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ABSTRACT
Background: High talker variability (i.e., multiple voices in the input) has been

found effective in training nonnative phonetic contrasts in adults. A small number of

studies suggest that children also benefit from high-variability phonetic training

with some evidence that they show greater learning (more plasticity) than adults

given matched input, although results are mixed. However, no study has directly

compared the effectiveness of high versus low talker variability in children.

Methods: Native Greek-speaking eight-year-olds (N = 52), and adults (N = 41) were

exposed to the English /i/-/I/ contrast in 10 training sessions through a computerized

word-learning game. Pre- and post-training tests examined discrimination of the

contrast as well as lexical learning. Participants were randomly assigned to high

(four talkers) or low (one talker) variability training conditions.

Results: Both age groups improved during training, and both improved more while

trained with a single talker. Results of a three-interval oddity discrimination test did

not show the predicted benefit of high-variability training in either age group.

Instead, children showed an effect in the reverse direction—i.e., reliably greater

improvements in discrimination following single talker training, even for untrained

generalization items, although the result is qualified by (accidental) differences

between participant groups at pre-test. Adults showed a numeric advantage for

high-variability but were inconsistent with respect to voice and word novelty. In

addition, no effect of variability was found for lexical learning. There was no

evidence of greater plasticity for phonetic learning in child learners.

Discussion: This paper adds to the handful of studies demonstrating that, like

adults, child learners can improve their discrimination of a phonetic contrast via

computerized training. There was no evidence of a benefit of training with multiple

talkers, either for discrimination or word learning. The results also do not support

the findings of greater plasticity in child learners found in a previous paper

(Giannakopoulou, Uther & Ylinen, 2013a). We discuss these results in terms of

various differences between training and test tasks used in the current work

compared with previous literature.
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INTRODUCTION
Phonetic training studies in adults
One of the most challenging aspects of learning a second language (L2) is learning to

accurately perceive novel phonetic categories. This is particularly difficult when the

mapping between phonetic properties and phonological categories is mismatched

between the first language (L1) and L2 (Best, 1995; Flege, 1995; Giannakopoulou, Uther &

Ylinen, 2011). A substantial body of literature has demonstrated that adult learners can

improve their discrimination and identification of nonnative speech sounds through

phonetic training, but that effective generalization may depend upon encountering

sufficiently varied stimuli during training. For example, in an early attempt to train a

nonnative contrast, Strange & Dittmann (1984) trained native Japanese speakers on

the English /r/-/l/ contrast using a discrimination task in which participants made

same–different judgments about stimuli from a synthetic rock-lock continuum, receiving

immediate trial by trial feedback. Variability was present in the form of the ambiguous

intermediate stimuli along the continuum, however, there was a single phonetic context

and a single (synthesized) talker. Participants were given a variety of discrimination

and identification tasks pre- and post-training. These revealed improvements in

discrimination and identification for stimuli on the synthesized rock-lock continuum, and

for novel items on a synthesized rake-lake continuum, but not for naturally produced

minimal pair items that had not been encountered in training. Later experiments

suggested that this limited generalization was due to the low-variability present in the

stimuli used in the training intervention (i.e., a single phonetic context and single talker).

Logan, Lively & Pisoni (1991) also trained Japanese speakers on the English /r/-/l/

contrast, but used high-variability training stimuli that included multiple natural

exemplars (67 minimal pairs, where the target speech sounds appeared in different

phonetic contexts) and multiple talkers (four males and two females). They employed

a minimal pair identification task in which participants identified the correct member

from a (written) minimal pair, receiving trial by trial feedback. Comparison of

performance on tests administered pre- and post-training revealed improvements in

tasks that involved both trained stimuli and untrained stimuli produced by a new talker.

Lively, Logan & Pisoni (1993) replicated this finding of generalization after high-variability

training and, in a follow up experiment using the same training paradigm but with

training stimuli produced by a single (natural) talker (although still exemplifying the

contrast in multiple phonetic environments), they found improvements between pre- and

post-test for the trained talker, but not for an untrained talker, suggesting a specific

role for talker variability in high-variability training.

Following the work of Logan, Lively & Pisoni (1991), high-variability phonetic training

has become a standard methodology in the field. The effectiveness of this type of training

has been demonstrated for various phonetic contrasts and in studies which have also
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found benefits for long-term retention and in production tasks (Bradlow et al., 1997, 1999;

Lively et al., 1994).

Phonetic training studies with children
To date, studies of L2 phonetic training have primarily been conducted in adults. There is

reason to predict that child L2 learners might outperform adults in these tasks, due to

enhanced brain plasticity. A large body of research reports declines in language learning

capacities with age (Johnson & Newport, 1989; Lenneberg, 1967; Newport, 1990, also see

Kuhl, 2004, for review), with various theories proposed to account for this including

changes to developing cognitive mechanisms (Newport, 1990) and increased neural

commitment to structures necessary for the L1 (Kuhl, 2004). For phonetic learning

specifically, there is some naturalistic support for a benefit of age in L2 speech sound

discrimination coming from longitudinal studies comparing child and adult L2 learners

in immersion situations. These studies show better L2 speech sound discrimination in

children compared to adults (Aoyama et al., 2004; Tsukada et al., 2005), although studies

comparing adults and children after periods of immersion less than one year, do not

always find clear perception advantages for children (e.g., Baker et al., 2008; Snow &

Hoefnagel-Höhle, 1978). However, a limitation to these naturalistic studies is that, while

they control for length of residence in the L2-speaking country, the actual input received

by the learners was not controlled. As Tsukada et al. (2005) point out, it is possible

that children may be immersed in a more L2-rich environment than adults, making it

difficult to pull apart age effects from differences in input.

Turning to training studies, only a handful of experiments have compared children and

adults. These have all used high-variability phonetic training but have produced mixed

results with regards to the role of age. Wang & Kuhl (2003) conducted a two-week

computer-based Mandarin tone training study in which native English-speaking adults

and children (three age groups: 6, 10, and 14-year-olds), with no previous experience of

Mandarin, were trained to associate tones with symbols (i.e., a picture of an animal for

each of the four trained tones). Training stimuli exhibited high-variability (648 stimuli

produced by six native speakers of Mandarin). Overall, older participants outperformed

younger participants (adults >14 years >10 years >6 years) at both the pre- and post-

training tests. However, although all participant groups improved as a result of training,

the amount of improvement was approximately the same across all age groups. This result

thus does not support an account in which younger learners demonstrate greater

plasticity.

Wang & Kuhl (2003) suggest that one possible explanation for the fact that they did not

see plasticity differences for children and adults is that, for tones, English speakers

do not have pre-existing comparable categories. This means that the “mental map” for

tone is equally open for children and adults, so that age effects due to previous L1

experience are not expected. This would predict that plasticity effects should be more

likely in segmental phonology. However, a similar result was found by Heeren & Schouten

(2008, 2010), who trained adults and 12-year-old native Dutch speakers, with no

previous Finnish experience, to discriminate the Finnish length contrast /t/-/t:/.
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This was a five-day study with a pre-test and post-test on the first and last days and three

days of training. Training consisted of an identification paradigm (participants

identified stimuli as “short t” or “long t” and received feedback). Stimuli were seven-step

continua created from recordings of five talkers. Pre- and post-tests included

identification and discrimination within and across category boundaries. Although

adults again out performed children overall, both age groups showed reliable increases

in sensitivity in the newly trained category boundaries and, critically, there were again

similar levels of improvement in both age groups. This result might appear to corroborate

that of Wang & Kuhl (2003), however, the lack of age effects may be due to a different

reason, specifically, the amount of training provided (three training sessions) may be

insufficient in order for children to outperform adults (c.f., Giannakopoulou, Uther &

Ylinen, 2013a, discussed below).

In contrast to the studies discussed above, two further studies have found evidence of

greater learning in children than adults for high-variability phonetic training. Shinohara

& Iverson (2013, 2015; also Shinohara, 2014) compared learning of the English /r/-/l/

contrast in native Japanese adults (25–59 years), adolescents (15–18 years) and older

and younger children (8–12 and 6–8 years). Training stimuli exhibited high-variability

(100 word-initial minimal pairs from five talkers) and involved ten days of minimal

pair identification (with written stimuli) and discrimination tasks (all with feedback).

There were pre- and post-test identification tasks with new talkers in both trained

(word-initial) position and untrained positions. In both identification accuracy and

category discrimination abilities, all groups showed evidence of learning and

generalization to new speakers and phonetic contexts. However, adolescents and older

children improved more than either 6–8 year-olds or adults. Shinohara & Iverson

(2013, 2015) interpret the increased learning in older children and adolescents compared

with adults as being due to their less fossilized brain plasticity and lesser interference

from developed L1 phonetic units. Lesser learning in the 6–8 year-olds, which was

unpredicted in a plasticity account, was explained as being a result of difficulties with the

tasks due to an immaturity of phonemic awareness.

