
Self-Adaptive and Sensitivity-Aware QoS Modeling 
for the Cloud

Tao Chen
School of Computer Science
University of Birmingham

Birmingham, UK. B15 2TT
txc919@cs.bham.ac.uk

Rami Bahsoon
School of Computer Science
University of Birmingham

Birmingham, UK. B15 2TT
r.bahsoon@cs.bham.ac.uk

Abstract—Given  the  elasticity,  dynamicity  and  on-demand 
nature  of  the  cloud,  cloud-based  applications  require  dynamic 
models  for  Quality  of  Service  (QoS),  especially  when  the 
sensitivity of QoS tends to fluctuate at runtime. These models can 
be autonomically used by the cloud-based application to correctly 
self-adapt  its  QoS provision.  We present  a novel  dynamic  and 
self-adaptive sensitivity-aware QoS modeling approach, which is 
fine-grained  and  grounded  on  sound  machine  learning 
techniques.  In  particular,  we  combine  symmetric  uncertainty 
with two training techniques:  Auto-Regressive Moving Average 
with  eXogenous  inputs  model  (ARMAX) and Artificial  Neural 
Network  (ANN)  to  reach  two  formulations  of  the  model.  We 
describe  a  middleware  for  implementing  the  approach.  We 
experimentally evaluate the effectiveness of our models using the 
RUBiS benchmark  and  the  FIFA 1998  workload  trends.  The 
results  show  that  our  modeling  approach  is  effective  and  the 
resulting models produce better accuracy when compared with 
conventional models. 

Index Terms—QoS  modeling,  machine  learning,  sensitivity, 
interference, prediction, cloud computing. 

I. INTRODUCTION 

Cloud  computing  enables  dynamic  scalability  and  on 
demand provision of software and hardware resources, which 
can  be  bought  or  leased.  Software-as-a  service  (SaaS)  may 
support  different  concrete  services  with  varying  QoS 
requirements. Examples of these QoS may include: response 
time, throughput, availability, security, and so forth. QoS tends 
to  be  sensitive  to  two  dimensions  of  primitives:  these  are 
Environmental  Primitive  (EP) and  Control  Primitive  (CP). 
We posit  that CP can be either software or hardware, which 
could  be  managed  by  cloud  providers  to  support  QoS 
provisioning. In  particular,  software CPs are software  tactics 
and configurations;  such as  the number of  threads in thread 
pool and its life time,  the number of connections in database 
connection  pool,  security  and  load  balancing  policies  etc. 
Whereas, hardware CPs are computational resources, such as 
CPU, memory and bandwidth. These software and hardware 
CPs are offered at the Platform-as-a Service (PaaS) [25] and 
Infrastructure-as-a Service (IaaS) [26] fronts respectively. On 
the  other  hand,  we  relate  EP to highly  dynamic scenarios, 
which can significantly influence the QoS but the provider can 
not  manage  and  control  their  behavior.  Examples  include 
unbounded workload  and  unpredictable  bound received  data 

etc. If the provider would be able to control the presence of 
these scenarios, these can be then considered as CPs.

The primitives, which correlate with a QoS are referred to 
as  relevant primitives  of such QoS. These relevant primitives 
are  numerous  and  tend  to  be  various  in  different  cloud 
scenarios.  Existing  works  (e.g.,  [1]-[12],  [20,21])  however, 
have  only  focused  on  deterministic  scenarios,  where  the 
consideration  of  CP  is  limited  and  of  fixed  dimension. 
Research has specifically looked at hardware CPs at the IaaS 
font. Little attention has been devoted for linking software CPs 
at the PaaS layer to QoSs. The PaaS layer facilitates building 
and  deploying  cloud-based  applications  by  delivering  a 
software  stack, which includes middleware (e.g., Tomcat [27] 
and  JBoss  [28]),  programming  APIs  [25],  and  even  a 
development  environment.  Such  software  stack  can  be 
configured  or  influenced  by  various  software  CPs.  In 
particular, the provision of software CPs can be  dynamically 
adapted at runtime with the help of management tools, which 
are used by cloud providers to manipulate the software stack 
[22]. In addition, these primitives tend to be heterogeneous as 
they can be customized  by the PaaS provider,  for  instance, 
they  are  adjustable  in  either  per-application  or  per-service 
basis.  Their  heterogeneity  and  fluctuation  tend  to  influence 
QoSs significantly [22,23]. As a result, modeling QoS should 
cater for both the software and hardware CPs. 

QoS  models  express  the  correlation  between  QoS  and 
changes in its relevant primitives. These models can serve as 
powerful tools to autonomically assist cloud providers in the 
adaptation of cloud-based services and applications. They can 
also  assist  in  determining  the  extent  to  which  services  and 
applications  can  sufficiently  exploit  CPs  to  support  QoS 
objectives taking into consideration the QoS sensitivity to both 
EPs and CPs. By sensitivity, we are interested in answering 
these related questions: (i) Which primitives correlate with the 
QoS provision? (ii) When these primitives correlate with QoS? 
(iii) How the uncertainty of QoS provision can be apportioned 
and be sensitive to these primitives?

For services deployed in highly dynamic, elastic and on-
demand environment like cloud, their QoS sensitivity tends to 
be  dynamic.  However,  existing  QoS  models  and  their 
sensitivity  are  either  static  [1,5,7]  or  semi-dynamic 
[2,3,4,6,8,9,10,11,12,20,21].  In  particular,  the  semi-dynamic 
models have only focused on dynamic expressions of how the 



primitives  correlate with QoS but their treatments for  which 
and when have  been  static.  The  absence  of  such  dynamic 
support  can  lead  to  inaccurate  prediction  of  QoS  and 
inappropriate adaptation of the application. We call for novel 
dynamic and self-adaptive approach for modeling QoS and its 
sensitivity. The modeling approach shall be self-aware of QoS 
sensitivity  with  respect  to  which,  when  and how primitives 
correlate  with  QoS  at  runtime.  Moreover,  it  shall  be  self-
adaptive  to  the  changes  in  QoS  sensitivity.  Specifically, 
modeling QoS with respect to its  dynamic sensitivity in cloud 
poses several challenges:  

QoS  granularity:  A  cloud-based  application  may  be 
composed of numbers of cloud services, each with its  QoSs 
requirements. Existing QoS models (e.g., [1]-[12], [21]) tend to 
focus on the mean and aggregate QoS of the entire application. 
Such coarse-grained analysis suffers from limited sensitivity; it 
does not apportion sensitivity to changes in QoS of individual 
services and the primitives. As a result, dynamic adaptation and 
management of QoS tend to be inaccurate and limited. More 
accurate and effective adaptation needs to be approached from 
a fine-grained perspective. Fine-grained modeling for QoS also 
leads to the concern of QoS interferences.

QoS interferences: Multiple services and their QoSs might 
be sensitive to the same primitive and thus create chances for 
QoS interferences. By interference, we refer to scenarios where 
fluctuation  of  the  primitives  can  directly  (or  indirectly) 
interfere with related services and consequently the correlated 
QoS. For instance, as the workload of a given service increases, 
it will trigger a demand for more threads of the service.  This 
implies  that  the  throughput  of  the  said  service  would  be 
improved  because  more  requests  can  be  processed 
concurrently. However, such change of workload and demand 
on thread could interfere with other services running on the 
same Virtual Machine (VM). This is because the said service 
tends to consume more of the shared computational resource 
allocation.  Such dynamic  QoS interference  implies  that  it  is 
insufficient to model QoS for an individual service in isolation. 

