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ABSTRACT 
 

Mutation is an evolutionary process that provides much of the genetic variation 

required for natural selection and genetic drift.  The mutation rate is a major 

driving force behind evolution, but is also an evolved characteristic itself.  

Although there is much theoretical research into why it evolved to the rate it did, 

there is little experimental work that investigates how its alteration affects 

evolution. 

 

I created a novel system in which bacteriophage ΦX174 could be evolved at a 

mutation rate two orders of magnitude higher than wild-type.  This system used 

a defective proofreading gene in the host polymerase to cause mutagenesis, 

and did not require the use of external mutagens which often conferred a 

biased mutational spectrum and harmful non-mutagenic effects. 

 

Replicate populations of ΦX174 were evolved in both wild-type and mutagenic 

conditions for approximately 300 generations.  One mutagenic population 

displayed a faster rate of adaptation than the wild-type lines, acquiring many of 

the same adaptive mutations in a shorter time frame, and rapidly increasing in 

fitness .  While the wild-type lines were characterised by periodic selective 

sweeps of individual mutations, the mutagenic conditions allowed many of 

these mutations to rise in frequency due to a single selective sweep.  The other 

mutagenic population, however, evolved very differently, with an early decrease 

in fitness that it did not recover from.  This population acquired many mutations 

not seen in the other lines, and lacked many of the common adaptive 

mutations. 
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The mutation rate increase was not high enough to cause extinction of the viral 

population.  The vastly different outcomes for the two replicate populations 

show that while an elevated mutation rate can in turn increase the rate of 

adaptation, it can also prevent it altogether by altering the genetic background 

and “locking out” potential adaptive mutations through negative epistasis. 
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 Chapter 1:  Introduction 
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1.0  Introduction 

"As many more individuals of each species are born than can possibly survive; 

and as, consequently, there is a frequently recurring struggle for existence, it 

follows that any being, if it vary however slightly in any manner profitable to 

itself, under the complex and sometimes varying conditions of life, will have a 

better chance of surviving, and thus be naturally selected. From the strong 

principle of inheritance, any selected variety will tend to propagate its new and 

modified form."  - On the Origin of Species, 1859. 

 

With these lines, Charles Darwin summarised the requirements for 

evolution: competition, variation, and heritability.  The existence of these were 

all self-evident facts, backed up by years of observation.  Yet it would be nearly 

a century before Watson and Crick unravelled the genetic code and the 

mechanisms controlling variation and heritability could be elucidated.  It is now 

well understood how genetics fits with Darwin's original theory.  DNA replication 

is an extremely accurate process, allowing each generation to pass on its 

genome to the next.  But if replication fidelity were perfect, all individuals would 

be clones and the theory would falter.  Genetic variation is required for species 

to adapt and change, and comes from two sources: recombination and 

mutation.  Recombination, the joining of genetic material from multiple sources, 

is the defining characteristic of sexual organisms, where parental chromosomes 

cross over as part of meiosis.  Yet for the variation between the parental 

genomes, and thus recombination, to be present at all, an original source is 

required: mutation. 
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Mutation is the ultimate source of variation.  Without this process, DNA 

replication would be completely accurate and every individual would be clonal.  

Selection would not exist and all organisms would be genetically identical to 

their parents, and to their children.  Mutation is therefore the fuel that drives 

evolution and the cause of all the diverse species on Earth today, from humans 

to viruses, and from plants to archaea.  However, mutation is also a relatively 

uncommon event, and it is unclear exactly why it occurs at the rate it does.  

While there is a large body of theoretical work that tries to explain the causes 

and consequences of different mutation, there is little empirical evidence. 

 

1.1  Mutation 

While mutation refers to any change that alters the nucleotide sequence 

of DNA or RNA, the mechanisms responsible and the changes produced can 

vary greatly.  This section will review the types and causes of mutations, as well 

as the evolution of the mutation rate. 

 

1.1.1  Substitutions 

Substitutions (figure 1.1) are the most common type of mutation, and 

occur when a single nucleotide is substituted for another.  If a substitution 

occurs within a protein coding region of DNA, it will result in one codon 

changing into another.  A missense mutation changes the codon to one with a 

different amino acid specificity to that of the original, potentially leading to 

changes in structure or function of the resultant protein.  When the codon is 

changed to a stop, it is called a nonsense mutation, and results in early 

termination of protein synthesis.  Finally, a synonymous (or silent) mutation 
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occurs when the new codon has the same amino acid specificity of the original, 

leaving protein structure unaffected. 

 

Substitutions can be separated into two distinct classes.  In transition 

mutations, a purine (adenine or guanine) is substituted for the other purine, or a 

pyrimidine (cytosine, thymine or, in the case of RNA, uracil) for the other 

pyrimidine.  In transversion mutations, a purine is substituted for a pyrimidine, 

or vice-versa.  Although there are twice as many possible transversions than 

transitions, transitions occur at a greater frequency (undefined author and Li, 

2013).  Substitutions are the most common type of mutation (Chen et al., 2009) 

and because they are typically only capable of modifying a single amino acid, 

are some of the most important in producing gradual evolutionary change.  Yet 

while many point mutations are advantageous to an organism, others have 

been demonstrated to be strongly deleterious and the cause of many diseases, 

including sickle cell anaemia, cystic fibrosis, and some cancers (NCBI, 1998). 

 

Although synonymous mutations are generally considered selectively 

neutral, there are circumstances in which this is not the case. For example, 

codon bias means some organisms preferentially produce some tRNAs for 

specific amino acids over others.  It is thought that if a mutation switches to a 

codon associated with a less abundant tRNA, it may interfere with the timing of 

cotranslational folding causing a change in the tertiary structure of the protein, 

despite the amino acid sequence being unchanged (Kimchi-Sarfaty et al., 

2007). 
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Substitutions can also appear in non-coding regions of the genome.  

While these may be presumed to be selectively neutral, this is not always the 

case.  Substitutions in promotor regions can affect gene expression, while 

substitutions in DNA binding sites can interfere with processes such as 

ribosome binding or mismatch repair (Zhen and Andolfatto, 2012). 
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Figure 1.1 - Substitution mutations.  In this example, three substitutions have occurred 

after replication, denoted by different coloured bases.  (i)  Missense mutation (red):  In the CAT 

codon, the cytosine has been replaced with a thymine, changing the codon from histidine to 

tyrosine.  (ii) Nonsense mutation (blue): The first guanine in the GAG codon has been 

substituted for a thymine, resulting in a TAG stop codon, (iii) Synonymous mutation (green): 

The third guanine in the GGG codon has changed to adenine, but the new GGA codon still 

encodes the same amino acid as before.
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1.1.2  Insertions and deletions 

Insertion and deletion (indel) mutations happen when one or more 

nucleotides are inserted or removed from a sequence.  In a coding sequence, if 

the number of bases of the indel is a multiple of three, this will result in the 

addition or removal of whole codons, as well as potentially altering adjacent 

codons.  A frameshift mutation (figure 1.2) takes place when the indel length is 

not a multiple of three.  All nucleotides at the 3' end of the indel are shifted 

along the strand, ending outside of their original reading frame.  Frameshift 

mutations lead to a large number of codons being changed and can cause stop 

codons to appear earlier or later than the original.  Resulting proteins and 

transcripts can therefore vary significantly in length and sequence to those of 

the original, and are usually non-functional.  Frameshift mutations have been 

found to be strongly selected against in mutation accumulation experiments 

(Heilbron et al., 2014), and are generally considered to be deleterious.
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Figure 1.2 - Frameshift mutation.  During replication, a guanine has been deleted from 

the new strand, causing subsequent 3' nucleotides to be shifted left one position.  This leads to 

multiple codon changes in the sequence.
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1.1.3  Causes of mutation 

Those mutations that arise stochastically during DNA replication are 

known as spontaneous mutations.  These typically occur due to biochemical 

interactions that change the state of the nucleotides, changing the way they 

pair (Griffiths et al., 2004). 

 

The four nucleotides appear in tautomers, constitutional isomers which 

readily interconvert.  In DNA, the tautomer commonly seen is the keto form 

although tautomers can spontaneously change to another form when a proton 

relocates.  This affects the hydrogen bonding pattern in the nucleotide, which 

leads to mutation if the base is mispaired during DNA replication.  Bases can 

also become spontaneously ionised, which can lead to mispairing. 

 

Depurination reactions occur when a β-N-glycosidic bond is cleaved in a 

purine deoxyribonucleoside, releasing the adenine or guanine base and leaving 

an abasic site, a deoxyribose in the DNA chain that has no base.  In dsDNA, 

abasic sites can be effectively repaired by the base-excision repair system 

(BER) which determines the missing base by pairing with the corresponding 

base on the opposite strand (Krokan and Bjørås, 2013).  Because this 

information is not available in ssDNA, the BER will instead insert a random 

base, which can result in either a transversion or transition mutation. 

 

Deamination in DNA is a hydrolysis reaction where the addition of water 

leads to the release of ammonia.  This affects the bases differently.  For 
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example, deamination of cytosine results in uracil which, following replication, 

will produce a C:G --> T:A transition mutation (Coulandre et al., 1978).  

 

Slipped strand mispairing (SSM) occurs during DNA replication when the 

two strands denature then reanneal incorrectly, causing mispairing.  This type 

of event results in indels and is thought to be one of the major causes of 

repetitive regions in DNA.  Repetitive regions are self-accelerating - as their 

size increases so too does the likelihood of mispaired strands, which in turn 

leads to a larger repetitive region (Levinson and Gutman, 1987). 

 

Induced mutations are those caused by external influences such as 

chemicals and radiation.  Although the exact mechanisms by which this occurs 

vary, they typically directly affect the DNA by ionising bases or changing their 

configuration to a different tautomer to the usual keto form.  During DNA 

replication, point mutations occur when these errant tautomers and ionised 

bases are mispaired. 

 

1.1.4  Large-scale mutations 

Whereas substitutions and indels typically affect only a small number of 

nucleotides, there are also mutations that can affect the genome on a larger 

scale.  However, many of these types of mutation are more common in 

eukaryotes. 

 

Gene duplication events involve the amplification of any region of DNA 

that contains a gene, although multiple genes could be copied together.  These 
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arise during recombination, such as when repeated sequences cause two 

chromosomes to become misaligned while crossing over.  This unequal 

crossing-over can lead to a region of DNA being donated from one 

chromosome to the other, resulting in a duplication on one chromosome and a 

deletion on the other.  Since gene duplications rely on recombination, they are 

seen more frequently in eukaryotes.  Deletions can also occur on a larger 

scale, and can result in the removal of whole genes or chromosomal regions. 

 

It is very unlikely that short indels are responsible for the enormous 

discrepancies in genome sizes between the largest eukaryotes and smallest 

viruses.  Susumu Ohno (1970) considered gene duplication to be the single 

major driving force behind evolution.  With an extra copy of a gene, formerly 

deleterious mutations in one paralogue would no longer be selected against as 

long as the other was still producing a functioning protein.  With natural 

selection no longer preserving the ancestral function, the duplicated gene 

would be able to freely acquire more mutations and develop its own function.  

The power of gene duplication is demonstrated in the vertebrate calpain gene 

family, with phylogenetic analysis showing when duplications occurred, and 

molecular evolution analyses showing that selection was relaxed after many of 

these events (Macqueen and Wilcox, 2014). 

 

When a gene is duplicated, the new paralogue is still a variant of the 

original protein, retaining its structure and function. (Ohno, 1984) proposed that 

frameshifts in duplicated genes allowed an unused reading frame to become 

active without the strong negative selection that would occur if it appeared in 
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the only copy of an essential gene.  This would lead to the synthesis of a novel 

polypeptide with no pre-existing biological function that could tolerate many 

further mutations without the constraints of selection, with the potential to 

eventually lead to a new, unique function.  Although Ohno's example of a gene 

in Flavobacterium arising in this way was later shown to be incorrect (Negoro et 

al., 2005), genomic analysis has demonstrated multiple instances where genes 

share homology with other gene families, despite being in different reading 

frames (Raes and Van de Peer, 2005).  

 

Although gene duplications have been described frequently in organisms 

ranging from higher eukaryotes to small DNA viruses, in RNA viruses they have 

been rarely observed throughout evolutionary history.  It is thought that this is 

due to strong selection against large genome sizes in RNA viruses rather than 

them not occurring (Simon-Loriere and Holmes, 2013). 

 

As well as gene duplications, chromosomes or even whole genomes can 

become duplicated.  These will not be covered in detail here because they are 

not applicable to the work presented in this thesis. 

 

1.1.5  Evolution of the mutation rate 

While mutation is the fuel for evolutionary change, the rate at which it 

happens is also an evolved characteristic.  Throughout life, there are many 

molecular mechanisms that have arisen which work to prevent mutations from 

occurring and repair damage to DNA, leading to an effective decrease in the 

mutation rate.  These mechanisms are presumably favoured by selection due to 
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their capacity to reduce the rate of deleterious mutations (Sniegowski et al., 

2000). 

 

While it may be intuitive to imagine that the mutation rate evolved to an 

optimal level that balances the fitness cost of deleterious mutations with the 

fitness gain from beneficial mutations, the physiological cost of modifying the 

mutation rate is also a contributing factor.  This means that while the optimal 

mutation rate for evolution would be determined by a trade-off between 

minimising the number of deleterious mutations while ensuring beneficial 

mutations occurred at a high enough frequency, the actual mutation rate may 

not have evolved to this optimum level, instead being a balance between the 

fitness costs of having a high frequency of deleterious mutations, and the 

fitness costs of having and maintaining modifiers (Kimura, 1967).   

 

Much variation has been detected in the effectiveness of these modifiers.  

Antimutator phenotypes have been discovered in T4 phage and E. coli, 

indicating that ever lower mutation rates are achievable (Schaaper, 1998).  It is 

unclear whether lower rates are not usually seen in nature because they are 

beneath the optimum rate for generating beneficial mutations, or that the 

physiological costs of reducing them further are too great. 

 

Since mutation rate modifiers act on other genes, selection will act on 

the mutations they generate rather than the modifiers themselves.  Linkage 

disequilibrium means that the modifiers can still be indirectly selected for 

because they can hitchhike along with any beneficial mutations that they are 
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responsible for generating.  In fact, this phenomenon has been credited with 

the evolution of mutator phenotypes that are sometimes observed in bacteria 

(Raynes and Sniegowski, 2014).  However, recombination disrupts the link 

between the modifier and the mutation, meaning indirect selection to increase 

the mutation rate is dependent upon the recombination rate.  Since deleterious 

mutations are far more common than beneficial mutations and their selection is 

less affected by the erosion of linkage disequilibrium, selection that reduces the 

frequency of deleterious mutations is likely to be much stronger than selection 

that increases the frequency of beneficial mutations (Barton, 2010). 

 

It is thought that elevated mutation rates will only be maintained over 

long periods when selection pressures change rapidly, such as antagonistic 

coevolution with a parasite.  For example, mutator phenotypes frequently arise 

in populations of Psuedomonas fluorescens when it is experimentally evolved 

in the presence of a phage in vitro (Pál et al., 2007).  However, these results 

could not be replicated in the bacteria’s normal environment, suggesting that 

this phenomenon may be less common outside the laboratory (Gómez and 

Buckling, 2013). 

 

It seems likely therefore that the major selective pressure for an 

increased mutation rate is the cost of having mutation rate modifiers, and the 

mutation rate evolved to a level that balances the fitness cost of modifiers with 

the fitness cost of deleterious mutations.  A further hypothesis is that in 

eukaryotes the lower limit to the mutation rate is set by genetic drift (Lynch, 

2010).  
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1.1.5.1 Drake's rule 

Mutation rates can vary by orders of magnitude between different 

organisms, and even in different parts of the same genome.  Drake (1991) 

compared the mutation rates of haploid DNA organisms ranging from viruses to 

bacteria to fungi.  Despite the genome sizes varying by over 3 orders of 

magnitude and the mutation rate per nucleotide varying by over 4 orders of 

magnitude, the mutation rates per genome were all within the same order of 

magnitude, with the majority falling into the range 0.003-0.004.  It follows from 

this that the mutation rate per nucleotide is inversely proportional to genome 

size.  This has come to be known as Drake's rule, but it must be noted that 

since the sample size is small and methods have varied it is more of a 

correlation than a hard and fast law.  However, further mutation rate estimates 

appear to support Drake’s rule (Sung et al., 2012). 

 

  Drake's rule only applies to microorganisms, including dsDNA and 

ssDNA viruses and bacteriophages but excluding RNA viruses which have 

mutation rates that are on average greater by 2 orders of magnitude and do not 

fall into this range (Drake and Holland, 1999).  Although single cellular 

eukaryotes appear to follow Drake's Law, higher multicellular organisms do not.  

It is unclear exactly why this is, but could include factors such as the removal of 

mutations via meiosis and recombination, the number of DNA replications that 

occur within a multicellular organism, and the large amount of non-coding DNA 

in higher organisms. 
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1.1.6  Consequences of evolution at a high mutation rate 

 Since the majority of non-neutral mutations are deleterious (Eyre-

Walker and Keightley, 2007), it would be expected that at high mutation rates 

selection would be unable to remove them all, resulting in a decline in fitness 

over generations.   

 

There are also a number of evolutionary processes that must be 

considered at high mutation rates, thought to affect this fitness decline either by 

exacerbating or offsetting it.  These include mutation-selection balance, Muller's 

ratchet, clonal interference, mutational robustness, error catastrophe, and 

adaptive and compensatory evolution (Keller et al., 2012). 

 

1.1.6.1 Mutation-selection balance 

Mutation and selection are two opposing forces - mutation acts on a 

population to create individuals that are less fit than the rest, and selection 

purges them to ensure that the population's fitness is maintained.  How well 

mutation and selection are balanced determines how much of the population 

contains a deleterious allele, and hence its fitness.   