One difference between the paradigms used by Heeren & Schouten (2008, 2010) and

Shinohara & Iverson (2013, 2015) is the length of training: Heeren & Schouten used three

training sessions whilst Shinohara & Iverson used 10. If children’s early learning is slower

than that of adults (Snow & Hoefnagel-Höhle, 1978), this could potentially account for

why Shinohara & Iverson saw a plasticity benefit (at least for older children compared

to adults), whilst Heeren & Schouten did not. Some evidence for this comes from a final

study by Giannakopoulou, Uther & Ylinen (2013a), who also found a plasticity benefit

(greater learning in 7–8 year-olds than in adults), but also found evidence that this

maturational difference only emerged after several sessions of exposure. This study

used high-variability phonetic training to train the tense-lax English vowel contrast

/i/ versus /I/ (e.g., bean-bin) with child (7–8 years) and adult (20–30 years) native

Greek learners of L2 English. The study explored both age effects and cue weightings,

through the use of natural and modified duration stimuli (whereby duration cues

were equalized and not relevant, or were reliable cues). A pre-test, training, post-test
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paradigm was used, with training consisting of 10 sessions using an identification task

(identifying the correct member of a minimal pair given written stimuli) with high-

variability stimuli (45 minimal pairs produced by two male and two female speakers).

Half of the participants in each age group were trained with modified stimuli (no duration

cues) and half with natural stimuli. Participants were given the option to replay any given

stimulus and feedback was provided in the form of a video game style animation.

Although Greek adults, who started with more years of L2 education, generally performed

better than Greek children at pre-test, high-variability perceptual training improved

performance for both groups (child and adult) across all tasks (perceptual identification

and discrimination for both natural and modified stimuli conditions). However, critically,

children improved more than adults. Importantly, the results from Giannakopoulou,

Uther & Ylinen (2013a)’s training task, which were recorded each day, suggested that

children’s identification performance only overtook that of adults by Session 7 (see

Giannakopoulou, Uther & Ylinen, 2013a, Figs. 11–14). This suggests that plasticity benefits,

which are seen in this study and in that of Shinohara & Iverson, but not in Heeren &

Schouten (2008, 2010) studies could rely on more lengthy exposure. However, this cannot

account for why Giannakopoulou, Uther & Ylinen saw this benefit for 7–8 year-olds

compared with adults while this was not seen for 6–8 year-olds compared with adults

in the Shinohara & Iverson study (only for older children compared with adults).

If Shinohara & Iverson are right that their youngest children had greater difficulty

with the learning task due to less well developed phonemic awareness, one possibility

is that the /i/ versus /I/ contrast is somehow more salient for Greek speakers than the

/l/ versus /r/ contrast is for Japanese speakers, even for younger children. This may be

partially due to the length cue present in these stimuli: the difference between children and

adults was more marked for the natural stimuli compared with the modified stimuli,

suggesting that the children may have been particularly relying on durational cues during

training. This is in line with research showing that nonnative listeners frommany different

language backgrounds tend to rely heavily on the duration cue when discriminating

English tense-lax vowel pairs (unlike native listeners who rely more on formant frequency,

e.g., Flege, Bohn & Jang, 1997). The reliance on durational cues may also have been

exacerbated by the use of written stimuli during training since English spelling provides

an additional analogue length cue (two letters such as ee and ea are often used to represent

the longer vowel /i/ while a single letter such as i is more often used to represent the

shorter vowel /I/), which may aid learning (see also Giannakopoulou, Uther & Ylinen,

2013b, for evidence on the role of orthography in learning this contrast). We return to this

point in the General Discussion.

In sum, the results of a handful of phonetic training studies give mixed results

with respect to whether younger learners show stronger learning given matched input

(i.e., plasticity effects). It has been suggested that that the presence (or lack) of pre-existing

comparable categories in the L1, the length of exposure, and the salience of the

contrast could all influence children’s learning and contribute to differences across

experiments. In the current study, we build on the paradigm established in

Giannakopoulou, Uther & Ylinen (2013a)—where plasticity benefits were clearly
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seen—comparing Greek 7–8 year-olds and adults trained on the English /i/ versus /I/

contrast (though we modify the paradigm to remove orthographic cues to learning). We

use this paradigm to explore the effect of variability in training with different age groups.

Comparison of high and low-variability training
As discussed above, work by Lively, Logan & Pisoni (1993) suggested a benefit for

high-variability input over low-variability input in phonetic training for adult learners.

The finding that encountering varied training instances boosts generalization is intuitively

sensible: experience of variation allows the formation of generalized representations

that include only phonetically relevant cues and exclude irrelevant talker identity cues.

Since the seminal experiments of Lively, Logan & Pisoni (1993), many phonetic training

studies have continued to use high-variability input, however, surprisingly few have

actually tested the benefit of high-variability directly. One study which did find a

high-variability benefit was conducted by Clopper & Pisoni (2004), although this focused

on dialect categorization rather than L2 phonetic learning. They tested participants’

ability to categorize dialects following exposure to high-variability training (three talkers

per dialect) compared with low-variability training (one talker per dialect), finding

better generalization after high-variability training.

However, two studies looking at lexical tone learning also compared variable

(multispeaker) training with less variable training, but did not find an overall benefit of

high-variability input (Peracchione et al., 2007; Sadakata & McQueen, 2014). Instead,

these studies found an interaction with aptitude (i.e., baseline perceptual ability for

detecting pitch) whereby only high aptitude participants benefitted from high-variability

input whilst those of low aptitude did better with low-variability training. However,

since these studies did not use segmental phonetic contrasts it is currently unclear the

extent to which they would generalize to phonetic training. Finally, one recent training

study did specifically compare high- and low-variability in L2 phonetic learning at the

segmental level: Sadakata & McQueen (2013), tested native Dutch speakers’ ability to

identify geminate and singleton variants of the Japanese fricative /s/, comparing low and

high-variability training (here manipulated in terms of item variability). They found

that more variable input did lead to greater improvements with generalization but no

interaction with aptitude.

To the best of our knowledge the studies reviewed above are the only ones to directly

compare low- and high-variability training for phonetic contrasts. Moving beyond the

phonetic learning literature, a separate literature on L2 word learning has also explored

the benefits of input variability (Barcroft & Sommers, 2005, 2014; Sommers & Barcroft,

2007, 2011). A general finding from this literature is that vocabulary learning, as tested

both in production and reception tests, is stronger when exposure is more varied,

with benefits both of multiple talkers and multiple voice quality types. Further

experiments rule out explanations in terms of a benefit of greater cognitive effort

(Sommers & Barcroft, 2011). Barcroft & Sommers (2005, 2014) explain this general benefit

of acoustic variability in terms of an exemplar-based framework whereby indexical

information from all encountered examples is retained in the early stages. This means that
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when words are encountered from multiple talkers/voice types, learners incorporate a

wider variety of cues into their representations, allowing them to form more “associative

hooks” and robust representations for the target words. Note that this explanation is

subtly different from the standard explanation as to why high-variability input benefits

phonetic learning, which is assumed to stem from learning to ignore phonemically

irrelevant information and thus is specifically important for generalization (whereas the

benefit for word-learning tasks should hold for both trained and novel talkers at test).

Turning to children, no study has specifically explored whether high-variability input is

more effective than low-variability input for L2 phonetic training in children. However,

there is some research into word learning in L1 which suggests a role for high-variability in

infants. This research has been conducted with infants in the early stages of word learning

(around 14 months). A surprising finding with this age group is that even if they have

mastered a particular L1 phoneme contrast (i.e., they discriminate between relevant

phoneme contrasts and fail to discriminate nonnative contrasts) they may have difficulties

learning new words that differ by this contrast. For example, Stager & Werker (1997)

found that when 14-month-olds were exposed to two novel words which formed a

minimal pair (/bI/ and /dI/) paired with two novel objects, they did not later differentiate

between trials in which the word-object pairing was identical versus opposite to that

previously seen in habituation (the so-called “switch task”). This is despite the fact that

children of this age were shown to be able to discriminate /b/ and/d/ outside of the context

of a word-learning task. This effect has been demonstrated many times (see Werker &

Curtin, 2005, for a review), critically, however, Rost & McMurray (2009) demonstrated

that it is affected by the variability of the exposure set. Using a similar switch task to

Stager & Werker (1997), they replicated the null effect when the novel words (/buk/ and

/puk/ in their study) were produced by a single talker, but showed that infants of the same

age did differentiate between the minimal-pair novel words when exposed to the novel

words spoken by multiple talkers. Rost & McMurray (2010) further probed what aspect

of the variability in the input was beneficial for word learning. They considered the

possibility that, although infants could discriminate the phonetic contrast in question

(/b/-/p/) their phonetic categories might still be developing. In this case, the critical aspect

of variability might be the presence of a bimodal distribution of the most relevant cue for

differentiating the contrast (see also Maye, Werker & Gerken, 2002—in this case voice

onset time (VOT)). Rost & McMurray (2010) tested this by varying VOT in a clear

bimodal distribution while holding talker constant. Surprisingly, infants were not able to

differentiate the minimal pair after exposure to these stimuli, nor were they able to do

so when exposed to the items spoken by a single talker but with variation in multiple

acoustic cues to the contrast (VOT, F0 transition, and burst amplitude). In contrast,

infants were able to discriminate between the minimal pairs when exposed to the items

spoken by multiple talkers but with a fixed VOT across talkers. This unexpected

finding suggests that what is critical is variability arising from talker differences but on

irrelevant dimensions to the contrast in question. Apfelbaum &McMurray (2011) provide

an account of this in terms of associative learning. Via computational simulation, they

show that the experimental results are predicted if word learning involves associating
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all available acoustic cues with objects, including both relevant (e.g., place of

articulation/voicing) and irrelevant (e.g., talker) cues. The intuition behind the model is

that associative learning will pick up on any consistent relationships across instances,

meaning that both relevant and irrelevant acoustic cues will become associated with an

object if they are highly consistent, as is the case when tokens all come from the same

talker and thus are highly similar. The association of these irrelevant talker cues reduces

the contrast established by the phonetic cues since they are shared across the words

and provide evidence that they are the same. Note that a similarity between this

explanation and that of Barcroft & Sommers (2005, 2014) is that they both assume that

irrelevant cues are initially incorporated into lexical representations. There is

some independent evidence of this in L1 learning (Singh, Morgan & White, 2004;

Singh, White & Morgan, 2008).