Cloud  dynamics:  Cloud-based  applications  tend  to  be 
dynamic:  service  composition and deployment  strategies  can 
dynamically  change  at  runtime  as  the  requirements  and 
environment  change.  Such  changes  can  introduce  new 
primitives, phase out certain primitives and affect the demand 
on CPs etc. As a result, QoS model to its  relevant primitives 
can be changed. 

In this paper, we propose a self-adaptive, sensitivity-aware 
and  per-service  QoS  modeling  approach.  Our  approach  is 
capable to adaptively capture the dynamics of QoS sensitivity 
by determining which, when and how primitives correlate with 
QoS  at  runtime.  The  resulting  model  is  able  to  predict  the 
achieved QoS, given a set of  relevant primitives. Such model 
can  assist  adaptive  systems  in  determining  the  sufficient 
provisions of CPs to achieve certain QoS objectives.   To the 
best of our knowledge, we are the first to consider dynamic 
sensitivity  of  QoS  with  respect  to  their  relevant primitives 
while simultaneously considering concerns of QoS granularity, 
QoS interferences and cloud dynamics. In particular, we make 
the following novel contributions:

Firstly, we abstract the problem of fine-grained QoS and its 
sensitivity in a dynamic cloud. We propose a per-service model 
to  address  QoS granularity  and a  relevant primitives  matrix 
attached to each model to cope with the QoS interferences and 
cloud  dynamics.  Unlike  previous  work,  which  had  mainly 
considered  specific  QoSs  (e.g.,  performance),  our  model  is 
generic and applicable to a wider range of QoS attributes. 

Secondly,  we  use  symmetric  uncertainty [16]  to 
dynamically determine  which and  when primitives  correlate 
with QoS. Consequently,  we adaptively update the results in 
the relevant primitives matrix. Symmetric uncertainty is proven 
to be effective in predicting correlated random variables [16]. 
Unlike previous work, we explicitly consider the software CPs 
in conjunction with hardware CPs in QoS modeling.

Thirdly, we combine the abstract QoS model and symmetric 
uncertainty.  We  apply  machine  learning  techniques  to  this 
combination and we reach two alternative formulations of the 
QoS model. In particular, we explore the potentials of Artificial 
Neural Network (ANN) and Auto-Regressive Moving Average 
with  eXogenous  inputs  model  (ARMAX)  for  adaptively 
revealing how primitives correlate with QoS, based on relevant 
primitives matrix. These two techniques are superior to closed-
form models  (e.g.,  queuing network) as  they are  capable  to 
produce  an  accurate  model  without  knowing  the  internal 
structure  of  a  service  and  the  underlying  infrastructure  [3]. 
Their ability to adapt to changing dynamics has been shown to 
be effective [4,6,9,10].

Fourthly, we describe a middleware, which implements our 
self-adaptive approach based on feedback control mechanism.

Fifthly,  our  models  are  experimentally  evaluated  on  the 
RUBiS [14] benchmark using FIFA 1998 workload trend [24]. 
Experiments  show  that  our  models  produce  better  accuracy 
when compared with conventional ones. In comparison of the 
two resulting models, our S-ANN can better handle dynamic 
QoS  sensitivity  and  produce  higher  accuracy  when  the 
fluctuation  of  measured  QoS  increases,  whereas  our  S-
ARMAX produces less error when such fluctuation decreases.

The paper is structured as follows. Section II motivates and 
describes the assumption and design decisions of our models. 
Section  III  describes  the  self-adaptive  and  sensitivity-aware 
QoS modeling approach. Section IV reports on the evaluation 
and  the  experimentation  results.  Section  V  and  VI  discuss 
related work and present the conclusion respectively.

II. MODELS

In  this  section,  we  present  our  assumptions,  the  system 
model and abstract QoS model that drive our design. 

A. System Model

We assume that a cloud-based application is formed of one 
or  more  independent  or  composable  services.  These 
applications  are  hosted  on  the  cloud  infrastructure  where 
resources are shared via VMs. It is possible to host multiple 
applications  on  the  same  VM.  However,  in  this  work  we 
assume one-to-one relationship between an application instance 
and a VM instance. In distributed environment like cloud, an 
application, composed of concrete services {S1, S2, … Si} may 



have multiple replicas deployed to different VMs. A replica of 
an application running on a VM is assumed to have its services 
replicas running on the same VM.  In this work, we refer to the 
replicas  of  concrete  services  as  service-instances:  the  jth 
service-instance of the  ith concrete service is denoted by  Sij. 
Unlike  previous  work  [3,4,6],  which  focus  on  homogenous 
scenario,  we  look  at  heterogeneous  cases  where  different 
software  stacks,  VMs  and  Physical  Machines  (PMs)  in  the 
cloud  could  have  various  types  of  primitives  and  capacity; 
henceforth,  the  relevant primitives  of  QoSs  for  different 
service-instances tends to be heterogeneous. To cope with such 
heterogeneity,  we  aim  to  adaptively  create  QoS  models  in 
relation  to  each  service-instance.  In  such  context,  service-
instances  on  a  VM  use  the  same  computational  resource; 
service-instances  may  functionally  depend  on  instances 
running on other VMs. These facts imply that their QoSs could 
be  sensitive  to  the  same  primitives  causing  likely  QoS 
interferences.  Often,  the  virtualization  techniques  in  cloud 
allow  service-instances  to  be  redeployed  on  the  fly.  As  a 
scenario  expressing  an  example  of  cloud  dynamics,  the 
database service can be live-migrated to another VM or PM. 
This situation results in fluctuation of QoS sensitivity.

B. QoS Model

The common practice of machine learning techniques for 
modeling QoS in the cloud is to apply the provision value of 
the  relevant  CPs  as  training  inputs  [3,4,6,9,10,11,12].  By 
provision  value,  we  refer  to  the  allocation  bound  of  CP. 
However, it is generally impossible to guarantee that a given 
QoS can always be achieved by fully utilizing the allocated 
CPs.  Such  fact  obfuscates  the  sensitivity  of  QoS  to  its 
primitives as  using the provision values to train QoS model 
would take those idle proportions of provisions into account. 
As a result, using provision values of CPs as inputs is ill-suited 
in  our  case.  To  cope  with  this  issue,  we  apply  the  actual 
demands of CPs (e.g., real-time usage of CPU) as inputs, which 
better  reveal  QoS  sensitivity.  Moreover,  training  the  model 
with CP demands implies that our model is likely to determine 
the minimal requirement of CP provisions for achieving certain 
QoS objectives. This will potentially improve the elasticity of 
CPs provision in cloud when our modeling approach is used in 
adaptation.  Note  that  certain  CP types  (e.g.,  thread)  can  be 
partitioned to each service-instance , whereas others (e.g., CPU 
and  memory)  are  non-partitionable.  If  a  CP  type  is  non-
partitionable, the demands of the shared service-instances are 
measured  as  an  identical  input.  Otherwise,  the  partitions  of 
such CP type are seen as distinct inputs.

To model the QoS and its sensitivity, we first formulate a 
QoS model,  which abstracts  the dynamic sensitivity of  QoS 
with respect  to its  relevant primitives over time. The model 
determining the  kth QoS of a service-instance  Sij at sampling 
interval t can be formally expressed as:

QoS k
ij( t)= f (SP k

ij(t ) ,δ)  (1)

where  QoS k
ij( t)  is  the  average  value  of  kth QoS  of  Sij at 

interval  t.  f is  the  QoS function,  which subjects  to  dynamic 
changes.  δ refers to any other inputs that are required by the 

technique to train f apart from the primitives. To cope with QoS 
interferences and cloud dynamics, we denote the input SP k

ij(t)  
as the relevant primitives matrix of QoS k

ij ( t)  at interval t. The 
column  entries  of  this  matrix  are  relevant primitives  that 
indicate which primitives  correlate with the QoS. The number 
of  row entries  reveals  how many  historical  values  of  these 
primitives could impact the accuracy of QoS model. Formally, 
the relevant primitives matrix is expressed in Eq. 2:

SP k
ij(t)=( CPa

xy (t ) ... EPb
mn(t −1) ...