 

When an organism replicates, the progeny will occasionally contain one 

or more mutations.  The majority of these are deleterious and removed by 

selection.  However, as mutation rate increases, it is harder for selection to 

remove all the deleterious mutations.  Whereas usually the less-fit genotypes 

are outcompeted by unmutated genotypes, under mutagenic conditions they 

have to compete with multiple deleterious genotypes that are present at the 
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same time.  This has two immediate consequences.  Firstly, the rate at which 

selection operates is decreased, since the difference in selection coefficients 

between two deleterious genotypes is smaller than that between a deleterious 

genotype and the wild-type.  Secondly, deleterious mutations with smaller 

fitness costs are actually selected for when competing with deleterious 

mutations with large fitness costs. 

 

If the mutation rate is increased to a level that selection cannot efficiently 

remove deleterious mutations, they will accumulate in the population until a 

new equilibrium is reached, referred to in population genetics as mutation-

selection balance (Haldane, 1927).  Selection presents difficulties in models, 

since it relies on data such as the distribution of mutational fitness effects in a 

genome which are too vast to measure empirically and too complex to predict.  

Kimura and Maruyama (1966) produced a simplified model that describes the 

mean fitness (W) of an asexual population at equilibrium (relative to 1, the 

fitness of the mutation-free genotype), determined only by the genome-wide 

deleterious mutation rate (U). 

W = e-U 

 

Kimura and Maruyama's model says that as U increases, W will 

decrease.  When U is sufficient that W tends towards 0, the accumulation of 

deleterious mutations should be too high for the population to maintain, leading 

to extinction.  This equation has been used as a starting basis for models that 

attempt to describe lethal mutagenesis (Springman et al., 2010) (Bull et al., 

2007).  However, it treats all deleterious mutations as selectively equal, and 
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does not take into account adaptive evolution, recombination, and epistasis, as 

well as many of the evolutionary processes discussed in the remainder of this 

introduction. 

 

1.1.6.2 Muller's ratchet 

Muller's ratchet is the name given to a model that describes the 

accumulation of mutations in an asexual population (Muller, 1964).  This model 

makes two assumptions: 

 

a) The population size is finite. 

b) Deleterious mutations are irreversible (i.e. back mutations are 

rare enough that they are ignored) 

 

In asexual organisms, all genomes are passed on from parent to 

offspring as a single unit.  If a deleterious mutation appears in an individual it 

will invariably be present in all that individual's offspring.  This means the only 

way for deleterious mutations to be removed is by purifying selection.  

However, if the mutation rate and selection coefficients are such that selection 

cannot remove every deleterious mutation, eventually genetic drift will lead to 

every member of the population acquiring at least one mutation. Once every 

individual contains a deleterious mutation the original unmutated genome is lost 

to the population.  Like a ratchet with teeth that mean it can only turn forwards 

and never back, a further "turn" can introduce more deleterious mutations and 

change the genome further, but the previous fittest genome is also lost.  As 

further deleterious mutations accumulate within the population, each fittest 
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genotype will eventually go extinct to be replaced with the second fittest, until 

the fitness decline is enough to cause extinction of the entire population (figure 

1.3). 

 

Recombination allows organisms an additional way to purge deleterious 

mutations.  If a parent has a deleterious mutation it is possible for their offspring 

to avoid inheriting it by combining their DNA with a second parent that does not 

have the same mutation.  Muller proposed that asexual species were at a 

disadvantage to those that reproduce sexually, because of this extinction risk.  

Muller's ratchet has been put forward as a possible cause of the degeneration 

of the Y chromosome (Engelstädter, 2008), and mitochondrial DNA (Loewe, 

2006).  Because these are passed down through the paternal and maternal 

lines respectively, they do not recombine during sexual reproduction and are 

simply clonal copies of those from parents. 
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Figure 1.3 - Muller's ratchet.  Distribution of mutational load in an asexual population over time.  

As mutations accumulate due to genetic drift, the distribution is shifted to the right.  Eventually, 

the unmutated genotype is lost, followed by genotypes with one deleterious mutation, and so 

on, until the extinction threshold (dotted line) is reached.
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1.1.6.3 Clonal interference 

When a beneficial mutation appears in a population, positive selection 

can cause it to increase in frequency over subsequent generations until it 

becomes fixed, in a process known as a selective sweep.  The traditional view 

is that with beneficial mutations being a rare occurrence, and beneficial 

mutations that are not lost to genetic drift rarer still, adaptive evolution is driven 

by sequential selective sweeps (ATWOOD et al., 1951). 

 

However, with high mutation rate or population size it is possible for 

multiple beneficial mutations to arise simultaneously in different lineages.  In a 

sexual population, recombination can merge these mutations into a single 

genotype, but in an asexual population where recombination is rare or absent, 

these lineages instead end up competing against each other, a phenomenon 

known as clonal interference. 

 

Clonal interference has a number of effects on the dynamics of an 

evolving population.  Beneficial mutations that would normally become fixed via 

a selective sweep if they occurred on their own may end up being selected 

against and lost if mutation with a higher selection coefficient is competing 

against them.  The mutation that outcompetes other beneficial mutations is also 

affected.  Because the difference in selection coefficients between two 

beneficial mutations is smaller than the difference between the most beneficial 

mutation and the wild-type, the time taken for this beneficial mutation to reach 

fixation is increased, slowing the rate of adaptation. 
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One consequence of clonal interference is that it is predicted to put a 

"speed limit" on evolution (Gerrish and Lenski, 1998) and may in itself be a 

factor in determining the evolution of the mutation rate.  Consider that as the 

mutation rate increases, so does the frequency of beneficial mutations.  It 

follows that frequent beneficial mutations will lead to more instances of clonal 

interference, which will lower the strength of selection and in turn lower the rate 

at which fitness improves. 

 

1.1.6.4 Mutational robustness 

While mutations in protein coding DNA sequences (CDS) often result in 

products with altered or impaired functions, it is also possible that the 

phenotype will be unaffected by these changes.  This is known as mutational 

robustness and is the extent to which the phenotype of a population remains 

unaffected by changes in genotype.   

 

Robustness allows an organism to be more tolerant of mutations.  When 

bacteriophage T4 lysozyme mutants were created to test the effects of multiple 

amino acid substitutions at every position, it was found that over 55% of the 

substitutions did not affect the enzyme's lysis activity (Rennell et al., 1991).  

Robustness also extends to the genomic level, with many organisms being 

tolerant to gene deletions or inactivations.  Gene-deletion mutants for 96% of 

Saccharomyces cervisae genes were created, showing that only 18.7% of them 

were essential for growth under standard conditions (Giaever et al., 2002). 
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Since robustness is intrinsically linked to mutation, it directly affects 

evolution.  While it may be easy to think of robustness and evolvability as 

opposite ends of a scale, the link between the two is complex.  For example, 

robustness can actually increase evolvability by facilitating epistasis.  

Robustness essentially increases the proportion of mutations that are 

selectively neutral.  Because these are more likely to persist at low frequencies 

in a population due to genetic drift, the number of genetic variants in a robust 

population is wider.  In a genetically homogeneous population, every possible 

mutation will have a single effect.  However, in a population of genetically 

robust organisms, there may be numerous closely related genotypic 

backgrounds.  This means that new mutations may have different effects 

depending on the organism they arise in, widening the spectrum of potential 

adaptations (Draghi et al., 2010). 

 

Genetic redundancy refers to genes that can be inactivated with little 

effect on phenotype because other genes compensate for their loss.  Selection 

on redundant genes is often relaxed, providing another route for robustness to 

evolve.  It is highly debated whether mutational robustness itself is a selected 

trait or just a by-product of other processes (Montville et al., 2005). 

 

1.1.6.5 Error catastrophe 

Error catastrophe is a term that lacks a strict definition.  In many studies 

that attempt to eradicate populations of RNA viruses by mutagenesis, error 

catastrophe is equated with lethal mutagenesis.   
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An error catastrophe occurs when mutation rate exceeds a threshold so 

that the fidelity of the mutation-free genotype can no longer be maintained in a 

population and is lost (Keller et al., 2012).  Although this can be thought of as 

similar to extinction through the accumulation of deleterious mutations, error 

catastrophe does not specifically refer to extinction.  In fact, it is possible that 

this threshold is exceeded, yet the population still meets a fitness equilibrium 

and does not go extinct.  In this way, it is possible that extinction may be 

avoided altogether, by shifting the genotypes of the population to those that are 

more robust (Bull et al., 2007).  When studies equate viral extinction with error 

catastrophe it can be misleading, since the mutation rate threshold that causes 

extinction will be higher than that which leads to error catastrophe and a fitness 

equilibrium. 

 

Error catastrophe is intrinsically linked to the viral quasispecies model 

(Eigen, 1971).  As opposed to a traditional population where genotypes are 

assumed to be homogenous, a quasispecies is a population of closely related 

but differing genotypes that exists at high mutation rate.  This is generally used 

to describe RNA viruses. 

 

In a term known informally as "survival of the flattest", the model predicts 

that quasispecies which occupy a low but flat position on the fitness landscape 

(i.e. are mutationally robust) will outcompete quasispecies on a peak (i.e. high 

fitness but low robustness) because they are less sensitive to deleterious 

mutations (Tejero et al., 2011). 
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1.1.6.6 Adaptive and compensatory evolution 

Many models of evolution at high mutation rates ignore adaptive 

evolution.  However, when one of these models was tested empirically it was 

found that rather than the predicted decline being observed, a population 

actually increased in fitness (Springman et al., 2010).  Even if the assumption 

that a population is at optimum fitness could be enforced experimentally (by 

pre-adapting it to laboratory conditions, for example), it still fails to account for 

two other types of adaptation: reversions and compensatory mutations. 

 

In a viral population, deleterious non-lethal mutations are constantly 

arising.   While the majority are quickly lost through selection or genetic drift, 

this is not always the case.   For example, if a mutation is only slightly 

deleterious, it might increase in frequency due to genetic drift, where it is able 

to persist for some time due to the weak selection acting upon it.  Alternatively, 

if the net fitness change is still positive, deleterious mutations can increase in 

frequency by hitchhiking with beneficial mutations (Lang et al., 2013).  

 

Instead of being removed by selection, there are other ways in which a 

genotype containing a deleterious mutation can have its fitness restored.  If, for 

example, a deleterious mutation were to revert to its ancestral state in a new 

mutational event, any loss of function or fitness would be reversed.  

Alternatively, a compensatory mutation could also occur, a second mutation 

that compensates for the fitness loss caused by the original by means of 

epistatic interaction.   
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Compensatory mutations appear to be common.  This most likely results 

from there potentially being multiple compensatory mutations available for each 

deleterious mutation, and the fitness differences between each of these 

compensatory mutations and reversion.  In one study, it was found that when a 

strain of bacteriophage ΦX174 that included deleterious mutations was grown, 

compensatory mutations evolved approximately twice as often as reversions 

(Poon, 2005).  It was also estimated that on average there were at least nine 

potential compensatory substitutions for each deleterious mutation, although 

some deleterious mutations could not be compensated for at all. 

 

At higher mutation rates where deleterious mutations are more common 

within a population, it follows that the frequency of compensatory mutations 

would also increase.  Simulations have shown that compensatory mutations 

would be continually evolving and able to offset the fitness decline caused by 

the accumulation of deleterious mutations (Keller et al., 2012). 

 

A further potential consequence of frequent compensatory mutations is 

that they change the genetic background.  Just as the compensatory mutation 

would not be beneficial in the absence of the deleterious mutation it 

compensates for, it may have potential epistatic interactions with other 

mutations, meaning mutations that may be beneficial or deleterious on a wild-

type genome may not have the same effect in a genome containing 

compensatory mutations. 
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1.2  Bacteriophage ΦX174 

1.2.1  Background 

Bacteriophages (or phages) are the viruses of bacteria, the Greek word 

"phagein" from which their name is derived literally meaning "to devour".  Much 

like viruses of eukaryotes, phages enter the cells of their hosts, where they 

replicate with the aid of intracellular host machinery.   

 

Soon after their discovery approximately a century ago, there was much 

interest in the therapeutic properties of phages due to their ability to kill their 

bacterial hosts.  However, most research into this area ceased after the 

discovery of antibiotics and the outbreak of war in 1939.  The exception to this 

was the former Soviet Union where research in phage therapy continued 

throughout the Cold War, but political and language barriers prevented their 

findings from becoming known in the West.  However, with antibiotic resistance 

a growing concern, interest in therapeutic use of bacteriophage has been 

renewed (Cisek et al., 2016). 

 

Bacteriophage ΦX174 will be the main organism used in the 

experimental portion of this thesis, so this section will discuss this phage in 

detail. 

 

For such a simple organism, ΦX174 has a lot of history.  In 1959, its 

genome became the first DNA molecule to be homogeneously purified 

(Sinsheimer, 1959), and in 1967 its genome was synthesised by DNA 

polymerase in vitro, opening the doors to the age of synthetic biology (M 
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Goulian, 1967).  When pioneering the sequencing technique that bears his 

name, Fred Sanger chose to use ΦX174 as his subject, making it the first DNA 

genome ever to be completely sequenced (Sanger et al., 1977, (Sanger et al., 

1978).  Shortly after, it was the first organism to be used in site-directed 

mutagenesis, for which Michael Smith received a Nobel Prize in Chemistry 

(Hutchison et al., 1978).  More recently, it became the first man-made genome 

when Craig Venter's group assembled it in vitro from synthetic oligonucleotides.  

When introduced to host cells, this genome was capable of producing fully 

infectious ΦX174 virions (Smith et al., 2003). 

 

ΦX174 is a tailless icosahedral bacteriophage belonging to the 

Microviridae family.  Its capsid contains 60 copies each of two proteins that 

protect its genome, a circular molecule of single-stranded DNA (ssDNA) made 

up of 5,386 nucleotides encoding 11 genes.  Its small genome is highly utilised, 

with 95% of nucleotides belonging to coding regions and several of its genes 

overlapping.  Of these overlapping genes, one encodes a truncated form of a 

longer protein, the others in alternate reading frames encoding unique products 

(figure 1.5).  The genes are summarised in table 1.1.  During infection, ΦX174 

follows the typical lytic cycle (figure 1.6).
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Figure 1.4 - Structure of the ΦX174 capsid (top), ΦX174 virions under electron microscopy 

(bottom) 

Images by Fdardel (top) and ShiftFn (bottom), via Wikimedia Commons.
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Figure 1.5 - Genome organisation of ΦX174.  Genes B, K, and E overlap in different reading 

frames.  Gene A* is a truncated form of A and shares the same reading frame. 

Created with AngularPlasmid.
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Table 1.1 - Genes of ΦX174 and the functions of their protein products 

Adapted from (Fane et al., 1988). 

Gene Function Notes 

A DNA replication.  

A* Inhibits host DNA replication. Non-essential.  Truncated form of 

protein A 

B Internal scaffolding protein used for 

procapsid assembly. 

Overlaps gene A. 

C DNA replication  

D External scaffolding protein used for 

procapsid assembly. 

 

E Host cell lysis. Overlaps gene D 

F Coat protein.  60 copies present in 

virion. 

Green in figure 1.5 

G Spike protein.  60 copies present in 

virion. 

Cyan in figure 1.5 

H DNA pilot protein.  10-12 copies 

present in virion. 

 

J DNA binding protein.  60 copies 

present in virion. 

 

K Burst size optimisation. Unessential.  Overlaps genes A and C. 
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Figure 1.6 - Life cycle of ΦX174.  (i) ΦX174 virion attaches to host bacterium.  (ii) Genome is 

injected into the host cytoplasm.  (iii)  Replication of phage genome, synthesis of viral proteins, 

and assembly of progeny virions.  (iv) Further replication and assembly, beginning of host lysis.  

(v) Lysis of host cell and release of ΦX174 virions.
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1.2.2  Life cycle of ΦX174 

1.2.2.1 Attachment 

ΦX174 infects bacteria of the Enterobacteriaceae family, with its known 

hosts including strains of Escherichia coli, Salmonella typhimirium and Shigella 

sonnei that contain rough forms of lipopolysaccharide (LPS) in their outer 

membranes (Wichman and Brown, 2010). 

 

Attachment of ΦX174 to host cells begins with a reversible reaction 

caused by an interaction of glucose molecules in LPS with glucose-binding 

residues in the coat protein F, a reaction that appears to be dependent on the 

presence of Ca2+ ions (Fane et al., 1988).  This is followed by an irreversible 

reaction that has been observed in vitro, but the molecular basis of which has 

not yet been elucidated.  However, mutations in the G and H proteins have 

been shown to affect host range, and both proteins have demonstrated an 

ability to bind with LPS.  One hypothesis for having an initial reversible reaction 

is that the phage will be able to disassociate from LPS-containing membrane 

fragments shed from lysed host cells (Incardona et al., 1985). 

 

1.2.2.2 Injection 

While many phages use a tail to penetrate the host wall and deliver their 

genomic payload (Molineux and Panja, 2013), the ΦX174 virion is tailless.  After 

attachment of the virion to LPS, ten copies of the DNA pilot protein encoded by 

gene H oligomerise to form a tube which extends out of one of the pentameric 
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spikes and through the periplasm of the cell.  The DNA passes out of the capsid 

through this tube, and into the cytoplasm of its host (Sun et al., 2014). 

 

1.2.2.3 Replication 

Replication of the phage genome occurs in three stages.  In stage I, the 

ssDNA genome is converted into a covalently closed double-stranded DNA 

(dsDNA) molecule called replicative form (RF) DNA.  Since ΦX174 has no 

antisense strand, no proteins can be synthesised until this process has 

happened, meaning stage is carried out solely by host proteins including the 

DNA III polymerase holoenzyme complex (Shlomai et al., 1981). 