In sum, there is a long-standing assumption that more variable input is more beneficial

in L2 phonetic training, although very few published studies have actually directly

tested this in adults, and none have done so in children. There is also evidence that

variable input is beneficial in adult L2 and infant L1 vocabulary learning, which has been

interpreted in terms of the formation of robust, speaker independent representations.

Current study
The current experiment adds to the small literature exploring phonetic training in both

adults and children. We build on the work of Giannakopoulou, Uther & Ylinen (2013a)

and focus on learning of the nonnative English /i/-/I/ contrast by adult and 7–8 year-old

native Greek speakers. Our central research question was whether variability would benefit

learning. Although variability can be manipulated along a number of dimensions, we

chose to manipulate talker variability since this type of variability has been explored across

both the phonetic and word learning literatures. To this end we compared learning from

high-variability (four talkers) versus low-variability (one talker) input, with overall

exposure matched across conditions. We embedded the phonetic training task in a

word-learning task, whereby training involved pairing minimal pairs with picture

representations of the two words (e.g., hear sheep, choose between pictures of a sheep and a

ship), conducted in a child friendly computerized training environment. This choice

allowed us to investigate the effect of variability on learning at both the phonetic and

lexical levels. In addition, using pictures allowed us to avoid using orthography in

training, addressing the concern that learners in Giannakopoulou, Uther & Ylinen (2013a)

may have relied on length cues in English spelling (e.g., sheep versus ship) as an aid to

learning. We matched other aspects of the training to that in Giannakopoulou, Uther &

Ylinen (2013a), to allow reasonably direct comparison between the studies. For example

the number and duration of the training sessions were approximately the same, training

used an animation to provide feedback and a “replay” button allowed participants to

repeat stimuli if necessary.

However, our test of phonetic learning was a three-interval oddity discrimination task,

rather than an identification task, in order to avoid using orthography but still be able

to test both trained and untrained items. The inclusion of untrained items was important
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since high-variability is specifically predicted to benefit generalization—i.e., exposure

to multiple talkers should aid the ability to ignore phonetically irrelevant information.

Voice novelty and word novelty were manipulated separately (since it is possible that

exposure to multiple speakers might specifically benefit generalization across talkers,

rather than generalization more broadly).

Our primary measure was the extent to which training strengthened lexical

representations, since we assumed that our participants would begin the study with some

knowledge of the words. We chose to focus on the links between the forms and their

meanings and used a primed auditory lexical decision task to tap semantic representations

in the L2 via cross-language priming (i.e., semantic priming from L2 to L1). This was

adapted from a task previously used to test vocabulary development in an artificial

language learning experiment (Tamminen & Gaskell, 2012). Comparison of pre- and

post-training performance tested whether this aspect of participants’ representations was

changed by the training process, and whether the extent of change was modulated by

input variability. We also included a more direct measure of vocabulary learning at both

pre- and post-test. Participants heard Greek L1 words and matched these to the correct

translation from one of four English L2 words, all taken from the training set (no minimal

pairs included). This task served multiple purposes. First, it allowed us to determine

which words a participant was familiar with prior to the study. Second, it allowed us to

measure vocabulary learning between pre-and post-test, and finally, it ensured that all

participants began the training task with some knowledge of the word meanings.

Our main prediction was that, for both measures of phonetic learning and word

learning, there should be greater improvements from pre- to post-test for the high-

variability condition compared to the low-variability condition. This was based both on

the theoretical benefits of boosting generalization discussed above, and on the existing

empirical literature (although as has been seen, there are some substantial gaps in this

literature, particularly for phonetic learning and particularly in children).

A second prediction following Giannakopoulou, Uther & Ylinen (2013a) was that in the

phonetic learning tasks (i.e., in the training and three-interval oddity discrimination

tasks), children would show stronger learning effects than adults.

MATERIALS AND METHODS
Ethics statement
This project received ethical consent by the ethical committee of the University of

Warwick (Ethical Application Ref: 80/12-13), abiding to the ethical standards of the

Declaration of Helsinki. For children, written informed consent was obtained from

their parents prior to the first session. Adults provided written consent at the beginning

of the first session. Participants received a certificate and small gift at the end of

the experiment.

Participants
Child (M = 8.4; SD = 0.6; range = 7;8 – 9;8 years) and adult (M = 24.3; SD = 4.3;

range = 18;3 – 32;3 years) native Greek-speaking learners of English were recruited from
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primary schools and higher education colleges in Athens. Participants were tested in

school/college by researchers or class teachers who were provided with instructions for

running the experiment. The final sample consisted of 52 children and 41 adults.

Participants were randomly assigned to each of two counterbalanced versions of the two

experimental conditions (high-variability version1/version2 versus low-variability

version1/version2). Although we had planned for participants to be spread equally across

conditions and versions, our final sample was uneven. Additional participants were tested

butwewereunable touse theirdatasets due to theirdroppingoutof the experiment, recording

errors, andother errors in testing due to difficulties of testing onmultiple computers in a busy

school environment, and that some of our testing was done by school staff. We retained

participant’s datasets where there was data for the discrimination and lexical decision tasks

(pre- andpost-test), andwhere at least 60%of their trainingdatahadbeen recorded.Note that

statistical analyses which allow for an uneven balance across conditions and versions were

used. Details of participants in each condition are given in Table 1.

Participants lived in Greece and were students of L2 English. All participants had

normal or corrected-to-normal vision and nonimpaired hearing, and none reported

having a language or learning disorder. Child participants’ level of proficiency was basic

(L2 English education, M = 1.96 years, range = 1–2 years). Adult participants’ level of

proficiency was advanced (L2 English education, M = 10.98 years, range = 9–13 years).

All participants had spent less than two weeks in an English-speaking environment.

Stimuli
The experimental stimuli consisted of 20 real-word minimal pairs (e.g., ship-sheep) and

20 nonword minimal pairs (e.g., stin-steen) containing the English tense-lax vowel

distinction (nonword minimal pairs were created so that they matched the real-word

minimal pairs as closely as possible in their final syllables; see Table S1 for a list of all

stimuli). Participants learned the real-word minimal pairs in the training task, but were

tested on both these real-word items from training and nonword minimal pairs not

included in training. This allowed us to test both trained and novel items.

All minimal pairs were recorded by five native English speakers (three female, two

male) with Southern British English pronunciation using a micro track 24/96 digital

recorder. Words were edited into separate sound files, and peak amplitude was normalized

Table 1 Participant details.

N Gender Mean age SD age

Adults High-variability (Version 1) 11 2M, 9F 25:1 5:0

High-variability (Version 2) 11 3M, 8F 24:4 3:1

Low-variability (Version 1) 10 1M, 9F 24:9 3:9

Low-variability (Version 2) 9 4M, 5F 22:8 5:1

Children High-variability (Version 1) 14 7M, 7F 8:7 0:7

High-variability (Version 2) 14 7M, 7F 8:10 0:5

Low-variability (Version 1) 11 6M, 5F 8:10 0:6

Low-variability (Version 2) 13 5M, 8F 8:8 0:5
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using Audacity� (2012). All other natural variation between recordings was kept.

Clipart pictures of the 40 English words were selected from free online databases.

In addition to the main experimental stimuli, a second set of stimuli were developed

for a primed auditory lexical decision task. In this task, primes could be either English

words or Greek words, and targets were either semantically related to the prime,

semantically unrelated to the prime or nonwords (see Table 2 for example and Table S2

for a full list of these stimuli).

For the English primes, one word from each real-word minimal pair was selected

(12 /i/ items, eight /I/ items). Originally, we had selected 10 /i:/ and 10 /I/ items, but as two

of the /I/ items had Greek translations that were phonologically very similar to the

English word (gin, dip) these items were replaced with their /i:/ counterpart (gene, deep)

since the primed auditory lexical decision task aimed to examine semantic (not

phonological) priming. For the Greek primes, 20 words that matched the English primes

as closely as possible in frequency were selected. English word frequency was taken

from the MRC Psycholinguistic Database (Wilson, 1988). Greek word frequency was

obtained from the GreekLex database (Ktori, van Heuven & Pitchford, 2008). An

independent-samples t-test confirmed that the two lists of prime words did not differ

significantly in frequency, t(38) = -1.12, p = .27. In addition, the number of nouns, verbs,

and adjectives were identical in both lists.

The semantically related target word for the English primes was the Greek translation.

For the Greek primes, the semantically related word was selected by asking 15 native

Greek speakers to write down the first word that came to mind for each Greek prime word.

For both types of prime word, semantically unrelated words were words which were

unrelated in meaning with the target words which were matched as closely as possible in

frequency and length to the semantically related words (frequency, t(78) = -0.13, p = 0.90;

N phonemes, t(78) = 0.13, p = 0.89; N syllables, t(78) = 0.00, p = 1.0). Nonwords

targets for both English and Greek prime words were generated by changing one and two

syllables of real Greek words, preserving the number of consonants and vowels, and were

matched as closely as possible in length to the word targets (N phonemes, t(158) = 0.98,

p = 0.33; N syllables, t(158) = 0.99, p = 0.33). Primes and targets were never cohorts

or rhymes.