... ... ... ...
CPa

xy (t−q+1) ... EPb
mn (t−q) ...)  (2)

where q is the number of order, which determines the number 
of row entry;  its value depends on the technique that trains  f 
(see Section III-B and III-C). CPa

xy (t )  and EPb
mn( t−1)  denote 

average demand of the ath CP of  Sxy  at t and average value of 
the  bth EP of  Smn at t-1 respectively.  The column entries  in 
SP k

ij(t)  are selected from the primitives associated with Sij and 
other correlated service-instances. In particular, a primitive of a 
service-instance is included as a column in such matrix only if 
information  of  the  said  primitive correlates  with that  of 
QoS k

ij( t)  (see Section III-A).  Due to the dynamicity of QoS 
sensitivity, SP k

ij(t)  may be subject to change over time. When 
SP k

ij(t)  has non-partitionable CP types, the redundant column 
entries should be merged as they refer to the same input.

Based on Eq. 2, to predict QoS at interval t, the latest input 
for CP is the demand at interval t, whereas the latest value for 
EP is the data at t-1. This is because at interval t-1, one could 
apply  the  model  to  determine  the  minimal  required  CP 
provisions  for  the  next  interval  t  in  a  proactive  manner. 
However  in  such case,  we can not sense or  control  any EP 
values for the future interval  t  as the EP is uncontrollable and 
unmanageable. Therefore the newest possible EP value is the 
one at interval t-1. Previous EPs (up to interval t-1) could still 
contribute to the uncertainty of future QoS at interval  t since 
the measured data follow continuous time series. 

All the inputs and output in Eq. 1 and Eq. 2 are normalized 
values, which are calculated as the ratio between the value at 
current interval and the biggest ever value through the entire 
time series. This is because the original values have arbitrary 
magnitude, which obfuscates the sensitivity of output to inputs 
and hence affecting the accuracy. Conversely, the normalized 
values improve numeric stability as they range from 0 to 1.

At the end, for a given  QoS k
ij( t) , the ultimate goal of our 

self-adaptive and sensitivity-aware QoS modeling is to: firstly 
adaptively  determine  the  content  of  SP k

ij(t)  and  secondly, 
adaptively train function f.

III. DESIGN AND IMPLEMENTATION OF THE MODELING APPROACH

To adaptively build a fine-grained, sensitivity-aware QoS 
models,  we  implemented  our  modeling  approach  as  a 
middleware. As shown in Fig. 1, the QoS modeling process is 
realized  as  decentralized  feedback  loops;  in  particular,  a 
dedicated  middleware instance is attached to each VM, and it 
could be deployed on the root domain of a PM (e.g., Dom0 of 
the hypervisor Xen [15]). 



Fig. 1.  Self-adaptive and sensitivity-aware QoS modeling middleware

Our  middleware  encapsulates  three  components: data  
collector, primitives selector and QoS function trainer. In Fig. 
1,  each  Middleware  Instance  i is  attached  to  VM  i.  The 
supported QoS attributes and primitive types are provided by 
the cloud administrators. Middleware Instance i monitors the 
data of each service-instance on  VM i across SaaS, PaaS and 
IaaS layers in the cloud via cloud providers' own measurement 
facilities, while adaptively producing QoS models based on this 
data.  More precisely,  the  data collector  continuously  senses 
QoS values, EP values and demand of CPs from all service-
instances on its corresponding VM.  It  is  also  responsible  for 
recording all historical data (step 1). The data collectors  may 
need to collect data from the external service-instances, which 
could  be  on  other  VM/PM.  Because  these  external  service-
instances may be functionally required by the service-instances 
running on the VM attached to  data collectors.  All historical 
data  is  then  passed  to  our  primitives  selector to  determine 
which and when primitives are correlated with a QoS (step 2). 
Once the  relevant primitives  are  selected  for  each QoS, the 
QoS  function trainer  can apply the data set  to dynamically 
train how these primitives correlate with QoS and produce the 
final QoS models, based on machine learning techniques (step 
3). To capture dynamic sensitivity of QoS, the entire process 
should be repeated periodically  (step 1-4).  The frequency of 
this repetition is discussed in Section IV-E.

A. Primitives Selector

As shown in Eq. 1 and Eq. 2, the first task for modeling 
QoS k

ij ( t)  is to explore which primitives should be included as 
column  entries  in  SP k

ij(t) ,  and  determine  when is  the 
appropriate  interval  to  consider  these  primitives.  In  the 
primitives  selector,  we  apply  symmetric  uncertainty [16]  to 
determine which and when primitives correlate with QoS. The 
symmetric uncertainty represents mutual dependency between 
two  random  variables.  Symmetric  uncertainty  between  all 
historically measured data  of  a  QoS and that  of  a primitive 
results in 1, indicating that all information of  the primitive is 
correlated with the QoS (and vice versa). At the other extreme, 
symmetric uncertainty value of 0 implies that changes in the 
primitive’s behavior are  independent  of  that  of  the  QoS. 
Formally, symmetric uncertainty U(X,Y) is calculated as:

U (X ,Y )=
2× I ( X ,Y )

H (X )+H (Y )
 (3)

I ( X ,Y )=∑
y ∈Y

∑
x∈ X

p(x , y) log(
p( x , y )

p (x)× p( y)
) (4)

H (X )=∑
x∈X

p(x )log ( p( x)) (5)

where  X and  Y are collections of all historical data of a QoS 
and  a  primitive.  Eq.  4  shows  the  formula  for  mutual 
information  and Eq.  5  expresses  entropy.  p(x,y)  denotes  the 
joint probability function between a concrete value of QoS  x 
and a concrete value of primitive  y  at a specific interval. p(x) 
and  p(y)  are  the  marginal  probability  function  of  x and  y 
respectively. 

Precisely,  the  primitive  selector  workflow is  as  follows: 
firstly,  based on the sensed data,  it  calculates the symmetric 
uncertainty  between  an  individual  QoS  of  a  given  service-
instance and the primitives, which are likely to be correlated 
with this QoS. Secondly, it updates the corresponding relevant 
primitives  matrix  by  adding  the  primitives,  which  result  in 
nonzero value; while removing primitives that have zero value.

For each QoS of a service-instance  Sij, the likely  relevant 
primitives are selected from two sets of service-instances: the 
first set includes all the service-instances on the same VM that 
Sij belongs  to  (including  Sij itself).  The  second  set  are  all 
service-instances that directly and functionally required by Sij. 
We observe that the primitives of these service-instances are 
most likely to result in nonzero symmetric uncertainty values 
with  Sij's QoSs (the scope of likely  relevant primitives can be 
easily changed). To handle dynamicity, the relevant primitives 
matrix can be continuously updated with newly-measured data. 