 

In stage II, RF DNA is amplified by a rolling circle mechanism.  In 

addition to host proteins, this process requires the product of ΦX174 gene A, 

which nicks the (+) strand of RF DNA at the origin of replication before binding 

to the 5' end.  This serves as a primer for DNA synthesis by DNA III 

polymerase, using the unnicked strand as a template.  As replication continues 

along the (-) strand, the nicked strand is displaced, before being covalently 

closed by the host rep protein.  The (+) strand molecule then has a (-) strand 

synthesised by the same process as in stage I (Eisenberg et al., 1977). 

 

In stage III replication, ssDNA genomes are synthesised and packaged 

in the viral procapsids.  The ΦX174 C protein binds to the A protein to inhibit 

further replication of RF DNA.  This complex binds to the procapsid and 

undergoes another round of rolling circle replication.  From this, the new RF 
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DNA is released, while the (+) strand is covalently closed but remains attached 

to the procapsid (Aoyama and Hayashi, 1986). 

 

1.2.2.4 Capsid assembly 

Once stage I DNA replication has occurred, synthesis of phage proteins 

begins.  As previously mentioned, the A and C proteins have functions related 

to stage II and III DNA replication.  A further six proteins are involved in 

assembly of the capsid, starting with the coat and spike proteins F and G, 

which appear to self-assemble into pentamers (Fane et al., 1988).  This is 

followed by binding of the internal scaffolding protein B to the coat pentamer, 

causing a conformational change which is thought to allow the coat pentamer to 

associate with a spike pentamer (Ekechukwu and Fane, 1995).  In the next 

stage of capsid morphogenesis, the pentamers are brought together with the 

external scaffolding protein D.  It appears that there are no chemical 

interactions between the capsid pentamers, and that structure is maintained at 

this point by the external scaffolding proteins (Dokland et al., 1999).  Sixty 

copies of the DNA binding protein J bind to a ssDNA genome and enter the 

procapsid, displacing protein B.  Each copy of J associates with a single coat 

protein, tethering the genome in place within the virion.  This is followed by the 

disassociation of the external scaffolding proteins, causing a configurational 

change in the capsid pentamers (Hafenstein and Fane, 2002) 

 

1.2.2.5 Lysis 

Host lysis is controlled by the product of the ΦX174 E gene, a short 

protein that inhibits the host enzyme translocase I, involved in peptidoglycan 
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synthesis (Bernhardt et al., 2001).  With host bacteria prevented from 

synthesising cell walls, lysis occurs when the cell attempts to divide; a similar 

mechanism to the β-lactam antibiotics.  Time from infection to burst is 

asynchronous, but lasts for an average of 21 minutes (Hutchison and 

Sinsheimer, 1963), which supports this passive lysis mechanism being 

dependent on the host cell's life cycle. 

 

1.2.3  Other genes 

Two gene products from ΦX174 have not been mentioned in this section 

so far, A* and K.  A* is a truncated form of protein A that appears to increase the 

efficiency of phage DNA replication by inhibiting that of the host, but is non-

essential for viral propagation (Colasanti and Denhardt, 1987).  A mutant with a 

premature stop codon in gene K was found to still be viable but had a reduced 

burst size compared to wild-type, indicating that the function of this protein is 

related to increasing burst size (Gillam et al., 1985).  However, the mechanism 

by which these two genes work is unclear. 

 

1.2.4  Recombination 

Genetic recombination can occur in ΦX174 when two molecules of RF 

DNA are present within the same cell.  Although this process can likely occur 

with extra copies of RF DNA that have arisen during replication, these are all 

clonal and so genotype will be left unaffected.  However, during coinfection of a 

bacterial cell with more than one phage, both can have their genomes 

converted to RF DNA, which can result allelic recombination. 
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Recombination is dependent on the host recA protein, although in its 

absence the ΦX174 A protein can be utilised for a less effective recombination 

process.   

 

Since recombination in ΦX174 takes place during DNA replication, its 

frequency is directly linked to the multiplicity of infection (MOI), the ratio of 

phages to host cells.  When host cells outnumber phages, coinfection is 

unlikely and recombination is rare.  When host cells are outnumbered by 

phages the opposite is true, fewer host targets mean coinfection becomes 

common and the probability of recombination increases.
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1.3  Experimental evolution 

1.3.1  History of experimental evolution 

Traditionally, evolution has not been an experimental science. Much like 

historians, evolutionary biologists had to look to the past at evidence left 

behind, be that comparative studies of extant species, the fossilised remains of 

extinct species, or genetic data. Darwin himself only formulated the ideas in On 

The Origin of Species (1859) after sailing the globe and observing how different 

organisms had adapted to their different environments, such as the different 

beak shapes found in Galapagos finches or the differences between different 

carrier pigeons. He would have doubtless had an easier time of it if he had 

been able to confirm his hypotheses in the laboratory.  

One of the earliest known evolution experiments was carried out in the 

19th century by (Dallinger, 1888).  Over several years, he grew a culture of 

unicellular organisms in an incubator, gradually raising the temperature from 

15ºC to 70ºC.  Although the organisms initially could not grow at 23ºC or above, 

over the course of the experiment they adapted to the change in temperature 

and were eventually able to grow at 70ºC.  Furthermore, when the adapted 

organism was cultured at 15ºC, it was unable to grow. 

The first evolution experiments were performed in animals, such as the 

fruit flies Drosophila pseudoobscura and Drosophila melanogaster (Sewall 

Wright, 1946) (Rose, 1984), and the silver fox Vulpes vulpes (Belyaev, n.d.), 

but these were infrequent, probably due to their practical difficulties. With 

advances in microbiology and genetics however, experimental evolution began 

to arise as a field in its own right.  
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Microorganisms have many distinct advantages over multicellular 

organisms for experimental evolution. Their short reproductive times mean that 

experiments can run for a much larger amount of generations, their small size 

allows far greater populations in far smaller spaces, and they are easy to 

culture and grow, with conditions easier to control. These advantages also 

make experimental replication possible (Kawecki et al., 2012). 

A noted evolution experiment began in 1988 at the University of 

Michigan, and continues to this day. Richard Lenski evolved 12 populations of 

Escherichia coli that began from a single clone. To date, the populations have 

been growing for over 60,000 generations and data from this experiment has 

been used in numerous studies. In the meantime, hundreds more evolution 

experiments have been performed using bacteria, viruses and yeasts (Buckling 

et al., 2009).  

Rather than looking back and piecing together the evolutionary history of 

life on Earth with existing data, experimental evolution allows us to study 

dynamics in evolving populations in real time, and gain a better understanding 

of the mechanisms that drive evolution.  

 

1.3.2  Serial passaging versus continuous culture 

In any growth environment, the organisms must be provided with the 

nutrients they need to survive and reproduce (and, in the case of viruses, there 

must be an adequate supply of host cells and the nutrients they require).  In 

addition, population sizes will quickly increase to levels that cannot be 

supported by the growth environment. 
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When studying unicellular organisms, there are two major methods used 

for propagation: serial passaging and chemostats.  In serial passaging, a 

sample of a population from a culture is transferred to fresh media and allowed 

to grow, before the process is repeated.  This allows for the periodic 

replenishment of nutrients, as well as the control of population sizes.  By only 

transferring a small sample of a population, a genetic bottleneck is introduced, 

adding selection to the system.  Typically the environment used for passaging 

is a culture containing growth media and/or host cells, but can include more 

exotic environments; one study passaged Candida albicans through a series of 

murine gastrointestinal tracts (Pavelka, 2014). 

 

A chemostat is an enclosed growth environment to which fresh growth 

medium is added at a constant rate, while media in the main chamber is 

removed at the same rate.  This allows for continual replenishment of the 

nutrients required for growth, as well as removal of metabolic by-products.  The 

removed medium also contains a portion of the microorganisms being grown.  A 

culture in a chemostat will eventually reach an equilibrium where the population 

growth rate is the same as the rate at which is it diluted.  To achieve this, the 

medium in the chemostat must have an essential nutrient present in growth 

limiting concentration.  This steady state growth can be desirable in 

experimental evolution because it provides for a consistent environment 

compared to serial passaging where conditions change over the course of each 

passage (Gresham and Dunham, 2014). 
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Although serial passaging is commonly used, experiments carried out 

with this method typically run for a short number of generations.  A major 

advantage of a chemostat is that it requires far less "hands-on" time than serial 

passaging, because the replacement of growth medium and population control 

are both controlled automatically, meaning experiments can cover many more 

generations with little extra effort.  As a comparison, one chemostat experiment 

with ΦX174 covered approximately 13,000 generations (Wichman et al., 2005), 

while the longest serial passaging experiment with the same organism to date 

is the one presented in chapter 4 of this thesis, which reached approximately 

300 generations.  A notable exception is Richard Lenski's LTEE, where E. coli 

have been serially passaged for over 67,000 generations as of March 2017 

(Lenski, 2017).  However, this experiment has been running for over 28 years, 

which is not feasible for most researchers. 

 

In the case of experimental evolution using bacteriophage, a two-

chambered chemostat is required.  The first chamber behaves like a typical 

chemostat, in which host bacteria are grown.  In the second chamber, 

bacteriophages are grown, with a supply of host bacteria provided by a 

constant flow of medium from the first chamber. 

 

One important consideration when using chemostats to grow 

bacteriophages is that they do not directly require nutrients; nutrients in the 

medium are used by the host cells, which are then utilised by the phages.  

Limiting nutrients would therefore limit the growth rate of the host rather than 

the phage.  Since phages typically multiply at a much higher rate than their 
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hosts, their growth rate is directly linked to the number of host cells within the 

chemostat.  This means that while it is possible to control the phage population 

size by limiting the number of host cells that flow into the chamber, it is not 

possible to manipulate the MOI in a chemostat.  At high MOI, the probability of 

a host being coinfected by multiple phages increases, increasing the probability 

of recombination which may not be desirable in many evolution experiments.  In 

these circumstances, serial passaging would be preferable because population 

sizes can be periodically reduced to prevent the MOI increasing over time. 

 

1.3.3  Experimental evolution of ΦX174 

Due to their small genome sizes, short generation times, and ease of 

culture, the Microviridae, and ΦX174 in particular, have been used frequently in 

experimental evolution and become a model system.  The first study examined 

convergent evolution, discovering that in nine evolving lines, over half the 

substitutions observed were common to multiple lineages (Bull et al., 1997).  It 

was also shown that there was not a common evolutionary trajectory shared by 

replicate lineages, and parallel mutations did not always appear in the same 

order expected by their relative fitness effects (Wichman et al., 1999). 

 

Adaptation to different hosts has also been studied.  When grown in 

Salmonella enterica ΦX174's ability to grow in E. coli was reduced, although 

when adapted to E. coli it was still able to grow in Salmonella.  It was 

determined that this was due to mutations in the coat protein, and after 

switching hosts these mutations swiftly reverted to restore infectivity to the 

phage (Crill et al., 2000).  It was found that the majority of mutations evolved 
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independently in different lineages, and many of the sites where changes were 

seen were at sites where ΦX174 differed from S13, a closely related phage.  It 

was concluded from this that there were limited evolutionary pathways in the 

Microviridae (Wichman et al., 2000).  In another study, ΦX174 was adapted to 

three E. coli mutants, each differing only in an LPS sugar group that is part of 

the phage receptor.  Rather than repeated mutations at the same sites, high 

variation was observed with no common mutations shared between phages 

adapted to different hosts and only one mutation arising in multiple replicate 

lineages (Pepin et al., 2008). 

 

Adaptation to high temperature has also been investigated, showing that 

in a harsh environment with low starting fitness, single mutations could be 

responsible for fitness increases of much larger magnitude that those usually 

observed (Bull et al., 2000) (Holder and Bull, 2001).  Another study examined 

compensatory evolution, where it was found that when deleterious mutations 

were introduced to ΦX174, they were more frequently corrected by 

compensatory mutations rather than reversions (Poon, 2005). 

 

Other studies have investigated the distribution of mutational fitness 

effects, where it was found that the majority of random mutations tested were 

deleterious but not lethal.  Apart from a small fraction of beneficial and lethal 

mutations, the remainder were effectively neutral.  Fitness effects of individual 

mutations when the phage was grown on S. enterica correlated with those from 

E. coli, suggesting that most mutations have a general effect rather than one 

specific to the host (Domingo-Calap et al., 2009; Vale et al., 2012). 
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One study investigated clonal interference, finding that it was far less 

frequent in populations evolved in sub-optimal conditions.  It was thought that 

this was due to there being more potential adaptive mutations under normal 

conditions, whereas mutations specific to the harsher conditions are likely to be 

more limited but confer the largest fitness increases (Pepin and Wichman, 

2008). 

 

The longest study with ΦX174 was carried out in a chemostat for 

approximately 13,000 generations.  High rates of adaptive evolution were 

observed throughout, indicating that instead of simply adapting to a constant 

environment, an arms race was occurring between competing genomes within 

the culture.  This was likely due to high levels of coinfection, an unavoidable 

consequence of growth within a chemostat (Wichman et al., 2005). 

 

1.3.4  Experimental evolution and mutation rate 

Only one experimental evolution study could be found that specifically 

looked at the effects of an elevated mutation rate in phage.  A single lineage of 

bacteriophage T7 was evolved in the presence of mutagen to test a model of 

lethal mutagenesis (Springman et al., 2010).  However, this study only looked 

at fitness and lethal mutagenesis, and did not examine the genetic changes or 

evolutionary dynamics that occurred, meaning this area is ripe for further 

research. 
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1.4  Project aims 

The mutation rate is both the fuel for evolution and an evolved 

characteristic.  Understanding how evolution is affected by an increase in this 

rate will help us understand why it evolved as it did.  In addition to answering 

questions in evolutionary biology, elevated mutation rates have been 

considered as potential therapeutic treatments for viral infections, and a greater 

understanding of the processes underpinning these is required. 

 

The main objectives of this project were: 

• To investigate methods for elevating bacteriophage ΦX174 mutation 

rates (covered in chapter 3). 

• To investigate the consequences of an elevated mutation rate on the 

fitness of evolving populations of ΦX174 (covered in chapter 4). 

• To use next-generation sequencing to investigate evolutionary processes 

in these populations (covered in chapter 5).
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Chapter 2:  Materials and methods.
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2.1  Biological strains 

2.1.1  Bacteria 

E. coli C1 obtained through the Yale Coli Genetics Stock Center (strain 

#3121) was used as the bacterial host in chapters 4 and 5 of this work.  

Genome sequencing and assembly was performed by Dr James Taylor of John 

Hopkins University. 

For the work in chapter 3, E. coli C122 was used as the bacterial host, 

as well as BAF8, an amber-permissive strain of E. coli isogenic to C122.  These 

were provided by Dr Bentley Fane of The University of Arizona. 

 

2.1.2  Bacteriophage 

 Wild-type ΦX174 was provided by Dr Holly Wichman of The University of 

Idaho.  The DNA sequence was obtained with GenBank ID AF176034.1 and 

confirmed by Illumina sequencing (appendix B.1). 

 In chapter 3, ΦX174 am(E)W4, also provided by Dr Fane, was used.  

 

2.1.3  Plasmids 

 Two plasmids were used in this work.  pIF2013, derived from pBR322 

and containing dnaQ926, ampicillin, and kanamycin resistance genes, was 

provided by Dr Roel Schaaper of the National Institute of Environmental Health 

Sciences.  See (Fijalkowska and Schaaper, 1996) for further details of plasmid 

construction. pBR322, the vector pIF2013 was derived from, was also used, 

and purchased from Fisher Scientific (cat # SD0041).
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Primer 
name 

Sequence (5’ - 3') Notes 

QPX-2675-F TTGAGTCTTCTTCGGTTCCGACTA qPCR quantification against plaque assay 
(taken from Vale et al., 2012) QPX-2776-R TCACACAGTCCTTGACGGTATAAT 

QPX-590-F ATACCCTCGCTTTCCTGCT qPCR quantification against DNA 
standards (designed by PrimerDesign) QPX-690-R CGCCTTCCATGATGAGACA 

PHX-0001-F GAGTTTTATCGCTTCCATG Amplifies bases 1-2953 (amplicon 1) for 
Sanger sequencing (provided by Dr Holly 
Wichman) PHX-2953-R CCGCCAGCAATAGCACC 

PHX-2605-F CAGGTTGTTTCTGTTGGTGCTG Amplifies bases 2605-379 (amplicon 2) 
for Sanger sequencing (provided by Dr 
Holly Wichman) PHX-0379-R CTTGACTCATGATTTCTTACC 

PHX-0895-F GCCGTTGCGAGGTACTAAAG Amplifies bases 895-1500 (amplicon 3) 
for Sanger sequencing (provided by Dr 
Holly Wichman) 

PHX-1500-R TTGAGATGGCAGCAACGG 

 
 

Table 2.1 – primer sequences.  This table contains the sequences of all primers 

used for Sanger sequencing and qPCR quantification.
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2.2  Media, buffers and solutions 

2.2.1  Salt solutions 

 CaCl2 (Sigma #449709) and MgCl2 (Sigma, #M8266) were dissolved in 

autoclaved distilled water to a concentration of 0.1M.  These solutions were 

used to supplement media as required.  During the course of this work, small 

amounts of precipitate were found in the stock CaCl2 solution.  From 

approximately passage 60 of the evolution experiment in chapter 4, stock 

solutions were instead prepared with anhydrous CaCl2 (Sigma, #499609). 

 

2.2.2  Lysogeny broth 

Lysogeny broth (LB) was the media used for all liquid cultures in this 

work.  It was prepared by adding dehydrated LB Miller Broth (Appleton Woods) 

to distilled water at a concentration of 25g/L (working concentrations of 10g/L 

tryptone, 5g/L yeast extract and 10g/L NaCl).  The media was supplemented 

with CaCl2 to a concentration of 2mM and MgCl2 to a concentration of 5mM and 

autoclaved for 15 minutes at 121ºC. 