All Greek word and nonword stimuli for the lexical decision task were recorded by

a native Greek speaker, and were edited as above.

Design
Each participant completed 10 sessions over approximately two weeks (one session per

day over a minimum of 12 and maximum of 15 days). The experiment involved three

Table 2 Examples of the different trial types in the primed auditory lexical decision task.

Trial type English prime Greek prime

Semantically related target sheep—��óba�o (sheep) ��ý�o& (dog)—�á�a (cat)

Semantically unrelated target sheep—�ó	a�o (knee) ��ý�o& (dog)—d3́
a (parcel)

Nonword target sheep—��a
ó�� ��ý�o& (dog)—doý
a
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stages: pre-test, training, and post-test. The pre- and post-tests were identical, and

contained five tasks (see Fig. 1). Session 1 began with the pre-test, followed by a block of

training. Sessions 2–9 consisted of training only. Session 10 consisted of training, followed

by the post-test.

There were two experimental conditions that differed only during training—high-

variability versus low-variability. In the high-variability training, English minimal-pair

words were spoken by four different talkers (two female, two male). In the low-variability

training, English minimal-pair words were spoken by a single talker (always female).

Pre- and post-tests were identical for the two conditions (although old/new talker was

counterbalanced across participants in the discrimination task, resulting in four

counterbalancing conditions; Table 3).

Procedure
All tasks were run using Exbuilder (a custom built software package developed at the

University of Rochester) on laptop or desktop computers in quiet classrooms. Multiple

participants were tested simultaneously on separate computers. Stimuli were presented

binaurally over headphones at a comfortable listening level.

Greek introduction

In this task, a picture of one of the minimal-pair words was presented centrally on

the screen, and participants heard the corresponding Greek word (see Fig. 2). Each

minimal-pair word was presented once each in a random order. This task was included

to ensure that participants accessed the correct meaning for each picture since not all

items were concrete nouns (e.g., leap, slip, etc.). No data were recorded from this task.

English introduction
In this task, participants saw a picture of one of the minimal-pair words, presented

centrally at the top of the screen. Participants could click on this picture to hear the

corresponding Greek word if required. Participants subsequently clicked on another

button in the middle of the screen to hear four possible English words which were each

“spoken” by one of four frogs which appeared at the bottom of the screen (see Fig. 2).

If the participant selected the correct English word, they received positive feedback

[Greek translation of correct (“�v��ó”)] and the English word was replayed. If the wrong

word was selected participants listened to the four options again and had another go.

This continued until the correct word was chosen. The three distracter words for each trial

Figure 1 Tasks completed in each of the 10 experimental sessions.
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were randomly selected (but identical for all participants) with the following constraints;

(a) no minimal pairs were heard together (e.g., if ship was the target, sheep was not a

distracter); (b) no rhyming items were heard together (e.g., if ship was the target, chip was

not a distracter); (c) each word was heard once as a target, and three times as a distracter.

Trials were presented in a random order. Accuracy on the first attempt was recorded.

Table 3 Counterbalancing of the English talkers in each task.

Task High-variability 1 High-variability 2 Low-variability 1 Low-variability 2

English introduction Female 1 Female 2 Female 1 Female 2

Three-interval oddity discrimination Female 1 (old) Female 1 (new) Female 1 (old) Female 1 (new)

Female 2 (new) Female 2 (old) Female 2 (new) Female 2 (old)

Primed auditory lexical decision Female 1 Female 2 Female 1 Female 2

Training Female 1 Female 2 Female 1 Female 2

Female 3 Female 3

Male 1 Male 1

Male 2 Male 2

Figure 2 Overview of the five experimental tasks.

Giannakopoulou et al. (2017), PeerJ, DOI 10.7717/peerj.3209 13/35

http://dx.doi.org/10.7717/peerj.3209
https://peerj.com/


Accuracy in Session 1 provided a baseline measure of English vocabulary knowledge,

whilst the change in accuracy between Sessions 1 and 10 provided a measure of vocabulary

learning.

Three-interval oddity discrimination test
In this test, participants heard three words (played with ISIs of 200 ms) spoken by a single

talker. Two words were different tokens of the same word (e.g., sheep, sheep), and one

the other minimal pair item (e.g., ship). Each word was “spoken” by one of three frogs

which appeared on the screen and participants clicked on a frog to indicate which word

was the odd one out (see Fig. 2). A response could not be made until the third sound

file had finished playing. Instructions emphasized accuracy and no feedback was

provided. All 20 real word and 20 nonword minimal pairs were heard once each. Half of

the trials contained an /I/ target (e.g., sheep, sheep, ship), and half contained an /i/

target (e.g., chip, chip, cheap). To minimize the influence of duration cues (i.e., /i/ is a

longer vowel than /I/, so sheep is likely to have a longer acoustic duration than ship) all

sound files were normalized in length by adding silence at the end, up to the length of

the longest item. Thus, all trials were matched in length from the onset of the first sound

file until the moment when participants could respond.

Nonword trials tested whether participants could generalize their training to new

untrained items. We also tested whether participants could generalize to a new talker.

To do this, 10 of the 20 real-word minimal pairs were presented in a familiar voice,

and the remaining 10 in a new voice, and likewise for the 20 nonword minimal pairs.

The two talkers used as the familiar/new voices were counterbalanced across participants

(Table 3).

Primed auditory lexical decision test
A primed auditory lexical decision task investigated the status of the semantic

representations for English words and determined whether this was altered following

training. On each trial participants heard two words (a prime and a target). The prime

could be a trained English word or a Greek word. Each prime was repeated four times,

once with a semantically related word target, once with a semantically unrelated word

target, and twice with a nonword target. If the trained English words have become

integrated with Greek lexical knowledge then faster response times should be observed

when the English prime is followed by a semantically related, compared to semantically

unrelated Greek word. The inclusion of Greek primes enabled comparison of the

magnitude of semantic priming effects between English and Greek. Although priming

studies do not typically repeat the primes (more commonly repeating the target words

with different types of primes), using the English words as primes four times in the

current study increased the number of observations and thus the statistical power

without the need to train participants on a very large number of English words (see

Tamminen & Gaskell, 2012, for a similar design using an artificial language). The target

word was unique on each trial. Examples of each trial type are provided in Table 2 and

a screenshot of the task is provided in Fig. 2.
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The task began with eight practice trials with feedback, followed by 160 experimental

trials without feedback. Participants were instructed to make a word/nonword judgment

for the second word as quickly as possible. Responses were made using the left (nonword)

and right (word) arrows on the computer keyboard. Response times were measured

from the onset of the second word.

Training
On each trial participants heard an English word and selected one of two pictures (from

the same minimal pair) displayed on the computer screen (see Fig. 2). Following

Giannakopoulou, Uther & Ylinen (2013a), participants could replay the English word

an unlimited amount of times before making a decision. If the correct picture was

selected, the incorrect picture disappeared, the English word was replayed, and a short

video of a “happy” bunny jumping up and down was played. A picture of a coin also

appeared in a box on the left-hand side of the screen, with the aim of motivating

participants to try to earn more coins during each subsequent training session. If the

incorrect picture was identified both pictures were removed from the screen and a short

video of a “sad” bunny was played. The two pictures then reappeared and the English

word was played again. Once the participant clicked on the correct picture feedback was

provided as in correct trials but no coin was awarded. A training block consisted of the

40 English minimal-pair words each heard eight times, resulting in 320 trials, presented

in a random order. In the low-variability condition, all items were spoken by the same

talker. In the high-variability condition participants heard each word spoken twice by each

of the four talkers (two female, two male). We aimed that participants would undertake

one training block (320 trials) in each of their 10 sessions, however, due to time

constraints associated with testing in schools, some children were only able to complete

180 training trials in Sessions 1 and 10. In these cases, children completed the remaining

180 trials (to make a full training block of 320 trials) in Sessions 2 and 9, respectively.

Data were coded such that the first 320 trials and last 320 trials completed were coded

as Sessions 1 and 10 training blocks, respectively.

RESULTS
Analyses and statistical approach
Data were primarily analyzed using linear mixed effects models (Baayen, Davidson &

Bates, 2008; Jaeger, 2008; Quené & van den Bergh, 2008) using the package lme4

(Bates, Maechler & Bolker, 2013) for the R computing environment (R Core Team, 2016).

Since adults and children generally had very different starting points at pre-test, the data

from each age group were analyzed separately for each task. However, since we were

specifically interested in age differences for phonetic discrimination, we also included

additional analyses comparing the age groups for the training and three-interval oddity

discrimination tasks.