B. Sensitivity-Aware ARMAX Model

Recall from the Eq. 1, once the  SP k
ij(t)  is defined by the 

primitives  selector,  our  next  goal  of  QoS  modeling  is  to 
determine  how those  primitives  correlate  with  QoS k

ij( t)  by 
dynamically building the function f. To achieve such goal, we 
apply two alternative techniques in  QoS function trainer. One 
of  these techniques,  which we discuss in this section, is  the 
linear  Auto-Regressive  Moving  Average  with  eXogenous 
inputs model (ARMAX) [19]. This model particularly fits our 
case  because  it  is  based  on  continuous  time  series.  The 
correlation between primitives and QoSs in our case is unlikely 
to be linear, however, the behavior of a service instance can be 
approximated locally as a linear model [9]. We adopt ARMAX 
such that the output is the QoS; inputs are historical QoS values 
and relevant primitives of the said QoS. Formally, based on the 
abstraction  of  QoS  model  and  symmetric  uncertainty,  our 
Sensitivity-aware ARMAX (S-ARMAX) is defined as:

QoS k
ij(t )=∑

z=1

q

αz ( t)×QoS k
ij(t− z )

+∑
z=1

q

∑
a=1

βza (t )×CPa
xy ( t+1−z )+∑

z=1

q

∑
b=1

θzb (t )×EPb
mn( t− z)

 (6)

subject to      CPa
xy (t+1− z) , EPb

mn( t− z)∈SP k
ij (t ) (7)

PMPM ...

VM i

VM 2

VM 1

.

.

.

.

.

IaaS

SaaS

PaaS

Application Service 1

Service n

.

.

Primitives 
Selector

QoS Function 
Trainer

Software Stack

PM

VM i

End Users

Data 
Collector

Middleware Instance 2

Middleware Instance 1

 1 

 1 

 1 
 2

3

 1 4

Middleware Instance i

.

.

Application



where  q is the number of order,  α z(t ) ,  β za( t)  and  θzb (t )  
are the coefficients of corresponding QoS values and relevant 
primitives at sampling interval t. Constraint Eq. 7 ensures that 
any  primitives  should  be  selected  from  SP k

ij(t) ,  which  is 
determined by Eq. 3.

We train the S-ARMAX model  using linear  Least  Mean 
Square  (LMS)  approach  [17].  The  number  of  order q 
determines how many historical intervals should be considered, 
which influences the accuracy of ARMAX model. The optimal 
number of order depends on the column entries in SP k

ij(t)  and 
significant  diversity of  measured data,  in  our case,  data and 
SP k

ij(t)  are  both  fluctuated  over  time.  To  cope  with  this 
problem,  before  training  function  f,  we  additionally  adopt  a 
step-wise algorithm to dynamically find the suitable q for each 
structure of column entries in SP k

ij(t)  and significant diversity. 
To  validate the potential accuracy of prediction, we apply 2-
fold cross-validation [29], which divides the measured data into 
two continuous and equivalent portions; one for training and 
the  second  one  for  validating.  We  used  2-fold  because  the 
decision of selecting the folds has been primarily driven by the 
computation  demands  versus  the  likely  accuracy.  We  have 
observed  that  by  increasing the  number  of  folds,  it  is  very 
likely  to  significantly  increase  the  computation  of  step-wise 
algorithm without gaining significant accuracy improvement. 
Specifically,  the  step-wise  algorithm  works  as  follow: 
whenever  the  column  entries  in  SP k

ij(t)  change  (as  when 
compared to  SP k

ij(t−1) )  or the accuracy of current model is 
lower than certain threshold, the step-wise algorithm trains  f 
with incremental q starts from 1 using the first half of measured 
data,  whereas the accuracy of model is assessed via the rest 
half. The suitable number of order is selected when the next 
order does not offer better accuracy. Finally, the actual function 
f can be trained against all the measured data with previously 
defined q. 

By the end of each interval, all coefficients can be updated 
with the  newly-measured  and normalized  data.  Therefore  S-
ARMAX  is  capable  to  adaptively  handle  the  dynamic 
proportion of each relevant primitive in the uncertainty of QoS. 

C. Sensitivity-Aware ANN Model

Artificial  Neural  Network  (ANN)  [13]  is  applied  as  the 
second technique to build our function f. A detailed explanation 
of ANN can be found in [13]. We chose this model because it is 
capable  for  modeling  complex  nonlinear  correlations  [4].  In 
particular,  we  adopt  ANN  with  one  hidden  layer.  This  is 
because we observed in our experiments that using two or more 
hidden layers could exacerbate the problem of local minima, 
which significantly increases the training time. More precisely, 
the ANN, which we adopt is a single-output, feedforward and 
fully connected three layered network, where the inputs are the 
relevant primitives determined by primitive selector and output 
is the corresponding QoS. Sigmoid function is chosen as the 
activation  function on each neuron  node.  We found that  the 
number  of  order q does  not  influence  ANN's  accuracy 
significantly,  therefore  we  simply  set  q as  1.  Based  on  the 
abstraction  of  QoS  model  and  symmetric  uncertainty,  our 
Sensitivity-aware ANN (S-ANN) model is expressed as:

(8)

subject to          CPa
xy (t ) , EPb

mn (t−1)∈SP k
ij(t) (9)

Constraint Eq. 9 again ensures that any primitives should be 
selected  from  SP k

ij(t) .  ANN  model  can  be  trained  with 
arbitrary quality,  which reveals the potential  accuracy of  the 
model prediction. By model quality, we refer to the degree to 
which the model is fit with respect to the training data. In this 
perspective, a good quality model means that the fitness should 
not be too low or too high; otherwise,  the model will suffer 
from under- and over-fitting. To guarantee model quality, we 
define  minimum  and  maximum  thresholds  to  represent  the 
'good enough' quality of model. The resulting model should be 
re-trained immediately if its quality is not good enough. 

Similar  to  S-ARMAX,  by  the  end  of  each  interval,  the 
weights in S-ANN can be retrained with the newly-measured 
and  normalized  data.  To  achieve  this  goal,  we  apply  the 
RPROP [18] as the actual training algorithm for the network. 
This  is  because  RPROP can  efficiently  reach  'good enough' 
model quality.  To avoid training  forever,  we have  defined a 
training  time  threshold  such  that  if  this  threshold  has  been 
reached, the training is concluded with the best ever model. 

Although ANN is not influenced by the number of order q 
significantly, its prediction accuracy and likelihood of under- 
and over-fitting is affected by the number of hidden neurons in 
hidden layer. The number of hidden neurons is directly related 
to the extent to which we can capture sensitivity between inputs 
and output. As a result, insufficient number of neurons could 
easily  result  in under-fitting of  the model.  Conversely, over-
fitting is very likely to occur when the importance of relations 
between inputs and output are amplified. The proper number of 
hidden  neurons  is  related  to  the  changes  in  SP k

ij(t)  and 
significant diversity of measured data. Therefore similar to S-
ARMAX, before training the actual function f, we apply a step-
wise algorithm to dynamically determine the suitable number 
of  hidden neurons for  each  network. To assess  the potential 
accuracy  of  prediction,  we  apply  the  aforementioned  2-fold 
cross-validation.  Concretely,  the  algorithm works  as  follow: 
once the column entries in SP k

ij(t)  change (as when compared 
to  SP k

ij(t−1) ) or the accuracy of current model is lower than 
certain threshold, the algorithm increases the number of hidden 
neuron gradually (starting from 1) and trains the new network 
with the new setup using half of the measured data. When the 
next  network  setup  could  not  produce  better  accuracy 
(validated  against  the  rest  half  data),  the  algorithm  then 
examine whether the current network setup could train 'good 
enough'  model within the training time threshold, against  all 
the  measured  data.  If  it  fails  to  do  so,  the  hidden  neuron 
number  would  continuously  be  increased;  otherwise,  the 
algorithm terminates. Eventually, we pick the least number of 
hidden neurons that results in the best accuracy. At the end, the  

QoS k
ij( t)

CP1
11(t)

EP1
11(t−1)

CP a
xy (t )

EPb
mn( t−1)

Input 
layer

Output 
layer

Hidden 
layer

.