 

2.2.3  LB agar plates 

LB agar was prepared by adding dehydrated LB to distilled water at a 

concentration of 25g/L.  Bacto Agar powder (Appleton Woods) was added at a 

concentration of 15g/L, and media was autoclaved for 15 minutes at 121ºC.  

Media was cooled in a water bath at 45ºC until it was comfortable to handle.  If 

plates were intended for use with plasmid-containing bacteria, ampicillin was 

added at a concentration of 100ng/μl.  Agar was poured into petri dishes so that 
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the base surface was evenly coated (approximately 25ml per dish) and left to 

solidify. 

 

2.2.4  Soft LB agar 

Soft LB agar was prepared by adding dehydrated LB at a concentration 

of 15g/L and agar at a concentration of 7g/L.  The media was supplemented 

with CaCl2 to a concentration of 2mM and MgCl2 to a concentration of 5mM, 

and autoclaved at 121ºC for 15 minutes.  Soft agar was stored at 55ºC until 

needed. 

  

2.3  Bacterial overnight cultures 

Overnight bacterial cultures were frequently used in this work.  Unless 

otherwise specified, these were prepared by using a sterile plastic loop to 

inoculate bacteria from frozen glycerol stocks into a 50ml centrifuge tube 

containing 10ml of LB (supplemented with 100ng/μl ampicillin if bacteria 

contained a plasmid).  These were incubated overnight at 37ºC, shaking at 

200rpm.  Overnight cultures were always prepared fresh the day before they 

were needed, and disposed of at the end of the day. 

 

2.4  Bacteriophage quantification 

2.4.1  Double agar overlay plaque assay 

The number of bacteriophages in a sample can be quantified by growing 

them on a lawn of their bacterial host, and counting the number of plaques that 

appear.   
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Prior to carrying out phage overlay assays, LB agar plates were pre-

warmed in an incubator at 37ºC, and molten soft agar was cooled to 50ºC in a 

water bath. 

 

To ensure plates contained a number of plaques within an acceptable 

range (30-300), phage samples were serially diluted 10-fold in LB.  In triplicate, 

sterile plastic bijous were prepared containing 100μl of bacterial overnight 

culture and 100μl of the phage dilution to be measured.  To each bijou 4ml soft 

agar was added, and the contents mixed by replacing the lid and inverting six 

times.  The contents were immediately poured onto an LB agar plate, and 

gently swirled to ensure the entire surface was coated.  Plates were left at room 

temperature for 15 minutes to set, before being transferred to a 37ºC incubator. 

 

Plates were removed from the incubator once plaques were large 

enough to be counted (usually between 4-7 hours, but occasionally overnight 

incubation was required).  Plaques were counted manually and used to 

calculate the number of plaque forming units (pfu) in the original phage sample. 

 

2.4.2  Quantitative PCR 

qPCR was used as a quicker method for determining bacteriophage 

concentrations.  By first measuring a series of samples with known 

concentrations, a standard curve was generated that could be cross-referenced 

with quantification cycle (Cq) values to determine sample concentrations.  Two 

distinct standard curves were created, each of which required different reaction 

conditions.   
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2.4.2.1 Standard curve calibrated against plaque counts 

Reactions were set up in duplicate in Lightcycler 480 96 well plates 

(Roche).  Each qPCR reaction contained 10μl PrecisionPLUS SYBRgreen 

Master Mix (Primerdesign), 5μl phage sample, 0.6μl of each primer at 10mM 

(final concentration of 0.3μM) and 3.8μl of sterile water.  Primers used were 

QPX-2675-F and QPX-2776-R (table 2.1).  All qPCR was carried out using a 

Lightcycler 480 (Roche).  The PCR program was: 

• 95ºC for 10m, 

• 35 cycles of: 

⁃ 15s at 95ºC,  

⁃ 20s at 60ºC, 

⁃ 30s at 72ºC (fluorogenic data collected during this step). 

To create the standard curve, a 10-fold dilution series of ΦX174 was 

quantified with a plaque overlay assay, and measured with qPCR.  Cq values 

were related to pfu concentrations determined by plaque assay, and one 

dilution was stored at -20ºC for use as a standard. 

 

As well as phage samples, each plate contained a positive control 

reaction that used the standard as a template, and a negative control reaction 

that replaced the phage sample with sterile water.  Lightcycler 480 software 

was used to perform an absolute quantification analysis (second derivative max 

method) with the resulting Cq values and the standard curve to determine 

phage concentrations in pfu/μl. 
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This method was used for all qPCR phage quantification carried out in 

chapters 3 and 4, other than fitness assays.  

 

2.4.2.2 Standard curve calibrated against phage genome units 

Because plaque formation is a mutable trait and could change during 

evolution, it was necessary to have a method of determining phage titers that 

did not rely on data obtained from plaque assays of ancestral phage.  The 

method described in this section was used for the fitness assays carried out in 

chapter 4.  A custom assay was designed by Primerdesign Ltd that included 

primers that amplified a region in the E gene of ΦX174 (table 2.1), and a 

positive control template supplied at a copy number of 2 x 105 per μl.  As per 

the kit's manual, primer mix was suspended, and the positive control serially 

diluted and used to create a standard curve. 

 

Reactions were set up in duplicate in Lightcycler 480 96 well plates 

(Roche).  Each qPCR reaction contained 10μl PrecisionPLUS SYBRgreen 

Master Mix (Primerdesign), 5μl phage sample, 1μl primer mix (final 

concentration of 0.3μM for each primer) and 4μl of sterile water.  Plates also 

contained positive and negative control reactions, replacing the phage sample 

with a standard or sterile water respectively.  qPCR was carried out in a 

Lightcycler 480 (Roche). 

The PCR program was: 

• 95ºC for 2m 

• 40 cycles of: 

⁃ 10s at 95ºC 
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⁃ 60s at 60ºC (fluorogenic data collected during this step) 

 

Lightcycler 480 software was used to perform an absolute quantification 

analysis (second derivative max method) with the resulting Cq values and the 

standard curve to determine phage concentrations.  PCR is an exponential 

reaction, and under 100% efficiency the number of DNA molecules will double 

each cycle.  However, because the genome of ΦX174 is single stranded DNA, 

the first cycle of the reaction will result in synthesis of the complementary 

strand rather than amplification.  Although in subsequent cycles the product is 

amplified as normal, the double stranded DNA standards are subject to an 

extra cycle of amplification.  To take this into account when determining phage 

titers, sample concentrations determined by the Lightcycler 480 software were 

multiplied by the efficiency of the reaction to give the true concentration.  Titers 

were measured in phage genome units (pgu) rather than pfu. 

 

2.5  Gel electrophoresis 

Agarose gels were made by mixing 1-2% w/v agarose powder (Appleton 

Woods) in Tris-Acetate-EDTA buffer (TAE) (40mM Tris Acetate, 2mM 

Na2EDTA (National Diagnostics)), depending on expected nucleic acid size.  

Agarose was melted using a microwave oven, and a 1:10,000 volume of SYBR 

Safe DNA Gel Stain (Invitrogen) added.  Gels were poured into a casting tray 

and allowed to solidify before being placed in a gel tank (Geneflow) and 

submersed in TAE.  DNA samples were mixed with a 1:5 volume of 

Blue/Orange 6X Loading Dye (Promega) and loaded into wells alongside 100bp 

or 1kb DNA Ladders (Promega) depending on expected fragment sizes.  A 
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100V electrical current was passed through the gel until DNA fragments were 

completely separated, typically 45 minutes.  Gels were visualised under UV 

light using an InGenius LHR gel documentation system (Syngene). 

 

2.6  Mutation rate measurement 

2.6.1  Preparation of competent BAF8 cells 

Chemically competent preparations of E. coli BAF8 were created by 

treatment with calcium chloride (chapter 2.1.1).  LB agar plates were streaked 

with the relevant bacteria from frozen glycerol stocks and incubated at 37ºC 

until colonies were visible.  A single colony was inoculated into 10ml LB and 

grown overnight at 37ºC in a shaking incubator.  1ml of this overnight culture 

was added to 49ml LB and grown at 37ºC in a shaking incubator until OD600 

was between 0.3-0.4.  This culture was divided into 25ml aliquots in chilled 

50ml centrifuge tubes, and placed on ice for 10 minutes.  Tubes were 

centrifuged for 10 minutes at 2700g in a Heraeus Megafuge 16R (Thermo 

Fisher) pre-chilled to 4ºC.  Supernatants were discarded, pellets resuspended 

in 5ml ice cold 0.1M CaCl2, and tubes placed on ice for 30 minutes.  Tubes 

were centrifuged as before and supernatants discarded.  Pellets were 

resuspended in 500μl ice cold 0.1M CaCl2 (supplemented with 7% DMSO) and 

stored at -80ºC for later use. 

 

2.6.2  Transformation of BAF8 with pIF2013 

A sterile loop was used to inoculate frozen stock of E. coli containing the 

pIF2013 plasmid into a 50ml centrifuge tube containing 10ml LB (with 100ng/μl 

ampicillin).  This was incubated overnight at 37ºC, shaking at 200rpm.  The 
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plasmid was extracted using a Machary-Nagal miniprep kit following the 

manufacturer’s instructions, and run on a 1% agarose gel to confirm it was 

present and of expected size. 

The plasmid was transformed into BAF8 using the heat shock method.  

An aliquot of competent BAF8 cells was removed from the freezer and placed 

in an ice bucket to defrost.  100μl of competent cells were added to thin-walled 

PCR tube, along with 5μl of miniprep product.  Tubes were placed on ice for 30 

minutes, transferred to a water bath at 42ºC for 45 seconds, and returned to ice 

for a further 2 minutes.  The contents of each tube were added to a 2ml 

microcentrifuge tube containing 500μl SOC medium and incubated at 37ºC for 

45 minutes.  To increase the chances of getting single colonies, four LB agar 

plates (with 100ng/μl ampicillin) were prepared.  500μl of the transformation 

reaction was spread on one, 50μl on another, and sterile loops used to streak 

the final two plates.  Plates were incubated at 37ºC until bacterial growth was 

visible.   Single colonies were suspended in 500μl LB (with 100ng/μl ampicillin 

and 7% DMSO) and grown for two hours at 37ºC shaking at 650rpm.   These 

stocks, labelled BAF8 pIF2013, were stored at -80ºC for future use. 

 

2.6.3  Preparation of phage for fluctuation test 

A sterile loop was used to inoculate a suspension of ΦX174 am(E)W4 

into a sterile plastic bijou containing 4ml soft agar that had cooled to 

approximately 45ºC and 100μl of E. coli BAF8 overnight culture.  The cap was 

replaced and the bijou inverted 6 times, before being decanted onto an LB agar 

plate.  The plate was left at room temperature for 15 minutes to solidify, then 

incubated at 37ºC until plaques were visible, approximately 4 hours.  A single 
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plaque was removed from the soft agar using a sterile 1ml pipette tip and 

suspended in 100μl LB in a microcentrifuge tube.  This was placed in a 

refrigerator overnight to allow phages to diffuse out of the agar.  Under a fume 

hood, 2 drops of chloroform were added and the tube was vortexed for 5 

seconds to lyse any bacteria that had been transferred with the plaque.  The 

tube was spun for five minutes at 13,000G in a microcentrifuge to separate 

cellular debris, agar and chloroform.  The majority of the aqueous layer was 

carefully removed with a pipette and transferred to a fresh microcentrifuge tube.  

This phage preparation was used to initiate every culture in the subsequent 

fluctuation test. 

 

2.6.4  Fluctuation test 

Fluctuation tests were performed in 3 batches of 24 cultures on a 

Thermomixer comfort.  For measuring the wild-type mutation rate, 50μl of BAF8 

overnight culture was added to 500μl LB in a 2ml microcentrifuge tube.  For 

measuring the mutation rate in the presence of dnaQ926, the overnight culture 

used was BAF8 pIF2013 and LB contained 100ng/μl ampicillin.  Cultures were 

grown for 1 hour 30 minutes at 37ºC, shaking at 650rpm, at which time 

approximately 400 pfu ΦX174 am(E)W4 was added to each.  After the addition 

of phage, cultures were grown for a further 90 minutes (wild-type) or 60 minutes 

(mutator).  Tubes were centrifuged at 13,000G for 1 minute and the supernatant 

was transferred to a fresh tube.  Supernatants and phage stocks used to initiate 

cultures were quantified with qPCR.   
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For each culture, supernatant containing approximately 3 x 103 pfu (mutator) or 

2.5 x 104 pfu (wild-type) was added to a sterile bijou containing 4ml of molten 

soft agar that had cooled to approximately 45ºC and 100μl of E. coli C122 

overnight culture.  The cap was replaced and the bijou inverted 6 times, before 

being decanted onto an LB agar plate and lightly swirled so the entire surface 

was covered.  Plates were left at room temperature for 15 minutes to solidify, 

then incubated at 37ºC overnight. After incubation, plates were checked and 

any plaque formation was recorded. 

 

2.6.5  Calculating the mutation rate 
The proportion of cultures where no mutations were observed in the 

amber stop codon, P0, was determined from the proportion of plates that did not 

display any plaques.  qPCR was used to determine Ni and Nf .  

The equation: 

 

 

was used to calculate the rate of mutation to an observable phenotype, 

where Ni is the number of phage plaque forming units (pfu) used to initiate the 

culture and Nf is the number of phage pfu in the culture after growth.   

 

To calculate the mutation rate per nucleotide per generation μ, the 

equation: 
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is used, where T is the number of possible mutations that result in viable 

plaque formation.  For this calculation, it was assumed that T=8 (the number of 

substitutions that change the amber stop codon to a non-stop codon).  

 

2.7  Evolution experiment 
2.7.1  Experimental lines 

Four lines of ΦX174 were maintained in this experiment, all originating from 

a single plaque.  Lines A1 and A2 were grown in non-mutagenic conditions 

while B1 and B2 were grown under mutagenic conditions.  E. coli C1 was 

transformed with pIF2013 for use as the host in lines B1 and B2, following the 

protocol described in 3.2.2.  Because a plasmid requires antibiotic to be added 

to its media and uses the same DNA polymerase to replicate as the phage, its 

presence potentially alters selective pressures on the phage.  To try and ensure 

conditions were similar in the non-mutagenic environment, E. coli C1 was 

transformed with pBR322, the vector that pIF2013 was derived from.  This was 

used as the host for lines A1 and A2. 

 

2.7.2  Growth tubes 
To ensure that conditions were maintained throughout the evolution 

experiment, enough tubes containing hosts and growth media were prepared in 

advance.  This method meant that each tube contained media from the same 

batch and host cells from the same culture, which minimised variation that 

could have been introduced by growing new cultures of host cells each day and 

preparing fresh batches of media throughout the experiment.  Approximately 

250 tubes were prepared for each of the hosts used during this experiment 
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A sterile plastic loop was used to inoculate 15ml LB (containing ampicillin to 

100mg/μl) with C1 containing either pIF2013 or pBR322 plasmid from frozen 

stocks.  This was incubated overnight at 37ºC, shaking at 200rpm.  4ml of an 

overnight culture and 3ml DMSO were added to 50ml falcon tubes containing 

40ml LB (containing ampicillin to 100mg/μl).  Tubes were briefly vortexed to mix 

and 550μl volumes were aliquoted into sterile 2ml microcentrifuge tubes.  

These "growth tubes" were stored at -20ºC for future use. 

 

To determine host cell density, three growth tubes were placed on a 

Thermomixer for 90 minutes at 37ºC, shaking at 650rpm.  Cells were then 

serially diluted tenfold in LB and 100μl of each dilution was spread in duplicate 

on LB agar plates.  After overnight incubation at 37ºC, plates were checked for 

colonies.  Dilutions that produced plates with approximately 30-300 colonies 

were selected and used to calculate cell density in colony forming units (cfu)/μl. 

 

2.7.3  Phage preparation 
1μl of ΦX174 from a glycerol stock was added to a microcentrifuge tube 

containing 1ml LB.  From this, a tenfold dilution series of the supernatant was 

prepared in LB.  100μl of each dilution was added to a sterile plastic bijou 

containing 4ml soft agar that had cooled to approximately 45ºC and 100μl of E. 

coli C1 overnight culture.  The cap was replaced and the bijou inverted 6 times, 

before being decanted onto an LB agar plate.  The plates were left at room 

temperature for 15 minutes to solidify, then incubated at 37ºC until plaques 

were visible, approximately 4 hours. 
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  A single plaque was removed from the soft agar using a sterile 1ml pipette 

tip and suspended in 100μl LB in a microcentrifuge tube.  Under a fume hood, 2 

drops of chloroform were added and the tube was vortexed for 5 seconds to 

lyse any bacteria that had been transferred with the plaque.  The tube was 

spun for five minutes at 13,000G in a microcentrifuge to separate cellular 

debris, agar and chloroform.  The majority of the supernatant was removed with 

a pipette, taking care not to take any of the non-aqueous layer, and transferred 

to a fresh microcentrifuge tube.  Sanger sequencing was used to confirm the 

genotype of the plaque. 

 

A growth tube containing C1 with plasmid pBR322 was removed from -20ºC 

storage, thawed at room temperature, and placed on a Thermomixer at 37ºC, 

shaking at 650rpm.  After 90 minutes, 20μl of supernatant was added, and the 

tube returned to the Thermomixer for a further 2 hours.  The growth tube was 

centrifuged at 13,000G for 30 seconds in a microcentrifuge to pellet the 

bacteria, and the supernatant was transferred to a fresh microcentrifuge tube 

and quantified using qPCR.  This preparation was used to seed the first 

passage of all experimental lines. 