Linear mixed effects models allow binary data to be analyzed with logistic models

rather than as proportions, as recommended by Jaeger (2008). Our approach was to

automatically include all the relevant experimentally manipulated variables for each task,
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and all the interactions between those variables, as fixed factors in a model, regardless

of whether they contributed significantly to the model (i.e., we did not use stepwise model

comparison). Since preliminary analysis suggested that the extent to which children

had used the “replay” button during training was positively correlated with their increase

in performance from pre- to post-test in the three-interval oddity discrimination task

(r = 0.38, df = 0.91, p < 0.01), we also included each participant’s mean-replay-usage as a

fixed factor in the models for that task (note that although the correlation did not hold

for adults (r = 0.17, df = 0.39, p = 0.27), the factor was nevertheless included in both

models for consistency). In addition, preliminary analyses revealed that one of the two

talkers used in the test stimuli (i.e., as the trained/untrained voice; see Table 3) was more

intelligible than the other, affecting discrimination. In order to ensure that key effects

were not carried by a specific talker, we included both talker and all the interactions with

talker as a fixed factor.1 Finally, in all models, predicting variables (including discrete

factor codings) were centered to reduce the effects of collinearity between main effects and

interactions, and in order that main effects were evaluated as the average effects over

all levels of the other predictors (rather than at a specified reference level for each factor).

We do not report full statistical models. For the experimental factors, we report statistics

for main effects and interactions where there are predictions. For example, we did not

inspect the model for a main effect of voice-novelty (trained versus untrained talker), since

this effect is not interpretable for both levels of test-session (i.e., novelty is only relevant

after training). We also inspected each model to see if there was a main effect of the

control variable talker, and in addition, wherever we found a reliable main effect or

interaction for the experimental factors we looked to see if it was qualified by a

higher-level interaction with talker. For clarity of exposition, the results with the control

variable are not reported in the main text (see Table S3), with the exception of places

where we found a reliable interaction between an effect of interest and the control variable

talker, and this broke down to suggest that there was an effect only for one of the talkers.

The lme4 package provided p-values automatically for logistic mixed effects models

but not for linear mixed effect models. For models with a continuous outcome variable

(i.e., RTs in the lexical decision task) p-values were calculated using the lmerTest

package using Kenward–Roger approximation for denominator degrees of freedom.

We included participant as a random effect and used a full random slope structure

(i.e., by-subject slopes for all within-subject factors (although not the control variables)

and their interactions, as recommended by Barr et al. (2013)). In some cases, the full

model did not converge and here we removed the correlations between slopes (Barr et al.,

2013). All of the models reported converged with bound optimization by quadratic

approximation (BOBYQA optimization; Powell, 2009). The analyses scripts and output

can be viewed here: http://rpubs.com/ewonnacott/247911. Data files and scripts are also

available on the Open Science Framework: https://osf.io/8anzk/.

Training
Participants’ accuracy in selecting the correct picture from its minimal pair on the first

attempt was recorded, though with some data loss (adults = 2%; children = 6%).

1 There was just one model reported in the

text where it was not possible to include

the interactions with the control variable

due to nonconvergence: the model pre-

dicting children’s training data using

training-session as a continuous pre-

dictor. However, equivalent interactions

were included in the follow up model

which is also reported, where the train-

ing-session variable was replaced by the

binary predictor test-half.
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Recall that high-variability training comprised four talkers; for half of the participants

in this condition, these were talkers Female 1, Female 3, Male 1, and Male 2, for the

other participants these were talkers Female 2, Female 3, Male 1, and Male 2. In the

low-variability training, half of the participants were trained with Female 1 only and

half with Female 2 only (where Female 1/Female 2 were not used in training, they were

used as the novel voice in testing—see Table 3). This design meant that high-variability

included three talkers that were never included in the low-variability training. It is

possible that stimuli produced by these talkers could be easier or harder to identify than

stimuli produced by the two talkers used in both training conditions. To ensure a fair

comparison across conditions, we only consider trials in the high-variability condition

where the stimuli were produced by one of the two talkers who were also used in the

low-variability condition (i.e., trials with Female 3, Male 1, and Male 2 were excluded;

see Table 3). The proportion of correct responses in each session is shown in Fig. 3.

For our primary analyses, the data were analyzed in two logistic mixed effects models

predicting whether a correct response was given (1/0) on each trial. Experimental factors

in the model were training-session (1/10) and condition (high-variability, low-

variability), and the interaction between them. We were also interested in the contrast

between age-groups, however, as can be seen in Fig. 3, by the final session, adult

participants were at ceiling in the low-variability condition. We, therefore, restricted

our analyses comparing age-groups to data from the adults and children in the

high-variability condition only. Here, we used a logistic mixed effects model predicting

response accuracy with fixed effects of training-session, age-group and talker, and all

of the interactions between them, although we only report the effect of age and

interactions with age.

Adults
There were main effects of training-session (b = 0.35, SE = 0.03, z = 11.21, p < 0.001)

and condition (b = 1.63, SE = 0.25, z = 6.41, p < 0.001) and a reliable interaction

between condition and training-session (b = 0.21, SE = 0.05, z = 3.86, p < 0.001).

Figure 3 (A) Adult and (B) child performance during training (error bars show standard error). For

the high-variability condition, trials with the three additional talkers are excluded (note: for all of the

plots within this paper, means are corrected to control for imbalance in counterbalancing of talkers).
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This reflects improvement across sessions and an overall better performance in the low-

variability condition which increases with training.

Children
There was a reliable main effect of training-session (b = 0.22, SE = 0.03, z = 7.06,

p < 0.001), reflecting improved performance across sessions, but no reliable main

effect of condition (b = 0.37, SE = 0.24, z = 1.56, p = 0.12). There was also a near

reliable interaction between training-session and condition (b = 0.10, SE = 0.05, z = 1.92,

p = 0.054). Inspecting the graphs, this seems to reflect the fact that the difference

between conditions emerges only in the second half of training. As a follow up, we

explored whether the effect of variability changed from the first half of the experiment

(Sessions 1 to 5) to the second half of the experiment (Sessions 6 to 10) in an identical

statistical model where training-session was replaced by the binary factor test-half

(Sessions 1 to 5 versus 6 to 10). In this model, there was a reliable effect of test-half

(b = 1.05, SE = 0.14, z = 7.51, p < 0.001), which broke down to show no reliable effect

of variability in the first five sessions (b = 0.08, SE = 0.24, z = 0.32, p = 0.75) but a

reliable effect of variability (benefitting low-variability) in last five sessions (b = 0.56,

SE = 0.23, z = 2.44, p = 0.015).

Although, we were not able to include the interactions with talker in the original model

(with training-session as a continuous variable), in the follow up model (with test-half

replacing training-session) the interaction between test-half and condition was qualified

by a reliable effect of talker (talker by test-half by condition: b = 0.73, SE = 0.34, z = 2.16,

p = 0.031). Breaking this down, there was a reliable effect of variability only for female 2

(the more intelligible talker) in the second half of training (Female 1, first half: b = -0.05,
SE = 0.31, z = -0.16, p = 0.88; Female 1, second half: b = 0.09, SE = 0.33, z = 0.27,

p = 0.79; Female 2, first half: b = 0.22, SE = 0.29, z = 0.756, p = 0.45; Female 2,

second half: b = 1.09, SE = 0.29, z = 3.83, p < 0.001).

Age group comparisons
Adults in the low-variability condition hit ceiling by the final training sessions, making

statistical comparisons with children inappropriate. Restricting analysis to the high-

variability conditions (and returning to a model with training-session as a continuous

variable): there was a main effect of age-group (b = -1.01, SE = 0.22, z = -4.64, p < 0.001)

reflecting the overall higher performance of adults, however, critically, there was no

reliable interaction between age-group and training-session (b = -0.05, SE = 0.05,

z = -1.02, p = 0.31). Thus, there was no reliable evidence of faster learning in children

than in adults.

Summary of training data
All participants improved overall in the training task over time. For adults, there was a

benefit of low-variability; observable throughout training and an interaction with session

suggesting that this benefit increased throughout training. For children, there was

no overall benefit of low-variability; however, there was marginal evidence of greater

improvement in the low- rather than high-variability training. This seems to emerge in
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the second half of training and to be only true for the more intelligible speaker. In contrast

to Giannakopoulou, Uther & Ylinen (2013a), there was no evidence of a “plasticity”

benefit whereby children showed larger benefits of training. Instead, in the low-variability

condition, adults (but not children) were at ceiling by the end of training, and in the

high-variability condition there was no reliable difference in the improvement shown by

adults and children.

English Introduction
The English introduction task was included primarily to check whether participants knew

the meanings of any of the English words prior to the experiment. However, we were

also able to use this test to explore whether knowledge of word meanings improved

following training. Accuracy in selecting the correct word (from a choice of three foils) on

the first attempt was coded as 1/0. Table 4 shows the percentage of correct trials for adults

and children in each condition pre- and post-training. Both groups appear to improve

with training, although adults outperform children and are close to ceiling (above 80%

correct, even at pre-test, with many participants having perfect scores). Given ceiling

effects, in the adult data, we restricted our statistical analyses to the data collected from

children. A logistic mixed effects model was run over the child data predicting their

accuracy (1/0) with fixed factors of test-session (pre-test, post-test), condition and test-

session by condition, as well as the control factor of talker and all of the interactions. This

revealed a reliable main effect of test-session (b = 3.19, SE = 0.26, z = -12.23, p < 0.001)

and a marginal interaction between test-session and condition indicating perhaps more

learning in the low-variability condition (b = -0.95, SE = 0.51, z = -1.87, p = 0.061).

In summary, both adults and children showed a pattern of improved knowledge of the

word meanings from pre- to post-test with no differences between the high-variability and

low-variability conditions, although it was only possible to statistically verify these

patterns for children due to ceiling effects in adults.

