previously demonstrated a downregulation in myostatin mRNA after exercise (<6 h) with no 464 

differences between RE and RE + HIIT (Pugh et al. 2015). The lack of consistency could be 465 

explained by timing of the muscle biopsy. No changes in mRNA expression of the MRFs (MyoD, 466 

Myf5, MyoG and Myf6) were found at 96 h compared to baseline after either exercise trial. Others 467 

have reported increases in MyoG and Myf6 mRNA expression up to 120 h after high-volume, 468 

muscle damaging RE (McKay et al. 2008). However, it is likely that less damaging exercise 469 
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results in earlier (<96 h) peaks in mRNA expression of MRFs (Psilander et al. 2003; Yang et al. 470 

2005). Whilst the present study shows no change in MyoD mRNA expression, the increase in 471 

MyoD+ cells may suggest that the increases in transcription have already occurred within the 96 472 

h timeframe. Future studies are warranted to investigate the temporal response of myostatin and 473 

MRFs expression, both at the gene transcription and protein level, on the effect of satellite cell 474 

regulation in response to concurrent exercise. 475 

Given that HIIT improves the satellite cell response, but also has profound health benefits 476 

across both healthy (Trapp et al. 2008; Gillen et al. 2013; Faulkner et al. 2015) and clinical 477 

populations (Currie et al. 2013; Madsen et al. 2015; Cassidy et al. 2016) matching or exceeding 478 

that of traditional endurance exercise (Tjønna et al. 2008; Kemmler et al. 2015), it would suggest 479 

that this form of higher intensity activity should be the preferred option for concurrent exercise 480 

regimens. In addition, HIIT has also been described as a time-efficient alternative (<25 min) to 481 

more traditional moderate-intensity exercise (Gibala et al. 2012), with reports of high exercise 482 

adherence (Terada et al. 2013; Currie et al. 2013; Faulkner et al. 2015) and enjoyment (Bartlett 483 

et al. 2011). The data from the present study indicates that incorporating HIIT after RE does not 484 

dampen the increase in satellite cell content following a single bout of RE, while potentially 485 

providing the stimulus for important cardiovascular and metabolic adaptations previously 486 

attributed to HIIT (Gibala et al. 2012). However, acute exercise studies only provide a framework, 487 

and therefore further work into the long-term consequences of chronic concurrent RE and HIIT 488 

on the satellite cell response compared to RE training only is warranted. 489 

Practical implications of concurrent training 490 

Often a lack of time is cited as the main barrier to an individual participating in regular physical 491 

activity (Stutts 2002; Trost et al. 2002). This is particularly true when both RE and endurance 492 

exercise components are required. Scheduling each exercise component to occur within a single 493 

session, such as with concurrent training, has been shown to be the preferred option for 494 

individuals with type 2 diabetes (Larose et al. 2012). This illustrates the importance of minimising 495 

the number of training visits, together with overall time commitment. Specifically, the concurrent 496 



Page 21 of 34 
 

RE + HIIT program used here was completed within a single exposure minimising both the 497 

exercise time commitment (HIIT vs. moderate-intensity continuous endurance exercise: 75 vs. 498 

150 min), and the number of training sessions per week (concurrent RE + HIIT vs. individual 499 

exercise sessions: three vs. six sessions). This study has demonstrated the feasibility of this 500 

concurrent RE + HIIT model in sedentary, overweight/obese, middle-aged individuals, which may 501 

provide these individuals with an alternative strategy to increase their regular physical activity 502 

levels. However, future studies are warranted to determine the chronic effectiveness of this 503 

concurrent RE + HIIT program.   504 

Limitations of the study 505 

A potential limitation of the study is that the total work executed was higher in RE + HIIT 506 

compared to RE. It is plausible that any interference effect could have been masked with the 507 

results reflecting differences in contractile activity, rather than the exercise-mode (i.e. HIIT). 508 

However, this study set out to examine the interference effect to a practical/realistic exercise 509 

model that could be applied to the general population, and therefore a prolonged RE-only session 510 

would not have been appropriate. Additionally, the sample size in the current study is limited. 511 

However, the data indicate clear beneficial effects of concurrent training on acute satellite cell 512 

function despite such a small sample size. Finally, in the current study there were different 513 

proportions of men and women, which may have led to gender bias. No statistical analysis was 514 

performed for sex differences in the present study due to a limited sample size. However, 515 

descriptively there were no gender effects. Similarly, others have shown no gender effects when 516 

using a mixed gender model (Fry et al. 2014).  517 

Conclusion 518 

For the first time, we have shown that concurrent RE + HIIT does not inhibit the increase in 519 

the satellite cell content, and possibly active satellite cell number, arising from a single bout of 520 

RE. Concurrent RE + HIIT may offer a time-efficient way to maximise the physiological benefits 521 

from a single bout of exercise in sedentary, overweight/obese, middle-aged individuals. Future 522 
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studies are warranted to determine if long-term concurrent RE + HIIT affect muscle strength and 523 

growth adaptations compared to RE training in isolation. 524 
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TABLES 778 