 

2.7.4  Serial passaging 
The evolution experiment was carried out by serial passaging with each line 

grown for 100 hours in one hour-long passages.  The four lines were grown in 

parallel, and followed identical protocols with the exception that A1 and A2 used 

host tubes containing C1 with pBR322 and B1 and B2 used host tubes 

containing C1 with pIF2013. 
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Two of each growth tube were removed from -20ºC storage, thawed at room 

temperature, and placed on a Thermomixer at 37ºC, shaking at 650rpm.  After 

90 minutes, approximately 106 phage from the preparation in the last section 

were added to each tube, which were then returned to the Thermomixer for an 

hour.  Tubes were then immediately centrifuged at 14,000G in a microcentrifuge 

to remove bacteria, and the supernatants were transferred to new 

microcentrifuge tubes.  qPCR was used to quantify supernatants, which were 

then diluted to between 105 and 106 pfu/μl.   

Each passage subsequent to the first followed the same protocol, but were 

started with between 106 and 107 phage from the previous passage instead of 

the initial preparation.  The remaining phage were stored at -80ºC for future 

use. 

 

2.8  Fitness assays 
The phage sample to be assayed was removed from storage at -80ºC and 

allowed to defrost on ice.  Growth tubes were incubated on a Thermomixer at 

37ºC, shaking at 650rpm for 90 minutes.  Approximately 105 pgu phage was 

added to each growth tube, before being briefly vortexed and returned to the 

Thermomixer for a further 45 minutes.  Tubes were then immediately spun for 1 

minute at 14,000G on a microcentrifuge, and the supernatant was transferred 

to a fresh microcentrifuge tube.  Supernatants and initial phage samples were 

quantified with qPCR to determine the initial and final titers of phage.  Assays 

were carried out in triplicate. 
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Fitness was calculated in population doublings per hour by the equation  

fitness = log2(Nf/N0) / t 

where t is the time in hours, N0 is the initial titer of phage (in pfu) and Nf is 

the final number of phage (in pfu). 

 

 

 

2.9  DNA sequencing 

2.9.1  Sanger sequencing 

Three primer pairs were used for amplifying ΦX174 DNA for sequencing 

(table 2.1).  Amplicons 1 and 2 consisted of bases 1-2937 and 2605-379 

respectively, giving complete coverage of the phage genome.  The smaller 

amplicon 3 covered bases 895-1500, a region found to be of specific interest. 

PCR reactions contained 0.5μl (1 unit) of Phusion High-Fidelity DNA 

Polymerase (Thermo Fisher), 10μl 5X Phusion HF buffer, 2.5μl of each primer 

at 10μM (0.5μM final concentration), 1μl dNTPs (each dNTP at 10mM, final 

concentration of 200μM) and 2μl of phage sample, made up to 50μl with sterile 

water. 

For amplicons 1 and 2 the PCR program was: 

• 98ºC for 3m; 

• 35 cycles of:  

⁃ 10s at 98ºC, 

⁃ 30s at 60ºC, 

⁃ 90s at 72ºC; 

• 10m at 72ºC,  
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For amplicon 3, the PCR program was: 

• 98ºC for 3m; 

• 35 cycles of:  

⁃ 10s at 98ºC, 

⁃ 30s at 63.9ºC, 

⁃ 15s at 72ºC; 

• 10m at 72ºC,  

PCR products were visualised alongside 100bp or 1kb DNA Ladders 

(Promega) on 1-2% agarose gels stained with SybrSafe to confirm that a single 

band of the expected size was present.  PCR products were purified using the 

NucleoSpin Gel and PCR Clean-up kit (Machary-Nagal) following the 

manufacturer's protocol.  DNA concentration was determined with the Qubit 

Fluorometer using the Qubit dsDNA BR Assay Kit (Life Technologies), and 

diluted to 1ng/μl per 100bp.  Appropriate sequencing primers were selected 

from the table and diluted to 3.2pmol/μl with nuclease-free water.  DNA 

samples and primers were sent to Source Biosciences who carried out Sanger 

sequencing.  Electropherograms were assessed using 4Peaks (Nucleobytes) 

and sequence data was aligned against the reference genome using MAFFT 

(Katoh and Standley, 2013). 

 
2.9.2  Illumina sequencing 
2.9.2.1  dsDNA extraction 

For preparation of libraries for Illumina sequencing, dsDNA samples are 

required instead of the ssDNA genomes of ΦX174.  Using a method adapted 

from (Godson and Vapnek, 1973), 50μl of an overnight culture of C1 

(containing no plasmid) was added to 500μl of LB in a microcentrifuge tube and 
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grown on a Thermomixer Comfort (Eppendorf) for 2 hours at 37ºC, shaking at 

650pm.  Approximately 400μl of the phage sample to be sequenced was then 

added and the tube was returned to the Thermomixer for 30 minutes.  At this 

point chloramphenicol was added to a concentration of 30ng/μl to inhibit protein 

synthesis and allow the accumulation of double stranded RF DNA within the 

host cells.  After a further 4 hours incubation on the Thermomixer, tubes were 

removed.  Tubes were spun in a microcentrifuge at 14,000 g for 1 minute and 

the supernatants were discarded.  dsDNA was extracted from each pellet using 

a Qiagen miniprep kit, following the kit instructions.  DNA was quantified using a 

Qubit (broad range dsDNA reagents).  To confirm that the product was the 

expected size (of approximately 5386bp), samples were linearised with StuI 

(Promega) and run on a 1% agarose gel. 

 

2.9.2.2  DNA library preparation 
DNA samples were fragmented using NEBNext® dsDNA Fragmentase® 

(New England Biolabs).  For each sample to be sequenced, reactions were set 

up containing 150ng of phage dsDNA, 2μl of 10X Fragmentase Reaction 

Buffer, 2μl of dsDNA Fragmentase and nuclease-free water added to a final 

volume of 20μl.  Tubes were vortexed for 5 seconds then incubated at 37ºC for 

20 minutes.  Samples were cleaned up using a QIAquick PCR purification kit 

(Qiagen) following the kit instructions to remove salts, enzyme and small DNA 

fragments.  All samples were quantified using a Qubit (Life Technologies) using 

the dsDNA Broad Range reagents, while 6 samples chosen at random were run 

on a Tapestation (Agilent Genomics) to determine the average fragment size. 
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Libraries were prepared using a NEBNext® Ultra™ II DNA Library Prep Kit 

for Illumina® (New England Bioloabs), following the kit instructions and using 

the fragmented DNA as input.  Libraries were quantified by Qubit (dsDNA 

Broad Range), diluted to identical concentrations, and pooled.  To confirm the 

ancestral sequence, library preparation used a Nextera XT DNA Library Prep kit 

(Illumina). 

 

Sequencing was carried out onsite on an Illumina MiSeq using a V2 

cartridge (2 x 250bp).  FASTQ files were generated by the MiSeq and 

automatically uploaded to Basespace. 

 

2.10  Bioinformatic methods 

2.10.1  Genome sequencing 

dsDNA was extracted from frozen passage samples using the method 

described in chapter 2.  Phage DNA from passages 10, 20, 30, 40, 50, 60, 70, 

80, 90, and 100 was extracted for all lines.  In addition, DNA was extracted from 

passages 5, 15, 25, 31, 32, 33, 34, 35, 45, 55, 65, 75, 85, and 95 in lines B1 

and B2.  dsDNA samples were fragmented and sequenced using the methods 

described in 2.9.2.   

 

2.10.2  Preparation of FASTQ files 

Raw sequence data were downloaded from Illumina's Basespace server 

as FASTQ files.  FASTQ files are text-based and contain the determined 

nucleotide sequences of each read alongside corresponding quality scores (in 
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ASCII encoding).  Since the sequencing run was paired end, two FASTQ files 

were produced for each sample, one for each strand. 

 

The adaptor sequences are usually trimmed from FASTQ files provided 

by Illumina by default.  However, the third-party library preparation kit contained 

unique adaptor sequences and this had to be carried out manually.  In addition, 

because reads were short, primer sequences were sequenced at the 3’ end.  

These were removed using Cutadapt (Martin, 2011), a command line tool that 

takes a list of sequences as input and trims them from reads in paired FASTQ 

files.  Cutadapt was set to check each read twice (with argument –n) in case 

adaptors had been appended more than once, and to discard any reads that 

were shorter than 25 nucleotides after trimming (argument -m).  Argument –b 

trims from both ends and was used for adaptors while –a trims from only the 3’ 

end and was used for primers.  The full list of adaptor and primer sequences 

used for trimming is in provided in table 5.1. 

 
cutadapt fwd_reads.fastq rev_reads.fastq -m 25 -n 2 \ 
-o fwd_trimmed.fastq -p rev_trimmed.2.fastq \ 
-b ADAPTOR1 –b ADAPTOR2 
-a PRIMER1 –a PRIMER2 –a PRIMER3 
 

 

After trimming, all FASTQ files were analysed with FastQC (Andrews, 

2010).  This was used to check that no overrepresented sequences were 

present in the data, confirming that all adaptors had been successfully 

removed.  FastQC also displays the distribution of base quality score at each 

position in the reads, allowing the overall quality of each file to be quickly 

determined. 
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FastQC also shows the distribution of read lengths in a FASTQC file.  

For all samples, the majority of reads were shorter than the maximum read 

length (250bp) (figure 5.3), indicating that the input DNA was more fragmented 

than intended.  These small sizes resulted in multiple overlaps in the paired 

reads, meaning that parts of some reads would be sequenced from both 

directions and be overrepresented in the data. 

 

To account for this, pairs of FASTQ files were merged using Paired End 

ReAd mergeR ((Zhang et al., 2014).  PEAR compares each pair of reads in 

paired FASTQ files, and if there is sufficient overlap (10bp) combines them into 

a single sequence.  All successfully merged pairs are written to a new FASTQ 

file, while reads that could not be merged are written to new paired FASTQ 

files. Merged reads shorter than 25 bases were discarded 

 
PEAR -f fwd_trimmed.fastq -r rev_trimmed.fastq -n 25 -o merged 

 
 

  The FASTQ file pairs containing the unmerged reads were trimmed for 

quality at the 3' end using Sickle (Joshi & Fass, 2011).  Sickle moves along 

reads from 5' to 3' with a sliding window.  If the average quality score of the 

window falls beneath a certain value (set to the default of 20), the remainder of 

the read is trimmed.  These trimmed reads are written to new FASTQ files.  If a 

read passes the filter in one direction but not the other, reads are written to a 

singles file.  The contents of these singles files were not used in downstream 

analysis.  The –n argument was used to truncate reads if and when an N was 

encountered.  
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sickle pe -f merged_fwd.fastq –r merged_rev.fastq -t sanger -o 
sickle_fwd.fastq -p sickle_rev.fastq -s sickle_singles_file.fastq –n 
 

 

 

2.10.3  Read mapping 

In order to align the reads to a reference sequence, Bowtie2 (Langmead 

and Salzberg, 2012) was used.  The reference genome for the ancestral phage 

was retrieved from Genbank (AF176034.1) in FASTA format, and indexed. 

 
bowtie2-build ref_genome.FASTA phix_ref 
 

 

Following this, each FASTQ file containing a set of merged reads, as 

well as paired FASTQ files containing unmerged reads, were aligned against 

the indexed genome to produce a SAM (sequence alignment/map) file.  This 

file contains all the data within the original FASTQ file in addition to mapping 

data. 

 
bowtie2 -x phix_ref –U merged_reads.fastq -S mapped_singles.SAM 
bowtie2 -x phix_ref -1 sickle_fwd.fastq -2 sickled_rev.fastq \ 
-S mapped_pairs.SAM 
 

 

SAMtools (Li et al., 2009) was used to merge the SAM files generated 

from merged and paired reads, and convert the SAM files to the compressed 

binary BAM format, which takes up less space and can be processed more 

quickly.  SAMtools was also used to sort and index the BAM files.  

 
samtools merge mapped.SAM mapped_singles.SAM mapped_pairs.SAM 
samtools view -bS mapped.SAM > mapped.BAM 
samtools view -bS mapped.BAM | samtools sort - sorted.BAM 
samtools index sorted.BAM 
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The LeftAlignIndels function of the Genome Analysis ToolKit (McKenna 

et al., 2010) was carried out on each BAM file.  When indels appear in a 

sequence, they can often be aligned in multiple configurations (figure 5.1).  It is 

important to align all indels to the leftmost position possible to standardise 

downstream processing and ensure indels are not mistaken for substitutions. 

 
java -jar GenomeAnalysisTK.jar -R ref_genome.fasta \ 
-T LeftAlignIndels -I Sorted.BAM -o left.BAM 

 
 

Although ΦX174 has a circular genome, the mapping algorithms treat 

the reference genome as linear, meaning there will be a break in the sequence 

(between positions 5386 and 1).  If a read spans this break, it will be unable to 

map to the reference genome accurately, and an indel may be called 

erroneously.  Since read lengths are short, the region of the chromosome that is 

affected by this is small. Assuming a maximum read length of 250bp, there are 

498 positions that could be affected if they span this region.  In bacterial 

chromosomes where genomes are typically several million bp in length (Wang 

et al., 2013) this is a relatively minor problem because such a small fraction of 

the total genome would be affected.  However, the genome size of ΦX174 is 

only 5386bp, meaning over 9% of the total genome would be covered by this 

region. 

 

To account for this, a FASTA file was created that spanned this break, running 

from positions 5041 - 5386 and 1-350 of the original reference genome.  This 

was indexed in Bowtie2 as before, and FASTQ files were mapped against it.  

SAMtools was again used to convert to BAM, index, sort and left align indels.  
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Figure 2.1 - Three different ways the same indel can be aligned against a reference sequence.
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2.10.4  Variant calling 

Quality scores for each base are given in Phred format, which is 

logarithmically related to the probability of the base call being erroneous.  

Phred score Q is given by the equation: 

Q = -10 log10 P  

where P is the probably of an incorrect base call.  A Phred score of 10 

corresponds to a 90% base call accuracy, while 20 is 99%, 30 is 99.9%, and so 

on.  Although Q = 30 usually gives sufficient confidence, when sequencing at 

high coverage a number of miscalled bases are inevitable.  For example, if read 

depth at a particular nucleotide is 1000, and Q is uniformly 30 at that position, 

then it is probable that one read will be miscalled. 

 

Since the majority of DNA fragment sizes in this experiment were smaller 

than the maximum read length, most pairs of reads fully or partially overlapped, 

and were merged with PEAR.  Since each read's quality scores are calculated 

independently of each other, if a base is identical on both reads an updated 

quality score can be calculated by multiplying the individual quality scores 

together (figure 2.10).  For example, if a base has Q = 30, it has a 0.1% chance 

of being an error.  But if the same base is present on the other read with the 

same Q score, the probability of it being miscalled twice is 0.0001%, i.e. Q = 

60.   

 

To determine mutations present in a sample, only positions with a Q of 

40 or higher were considered.  This allows even low frequency mutations to be 

identified with high certainty at the sacrifice of coverage; non-overlapping 
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portions of reads would likely be removed by the filter.  It should be noted that 

while a Q of 40 means that each base has a 0.01% chance of being miscalled, 

40 is actually the maximum Phred score that the FASTQ encoding supports.  In 

actuality, most bases that meet this quality requirement would have a much 

higher true score due to being a product of two quality scores. 

 

Freebayes (Garrison and Marth, 2012) was used to call variants.  To call 

higher frequency mutations, minimum Q was set to 40 (-q 40), and only 

mutations with ≥ 10% frequency (≥ 1% for indels) were returned in the output (-

F 0.1). For each quality setting, two sets of VCF files were generated per 

sample, returning either SNPs or indels (using the argument -i to ignore indels 

or –I to ignore SNPs).  The following arguments were used: -X (ignore multi-

nucleotide polymorphisms), -u (ignore complex events), -K (output all alleles 

which pass input filters), -J (assume that samples result from pooled 

sequencing), and –p 1 (no ploidy).  

 
freebayes -f ref_genome.fasta  -q 30 -m 20 -F 0.1 \ 
-X -i -u -K -J -p 1 left.BAM > snps.vcf 
 

 

VCF files were generated in this way for both the BAM file mapped 

against the reference genome, as well as the BAM files mapped against the 

region spanning the break of the circular phage genome.  The Python script 

OriginPositionFixer.py (appendix X) was used to renumber the latter with 

genome positions that corresponded to the original reference genome.  This 

was followed by the Python script OriginMerger.py (appendix X) that parsed the 

main VCF file.  At each position, it checked to see if that position was present in 
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the second VCF file, compared the coverage, selected the line with the highest 

depth, and wrote the line to a new file.  This output of this was a merged VCF 

file with high coverage at the beginning and end of the genome. 

 

Finally, the Python script VCFsimplifier.py (appendix X) was used to 

parse each VCF file and return a list of alleles and their frequencies in a more 

readable format.
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Figure 2.2 - FastQC output before (top) and after (bottom) reads were merged with PEAR.  

Overlapping regions from paired end reads were sequenced twice, meaning quality scores 

were multiplied together if the sequenced base at each position agreed.  40 is the maximum 

Phred value that FASTQ encoding supports, but most true quality scores will have been much 

higher.  These data were from line A1, passage 10; but are representative of all samples.
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Table 2.2 – DNA sequences for indices, primers and adaptors from the NEBNext DNA Library Prep Kit 

ID Sequence 

Index 1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 9 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 11 CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Index 12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Universal primer AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC 

Adaptor 1 GATCGGAAGAGCACACGTCTGAACTCCAGTC 

Adaptor 2 ACACTCTTTCCCTACACGACGCTCTTCCGATC 
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Figure 2.3 - the distribution of lengths from reads merged by PEAR.  The majority of reads are 250bp or shorter, meaning paired end reads overlapped completely.
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Figure 2.4 – mean number of reads per position for each sample sequenced 
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Chapter 3:  Manipulation of the 

mutation rate of ΦX174
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3.1  Introduction 

In order to examine the effects of an elevated mutation rate on evolution, 

a method to manipulate mutation rate that works with the ΦX174 experimental 

system is required.  The most suitable method would offer a broad mutational 

spectrum combined with limited non-mutagenic effects on the host, phage and 

environment. 