Primed auditory lexical decision
Trials with nonword targets were excluded. We conducted separate analyses for trials with

Greek and English primes (targets were always Greek words). The Greek-primes analyses

allowed us to determine whether standard semantic priming occurs within the native

language, and thus served as a check on our experimental set up. (Note that, in addition to

the means supplied within the text and in Fig. 4, a full break down of means by condition

can be seen in the R script at http://rpubs.com/ewonnacott/247911).

Table 4 Performance in the English introduction task: adult and children’s knowledge of word

meanings at pre- and post-test (standard error in parentheses).

Pre-test Post-test

Adults High-variability condition 81% (2%) 98% (2%)

Low-variability condition 82% (2%) 100% (2%)

Children High-variability condition 50% (3%) 88% (3%)

Low-variability condition 47% (2%) 92% (2%)
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For the Greek-primes analyses, trials on which targets were incorrectly identified as

nonwords were removed (adults = 5%; children = 10%), as were trials with RTs <200 ms

or >2.5 SD above the mean for each participant in each test-session (i.e., a further 3% of

data for adults, 3% for children). The remaining data were analyzed in a linear mixed

effects model predicting RT with fixed factors of prime-target relationship (related,

unrelated), test-session (pre-, post-test) and the interaction between them.

For English-primes analyses, we analyzed bothRTs (for children and adults), and accuracy

(children only). For the RT analyses, data were filtered as described above (incorrect trials:

adult = 6%, children= 16%; additional data removed due to <200ms or>2.5 SDfilter: adults

= 4%, children = 4%). The remaining data were analyzed in a linear mixed effects model

predicting RTwith fixed factors of prime-target relationship (related, unrelated), test-session

(pre-, post-test) and condition (high-variability, low-variability), the control variable talker

and all of the interactions between these factors. For the accuracy analyses, all English-prime

trials with real word targets were included and the data were analyzed using a logistic linear

mixed effects model predicting accuracy of response (i.e., whether the target was correctly

identified as a real word—coded as 1/0) with the same predictors as the RT data.

Adults
For Greek primes, there was a significant main effect of prime-target relationship

(b = 101.33, SE = 13.52, t = 7.40, p < 0.001, related = 1,014 ms, unrelated = 1,114 ms),

reflecting a standard priming effect for semantically related words within the native

language. There was no overall effect of test-session (b = 37.90, SE = 39.45, t = 0.95,

Figure 4 (A) Adult and (B) child performance in the primed auditory lexical decision task collapsing

across condition.Mean RTs for Greek target words with related and un-related English primes pre- and

post-test. Error bars show standard error (note: for all of the plots within this paper, means are corrected

to control for imbalance in counterbalancing of talkers).
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p = 0.35) and no interaction between test-session and prime-target relationship (b = 17.71,

SE = 26.41, t = 0.67, p = 0.507).

For English primes, there was a significant main effect of prime-target relationship

(b = 83.62, SE = 20.13, t = 4.04, p < 0.001; related = 1,153 ms, unrelated = 1,238 ms),

reflecting semantic priming across the two languages. There was no overall effect of

test-session (b = 42.18, SE = 48.64, t = 0.82, p = 0.41), suggesting no change in RTs

in the post-test. Of critical interest is whether there was an interaction between test-session

and prime-target relationship, since this could indicate an effect of training on priming.

No such effect was found (b = -37.26, SE = 41.76, t = -0.85, p = 0.40) and there was

no three-way interaction between test-session, prime-target relationship and condition

(b = 95.90, SE = 83.81, t = 1.10, p = 0.28). Thus, there was no evidence that across

language semantic priming was affected by the training (see Fig. 4).

Children
For Greek primes there was a significant main effect of prime-target relationship (b = 72.34,

SE = 29.21, t = 2.47, p = 0.017, related = 1,487 ms, unrelated = 1,549 ms), reflecting a

standard priming effect for related words within the native language. There was a marginal

overall effect of test-session (b = 136.08, SE = 69.21, t = 1.95, p = 0.057), reflecting a

slight reduction in RT length from pre (1,563 ms) to post (1,469 ms) test for children.

There was no interaction between test-session and prime-target-relationship (b = -25.25,
SE = 67.97, t = -0.37, p = 0.71).

For English primes (RT data) there was a marginal main effect of prime-target

relationship (b = 65.17, SE = 33.39, t = 1.95, p = 0.058, related = 1,620 ms,

unrelated = 1,664 ms), reflecting across language semantic priming. There was an

overall effect of test-session (b = 181.88, SE = 74.46, t = 2.34, p = 0.023) indicating

decreasing RTs from pre (1,704 ms) to post (1,580 ms) test. However, there was no

interaction between test-session and prime-target relationship (b = -52.67, SE = 66.60,

t = -0.79, p = 0.43) and no three-way interaction between test-session, prime-target

relationship and condition (b = -7.55, SE = 133.81, t = -0.06, p = 0.96), suggesting that

across language priming was not affected by the training (see Fig. 4).

Given the large amount of data excluded from the previous analyses of

English primes (i.e., 16% of words inaccurately identified as nonwords), we also

analyzed the accuracy data for children. Similar results were obtained. There

was a significant main effect of prime-target relationship (b = -0.71, SE = 0.13,

z = -5.60, p < 0.001, related: 87%, unrelated 81%), reflecting across language

semantic priming. However, there was no interaction between test-session and

target-relationship (b = 0.26, SE = 0.23, z = 1.12, p = 0.26), and no three-way

interaction between test-session, semantic priming and condition (b = 0.01, SE = 0.40,

z = 0.03, p = 0.98).

Summary of primed auditory lexical decision data
Analyses of Greek-prime trials established that both adults and children showed standard

semantic priming effects within their native language (i.e., shorter RTs for targets
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preceded by related compared to unrelated primes), which held steady across the

two test-sessions. Analyses of English-prime trials demonstrated that both adults and

children showed evidence of across language priming (for adults, reliably shorter RTs, for

children marginally shorter RTs and reliably more accurate responses). However, for

both age groups, there was no evidence of an increase in the degree of semantic priming

following training.

Three-interval oddity discrimination test
We first ran separate logistic mixed effects models for each age-group, predicting

whether a participant gave a correct response (i.e., picked the correct word as different

out of a choice of three, coded as 1/0) on each trial. The fixed factors were test-session

(pre-test, post-test), voice-novelty (trained voice, untrained voice), word-novelty (trained

word, untrained nonword), condition (high-variability, low-variability) and all the

interactions between these experimental factors. The factor talker and all of the

interactions between talker and the experimental factors were included as control factors.

We also included the continuous variable mean-replay-usage as an additional control

factor. We ran a further model over the combined data from children and adults

which included the same factors as before as well as the fixed effects of age-group

(adult, child) and all of the interactions with this factor. This model was specifically

inspected to look for the effects of age-group. (Note that, in addition to the means

supplied within the text and the difference scores in Fig. 5, a full break down

of means at pre and post-test by condition can be seen in the R script at

http://rpubs.com/ewonnacott/247911).

Figure 5 (A) Adult and (B) child discrimination data.Mean increase in percent correct responses from

pre- to post-test (error bars show standard error). Note: for all of the plots within this paper, means are

corrected to control for imbalance in counterbalancing of talkers.
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Adults
There was no reliable main effect of word-novelty (b = -0.15, SE = 0.12, z = -1.23,
p = 0.22), suggesting no difference in discrimination for real English words compared

to nonwords. There was a reliable effect of test-session, indicating an effect of training

(b = -0.52, SE = 0.15, z = -3.44, p = 0.001). This was qualified by a reliable interaction

with talker (b = -0.59, SE = 0.23, z = -2.53, p = 0.01), which broke down to show

that though there was numerical improvement from pre- to post-test for both talkers, this

was only reliable for the more intelligible talker (Female 2: b = -0.82, SE = 0.23, z = -3.61,
p < 0.001; 87%/ 93%; Female 1, b = -0.23, SE = 0.15, z = -1.51, p = 0.13: 66%/ 70%)

(note that there were no significant higher level interactions involving talker—see

Table S3).

Of critical interest is how participants’ improvement from pre- to post-training was

affected by input condition and the novelty manipulations. This is depicted in terms

of difference scores in Fig. 5. There were no reliable interactions of test-session by

word-novelty (b = 0.07, SE = 0.25, z = 0.29 p = 0.77), test-session by voice-novelty (b = 0.19,

SE = 0.25, z = 0.76, p = 0.45), or test-session by word-novelty by voice-novelty (b = -0.82,
SE = 0.50, z = -1.67, p = 0.10). Contrary to predictions, adults did not show reliably

greater improvement in the high-variability than low-variability conditions (test-session by

condition, b = 0.07, SE = 0.29, z = 0.22, p = 0.82). There was also no word-novelty by

test-session by condition interaction (b = 0.23, SE = 0.46, z = 0.50, p = 0.62). However,

there was a reliable three-way voice-novelty by test-session by condition interaction

(b = -0.91, SE = 0.46, z = -1.99, p = 0.046), which was qualified by a four-way

voice-novelty by word-novelty by test-session by condition (b = 1.94, SE = 0.92, z = 2.11,

p = 0.035). Breaking down the four-way interaction, voice-novelty by test-session by

condition interaction was not reliable for trained words (b = 0.06, SE = 0.62, z = 0.10,

p = 0.93) but was for untrained words (b = -1.88, SE = 0.67, z = -2.79, p = 0.005).