.
.
.

.

.



training of  f and validation of quality can be done against all 
measured data with the discovered number of hidden neurons.

IV. EXPERIMENTS AND EVALUATION

The  primary  intention of  our  experiments  is  to  evaluate 
accuracy  and  effectiveness  of  the  proposed  QoS  modeling 
approach  with  respect  to  the  scale  of  data. Specifically,  we 
compare the accuracy of the proposed S-ARMAX and S-ANN 
models with conventional models in continuous time series. We 
also assess the sensitivity of our models to the size of training 
data. Finally, we examine training efficiency by looking at the 
training overhead. 

Our experiments use  RUBiS [14] benchmark, which is an 
online auction application. RUBiS defines 26 different services 
e.g.,  BrowseCategory,  ViewItems etc.  Simulation  of  the 
artificial workload is based on workload patterns, which define 
the probability of an end-client to go from a service to another. 
RUBiS offers  two  categories  of  workload  patterns:  the 
browsing  pattern  assumes  read-only  services  whereas  the 
biding pattern simulates both read and write intensive services. 
These patterns help us simulate QoS interference because the 
request  rates  vary  among service-instances.  Instead  of  using 
random and arbitrary workload trend to simulate the number of 
clients interacting with RUBiS services, we vary the number of 
clients proportionally according to the FIFA 1998 trend [24]. 
We  compress  the  FIFA  1998  trend  in  the  way  that  the 
fluctuation of one day in the trend corresponds to 200 secs in 
our  experiment.  The  use  of  FIFA workload  provides  ready 
sample for simulating scenarios related to service invocations.  

The testbed  consists  of  three  PMs forming a  min-cloud. 
One of them runs the client emulator, while the rest PMs are 
used  for  hosting  VMs where  the  RUBiS application  and  its 
replicas are deployed on. Each PM is an Intel Core i7 2.80GHz, 
4 GB RAM computer with Gigabit Ethernet connected to the 
switch. All machines run Linux kernel 2.6.16.29. The hosting 
machine runs Xen v3.0.3 [15]. We use Apache v2.0.54 as the 
web  server,  Tomcat  v6.0.28  as  the  application  server  and 
MySQL v3.23.58 as the database server. We implemented our 
middleware using Java, JDK 1.6. In particular, the training of 
S-ARMAX is based on the Apache Mathematics Library [30] 
and the S-ANN is trained via Encog Framework [31]. To avoid 
dependency  with  hardware,  we  optimize  the  training 
performance of the model by enabling Encog's multi-threaded 
training  feature  instead  of  using  its  support  for  GPU.  Our 
middleware  is  running  on  Dom0 of  each  PM. To eliminate 
interference caused by model training, we allocated 25% CPU 
and 1 GB memory to Dom0, which tends to be sufficient. 

To  simulate  cloud  dynamics,  we  apply  two  deployment 
strategies for the benchmark. The first strategy D1 assumes that 
all  services  of  the  application  are  hosted  on  one  VM.  The 
second  strategy  D2 involves  two  VMs for  each  application 
replica, where the database server and web/application server 
are  deployed  on  different  VMs.  To  facilitate  the  dynamic 
deployment in the cloud, we switch the deployment from D1 to 
D2 on the fly by live-migrating the database service. To further 
verify  our  modeling  approach  under  unusual  workload 
changes, we apply the biding workload pattern for D1 whereas 

the  browsing  pattern  is  used  for  D2.  The  entire  FIFA 98 
workload trend is used for D1, and it is repeated again for D2. 
Due to limited space, we only report on evaluation of the QoS 
models for one service-instance of a  concrete service named 
SearchByCategory. 

A. Examined QoSs and Primitives

For the simplicity of exposition, we report on a scenario, 
which  considers  the  following  dimensions:  three  QoS 
attributes,  two hardware  CPs,  one software CP and one EP. 
Based  on  the  real-life  workload  and  benchmark,  this  setup 
sufficiently provides us with valuable insight on the models' 
behavior when handling a large stream of live data in complex 
and dynamic systems. 

Concretely, the three QoS attributes, which we monitor and 
predict  are  availability,  response  time  and  throughput.  To 
simulate  availability,  we  assign  a  waiting  time  threshold  on 
client emulator. That is, the service is considered as unavailable 
for the waiting period if the client does not receive response 
within the waiting time. Throughput is measured by calculating 
the rate of completed requests. We denote response time as the 
leaped  time  between  services  receiving  a  request  and  a 
response being sent out.  All  of  these QoSs are  measured in 
average value of an interval for each service-instance. We have  
implemented the measurement toolkit in Java.

The primitive inputs we considered are two hardware CPs: 
CPU and memory;  one  software  CP:  number  of  threads  (in 
Tomcat)  and  one  EP:  workload.  To  better  simulate  the 
heterogeneity  of  software  CPs,  we  modify  the  original 
configuration named  maxThreads in  Tomcat  to  a  per-service 
basis. In other words, it is possible to restrict the number of 
threads per service-instance. In addition, we measure workload 
as  requests  rate  per-service.  We  monitor  VM's  CPU  and 
memory  demand via  Xen,  whereas  the  threads  demand and 
workload  of  each  service-instance  are  measured  by  the 
management facility provided by Tomcat.

To sum up,  there  are  three  QoS models  that  need to  be 
adaptively created for each service-instance. The actual inputs 
to train and predict these three QoSs are the primitives in their 
relevant primitives matrix, which are adaptively determined by 
the primitive selector and the used machine learning techniques 
as  explained  in  Section III-B  and  III-C.  In  the  case  of  our 
experiments, the likely relevant primitives of each QoS would 
be  selected  from:  CPU  and  memory  demands  of  the 
web/application server VM;  CPU and memory demands of the 
database server VM (this is only available when switch to D2); 
threads  demands  and  workload  for  each  of  the  26  service-
instances  on  the  same  VM.  To  compare  S-ANN  and  S-
ARMAX,  the  QoS  function  trainer would  simultaneously 
produce two alternative models for each QoS.

B. Continuous Accuracy

To validate the correctness, we measure the accuracy of our 
QoS modeling approach on the fly. The sampling interval is 30 
secs with the total of 700 intervals. In particular, we examine 
the accuracy of one interval ahead prediction. That is, by the 
end of interval t, our middleware trains QoS  models  based  on



Table. 1. Comparative summary of QoS prediction accuracy for a service-instance of SearchByCategory

QoS
SMAPE of Prediction (%)

RSD of Measured QoS Trend (%)S-ANN C-ANN S-ARMAX C-ARMAX 

per-service per-application per-service per-application

Response Time 6.97 12.76 31.72 11.43 15.08 34.03 120.61

Throughput 11.14 16.88 35.28 7.99 13.22 37.82 86.41

Availability 0.96 0.38 1.36 0.01 0.01 1 2.24

Fig. 2.  Actual and predicated response time (x-axis is sampling interval)

Fig. 3.  Actual and predicated throughput (x-axis is sampling interval)

Fig. 4.  Actual and predicated availability (x-axis is sampling interval)

historical data up to t-1, the resulting model predicts the QoS 
at  t by  using  historical  QoS  values  (for  S-ARMAX),  the 
measured demands of CPs up to current interval t and value of 
EP up  to  interval  t-1.  For  all  predictions,  the  accuracy  is 
assessed  via  Symmetric  Mean  Average  Percentage  Error 
(SMAPE), which is computed as: 

SMAPE = 1
K
∑
t=1

K ∣QoS k
ij( t) '−QoSk

ij( t)∣
QoS k

ij( t) '+QoSk
ij( t)

 (10)

where K is the total number of intervals, QoS k
ij( t) '  denotes the 

measurement  of  the  kth QoS  of  Sij at  interval  t whereas 
QoS k

ij ( t) denotes the prediction for the same QoS at the same 
interval.  Note  that  we  regard  zero  value  of  QoS as  invalid 
measurement, because it only represent the fact that no one has 
requested a certain service at a point in time.