 

3.1.1  Mutagens 

Mutation rate of bacteriophage has been increased in the past by 

treatment with chemical mutagens.  However, for an experimental evolution 

study specifically investigating the consequences of a high mutation rate, these 

have a number of drawbacks. 

 

For example, in a previous experimental evolution study, Springman et al 

(2010) increased the mutation rate by adding the alkylating agent N-methyl-N'-

nitro-N-nitrosoguanidine (MNNG) to passage media at a concentration of 

10μg/ml, shortly before the addition of T7 bacteriophage.  It was estimated that 

treatment with MNNG increased the T7 mutation rate by approximately three 

orders of magnitude. 

 

Although MNNG is capable of methylating all oxygens and some 

nitrogens in DNA, its mutagenic activity primarily comes from its action on the 

O6 position of guanine.  This results in MNNG induced mutations being highly 

specific, with the G:C --> A:T transition making up 97.9% of all those observed 

in one study (Gordon et al., 1990).  Additionally, not all sequence contexts are 
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equally susceptible to mutation, with a 5' flanking purine base increasing 

mutation frequency by up to nine times (Burns et al., 1987).  

This bias would be increased further in an experimental system using 

ΦX174.  Because the mutagenic effect of MNNG applies directly to guanine, 

the lack of a complementary strand in this phage means that cytosine bases 

will not also be mutagenised (apart from a short period during replication when 

the ssDNA genome is converted to dsDNA) (Tessman et al., 1965).  The 

ΦX174 genome has only 1253 guanine residues, of which only 507 are flanked 

by a 5' purine base.  The spectrum of possible mutations that could be induced 

by MNNG is therefore expected to be very limited and specific in this phage. 

 

As well as alkylating agents, the other main class of mutagens is the 

nucleoside analogs, such as 2-aminopurine and 5-bromouracil.  These work by 

substituting for specific nucleotides during DNA replication, but pairing with 

different amino acids during subsequent replications.  While these act during 

DNA replication and so are not disadvantaged by the ssDNA genome of 

ΦX174, they still suffer from their specificity and biased mutational spectrum.  

 

An additional drawback of mutagens is the possibility of non-mutagenic 

effects on host or phage physiology.  MNNG, for example, triggers an adaptive 

response in E. coli that upregulates a number of genes including DNA repair 

enzymes, but also some unannotated transcripts (Booth et al., 2013).  These 

non-mutagenic effects would lead to a vastly different environment for the 

phage compared to that where mutagen was not added, potentially altering the 

spectrum of beneficial mutations for the phage, and would be very difficult to 
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account for in a negative control.  Nucleoside analogs can also have non-

mutagenic effects, with their incorporation into genomes potentially causing 

transcriptional problems and sometimes inhibiting protein synthesis, or causing 

structural distortion and loop formation in the nucleic acids (Ojha et al., 1991). 

 

Poliovirus has been shown to become resistant to the nucleoside analog 

ribavirin by a single mutation in its polymerase gene (Pfeiffer and Kirkegaard, 

2003).  While this exact mechanism is not possible in ΦX174 (which does not 

possess a polymerase gene), the possibility of phage adapting to the presence 

of a mutagen should not be discounted. 

 

DNA-damaging radiation such as ultraviolet (UV) light has also been 

used as a mutagen.  Although this produces a larger mutational spectrum than 

the chemical mutagens, it is also more damaging to E. coli (Shuman and 

Silhavy, 2003).  Additionally, constant exposure to UV would also difficult to 

implement in an experimental evolution system, so was also ruled out. 

 

3.1.2  Mutator phenotypes 

DNA replication fidelity is regulated in most organisms by three major 

factors: base insertion fidelity, proofreading, and mismatch repair (Echols and 

Goodman, 1991).  An alternative route to increasing mutation rate would be to 

alter the regulation of these factors.  The exact mechanisms by which these 

work depend on the organism, those stated in this section refer to those utilised 

by ΦX174, specifically those of its host E. coli. 
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Mismatch repair (MMR) is a post-replicative system that checks for and 

corrects mismatched base pairs (such as A-G or C-T) in a newly synthesised 

DNA strand.  In order to determine which strand contains the erroneous 

nucleotide, MMR relies on the presence of the motif 5'-GATC-3', which is 

undermethylated for a short time after synthesis, allowing the system to 

distinguish between the parent and daughter strands.  When in proximity to a 

mismatch, the MMR system nicks a nearby GATC site allowing excision and 

resynthesis of the strand (Fishel, 2015).  ΦX174, however, contains no GATC 

motifs, meaning the MMR system has no effect and does not contribute to its 

mutation rate.  When a mutant strain of ΦX174 was created with 7 GATC motifs 

introduced by site directed mutagenesis, it was found that the introduction of 

these sequences allowed MMR to act on ΦX174, decreasing mutation rate by 

33 times that of the wild-type (Cuevas et al., 2011).  Given that the mutations 

introducing the GATC motifs were either synonymous or intergenic and had no 

observable effect on growth rate, it is probable that these sites are selected 

against in the wild-type genome in order to keep the mutation rate high. 

 

Base insertion and proofreading are both under the control of DNA 

polymerase and occur during DNA replication.  As previously discussed 

(chapter 1.2.2.3), ΦX174 uses the DNA polymerase of its host during 

replication.  In E. coli, this is the DNA III polymerase holoenzyme complex 

(figure 3.1).  The α subunit, encoded by the dnaE gene is responsible for base 

selection (Maki and Kornberg, 1985), while the ε subunit, encoded by dnaQ, 

controls proofreading and removal of misincorporated bases.  Some E. coli 
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mutator phenotypes have been shown to be caused by mutations in these 

genes (Marinus, 2010). 

 

A mutant of dnaQ, called dnaQ926, was created by site-directed 

mutagenesis that altered two amino acids (D12A; E14A).  When replacing the 

wild-type gene on the E. coli chromosome, cells were inviable.  However, when 

introduced to E. coli on a plasmid, a strong mutator phenotype was observed 

(Fijalkowska and Schaaper, 1996). 

 

The mutational spectrum of another dnaQ mutant, mutD5, was 

determined with over 95% of observed mutations being single base pair 

substitutions.  Of these, transitional mutations (A:T <--> G:C) were 

approximately 2-3 times as likely as transversions, with both types of transition 

observed in equal frequency.  Although mutation bias is still present, it is less 

extreme than that from treatment with mutagens, and this spectrum more 

closely mimics that of normal non-mutagenic conditions where transitions are 

also more frequent than transversions (Chen et al., 2009). 

 

Additionally, since dnaQ926 is an allele of a protein already present in E. 

coli, it is unlikely that it has any harmful effects on the host or phage outside of 

its mutagenic ability.  This makes it an ideal candidate for increasing the 

mutation rate in our experimental environment.
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Figure 3.1 - the subunits of the E. coli DNA III polymerase holoenzyme complex.  The ε subunit 

is encoded by the dnaQ gene and is responsible for proofreading during DNA replication. 

 

Image by Alepopoli, via Wikimedia Commons.
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3.1.3  Mutation rate measurements 

 There are two commonly used methods for estimating viral 

mutation rates:  mutation accumulation studies and fluctuation tests (Duffy et 

al., 2008).  In mutation accumulation experiments, the frequency of new 

mutations and proliferation of existing mutations are tracked over time and used 

to calculate the mutation rate.  However, a significant drawback of this method 

is that if a mutation has already occurred within a culture, any subsequent 

identical mutation events will be erroneously counted as progeny of the 

genome containing the original mutation (Foster, 2006).  The likelihood of this 

occurring is increased in small genomes such as those of the Microviridae, and 

so this method was deemed unsuitable. 

 

Fluctuation tests are based on the classic Luria-Delbrück experiment 

(Luria and Delbrück, 1943).  Here, the frequency of mutation events that cause 

an observable phenotype is measured.  If the spectrum of mutations that lead 

to this phenotypic change is known, the mutation rate can then be calculated. 

 

As in mutation accumulation experiments, if a phenotype is observed 

more than once it is not possible to distinguish between unique mutation events 

and clones of a single ancestral mutation.  However, if the number of mutation 

events in multiple replicate cultures are measured, it can be assumed that the 

number of mutations per culture follows a Poisson distribution (Luria and 

Delbrück, 1943).  The proportion of these cultures that contain no mutations to 

the observable phenotype (P0) can then be used to calculate the rate of 

mutation to that phenotype m with the equation: 
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Where Ni is the number of phage plaque forming units (pfu) used to 

initiate the culture and Nf is the number of phage pfu in the culture after growth.   

 

For an observable phenotype, the mutant am(E)W4 strain of ΦX174 was 

used, in which a single substitution in its lysis gene (E), changes tryptophan 4 

(TGG) to an amber stop codon (TAG).   When infecting E. coli, am(E)W4  

cannot synthesise its lysis protein, rendering it unable to escape the host cell, 

and therefore unable to form plaques on agar.  A mutation in this codon will 

restore the ability of the phage to lyse its host and form plaques. 

 

Phage cultures were propagated in the amber permissive BAF8 strain of 

E. coli C122.  This strain contains the supF gene (Fane and Hayashi, 1991), 

which encodes a tyrosine transfer RNA with the anticodon CUA, 

complementary to the amber stop codon TAG.  BAF8 suppresses the chain 

termination of this stop codon, allowing full synthesis of protein coding 

sequences containing amber mutations (Kraemer and Seidman, 1989). 

 

3.1.4  Summary and aims 

In the introduction to this chapter I have reviewed various methods that 

can be used to manipulate mutation rate in E. coli, and presumably also 

infecting ΦX174 bacteriophage.  A plasmid containing the dnaQ926 gene 

appears to offer the greatest spectrum of available mutations, as well as fewer 

drawbacks than the other methods.  In the experimental section of this chapter, 
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I measured the mutation rate of ΦX174 in the presence of this plasmid to 

confirm if the mutagenic effect was conferred to an infecting phage. 
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3.2  Results    

The mutation rate of phage in mutagenic conditions was carried out by 

performing fluctuation tests in E. coli containing the pIF2013 plasmid, and in 

non-mutagenic conditions by using E. coli without a plasmid, using 72 replicate 

cultures.  Phages were quantified at the beginning and end of the incubation 

period by qPCR.  The mean number of phages in each culture, and the number 

of cultures where a reversion to plaque forming phenotype was not observed 

are shown in table 3.1.  These data were used to calculate the rate of reversion 

to the plaque-forming phenotype, and the mutation rate per genome per 

replication, using the formulae described in 3.2.   

 

The mutation rate of ΦX174 was calculated as (1.5 ± 0.06) x 10-6 

substitutions per nucleotide per generation (sng) in non-mutagenic conditions, 

and (1.8 ± 0.12) x 10-4 sng in mutagenic conditions, a 120-fold increase.



        

 90 

 

 
 
 
 
 
 
 
 
 
 Wild-type dnaQ926 

Number of cultures 72 72 
Cultures with no plaques 65 20 

Proportion of cultures with no 
plaques (P0) 

0.901 0.278 

Initial number of phages (Ni, pfu) 408 ± 10 388 ± 37 
Final number of phages (Nf, pfu) (2.52 ± 0.05) x 104 (2.99 ± 0.14) x 103 

Rate of mutation to plaque-
forming phenotype (m) 

(4.13 ± 0.15) x 10-6 (4.92 ± 0.33) x 10-4 

Substitutions per nucleotide per 
generation (μ) 

(1.5 ± 0.06) x 10-6 (1.8 ± 0.12) x 10-4 

Substitutions per genome per 
generation 

0.01 0.97 

 

 

 

Table 3.1 – Fluctuation test results and mutation rate calculations.  Nf is a mean 

value averaged amount all replicates.  ± denotes standard error.
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3.3  Discussion 

As predicted, the increase in E. coli's mutation rate caused by 

introducing a defective proofreading gene is also conferred to bacteriophages 

that are using this machinery for replication.   

 

It should be noted that a few assumptions were made when calculating 

the mutation rate μ, which are explained below.  However, these assumptions 

are lent support by two previous studies, in which mutation rate of wild-type 

ΦX174 was reported as (1.0 ± 0.3) x 10-6 sng (Cuevas et al., 2009) and (1.9 ± 

1.8) x 10-6 sng (Raney et al., 2004), measured by fluctuation test (albeit with a 

different phenotype to the amber reversion used here) and mutation 

frequencies respectively.  These two independent measures are essentially the 

same as the wild-type mutation rate estimate of 1.5 x 10-6 sng presented here.  

 The first assumption was that T, the number of possible mutations that 

would result in a viable lysis protein, was 8.  This was because of the 9 possible 

mutations in the amber stop codon, 8 of these resulted in a change to an amino 

acid codon (TAG > TAA would result in an ochre stop codon).  Of these 8 

substitutions, 3 have been confirmed to produce viable lysis proteins (reversion 

to the ancestral tryptophan and 2 mutations to tyrosine, which is on the BAF8 

E. coli UAG tRNA), but it is still possible that some of these 5 remaining 

mutations may be lethal and not result in plaques.  However, because this 

codon encodes part of the unfolded N-terminus chain before the active α-helix 

region (Mendel, 2006), it is unlikely that any substitutions at this position would 

significantly alter the structure or function of the protein.  Despite this, it must be 
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considered that T may be lower than 8, meaning the mutation rate could be up 

to 2.7 times larger than estimated here. 

 

The effects of mutation spectrum bias on these measurements must also 

be considered.  The calculations assume that all mutations are equally likely, 

but as previously mentioned, transitions occur with a greater frequency than 

transversions.  Although sequencing plaques from the fluctuation test would 

allow T to be better estimated, the low frequency of some transversions would 

require an unfeasible number of individual cultures to be propagated before a 

mutation could be excluded with high confidence.  Additionally, when the 

frequency of individual mutations is considered alongside their ability to restore 

phenotype, matters are complicated further.  For example, if only the less 

frequent transversions resulted in viable lysis proteins, the more frequent 

transitions would have no effect on phenotype and so remain undetected, 

resulting in an underestimation of the true mutation rate.  While it would be 

possible to modify the experiment to take these factors into account, the 

relative mutation rate increase between mutagenic and wild-type conditions is 

more important than an absolute value, so this was considered unnecessary.  

For simplicity's sake, it was assumed that all mutations are equally likely and 

the mutation rate at this position was representative of the mutation rate of 

entire genome. 

 

When calculating the increase in mutation rate from the two estimates of 

μ, an accurate value for T is not necessary.  Since the same phage and assay 

was used to measure mutation rates in wild-type and mutagenic conditions, any 
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change in T will affect both μ values by the same magnitude, maintaining the 

relative increase of ~120 fold regardless. 

 

Another consideration is that the fluctuation test only detects the 

substitution rate and does not detect indels.  However, indels typically make up 

under 20% of the total mutations in most organisms (Drake, 2009), so the 

substitution rate should be close to the true mutation rate. 

 

In this chapter, I investigated a variety of possible methods to increase 

the mutation rate of bacteriophage ΦX174 in an evolution experiment, and 

identified that a defective dnaQ gene would offer the advantage of a large 

mutational spectrum while lacking some of the drawbacks that would be 

encountered if mutagens were used.  I have investigated the effects of the 

dnaQ926 gene experimentally and found that it increases the ΦX174 mutation 

rate by two orders of magnitude, making it an ideal system to use to investigate 

the consequences of evolution at a high mutation rate.
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Chapter 4:  Evolution at a high 

imposed mutation rate 
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4.1  Introduction 
 

4.1.1  Lethal mutagenesis 

As the ultimate source of genetic variation, mutation is the fuel for evolution, 

giving selection the raw material on which it works. The rate at which mutations 

appear in a population of organisms is an important factor in their evolution; 

although an increase in beneficial mutations could facilitate the rate of 

adaptation it would be accompanied by more frequent deleterious mutations, 

lowering the fitness of the population as a whole.  Conversely, a lower mutation 

rate would decrease the number of individuals that had their fitness lowered by 

deleterious mutations, but could lower their ability to adapt, potentially leading 

to extinction in times of crisis or environmental change (Agrawal and Whitlock, 

2012). 

As well as being the driving force behind evolution, the mutation rate is also an 

evolved trait.  There are many molecular mechanisms in place that can prevent 

or repair DNA mutations, thereby lowering the mutation rate (Helleday et al., 

2014). As discussed in section 1.1.5, this indicates that the mutation rate has 

evolved to lower the number of mutations with negative fitness effects. 

Of all organisms, viruses have the highest mutation rates, with RNA viruses 

having the highest of all (Drake et al., 1998); (Sanjuán et al., 2010)). Although 

higher mutation rates cause beneficial mutations to arise more frequently, 

allowing faster adaptation to host defences, and sometimes even new hosts; it 

comes at the cost of a large number of deleterious mutations. These are offset 

by the large population sizes and high fecundity of RNA viruses, but they are 

close to the tolerable limit of mutation load (Arribas et al., 2016).  
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At a certain point, the mutation rate is predicted to become so high that 

selection is unable to counteract the accumulation of deleterious mutations. 

This causes a decrease in fitness over subsequent generations, leading to the 

eventual extinction of the population, a phenomenon known as lethal 

mutagenesis (Bull et al., 2007).  Artificially increasing the mutation rate to cause 

extinction is seen as a potential antiviral strategy (Domingo and Perales, 2016) 

and so the majority of studies on lethal mutagenesis to date have focused on it 

from a therapeutic perspective (Perales and Domingo, 2015).  However, these 

only looked at the ability of the mutagen to clear the virus, meaning the genetic 

and evolutionary changes that underpin it remain poorly understood.  