Breaking down the three-way interaction for untrained words, there was a marginal

condition by session interaction for the untrained voice which went in the predicted

direction (i.e., more benefit of high-variability for the untrained voice; b = 0.89, SE = 0.50,

z = 1.76, p = 0.078) but also a marginal interaction in the opposite direction for the

trained voice (b = -0.99, SE = 0.52, z = -1.91, p = 0.056). In other words, the interaction

rests both on a trend towards a greater benefit of high-variability input compared with

low-variability input for untrained words-untrained voice items (which is predicted

since novelty should aid generalization) and a trend towards a greater benefit of

low-variability for untrained words-trained voice items (which is not predicted).

Children

There was no reliable main effect of word-novelty (b = -0.03, SE = 0.07, z = -0.38,
p = 0.71), suggesting no difference in discrimination for real English words as opposed

to nonwords. There was a reliable effect of test-session, indicating an effect of training

(b = -0.67, SE = 0.10, z = -6.77, p < 0.001, pre-test = 62%, post-test = 74%).

Again improvement from pre- to post-test is of critical interest and the relevant

difference scores are shown in Fig. 5. There was a marginal interaction between
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word-novelty and test-session (b = -0.25, SE = 0.15, z = -1.73, p = 0.084), reflecting a

slightly larger improvement for the trained words (60% / 75%) than the untrained

nonwords (63% / 74%). In contrast to adults, there was a reliable interaction between

test-session and condition (b = -0.49, SE = 0.20, z = -2.48, p = 0.013), with children

showing a reversed effect to that predicted—i.e., reliably greater improvement in the

low-variability condition (18%) than the high-variability condition (8%). However,

participants in the low-variability condition were (by chance) lower at pre-test (b = -0.49,
SE = 0.18, z = -2.68, p = 0.007; low-variability = 56%, high-variability = 66%) and

in fact have not overtaken by post-test (b = 0.00, SE = 0.19, z = -0.02, p = 0.99;

low-variability = 74%, high-variability = 74%). The test-session by condition interaction

was not qualified by an interaction with word-novelty (b = 0.07, SE = 0.29, z = 0.25,

p = 0.80) voice-novelty (b = -0.02, SE = 0.31, z = -0.06, p = 0.95) or word-novelty by

voice-novelty (b = 0.09, SE = 0.29, z = 0.29, p = 0.77).

Age-group comparison
There was a main effect of age-group, reflecting overall higher performance in adults

than children across pre- and post-test (b = -0.81, SE = 0.13, z = -6.43, p < 0.001,

adults = 79%, children = 68%). Critically, although numerically children improved more

from pre- to post-test (see Fig. 5) there was no reliable interaction between age-group and

test-session (b = -0.17, SE = 0.17, z = -1.02, p = 0.31). The age-group by test-session

interaction was not involved in any reliable higher level interactions with any combination

of condition, word-novelty or voice-novelty (p’s > 0.1) although there was a near reliable

five-way interaction of condition by word-novelty by voice-novelty by age-group by

test-session (b = -2.00, SE = 1.04, z = -1.92, p = 0.055), reflecting the different effects

of these factors in the adult and child models reported above.

Summary of discrimination data
Adult participants improved in their discrimination performance from pre- to post-test,

suggesting an effect of training. Although, numerically, adults showed greater

improvement in the high- compared to the low-variability condition, the difference was

not reliable (or near reliable). There was some tentative evidence of an interaction

between variability and novelty, with the greatest effect of variability evident for

maximally novel items. However, the key interaction rested both on a predicted benefit of

high-variability training for items with untrained words and voices and an unpredicted

benefit of low-variability training for items with untrained words and the trained

voice, making it difficult to interpret. Child participants also showed a benefit of training

in improvement from pre- to post-test. In contrast to adults, children did show an

overall effect of variability, although this was in the opposite direction to that predicted,

with greater improvement in the low- compared to high-variability condition, with no

evidence that this was affected by the novelty of either word or voice used in the test items

or by the talker used as the new or old voice. However, this interaction was driven by

(chance) differences between conditions at pre-test, rather than differences at post-test,

and should thus be treated with some caution. In contrast to the previous study by
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Giannakopoulou, Uther & Ylinen (2013a), children did not show reliably greater

improvement from pre- to post-tests than adults, i.e., we did not replicate the “plasticity”

effect seen in that study.

GENERAL DISCUSSION
The current study compared the effects of talker variability in phonetic training in eight-

year-olds and adults. Native Greek learners of English were trained to discriminate the

nonnative English /i/-/I/ contrast in ten training sessions using a picture identification

task in which they heard a target word (e.g., sheep) and chose between pictures of the

target (sheep) and its minimal pair counterpart (ship). Critically, half of the participants

heard a single talker during training (low-variability input) whilst the other half heard

four talkers (high-variability input), with items and frequencies matched across

conditions. Training performance was recorded and we administered pre- and post-tests,

including a three-interval oddity discrimination test, which tapped participants’ ability to

discriminate the /i/-/I/ contrast, and tests tapping knowledge of the trained vocabulary.

We predicted greater increases in performance following high-variability training,

given the literature on benefits of high-variability training in both phonetic learning

(Bradlow & Bent, 2008; Clopper & Pisoni, 2004; Lively, Logan & Pisoni, 1993) and

vocabulary learning (Barcroft & Sommers, 2005, 2014; Sommers & Barcroft, 2007, 2011).

Data did not support this prediction. We also expected that children would show greater

increases in performance than adults, at least in the training and discrimination tasks,

given the findings of Giannakopoulou, Uther & Ylinen (2013a). Again, this was not seen in

the data. In this discussion, we first consider the findings from each task, focusing on

the contrast between high- and low-variability input. We then turn to age-related

differences, considering why we do not see the same benefit for child learners seen in

previous studies, and the implications for theories of plasticity and maturation.

Training task
All groups showed improvement across training sessions. Both adults and children

showed consistently stronger performance following low- rather than high-variability

input. However, for children a benefit for low-variability training only emerged in the

second half of training, and only with the more intelligible speaker.

From the perspective of phonetic discrimination, greater performance following

low-variability training is perhaps unsurprising. First, repeated exposure to the same

items produced by the same talker potentially allows participants to attune to

idiosyncratic cues associated with that talker (Clopper & Pisoni, 2004). In addition, the fact

that our talkers varied on a trial by trial basis meant that trial by trial adaptation to

talker was required in the high-variability condition, possibly imposing a burden on

learners in that condition (see Martin et al., 1989; Nusbaum & Morin, 1992 for evidence

that multitalker stimuli are difficult even for L1 processing). Given this, it is perhaps

surprising that children did not show a reliable benefit of low-variability until the second

half of training since we might actually expect that their lower working memory capacity

would increase the benefit for low-variability (Nusbaum & Morin, 1992; see below for
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further discussion of this in relation to the discrimination data). However, one

confounding factor here is the evidence from the pre-training discrimination test which

indicates that the low-variability children started out, by chance, somewhat lower in

their ability to discriminate these contrasts, making it hard to evaluate differences

in the first half of training.

Given that our task can also be viewed as a word-learning task, it is worth considering

how this result fits with that of Rost & McMurray (2009), who found that 14-month-olds,

who are developing their knowledge of L1 phonetic contrasts, only learn two minimal

pair object labels when those words were spoken by multiple talkers, not when they

were spoken by a single talker. This was despite the fact that test items did not probe

generalization, testing with a voice familiar from exposure. Similarly, Barcroft &

Sommers (2005) found benefits of multiple-talker training for adults learning novel

words from a foreign language, and their tests included L2 to L1 translation where the

test items used talkers familiar from training. One possibility is that in our training

task, any potential benefit of variability may have been attenuated by the necessity

of continuously adapting to a new speaker on a trial by trial basis, as discussed

above.

Three-interval oddity discrimination test
In the three-interval oddity discrimination test, participants identified the odd man

out from a choice of three words (e.g., sheep, sheep, ship). We were interested in the

extent of improvement from pre- to post-test, and whether this was affected by

training condition and novelty (of either words or talkers). If high-variability is

specifically useful in supporting generalization (as argued in the phonetic training

literature), we predict that high-variability training should benefit generalization

items. Results from adult participants were, to some extent, in line with this prediction,

with numerically greater improvement in the high-variability condition, however, this

difference was not statistically reliable. The lack of a reliable difference between conditions

may be due to the overall high performance of adult participants in this test. There was

some evidence of an interaction between novelty and the benefit of variability. However,

although a greater benefit of high-variability for more novel items is predicted (i.e.,

because it allows the formation of generalized representations that include only

phonetically relevant cues and exclude irrelevant talker identity cues), the interaction

relied in part on a benefit for the low-variability group for novel items with the familiar

talker, which was not predicted. This makes the result difficult to interpret. It is notable

that the strongest evidence for the benefit of high-variability training has come from

studies using identity tests (Lively, Logan & Pisoni, 1993; Sadakata & McQueen, 2013).

This type of test was not possible in the current context, where we did not use

orthography, but if high-variability is specifically useful in the formation of category

level representations, it may be that an identity test is more useful for testing this type

of learning.