Table 1. Participants’ characteristics 

Measure All 

(n = 8) 

Males  

(n = 3) 

Females 

(n = 5) 

Age (y) 48.4 ± 3.9 52.0 ± 0.1 47.7 ± 5.7 

Height (m) 1.73 ± 0.03 1.82 ± 0.06 1.68 ± 0.02 

Mass (kg) 93.0 ± 4.7 103.4 ± 8.4 86.8 ± 5.6 

BMI (kgm2) 30.8 ± 0.9 31.2 ± 0.7 30.6 ± 1.4 

Waist circumference (cm) 97.3 ± 2.9 105.3 ± 6.1 92.5 ± 2.6 

Systolic BP (mmHg) 120 ± 6 126 ± 9 116 ± 7 

Diastolic BP (mmHg) 75 ± 3 75 ± 1 76 ± 4 

Glucose (mmolL-1) 5.6 ± 0.3 6.3 ± 0.4 5.1 ± 0.1 

Total cholesterol (mmolL-1) 5.34 ± 0.41 4.88 ± 0.30 5.61 ± 0.59 

HDL-cholesterol (mmolL-1) 1.57 ± 0.10 1.36 ± 0.24 1.69 ± 0.07 

Triglycerides (mmolL-1) 1.22 ± 0.13 1.15 ± 0.17 1.26 ± 0.19 

V̇O2 peak (mLkg1
min-1) 25.7 ± 2.6 33.6 ± 4.5 20.9 ± 1.5 

Leg extension 1RM (kg) 40.6 ± 5.2 57.1 ± 2.1 30.8 ± 3.5 

Data presented as mean ± SEM. 1RM, one-repetition maximum; BMI, body mass index; BP, 
blood pressure; HDL, high-density lipoprotein; V̇O2 peak, peak oxygen uptake. 
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FIGURE CAPTIONS 780 

Figure 1.  781 

Participant flow diagram. The dashed box indicates the participants who withdrew from the 782 

study. Following screening one was excluded because they did not meet the criteria. Three 783 

participants withdrew prior to the main trials for unknown reasons. One participant discontinued 784 

between the exercise visit and 96 h follow-up visit of the participant’s first experimental trial for 785 

unknown reasons. One participant withdrew following completion of the first trial and did not 786 

progress to the second trial due to restricted leg movement. The participant fully recovered. RE, 787 

resistance exercise trial; RE + HIIT, resistance exercise and high-intensity interval training trial. 788 

Figure 2. 789 

Schematic diagram of the experimental trials. This study adopted a counterbalanced 790 

crossover design where participants completed both exercise trials on separate occasions. RE, 791 

resistance exercise trial; RE + HIIT, resistance exercise and high-intensity interval training trial. 792 

Arrows indicate sampling time points for muscle biopsies. 793 

Figure 3. 794 

Satellite cell content (Pax7+) before and 96 h after a single bout of resistance exercise (RE) 795 

versus resistance exercise and high-intensity interval training (RE + HIIT). (A-D) representative 796 

images of muscle fiber type-specific Pax7 immunofluorescent staining. Merged images of (A) 797 

Pax7/DAPI/laminin/MHC I (green)/MHC II (red), and (B) Pax7/DAPI/laminin (red) are provided, 798 

with single channel views of (C) DAPI (blue) and (D) Pax7 (green). Arrow denotes a Pax7+ cell. 799 

Scale bar = 20m. Pax7+ cells per (E) type I and (F) type II muscle fiber before and 96 h after 800 

resistance exercise in both trials. Symbols above lines denote differences when a main effect 801 

was observed. * P<0.05 vs. Pre. Data presented as mean ± SEM.  802 
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Figure 4. 803 

Number of active satellite cells (MyoD+ cells) before and 96 h after a single bout of resistance 804 

exercise (RE) versus resistance exercise and high-intensity interval training (RE + HIIT). (A-D) 805 

representative images of muscle fiber type-specific MyoD immunofluorescent staining. Merged 806 

images of (A) MyoD/DAPI/laminin/MHC I (green)/MHC II (red), and (B) MyoD/DAPI/laminin (red) 807 

are provided, with single channel views of (C) DAPI (blue) and (D) MyoD (purple). Arrow denotes 808 

a MyoD+ cell. Scale bar = 20m. MyoD+ cells per (E) type I and (F) type II muscle fiber before 809 

and 96 h after resistance exercise in both trials. Symbols above lines denote differences when a 810 

main effect was observed. Symbols without lines denote differences revealed by a post-hoc test 811 

when an interaction effect was observed * P<0.05 vs. Pre; # P<0.05 vs. RE. Data presented as 812 

mean ± SEM. 813 

Figure 5. 814 

mRNA expression of (A) MyoD, (B) Myf5, (C) MyoG, (D) Myf6 and (E) myostatin before and 815 

96 h after a single bout of resistance exercise (RE) versus resistance exercise and high-intensity 816 

interval training (RE + HIIT). Data presented as mean ± SEM. 817 