In the one study (Springman et al., 2010) proposed a mathematical model for 

lethal mutagenesis, combining physiological parameters of the phage such as 

burst size, lysis time, and adsorption rate, as well as host density, the 

proportion of mutations with negative fitness effects and mutation rate.  When 

they attempted to prove this empirically by evolving the dsDNA bacteriophage 

T7 at an elevated mutation rate, instead of the fitness decline predicted, the 

phage increased in fitness over the course of the experiment, rejecting the 

model. 

Several possibilities were proposed for the failure of T7 to decline in fitness as 

expected (Bull et al., 2013), the most important of which was adaptive 

evolution.  The model did not take into account beneficial mutations, as well as 

compensatory and back mutations.  However, considering the observed fitness 

increase, beneficial mutations and adaptive evolution undoubtedly occurred 

and were likely a factor in offsetting the predicted fitness decline.   
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4.1.2  Experimental design 
In this chapter I designed and carried out an experiment to investigate the 

effect of an elevated mutation rate on the fitness of evolving populations of 

bacteriophage.  ΦX174 was chosen for its lack of DNA polymerase genes, 

established use as a model organism in experimental evolution (Wichman and 

Brown, 2010) and because ssDNA viruses have intrinsically higher mutation 

rates than other DNA organisms.  To increase the mutation rate while 

minimising mutational bias or non-mutagenic effects from using mutagens, the 

system described in the previous chapter was used. 

 

Since mutation is a stochastic event, it was decided to carry out the 

experiment in duplicate to see how reproducible evolution is when increasing 

this element of randomness.  Duplicate control lines were evolved in similar 

conditions but without the mutation rate increase; these would be an important 

comparison group to determine what would be expected to happen under non-

mutagenic conditions, and what changes were products of the increase in 

mutation rate. 

 

Recombination is a variable most models of lethal mutagenesis fail to take 

into account, so the experiment was purposely designed to minimise the 

likelihood of this occurring.  For this reason, we elected to propagate our 

phages via serial passaging.  While a chemostat would require less effort to 

maintain and could cover more evolutionary generations in the same time 

period, MOI is typically high in a chemostat and difficult to manipulate.  Serial 
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passaging would allow us to ensure that MOI was low at the beginning of each 

passage, and by transferring a small sample of phages to initiate the next 

passage allow us to effectively "reset" the MOI periodically as phage 

populations increased.  

 

Previous work has determined that the fraction of substitutions in ΦX174 

that are lethal is 0.20, and that a further 0.55 are deleterious (Domingo-Calap et 

al., 2009).  In the previous chapter, it was determined that the mutation rate in 

the presence of a plasmid with a defective dnaQ gene was such that on 

average each new phage genome would contain 0.97 mutations.  From this, we 

can calculate that the number of progeny that will be viable is 78%.  Of the 

viable progeny, we can expect 96% of them to contain a new mutation, of which 

71% will be deleterious.  However, it should be noted that the DFE can vary 

depending on genotype and environment, so there is uncertainty with the 

figures used for this calculation. 

 

Since the majority of progeny will either be inviable or contain at least one 

deleterious mutation, fitness would be expected to decline in phages grown in 

the mutagenic environment compared to phages grown under normal 

conditions. 

4.1.3  Summary and aims 

While lethal mutagenesis has previously been reported in RNA viruses, 

these studies typically attempted to clear viral populations by treatment with 

mutagens and were concerned with developing treatments for viral infections 

rather than understanding the mechanisms at work.  In this chapter an 
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evolution experiment was carried out to investigate the consequences of viral 

evolution at an artificially elevated mutation rate. 

 

The aims of this chapter were: 

 

• To investigate if an increase in mutation rate of two orders of magnitude 

results in the extinction of a ssDNA virus. 

• To observe how an elevated mutation rate affects the fitness of evolving 

populations of bacteriophages. 

• To determine how reproducible evolution is at an elevated mutation rate. 
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4.2  Results 
4.2.1  Wild-type phage 

The phage used to initiate the experimental lines was isolated from a single 

plaque, then grown under non-mutagenic conditions until titer was sufficient 

(>105pfu/μl, approximately 2 hours).  Illumina sequencing of this preparation 

showed that the genotype was not uniform, with a single mutation at position 

1301 reaching 48.8% frequency in the population (appendix C.1). 

 

The fitness of the ancestral phage population was found to be 3.9 ± 0.32 

doublings/hour.  An additional fitness assay using phages taken directly from 

the glycerol stock that the initial plaque was isolated from gave a value lower 

than zero.  This suggests that the initial phage was not well adapted to our 

experimental conditions.  Since only one mutation was detected at a high 

frequency and it resulted in a large fitness increase, it was considered to be an 

adaptation to the experimental conditions. 

 

4.3.2  Fitness of experimental lines 
Bacteriophage fitness assays are typically carried out on phage of a single 

genotype, isolated from a single plaque.  Under normal, non-mutagenic 

conditions, a population of phages will generally contain little genetic variation.  

When a beneficial mutation does survive drift, it will quickly become fixed as a 

selective sweep removes competing alleles (Smith and Haigh, 2007).  

However, this is untrue for the populations evolved in mutagenic conditions 

where many co-occurring mutations at varying frequencies mean there is likely 

to be variation between individuals.  While single plaques could be isolated and 

the fitness of these individuals measured, they would not be representative of 
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the population as a whole.  For this reason, fitness assays were performed on 

heterogeneous populations, to give an average fitness for all members. 

 

Fitness can be measured in several ways, at its most complex based on 

calculations consisting of many components of phage life history such as 

adsorption rate, burst size, and lysis time.  This could also cause difficulties in 

calculations when a population is heterogeneous and these components vary.  

For example, the mechanism for inducing lysis in ΦX174 is simpler than in 

many other phages, and results in an asynchronous lysis time; the commonly 

used lysis time of 21 minutes is an average (Hutchison and Sinsheimer, 1963).  

If the heterogeneity of the population caused lysis time to vary further between 

individuals, it could present difficulties in measuring this and begin to make it 

look like phages were being constantly released.  It has previously been 

reported that fitness measures using multiple components underestimate true 

fitness in heterogeneous populations (Springman et al., 2010).  It was decided 

that in this experiment, fitness would be estimated using the average growth 

rate of the population as a proxy. 

 

While it is usually desirable to carry out fitness assays in the same 

environment phages have evolved in, this would have presented difficulties.  In 

the presence of dnaQ926, bacterial growth rates are retarded due to the 

constant mutagenic effects (Fijalkowska and Schaaper, 1996), which in turn is 

likely to affect phage growth rates.  However, we are interested in measuring 

the fitness of the already-mutagenised phage, and by assaying it in a 

mutagenic environment the fitness measured would be a component of both 
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the phage's actual fitness and the mutagenic activity occurring during the 

assay.  This would not allow direct fitness comparisons of these lines with the 

ones grown under normal conditions, and for this reason it was decided to carry 

out fitness assays of all lines in the non-mutagenic environment.  Deleterious 

mutations can interfere with plaque formation, so phage titers were determined 

during the assay using qPCR.  The primers were located in a region of gene E 

where mutations had not been observed in previous studies with ΦX174. 

 

Replicate lines of bacteriophage ΦX174 were evolved for 100 hours of 

growth (approximately 300 generations) at both its normal mutation rate of 1.5 x 

10-6 sng and an elevated mutation rate of 1.8 x 10-4 sng.  At the end of the 

experiment (passage 100), both lines evolved at the normal mutation rate (A1 

and A2) had increased in fitness significantly compared to the ancestral phage 

confirming that the ancestral phage used was not well adapted to the 

experimental conditions, and beneficial mutations were available.  The 

mutagenic lines (B1 and B2) showed very different changes in fitness.  B1 had 

a similar fitness gain to A1 and A2.  B2, however, significantly decreased in 

fitness over the course of the experiment (figure 4.1). 

 

Fitness of evolutionary lines was also assayed after every 20 passages 

(approximately 60 generations).  Both control lines A1 and A2 showed similar 

changes in fitness at each of these time points.  After a rise in fitness at 

passage 20, both lines declined in fitness at passage 40 before a sharp rise at 

passage 80.   
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 B1 continually increased in fitness at every time point up to passage 80.  At 

20 passages, the fitness was similar to A1 and A2.  However, in B1 fitness 

increased at passages 40 and 60 over the previous time points, compared to 

the declines in the non-mutagenic lines. 

 

After 20 passages, line B2 showed a negative fitness value (fewer phages 

were detected after growth than were present in the initial inoculum).  Fitness 

increased to a positive value at passage 40 onwards, but remained at a similar 

level for the rest of the experiment. 
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Figure 4.1 - fitness of each experimental line at intervals of 20 passages.  Each time point 

was assayed in triplicate.  Error bars indicate standard error.  All lines were initiated from the 

same stock, the fitness of which is included here as passage 0.
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T0	

TF	 Fitness	(population	doublings	/	hour)	

		 1	 2	 3	 1	 2	 3	 Mean	 SD	 SE	

Anc	 2.64E+05	 3.78E+06	 7.95E+06	 4.07E+06	 3.55	 4.54	 3.65	 3.91	 0.55	 0.32	

A1	P20	 2.78E+05	 4.67E+07	 2.49E+07	 1.21E+07	 6.83	 5.99	 5.03	 5.95	 0.90	 0.52	

A1	P40	 2.74E+05	 6.73E+06	 2.80E+06	 6.22E+06	 4.27	 3.10	 4.16	 3.84	 0.65	 0.37	

A1	P60	 2.27E+05	 2.30E+06	 4.92E+06	 3.88E+06	 3.09	 4.10	 3.79	 3.66	 0.52	 0.30	

A1	P80	 2.84E+05	 4.91E+08	 6.06E+08	 6.93E+08	 9.94	 10.22	 10.40	 10.19	 0.23	 0.13	

A1	P100	 2.97E+05	 9.54E+08	 7.59E+08	 9.93E+08	 10.77	 10.46	 10.82	 10.68	 0.19	 0.11	

A2	P20	 1.15E+05	 1.68E+08	 1.14E+07	 6.48E+06	 9.72	 6.13	 5.38	 7.07	 2.32	 1.34	

A2	P40	 3.08E+05	 2.95E+07	 1.46E+07	 1.25E+07	 6.08	 5.14	 4.93	 5.39	 0.61	 0.35	

A2	P60	 1.09E+05	 5.48E+06	 5.83E+06	 8.48E+06	 5.22	 5.31	 5.81	 5.44	 0.32	 0.18	

A2	P80	 1.36E+05	 1.54E+09	 1.86E+09	 1.79E+09	 12.45	 12.70	 12.65	 12.60	 0.13	 0.08	

A2	P100	 1.15E+05	 8.69E+08	 2.44E+09	 8.56E+08	 11.91	 13.28	 11.89	 13.52	 0.80	 0.46	

B1	P20	 4.29E+05	 1.81E+07	 3.30E+07	 3.17E+07	 4.99	 5.79	 5.74	 5.51	 0.45	 0.26	

B1	P40	 2.21E+05	 6.04E+07	 7.65E+07	 6.22E+07	 7.48	 7.80	 7.52	 7.47	 0.17	 0.10	

B1	P60	 8.95E+04	 2.45E+08	 1.07E+09	 2.45E+08	 10.55	 12.52	 10.55	 11.21	 1.14	 0.66	

B1	P80	 4.81E+04	 4.32E+08	 6.42E+08	 4.77E+08	 12.14	 12.67	 12.27	 12.36	 0.27	 0.16	

B1	P100	 8.62E+04	 1.72E+08	 2.67E+08	 2.61E+08	 10.13	 10.72	 10.69	 10.51	 0.33	 0.19	

B2	P20	 2.55E+06	 1.08E+06	 5.36E+05	 2.16E+06	 -1.15	 -2.08	 -0.22	 -1.15	 0.93	 0.54	

B2	P40	 1.29E+05	 2.55E+05	 8.39E+05	 1.72E+06	 0.91	 2.50	 3.46	 2.29	 1.29	 0.74	

B2	P60	 1.09E+05	 2.11E+05	 4.13E+05	 3.39E+05	 0.88	 1.78	 1.51	 1.39	 0.46	 0.26	

B2	P80	 1.27E+05	 1.02E+06	 1.02E+06	 1.17E+06	 2.78	 2.77	 2.96	 2.80	 0.11	 0.06	

B2	P100	 1.18E+05	 5.90E+05	 4.71E+05	 7.23E+05	 2.14	 1.84	 2.41	 2.17	 0.29	 0.17	
 

Table 4.1 - fitness assay measurements.  T0 is the number of phages used to initiate the 

assay (pgu), Tf is the number of phages at the end of the assay (pgu), with 1, 2, and 3 denoting 

replicate measurements.  Values are provided in E-notation, where “E” represents “times 10 

raised to the power of”.  Fitness was calculated by the equation: 

fitness = log2(Nf/N0) / 0.75
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Figure 4.2 – Box and whisker plot showing fitness of experimental lines after 100 passages.  

Fitness is expressed relative to the fitness of the ancestral phage preparation (dotted line).   

Top and bottom of box indicate third and first quartiles respectively, whiskers  extend to 

maximum and minimum.
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4.2.3  Endpoint genotypes 
Consensus sequences of endpoint (passage 100) genotypes are given in 

full in appendix B.   

 

Over the four lines, 13 unique mutations had become the major allele (table 

4.2).  Of these, four were synonymous and nine were non-synonymous.  Four 

non-synonymous substitutions appeared in multiple lines - two of them in three 

lines and two in all four lines.  One of the synonymous mutations appeared in 

two lines. 

 

Both control lines A1 and A2 contained five substitutions that were the major 

allele at that position (with frequencies of 89% or greater).  Of the new 

mutations in lines A1 and A2, four were the non-synonymous mutations 

common to multiple lines, while each also contained a unique synonymous 

mutation.   

 

Line B1 contained six mutations that were the major allele at that position 

(with frequencies of 69% or higher).  Of these, four were the shared non-

synonymous mutations, one was a unique non-synonymous mutation, and the 

other was a synonymous mutation shared with B2. 

 

Line B2 contained eight mutations that were the major allele at that position 

(with frequencies of 70% or higher).  Five of these were unique to this line (four 

non-synonymous, 1 synonymous), two non-synonymous mutations shared with 

all other lines, and one was a synonymous mutation shared with B1. 
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Position Gene Mutation A1 A2 B1 B2  

841 D/E V150A (GTG→GCG) /*91R 
(TGA→CGA)  

     

1301 F T101A (ACT→GCT)       

1305 F G102D (GGT→GAT)       

1319 F A107T (GCC→ACC)       

1321 F A107A (GCC→GCT)      Silent 

1639 F M213I (ATG→ATT)       

1660 F I220I (ATT→ATC)      Silent 

1968 F N323S (AAC→AGC)       

3320 H A130A (GCT→GCC)      Silent 

3340 H D137G (GAT→GGT)       

3423 H I165V (ATT→GTT)       

3426 H A166S (GCC→TCC)       

4802 A/A* P274P (CCT→CCC)      Silent 

 
 
Table 4.2 - mutations in the endpoint (passage 100) consensus genotypes compared to the 
ancestral sequence.  Green denotes that a mutation is the major allele in that line, red denotes 
that the major allele at that position is unchanged from the wild-type.  Note that the mutations at 
841 and 4802 affect overlapping genes.  841 changes the amino acid sequences of two genes.  
Genes A and A* are located in the same reading frame, so the same mutation occurs in each 
gene (although this is located at position 102 in A*). 
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4.3  Discussion 
The work presented in this chapter represents one of the most 

comprehensive experimental evolution studies into the consequences of viral 

evolution at an elevated mutation rate to date.  Replicate populations of ΦX174 

initiated from a single ancestor were evolved at a normal and elevated mutation 

rate.  While the lines grown at a normal mutation rate showed convergent 

evolution, acquiring the same mutations and same fitness increase, the lines 

grown in mutagenic conditions resulted in dramatically different outcomes. 

 

4.3.1  Lethal mutagenesis 
These results show that lethal mutagenesis was not achieved during the 

course of the experiment, meaning the mutation rate was not high enough or 

that not enough generations had passed for the fitness to decline sufficiently.  

Interestingly, in line B2 the fitness appeared to be negative after 20 passages, 

meaning that fewer phages were detected at the end of the fitness assay than 

the beginning.  However, all subsequent fitness assays returned positive fitness 

values.  Presumably the population was rescued by selection of its fitter 

members. 

While extending the duration of the experiment may eventually result in 

lethal mutagenesis, from a therapeutic point of view, prolonged viral infection 

and exposure to mutagens are undesirable to a patient, and so any further 

studies should focus on increasing the mutation rate further. 

Although lethal mutagenesis does not occur, it was expected that the 

elevated mutation rate would still result in a fitness decline.  This was observed 

in line B2, where fitness declined to approximately half that of its initial value, 

and then appeared to reach an equilibrium, not changing significantly from 
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passage 40 onward.  In line B1, which was evolved in identical conditions from 

the same ancestor, a large fitness increase was observed over the course of 

the experiment.  The explanation for this is that adaptive evolution occurred to a 

much greater extent in line B1 compared to B2.  

 

4.3.2  Parallel evolution in A1 and A2 
Sequencing of endpoint genotypes showed many incidences of parallel 

evolution.  In particular, four common substitutions were detected in both 

control lines.  While it is probable that the mutation at 1301 arose in the 

ancestor, it increased to fixation in every line, strongly suggesting it is an 

adaptation to the experimental conditions.  The remaining three mutations all 

arose independently in both lines and increased to high frequencies, 

suggesting that they too are adaptive.  This is further supported by the large 

fitness increases observed in these lines over the course of the experiment. 