As for children, surprisingly, there was reliably greater improvement following

low- rather than high-variability training. This held regardless of the novelty of test items.
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One concern in interpreting this result is that our low-variability group (by chance) began

with lower scores at pre-test. Our analyses focus on changes from pre- to post-test

(i.e., we examine interactions with test session); however, it is possible that the pre-test

difference could be biasing since the high-variability group have less space for

improvement (although it is worth noting that our statistical analyses were not done over

proportions, but using logistic regression via mixed models which should be less

susceptible to this problem). One interpretation of this result is that, for children, the four

speaker input may contain too many varying cues which serve to obfuscate the critical

cues needed for distinguishing the /i/-/I/ contrast. This is in line with the Active Control

Hypothesis (Magnuson & Nusbaum, 2007), which views speech perception as an active

processes of balancing bottom-up and top-down expectations and constraints.

According to this hypothesis, continuous adaption to a new speaker may usurp working

memory capacity. This is supported by experimental evidence suggesting that L1

speech recognition may be slowed when listeners are placed under working memory load

(remembering visually presented numbers), but only if there were multiple talkers

(Nusbaum &Morin, 1992). Since children are known to have lesser phonological working

memory than adults, the burden placed by high-variability input may leave them

relatively fewer resources for phonetic learning. However, replication with samples which

are deliberately matched at pre-test is important (cf., Antoniou & Wong, 2016) since this

benefit of low-variability is unexpected, particularly for new items where it is difficult to

see how more limited exposure could actually benefit generalization.

English introduction test
In the English introduction task, participants matched the meaning of a Greek word to

its English counterpart given a choice of four words. One purpose of this task, which

included feedback, was to ensure that all participants began the experiment with

knowledge of the meanings of the words before beginning training. However, it was

administered pre- and post-test and thus also provides a measure of participants

improved knowledge of the words. Performance even at pre-test was very high, and all

adults were at ceiling at post-test making analysis of their data inappropriate. However,

children’s data were not at ceiling and were analyzed. This revealed an improved

knowledge of word meanings from pre- to post-test, but no effect of variability

condition. This contrasts with the results of Barcroft & Sommers (2005) who found a

benefit of multiple talker input for adult vocabulary learning. Given the lack of

appropriate comparison data from adults in the current study (i.e., due to the ceiling

effects), further work is needed to establish whether the difference we see here is due

to the children’s age or to one or more of the many differences in our paradigm

such as: (i) the fact that our learners are not novices but begin with some knowledge of

the words (ii) the fact that we have multiple (10) learning sessions (iii) the focus

on discriminating a nonnative speech-sound during training (i.e., via the minimal

pairs task) rather than simple exposure to objects and phonological labels as generally

occurs in their tasks.
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Primed auditory lexical decision test of semantic priming
The aim of the auditory lexical decision task was to see if semantic representations were

affected by the training, and whether the greater “robustness” of lexical representations

reported for high-variability training in previous work would extend to semantic

representations. Specifically, we looked for increases in semantic priming from pre- to

post-test and tested whether this was greater in the high-variability condition. Analyses

revealed that, while both adults and children showed reliable across language semantic

priming (revealed in faster RT’s for adults and greater accuracy for children), this was

present even before training and there was no evidence of an increase in priming after the

training in either condition for either group. This was contrary to our expectation that

repeated exposure to the words with their picture depictions would increase the

robustness of those representations and thus increase semantic priming. This does not

appear to occur, or at least not sufficiently to be detected by this test. Given that there is no

evidence of changes to semantic representations in either condition, it is not possible

to interpret the lack of evidence for a difference in talker variability for this measure.

Future work could consider whether different types of training (e.g., using multiple

pictures to represent each word during training, or presenting words in richer contexts

such as meaningful sentences) are more effective in this respect.

Maturational differences
In the current study adults generally outperformed children both at pre- and post-test.

This result is not surprising from the perspective of word learning, where adults typically

outperform children in recognition and recall of new words (Henderson et al., 2013).

However, Giannakopoulou, Uther & Ylinen (2013a) found that children of a similar age to

those in the current study, showed greater learning of the /i/-/I/ distinction than adults,

as shown both in training (where adults initially out-performed children but were

overtaken by the final training session) and in the three-interval oddity discrimination test

(where children showed reliably greater improvements from pre- to post-test than

adult participants). In contrast, in our training data children did not overtake adults,

instead, it was adults who reached ceiling in the low-variability, while in the high-

variability condition (most similar to the training in Giannakopoulou, Uther & Ylinen,

2013a) our analyses found no evidence that children improve more from pre- to post-test

than do adults. Given that we focus on the same phonetic contrasts, and use similar

methods and tests, the reasons for these differences are unclear. First, we acknowledge the

importance of not over-interpreting a null effect—we have no evidence of an age

effect, rather than evidence of a lack of an age effect. We may simply not have sufficient

power. The different findings could also be due to differences in our participant

samples. We note that the average age of the children in the current study is slightly higher

than in the previous study (current study: 8;9 years; Giannakopoulou, Uther & Ylinen:

7;11 years). There are also differences in the extent of participants’ previous English

experience, which was greater in the current study for both age groups (current study:

children average of 1.96 years, adult average of 10.98 years; previous study: children

average of 1.4 years; adult average of 8.7 years). Note that previous English experience
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is a confounding factor with age in both the current study and Giannakopoulou, Uther &

Ylinen (2013a)—adults have substantially more experience in both cases—however, the

greater extent of experience for both groups in the current study could potentially

limit the opportunity to see maturational differences. Speaking against this, we note

that at pre-test our adults and children performed quite similarly in the three-interval

oddity discrimination tests to those in the previous study; our adults: 76%, our

children: 62%; Giannakopoulou, Uther & Ylinen (2013a): adults 92%, children 76%.

Another possibility is that there is a different role for age in the two studies, due to

differences in the training and testing tasks. One key difference in training is the use of

picture rather than orthographic stimuli. As noted in the introduction, for this specific

contrast, English orthography provides an analogue cue to the perceptual length

difference between the two vowels—the shorter vowel is generally transcribed with a

single letter (i) and the longer vowel with a digraph (ee/ea). Recall that Giannakopoulou,

Uther & Ylinen (2013a) found that children’s greater improvement over adults was

particularly marked in the condition where natural auditory stimuli were used in training,

compared with a condition where the stimuli had been modified to remove length cues.

One possibility is that children may make particular usage of the match between the

length of the auditory and visual stimuli, leading to their lesser success in the current

experiment where this cue was not provided. An additional benefit of orthography is

that it provides consistent cues across trials as to vowel category—i.e., there are

letters/pairs of letters which occur across different items with the same vowel (i.e., i in chip,

bid and lick, versus ea in cheap, bead and leak). Thus when orthography is present, learners

can focus on more general mappings between the orthographic units and the vowels,

potentially ignoring the rest of the lexical item, whereas in the current study they have

to learn how each vowel maps to each picture on an idiosyncratic basis. It is possible

that this is particularly challenging for children compared with adults. However, it is

worth recalling that there are other phonetic training studies that have also not found a

benefit for younger learners, and these did provide consistent cross-trial cues [e.g.,

Wang & Kuhl (2003), asked participants to choose consistent symbols for each of the

four tones; Heeren & Schouten (2008, 2010), asked them to match to “long t”].

However, as discussed above, other factors may contribute to the lack of benefit to

child learners in these cases.

Furthermore, research is needed to pull apart the reasons that a benefit in children is

seen in Giannakopoulou, Uther & Ylinen (2013a) but not in the current study, and more

broadly to establish which factors are important in child and adult learning. However, it is

clear that the current results do not support a clear story in which children’s greater

plasticity leads them to benefit more from phonetic training and it seems likely that there

are interactions with task complexity.

CONCLUSIONS AND FUTURE DIRECTIONS
The current experiment adds to the literature demonstrating that L2 learners can

improve their discrimination of a phonetic contrast via computerized phonetic training.
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In particular, we add to the handful of studies demonstrating that is true for child

L2 learners.

In contrast to previous literature, although performance of both adults and children

improved across training, and discrimination scores improved from pre- to post-training,

we did not find evidence of greater improvements for learners trained on input produced

by multiple talkers compared with a single talker. Instead, both age groups showed

benefits of hearing a single talker within the training task and there was some evidence that

children showed this same benefit in the discrimination test. We also did not see any

benefit of high-variability in terms of word learning, either in the semantic priming test

or the basic vocabulary test. In the above discussion, we have considered possible

explanations for the discrepancy between these results and the previous literature showing

a high-variability benefit. There are various differences between both the training and

testing tasks which could account for the differences and future work must tease these

apart. In particular, in the current work, since we were not using orthography, we did not

include a pre- and post-test “identity” test, but this makes the result harder to compare,

and we are developing methods for testing this in future work. Future work will also

address whether “blocking” the input by speaker in the high-variability condition is

necessary in order to see the benefits of this type of exposure. We also intend to include a

word production test in future work. This will both serve to explore the extent to which

comprehension training is generalized to production and also provide a vocabulary

test more akin to that used in the relevant word learning literature.

Our results also do not support the findings of greater plasticity in child learning

found by Giannakopoulou, Uther & Ylinen (2013a). Additional work is necessary to pull

apart the benefits of directly representing phonemes during training using orthography

(or some other categorical representation system) and whether this is particularly

important for child learners.

A final point of interest in our data is that, despite the fact that we used semantic

representations (pictures) when training the words, there was no evidence that training

increased the robustness of the semantic representations, at least as captured by the

semantic priming task. This raises the important question of the extent to which the type

of minimal pairs training employed here, and elsewhere, actually changes learners’

L2 lexical representations. We consider this to be a key question for future research.
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