To further evaluate the improvement to conventional  semi-
dynamic  approaches,  we  compare  the  accuracy  of  our  S-
ARMAX  and  S-ANN  models  against  the  conventional 
ARMAX   [e.g.,  9,10]   and   ANN   [e.g.,  3,4,6]    based 
models, which only consider limited and fixed hardware CPs 

such as the  CPU and memory of the web/application server 
VM. In addition, they do not cater for QoS interference and 
cloud dynamics. We denote these conventional models as  C-
ARMAX and  C-ANN.  Because  these  models  rely  on  fixed 
number  of  relevant primitives,  their  number  of  order  and 
hidden neurons are fixed and are obtained by examining given 
set of measured data (we discovered that in our case set q as 2 
for C-ARMAX and 18 hidden neurons for C-ANN could result 
in the best model). These conventional models predict QoS on 
per-application  basis,  whereas  our  models  are  per-service 
models. Thereby to eliminate noise caused by granularity, we 
also  compare  our  models  with  modified,  per-service  C-
ARMAX  and  C-ANN.  To  analyze  the  correlation  between 
model accuracy and the variation of measured QoS trend, we 
apply  Relative  Standard  Deviation  (RSD)  to  measure  how 
fluctuation of the QoS tends to be in a relative manner, such 
metric is calculated as: RSD = σ / μ , where σ  is the standard 
deviation and μ  is the mean of all measured QoS values. 

The  accuracies  of  all  the  comparative  models  are 
summarized  in  Table  1.  It  clearly  indicates  that  our S-ANN 



reduces  the  error from 31.72% to  6.97% for  response time; 
from 35.28% to  11.14% for  throughput  and  from 1.36% to 
0.96% for  availability,  when compared to per-application C-
ANN model.  In  contrast  to  per-service  C-ANN, the S-ANN 
also reduces 5.79% error (12.76% to 6.97%) for response time 
and 5.74% error (16.88% to 11.14%) for throughput. The only 
exception is that the S-ANN tends to produce 0.58% (0.38% to 
0.96%)  higher  error  for  availability.  We believe  that  this  is 
because the RSD of availability is relatively small and thus the 
influence caused by dynamic QoS sensitivity tends to be trivial, 
which could easily cause over-fitting. On the other hand, our S-
ARMAX is superior to both per-application and per-service C-
ARMAX models. In particular, S-ARMAX reduces the error 
from 34.03% to  11.43% for  response time;  from 37.82% to 
7.99% for throughput and from 1% to 0.01% for availability, 
when compared to the per-application C-ARMAX model.  In 
contrast  to  per-service  C-ARMAX,  the  S-ARMAX  also 
reduces 4.45% error (15.08% to 11.43%) for response time and 
5.23% error (13.22% to 7.99%) for throughput. The prediction 
error for availability remains the same. To conclude, it is clear 
that both of our S-ANN and S-ARMAX offers better accuracy 
than the C-ANN and C-ARMAX models.

An interesting discovery is that, when we compare our S-
ANN  and  S-ARMAX  models,  the  results  reveal  that  S-
ARMAX  reduces  0.95%  error  (0.96%  to  0.01%)  for 
availability, which is nearly 99% of S-ANN. It also produces 
3.15% less error (11.14% to 7.99%) for throughput, which is 
around 28% of S-ANN. However, S-ANN tends to be better on 
response  time  by  reducing  4.46% error  (11.43% to  6.97%); 
such improvement is around 39% of S-ARMAX. We can also 
see from Table 1 that the RSD for availability, throughput and 
response time are 2.24%, 86.41% and 120.61% respectively. 
These observations indicate that nonlinear model like S-ANN 
handles  the  dynamic  QoS  sensitivity  better  when  the 
fluctuation of measured QoS increases, whereas the linear S-
ARMAX produces less error when such fluctuation decreases. 
This is a useful conclusion as it implies that to better handle the 
dynamic QoS sensitivity,  we shall  also adaptively determine 
the best techniques to train QoS function f at runtime.

To provide more detailed view of accuracy when using the 
proposed modeling approach, Fig. 2-4 illustrate the total of 616 
valid measurements of the actual QoS and predicated values 
produced by S-ANN and S-ARMAX. More precisely,  Fig. 2 
demonstrates the trends for response time. Although the figure 
shows that error tends to increase for some of the peak points, 
it  is  obvious that  both models  still  produce  good prediction 
even for  D1 (from interval  1 to 310),  where the QoS trend 
highly fluctuates. Particularly, S-ANN performs better in terms 
of predicting change points. On the other hands, both models 
obtain excellent fit after interval 310 when we switch to  D2. 
Similar  observation  occurs  in  Fig.  3,  which  illustrates  the 
trends for throughput. In particular, across all the intervals, our 
models have good prediction even at the peak and trough for 
both  D1 (from  interval  1  to  310)  and  D2 (interval  310 
onwards).  In  addition,  predictions  for  change  points  in  the 
curve are acceptable. The trends for availability are shown in 
Fig. 4.  Note that the entire trends only have 525 intervals;  this 

Fig. 5.  Sensitivity of accuracy to training data size (x-axis is data %)

is because the availability has constant value (100%) before the 
first unavailable data point. As a result, our primitives selector 
identifies  that  no  primitives  correlate  with  such  QoS as  no 
fluctuation occurs. Figure 4 clearly indicates  that  both  models 
predict well for D1 (from interval 1 to 175). However, after we 
switch to D2 at interval 175, the S-ANN’s prediction tends to 
be worse than S-ARMAX. This is because the availability trend 
has  extremely  tiny  fluctuation  for  D1,  while  the  cloud 
dynamics  scenario,  which  we  are  simulating  hugely  affect 
availability due to continuous migration of database services. 
We observe that when training the ANN model with stable data 
(e.g.,  interval  1-174)  followed  by  sudden  fluctuation  (at 
interval  175)  can  easily  cause  over-fitting.  This  eventually 
influences the ANN's prediction accuracy. Nevertheless, we can 
see that  the S-ANN is adaptive enough to correct  itself;  the 
prediction becomes better and more stable from interval 230. 
On the other hand, S-ARMAX obtains perfect prediction fit for 
availability in all the intervals.

C. Sensitivity to Training Data Size

To  understand  the  sensitivity  of  model  accuracy  to  the 
training  data  size,  we divide  all  the  measured intervals  into 
70% as training data and the rest 30% as testing data.  All the 
considered  inputs  and  outputs  remain  the  same  as  those 
described in section IV-A. Both S-ANN and S-ARMAX are 
trained based on a portion of the training data, ranging from 
40% to 100%; symmetric uncertainty is applied on each portion 
of the training data to determine the relevant primitives matrix. 
Finally, we use the resulting models to predict the whole testing 
data and record their SMAPE. As shown in Fig. 5, the accuracy 
of S-ARMAX models for predicting throughput (S-ARMAX-
T) and response time (S-ARMAX-R) improve dramatically as 
the  size  of  training  data  increases:  from  44%  to  27%  for 
response time and 37% to 14% for throughput.  However, they 
suffer from relatively high error when there is not  sufficient 
training data. In contrast, the S-ANN models for throughput (S-
ANN-T) and response time (S-ANN-R) improve their accuracy 
gradually: from 14% to 12% for response time and 16% to 13% 
for throughput. Such improvement is less significant, however. 
We conclude that S-ANN is less sensitive to the training data 
size. The accuracy of both models for availability (S-ANN-A 
and  S-ARMAX-A)  records  similar  observations:  for  S-
ARMAX is from 1.3% to 0.5% and for S-ANN is from 0.8% to 
0.4%. Ultimately, it is evident that both models improve their 
accuracy as the size of training data increase. In particular, S-
ANN produces acceptable accuracy even under limited data.



D. Efficiency

Finally, we examine the efficiency to train our sensitivity-
aware QoS models with all the training data set. We observed 
that  the  time  taken  to  calculate  systematic  uncertainty  of  a 
service-instance  is  rather  trivial  in  our  case.  The  assessed 
model training time is calculated as the average of 20 trainings 
against  the  response  time  data  in  all  intervals. To  better 
evaluate the efficiency for both S-ANN and S-ARMAX, we 
distinguish two cases: (i) the training time when changes occur 
in relevant primitives matrix; this requires extra computation in 
finding the proper number of order and hidden neuron, and (ii) 
the case without such changes.  From Fig. 6, we can clearly see 
that the training of S-ANN with changes in the matrix produces 
relatively  large  overhead  (5.48  secs).  This  is  due  to  the 
complexity  of  ANN  where  the  most  appropriate  number  of 
hidden neuron tends to be high and varying in the 20 trainings. 
Nevertheless,  the  trainings with  a  known number  of  hidden 
neuron can be completed in around 0.334 sec.  On the other 
hand, the training of S-ARMAX with change in matrix can be 
completed in 0.113 sec; the overhead is marginal and almost 
similar  to  training without  such change.  This is  because  the 
structure of ARMAX is simpler. In addition, we observed that 
in most of the 20 trainings, setting the number of order as small 
as 2 could result in the best accuracy. The S-ARMAX can be 
trained within around 0.112 sec with known number of order. 
To conclude, both models have training overhead less than 10 
seconds. In particular, S-ARMAX is relatively more efficient in 
all  cases.  Therefore,  the  training  overhead  of  our  models  is 
negligible within the sampling interval of 30 secs.

E. Discussion

Our  modeling  approach  runs  periodically  in  order  to 
capture dynamic QoS sensitivity. Determine the frequency of 
modeling is a complex task. If the modeling is too frequent, 
this may entail large demand on resources for computing the 
model.  In  addition,  model  training  may  not  be  completed 
within its interval. In contrast, too low frequency may fail to 
capture the actual and evolving diversity of QoS. Consequently, 
arriving  on  the  right  frequency  encompasses  a  trade-off 
between efficiency and accuracy. In our experiments, we have 
analyzed  the  workload  characteristics  and  have  empirically 
decided  on  the  frequency  level.  We  believe  that  the  same 
approach can be applied in a practical scenario, where each of 
the  middleware  instances can  have  its  own  frequency  for 
modeling, as long as their responsible service-instances do not 
functionally interact with each others.

We  observed  that  when  Dom0  suffers  contention,  the 
performance  of  our  approach  could  become  worse.  In  our 
experiment, we have eliminated this by determining the proper 
amount of provision for Dom0 offline. In the real-world cases, 
it is still possible to follow the same approach. More precisely, 
the  cloud  provider  can  specify  the  required  computational 
resources for Dom0 in relation to the total number of service- 
instances on each PM type. This can be achieved offline by 
running  dummy  applications  or  using  historical  data.  Such 
decision  may  influence  the  VM  to  PM  allocation  strategy, 
which is out of the scope of this work. 

Fig. 6.  Training time of S-ANN and SARMAX

Another worth observation to mention is that the historical 
data in  data collector could become extremely large as time 
goes by. Therefore a “forgotten strategy” is desired when there 
is no need to take too much data into account. To achieve such 
goal,  one  could  set  a  threshold  to  the maximum number  of 
historical  intervals  to  be  recorded.  Once  such  threshold  is 
exceeded, the QoS function trainer can apply cross-validation 
to examine if  dropping data from the oldest  intervals  would 
affect the model accuracy. If the reduction in accuracy is less 
than 1% error then such data can be removed.

V. RELATED WORK

Emeakaroha et al. [1] propose a framework to manage QoS 
in the  cloud.  Their  QoS  models are static expressions,  which 
handle  predefined  rules  for  managing  QoS  in  isolation. 
Queuing  theory  has  been  widely  applied  for  QoS modeling 
(e.g.,  [5]  and  [7]).  [7]  describe  a  two-step  approach  to 
decompose  QoS  into  hardware  CPs.  Firstly  a  profiling 
mechanism is applied  to estimate  resource  demand  for  each 
application. In the next step, a multi-station queuing network is 
used  to  analyze  the  correlation  between  demand  and 
performance  related  QoS.  Their  work  is  not  cloud  related 
however.  [5]  is  cloud  specific  and  focus  on  analyzing  QoS 
model for each tier of an application using queuing network. 
All of the aforementioned approaches are static,  closed-form 
QoS  models  and  their  effectiveness  is  restricted  to  the 
assumptions of system's internal operations. Their static nature 
makes these approaches limited in being adaptive and in coping 
with the dynamic sensitivity of QoS in the cloud. 

Feedback  control  is  applied  in  a  semi-dynamic  way  to 
address the problem of QoS  modeling. Diao et al. [8] present a 
Multiple-Input and Multiple-Output (MIMO) feedback based 
approach, which has focused on runtime performance modeling 
on how it correlates with the primitives. The research discussed 
in [2] focuses on linear MIMO modeling of performance in the 
cloud.  These  approaches  consider  VM-level  interference 
whereas our approach takes dynamic service-level interference 
into account. 

[9]  and [10]  apply  linear  ARMAX regression to  express 
correlation between performance and primitives for VM-based 
applications.  They have  not  considered  the  problem of  QoS 
interference  and  cloud  dynamics;  henceforth  their  use  of 
ARMAX and the  resulting model  is different to ours.  Other 
machine  learning  techniques  (e.g.,  ANN  [3,4,6],  SVM  [3], 
TreeBased  [12]  and  nonlinear  [11])  have  been  applied  for 
performance modeling in the cloud.  Particularly,  [3]  and [6] 



conduct off-line model training and their experiments are based 
on highly restricted and controlled environment, which limits 
the  evaluation  of  model  accuracy.  Unlike  our  models,  their 
models deal  with a  fixed predefined set  of primitives.  Their 
dynamicity  is  limited  as  these  models  are  trained  with  the 
provision values of these primitives. Furthermore, they assume 
homogenous QoS model for an application and its replicas.

Although not  designed for  cloud,  [20]  propose a  hybrid, 
fine-grained performance modeling where linear AR is used to 
predict demand of primitives and Kalman filter is applied to 
tune  the  actual  model.  However,  they  do  not  handle  QoS 
interference and cloud dynamics explicitly. In addition, they do 
not consider software CPs. [21] realize QoS modeling based on 
change-point  detection techniques.  Nevertheless,  they  do not 
intend to discuss dynamic QoS sensitivity.

All  aforementioned  QoS  modeling  solutions  are  semi-
dynamic because  they  only tend to  dynamically  model  how 
hardware  CPs  correlate  with  QoS,  but  their  treatments  for 
which  and when have been static. In addition, they focus on 
performance QoS only and do not consider software CPs. As a 
result, their handling of dynamic QoS sensitivity are implicit. 

VI. CONCLUSION AND FUTURE WORK

We have proposed a novel self-adaptive, sensitivity-aware 
QoS modeling approach grounded on symmetric  uncertainty 
and two machine learning techniques, ARMAX and ANN to 
reach two formulations of the QoS model. The approach can 
capture the dynamics of QoS sensitivity by determining which, 
when and  how primitives  correlate  with QoS at  runtime.  In 
addition, we cater for QoS granularity, QoS interferences and 
cloud dynamics.  Our approach considers fine-grained model as 
well as both software and hardware CPs. We have implemented 
our approach as a middleware solution that adaptively creates 
fine-grained QoS models.  We have experimentally  evaluated 
our approach with respect to accuracy, sensitivity to data size 
and efficiency using the RUBiS benchmark and the FIFA 1998 
workload  trends.  The  results  reveal  that  our  approach  is 
effective and produces better accuracy as when compared with 
the  conventional  models  in  various  cases.  Experiments  also 
imply that the proposed S-ANN tends to be more accurate than 
S-ARMAX, when the fluctuation of QoS increases. Therefore, 
one of the future extensions is to adaptively determine the best 
technique to train QoS model at each interval.

The  implication  of  self-adaptive  QoS  modeling  and  its 
dynamic sensitivity analysis to adaptation in the cloud are vast: 
the model can assist autonomic software agents in predicting 
causes  of  probable  risks  leading  to  violations;  working  on 
appropriate  mitigation  strategies  and/or  even  planning  for 
optimal QoS design and online adaptation strategies. Moreover, 
it  can assist  problems related to QoS self-management,  self-
adaptation,  resource  utilization  and/or  elastic  provision.  In 
future papers, we will report on novel applications benefiting 
from the proposed modeling approach. 

REFERENCES

[1] V.C.  Emeakaroha  et  al,  "Low  level  metrics  to  high  level  SLAs 
-LoM2HiS framework: bridging the gap between monitored metrics and 

SLA  parameters  in  cloud  environments," in  Proc. of  the  High 
Performance Computing and Simulation Conference, 2010. 

[2] R.  Nathuji,  A.  Kansal,  and  A.  Ghaffarkhah,  "Q-clouds:  managing 
performance  interference  effects  for  qos-aware  clouds," in  5th 
conference on Computer systems, New York, USA, pp. 237–250, 2010.

[3] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao and K. Dutta, "Modeling 
virtualized applications using machine learning techniques," in Proc. of  
the 8th Conference on Virtual Execution Environments, pp. 3-14, 2012.

[4] G.Kousiouris et al, "Translation of application-level terms to resource-
level attributes across the Cloud stack layers,"  In IEEE Symposium on 
Computers and Communications, pp. 153-160, 2011.

[5] R.N. Calheiros, R. Ranjan, and R. Buyya, "Virtual machine provisioning 
based  on  analytical  performance  and  QoS  in  cloud  computing 
environments," in Proc. of the 40th Conference on Parallel Processing, 
Taipei, Taiwan,  pp. 295–304, 2011.

[6] S.  Kundu,  R.  Rangaswami,  K.  Dutta,  and  M.  Zhao,  "Application 
performance  modeling  in  a  virtualized  environment,"  In  16th 
Symposium on High Performance Computer Architecture, January 2010. 

[7] Y.  Chen,  S.  Iyer,  X.  Liu,  D.  Milojicic  and  A.  Sahai,  "SLA 
decomposition:  translating  service  level  objectives  to  system  level 
thresholds," in the 4th Conference on Autonomic Computing, 2007. 

[8] Y.  Diao,  N.  Gandhi,  J.L.  Hellerstein,  S.  Parekh,  and  D.M.  Tilbury, 
"MIMO  control  of  an  apache  web  server:  modeling  and  controller 
design," In Proc. of American Control Conference, 2002.

[9] P. Padala et al, "Automated control of multiple virtualized resources," In 
Proc.  of  the  4th  ACM  SIGOPS/EuroSys  European  Conference  on  
Computer Systems, pp. 13-26, 2009. 

[10] Q. Zhu and G. Agrawal, "Resource provisioning with budget constraints 
for adaptive applications in cloud environments,"  in Proc. of the 19th  
ACM Symposium on High Performance Distributed Computing, 2010.

[11] R.C. Chiang and H.H. Huang, "Tracon:  interference-aware scheduling 
for data-intensive applications in virtualized environments," in Proc. of  
2011  Conference  for  High  Performance  Computing,  Networking,  
Storage and Analysis, New York, USA, pp. 1-12, 2011.

[12] P.  Xiong  et  al,  "Intelligent  management  of  virtualized  resources  for 
database systems in cloud environment,"  In 27th Conference on Data  
Engineering, 2011.

[13] W. S. Sarle, Neural networks and statistical models, 1994. 
[14] Rice University Bidding Systems, http://rubis.ow2.org/. 
[15] Xen: a virtual machine monitor, http://xen.xensource.com/. 
[16] I.H. Witten, E. Frank, Data mining: practical machine learning tools and 

techniques, Morgan Kaufmann: Los Altos, CA, 2005. 
[17] B.Widrow and D. Samuel, Stearns: adaptive signal processing, Prentice 

Hall, 1985
[18] M.Riedmiller and H.Braun, "RPROP-a fast adaptive learning algorithm," 

in Proc. of ISCIS VII, University, 1992. 
[19] G.Box, G.M. Jenkins and G.C. Reinsel, Time series analysis: forecasting 

and control, third edition. Prentice-Hall, 1994.
[20] T.  Zheng,  M.  Litoiu,  and  M.  Woodside,  "Integrated  estimation  and 

tracking of performance model parameters with autoregressive trends," 
In Proc. of 2nd conference on Performance engineering, 2011.

[21] P. Bodık et  al,  "Statistical  machine  learning  makes  automatic  control 
practical for internet datacenters,"  In  Proc. of the 2009 conference on  
Hot topics in cloud computing, 2009.

[22] Y.  Zhang,  G.  Huang,  X.  Liu,  and  H.  Mei,  "Integrating  resource 
consumption and allocation for infrastructure resources on-demand," In 
Proc. of 3rd IEEE Conference on Cloud Computing, 2010.

[23] J.Li  et  al,  "Profit-based  experimental  analysis  of  IaaS  cloud 
performance: impact of software resource allocation," In Proc. of the 9th  
Conference on Service Computing, 2012.

[24] M. Arlitt  and T.  Jin,  "A workload characterization study of  the  1998 
world cup web site," IEEE Network, 14(3), pp. 30 –37, May 2000. 

[25] Google App Engine, http://code.google.com/appengine/
[26] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
[27] Tomcat, http://tomcat.apache.org/ 
[28] JBoss, http://www.jboss.org/ 
[29] R. Picard and D. Cook. "Cross-validation of regression models" Journal 

of the American Statistical Association, 79(387), pp. 575–583, 1984.
[30] Apache Mathematics Library, http://commons.apache.org/math/
[31] Encog Framework, http://www.heatonresearch.com/encog


	I. Introduction 
	II. Models
	A. System Model
	B. QoS Model

	III. Design and Implementation of the Modeling Approach
	A. Primitives Selector
	B. Sensitivity-Aware ARMAX Model
	C. Sensitivity-Aware ANN Model

	IV. Experiments and Evaluation
	A. Examined QoSs and Primitives
	B. Continuous Accuracy
	C. Sensitivity to Training Data Size
	D. Efficiency
	E. Discussion

	V. Related Work
	VI. Conclusion and Future Work
	References