 

A1 and A2 also contained a unique substitution each.  Both of these were 

non-synonymous so were likely to be selectively neutral.  The most plausible 

explanation for their fixation is that they were present on a genome on which a 

beneficial mutation appeared, and rose in frequency due to genetic hitchhiking.  

Other than these synonymous substitutions, the genomes of lines A1 and A2 

are the same and produce an identical set of proteins.  Both lines evolved at 

wild-type mutation rate showed very similar changes in fitness over the course 

of the experiment, suggesting that the same adaptive mutations appeared in 

both populations at similar time points.  This example of parallel evolution 

demonstrates how reproducible evolution can be when an organism with a 



 

 111 

small genome and limited spectrum of beneficial mutations is grown in identical 

conditions. 

 

Between passages 20 and 40, fitness of lines A1 and A2 declined 

somewhat, and appeared to maintain this level between passages 40 and 60.  

It is interesting that this occurred in both non-mutagenic lines, and suggests 

that there is some component of fitness outside of growth rate that our assay 

did not consider. 

 

4.3.3  Adaptive evolution in B1 
From the fitness increases observed in lines A1, A2 and B1, it appeared that 

there were a few available beneficial mutations that were of large effect.  

Bacteriophage with an identical genotype has previously been used in other 

experimental evolution studies (Schaaper, 1998) (Raynes and Sniegowski, 

2014); but it is important to consider the novelty in our experimental conditions, 

such as the small volumes used for cultures and the presence of a plasmid in 

the host bacteria, may have given scope for the phage to adapt to.  In fact, it is 

apparent that while the culture of phages was being grown to provide sufficient 

titer to begin the experiment, a mutation (1301) appeared and increased in 

frequency.  A review of experimental evolution studies with ΦX174 found that 

this mutation was observed more frequently than any other (Wichman and 

Brown, 2010).  This ancestral culture originated from a single, sequenced 

plaque where this mutation was not detected, suggesting it was adaptive and 

the phage population used to initiate the experimental lines was already 

partway through a selective sweep. 
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Although adaptive evolution took place in B1, it is unlikely that this was an 

adaptive response to the elevated mutation rate. This is because most 

mutations were shared with the non-mutagenic lines, and all non-synonymous 

mutations in this line were located in genes F and H, the coat protein and DNA 

pilot protein.  Both these proteins have extracellular functions, and do not play 

any part in DNA replication. 

 

As in the previous study where adaptive evolution appeared to more than 

offset the expected fitness decline (Springman et al., 2010), it appears that this 

also happened in line B1.  In that study, fitness measurements were only taken 

in the ancestral phage and on completion of the experiment, which suggests 

that fitness only increased.  In this experiment, fitness was measured at 60 

generation intervals, showing a steady increase in fitness over the first 240 

generations before a decline in the next 60.  It is possible that the same pattern 

occurred in that experiment - a higher fitness peak was achieved partway 

through the experiment before it declined to the value that was measured at the 

end.   

 

If beneficial and deleterious mutations are considered separately, it could be 

that the expected decline in fitness through accumulation of deleterious 

mutations is still occurring, but is obscured in these studies by the large fitness 

increases from the beneficial mutations and the strong selective pressure 

working on them.  Since every potential mutation has almost certainly occurred 

many times over in this experiment (box 4.1), it is unlikely that there are other 
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beneficial mutations that have fitness effects of the magnitude already 

observed.  If this is the case, then the fitness observed in B1 after 240 

generations is probably close to the optimum fitness of the phage in this 

environment, meaning a continuation of the fitness decline seen in the last 60 

generations would be observed if the experiment was continued. 

 

In any similar studies in the future, phage should be adapted to the 

experimental system beforehand in non-mutagenic conditions.  This will allow 

phage lines to be initiated with a starting genotype that is close to optimum 

fitness, and limit the influence of beneficial mutations in the experiment proper.
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Box 4.1 – The coupon collector’s problem 

 

I have stated that every possible mutation has appeared many times over during this experiment, 

which is due to the small genome sizes, high mutation rate and large population sizes. 

 

There are 5386 bases in the ΦX174 genome, and 3 possible mutations for each.  This 

means there are 16,158 potential mutations that could be observed.  To calculate how many 

mutational events are required to observe every unique mutation, we can use the coupon 

collector problem from probability theory, which asks the question “given n coupons, how many 

coupons do you expect you need to draw with replacement before having drawn each coupon at 

least once?” (Hayes and Pilling, n.d.) 

 

There is an exact solution to this problem which returns the expected value of the 

number of draws needed to obtain each unique coupon.  Because our n value of 16,158 is so 

large, it would require a great amount of time and computational power.  However, there is an 

approximate solution that is accurate to one decimal place: 

 

where γ = 0.577216, Euler’s constant.  Solving for our value of n, this tells us that we would 

expect to see all 16,158 unique mutations after 165,901 mutational events. 

 

As determined in chapter 3, at our elevated mutation rate there are an average of 0.97 

mutations per phage genome.  This means that 165,901 mutations would occur per 171,032 new 

phage.  Since each passage was initiated with at least 106 pgu, there would be many times more 

than this number in each passage, even if each phage replicated only once.  It must be noted that 

this calculation makes the false assumption that each mutation is equally likely.  However, when 

the fecundity of the phage and the number of passages are considered, it is probable that the 

number of mutations calculated was exceeded by a factor of thousands. 



 

 115 

4.3.4  Failure to adapt in B2 
Unlike the other lines, B2 did not increase above the starting fitness at any 

of the time points assayed over the course of the experiment.  It only had two 

mutations in common with the other lines, one of which was 1301, which was 

already increasing in frequency at the beginning of the experiment.  Of the five 

substitutions unique to this line, one of them was synonymous, while the other 

four all result in protein sequence changes.  Of particular note was the mutation 

at position 841.  This position comprises part of the overlapping genes D and E, 

which are both in different reading frames.  This mutation alters the protein 

coding sequence in both of these genes.  Interestingly, it changes the stop 

codon in gene E to an arginine, meaning that during transcription of the gene 

the polypeptide chain will not terminate at the normal position and will continue 

to add amino acids.  The next stop codon downstream in this reading frame 

begins at position 853.  As a result, this mutation not only changes the amino 

acid sequence of gene D, it also causes the product of gene E to be extended 

by four amino acids: arginine, cysteine, asparagine and valine. 

 

It is interesting that despite there being multiple adaptive substitutions that 

independently arose in all other lines, two of them failed to become fixed in B2.  

These mutations conferred large fitness increases in the other three lines, yet 

B2 only declined in fitness despite greatly beneficial mutations being available. 

 

Since these mutations undoubtedly occurred many times over (box 4.1), the 

most likely explanation is that the mutations were not beneficial in B2.  It is 

unlikely that this is a consequence of the mutagenic environment since a fitness 
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increase still occurred in B1, meaning that it is likely caused by the different 

genetic background of B2.  Both these mutations (at positions 1305 and 1639) 

appear in gene F, which encodes the coat protein.  B2 also contains mutations 

in the external scaffolding protein and the spike protein, which interact with the 

coat protein during assembly and in the viral capsid respectively.  It is possible 

that the combination of these unique mutations with 1305 and 1639 produces a 

negative epistatic effect, and does not confer the large fitness increase 

observed in the other lines.  B2 also contains two unique non-synonymous 

mutations in gene F, so there is also the possibility that these do not merely 

have additive effects on fitness, but together with 1305 and 1639 adversely 

affect the folding of the protein or its interactions with other viral proteins or host 

receptors. 

 

Although it was not observed here, the reverse may be possible too.  If an 

epistatic interaction between multiple substitutions produces a large fitness 

increase but these mutations alone are negative or neutral, under normal 

conditions it is unlikely that they will occur in tandem.  A catch-22 situation 

occurs: the mutations cannot occur together unless one achieves high 

frequency first, but they cannot increase in frequency unless they occur 

together.  In a mutagenic environment, however, the chances of them co-

occurring would be increased, leading to a spectrum of potential adaptations 

that would be unlikely at normal mutation rate.  While this may have occurred 

here as well, it cannot be determined without measuring the fitness effects of 

the specific mutations alone and in combination. 
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4.3.5  Further work 
There are a number of possibilities to further investigate lethal mutagenesis 

with experimental evolution, either by continuing this experiment, or adapting it 

further.   

 

It may be that 300 generations did not provide sufficient time for a fitness 

decline to be observed.  Since phage samples were taken and stored from 

every passage, the experiment carried out in this chapter could be continued 

and extended beyond passage 100.  A less labour-intensive method that would 

allow for many more generations would be to conduct a similar experiment 

using a chemostat instead of serial passaging.  However, recombination events 

would be more likely in this environment, something the model does not take 

into account. 

 

While extending the experiment would be interesting from a theoretical 

perspective, increasing the mutation rate further still would be preferable and 

maybe even necessary to achieve lethal mutagenesis.  This is harder to do 

experimentally without the use of mutagens, but other dnaQ mutants could be 

investigated to see if they increase mutation rate above that of dnaQ926. 

 

Adaptive evolution presents a significant challenge for this model.  While 

some adaptive mutations cannot be prevented from occurring (such as direct 

adaptation to the mutagenic conditions or compensatory mutations), the 

potential fitness gains from adaptation to the general experimental conditions 

could be lowered.  If the experiment was initiated using phage with an optimal 
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genotype (or close to it), many of the large fitness gains seen in line B1 would 

not have occurred since the mutations would already be present.  This phage 

could be acquired by passaging the phage in the non-mutagenic experimental 

conditions beforehand.  Phage from line A2 would be a good candidate for this, 

since it reached the highest fitness observed during the experiment at passage 

80 and no adaptive mutation appears to have occurred in the subsequent 20 

passages.
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Chapter 5:  Evolutionary 

dynamics of experimental lines
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5.1  Introduction 

5.1.1  The evolution experiment 

In the experiment described in the previous chapter, replicate 

populations of bacteriophage ΦX174 were evolved at wild-type and elevated 

mutation rate.  While both lines grown under non-mutagenic conditions 

demonstrated convergent evolution, the lines grown in mutagenic conditions 

evolved in very different ways, with one displaying parallel evolution with the 

non-mutagenic lines and greatly increasing in fitness, and the other acquiring 

novel mutations and declining in fitness. 

 

At high mutation rates, evolutionary dynamics may be affected by many 

of the processes discussed in chapter 1.  For example, deleterious mutations 

are more common at high mutation rates, so it follows that compensatory 

mutations would also be more frequent.  If the compensatory mutation restores 

much of the fitness lost through the deleterious mutation, then these will be 

more likely to persist.  Another evolutionary phenomenon that may be more 

readily observed at high mutation rate is clonal interference.  If beneficial 

mutations are more likely to co-occur then it is likely that they will compete with 

each other, resulting in slower adaptation and the loss of one allele. 

 

Samples of phage lysate from each passage of this experiment were 

stored as a "frozen fossil record".  While these have previously been used to 

determine the changes in fitness of each line, they also serve as a permanent 

record of the genotypes of the bacteriophages over the course of the 

experiment.  Using next-generation sequencing, composite genomes of 
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populations can be obtained for multiple time points of the experiment allowing 

us to observed the changes in allele frequency over time and determine 

evolutionary trajectories. 

 

5.1.2  Next-generation sequencing 

In experimental evolution studies involving bacteriophage, sequencing is 

typically performed on homogenous isolates from a single plaque.  However, in 

evolving populations it can be useful to detect substitution trajectories, which 

can only be inferred by conventional methods from the sequencing of 

numerous individual genotypes.  This leads to difficulties; as well as being time- 

and resource-intensive, small sample sizes mean that low-frequency 

substitutions may not be detected.  This is especially pertinent when phage is 

evolved at an elevated mutation rate, since this is expected to greatly increase 

diversity with populations. 

 

In next-generation sequencing with platforms including IlluminaTM, the 

sample DNA is broken into multiple short fragments which are tagged with 

adaptors and indexes, amplified by PCR and then sequenced.  Each fragment 

is sequenced from the 5' end on both strands for a predetermined length (which 

ranges from 75bp to 300bp, depending on the reagents used).  These paired 

end reads can be reassembled by aligning them to a reference genome.  

Typically, multiple reads will map to the same part of the reference genome, 

with the average number of reads for each nucleotide position being referred to 

as coverage.  Since each nucleotide is sequenced multiple times, when a 
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sample consists of a single individual increased coverage makes it easier to 

distinguish between sequencing errors and true mutations. 

 

 Because ΦX174 has such a small genome, it is possible to get very high 

coverage with a small overall number of reads (e.g. as achieved in multiplex 

runs on the MiSeq instrument).  This makes it an ideal method for detecting low 

frequency substitutions that may have occurred in the evolution experiment 

described in chapter 4.  Instead of initiating sequencing with DNA from 

individual isolates, sample DNA can be extracted from lysate containing an 

entire population of phages.  When sequenced, the high coverage allows the 

frequency of substitutions at each position to be determined (Dickins and 

Nekrutenko, 2009).   
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5.1.3  Summary and aims 

When grown at an elevated mutation rate, two replicate populations of 

ΦX174 evolved in very different ways.  Using next-generation sequencing, the 

substitution frequencies of these populations over the course of the experiment 

will be determined to investigate how these populations changed at the genetic 

level. 

 

The aims of this chapter were: 

 

• To obtain high-resolution sequence data for each evolutionary line over 

multiple time points. 

• To use this data to infer evolutionary trajectories in evolving populations 

of bacteriophage. 

• To identify how evolutionary processes are affected by an increased 

mutation rate.
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5.2  Results 

Phage dsDNA from passages 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 

was extracted for all lines.  In addition, DNA was extracted from passages 5, 

15, 25, 31, 32, 33, 34, 35, 45, 55, 65, 75, 85, and 95 in lines B1 and B2.  

dsDNA samples were fragmented and sequenced using the Illumina platform, 

and output data was analysed using the workflow described in 2.10.   

 

5.2.1  Substitutions 

Over the course of the experiment, eight mutations were detected at a 

frequency of 10% or greater in lines A1 and A2.  Of these, five were still present 

at high frequency after 100 passages, with four of these being non-synonymous 

and one being synonymous.  Each line contained a non-synonymous mutation 

as well as two synonymous mutations, which either declined in frequency or 

were lost by the end of the experiment.  These mutations are listed in tables 5.2 

and 5.3. 

 

In the lines evolved under mutagenic conditions, far more mutations 

were observed.  21 mutations in B1 and 23 in B2 were observed which reached 

a frequency of 10% or greater in one of the time points sequenced.  It should 

be noted that phage from these lines were sequenced at more frequent time 

points (24 for B2, 22 for B1, 10 for A1 and A2).  However, these high frequency 

mutations persisted for multiple time points and would have been observed 

even with less frequent sequencing. 
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Of the 21 mutations seen in line B1, 14 were still present at a frequency 

of 10% or greater by 100 passages, with six being the major allele (that with the 

greatest frequency) in the population.  Five of these were non-synonymous 

mutations, with the others being synonymous.  All of the seven mutations in this 

line which declined below 10% frequency were synonymous.  Eight mutations 

were present in the final population at 10% frequency or higher but were not the 

major allele.  Three of these were non-synonymous and two were synonymous.  

The remaining three mutations were observed in the region where the D and E 

genes overlap.  These are in different reading frames, and so a single mutation 

affects two codons differently.  In all three cases, this mutation was 

synonymous in gene D but changed the amino acid sequence in gene E.  

These mutations are listed in table 5.4. 

 

12 of the 23 mutations in line B2 were lost or had declined beneath 10% 

frequency by passage 100.  Three of these were synonymous, while another 

was located in an intergenic region of the genome.  Two were located in the 

overlapping D and E genes, one affected the protein sequence of both genes, 

and one affecting only gene D.  The remaining six were non-synonymous.  Of 

the remaining 11 mutations that were still present at 10% or greater frequency 

after 100 passages, nine were the most common variants in the population.  

Just two of these were synonymous, with the other nine all altering protein 

sequences, and one of these changing sequences of both genes D and E.  

These mutations are listed in table 5.6. 
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Low frequency substitutions were detected in all lines, but were much 

more common in the mutagenic lines (table 5.6). 
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Position Gene Mutation Amino acid 
change 

First detected 
(passage #) 

Frequency at 
100 hours 

1301 F ACT→GCT T101A 10 100% 

1305 F GGT→GAT G102D 80 93% 

1639 F ATG→ATT M213I 10 98% 

1660 F ATT→ATC I220I 70 89% 

3340 H GAT→GGT D137G 50 100% 

4613 A/A* GAG→GAA E211E 50 1% 

4622 A/A* TAT→TAC Y214Y 30 4% 

4627 A/A* AAT→AGT N216S 50 0% 

 

Table 5.1 - Every mutation in line A1 that was observed with a frequency of ≥ 10%.  Table 

includes mutational frequency at the conclusion of the experiment (rounded to the nearest 

integer), and the passage number in which mutation was first detected at ≥ 10% frequency.  

Genes A and A* are in the same reading frame so shared mutations cause the same amino 

acid change in both genes.  Amino acid change in table refers to gene A.
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Position Gene Mutation Amino acid 
change 

First detected 
(passage #) 

Frequency at 
100 hours 

1301 F ACT→GCT T101A 10 100% 

1305 F GGT→GAT G102D 70 100% 

1321 F GCC→GCT A107A 70 98% 

1639 F ATG→ATT M213I 10 100% 

3320 H GCT→GCC A130A 30 2% 

3340 H GAT→GGT D137G 70 100% 

4613 A/A* GAG→GAA E211E 60 1% 

4623 A/A* GAT→CAT D215H 30 0% 
 

 

Table 5.2 - Every mutation in line A2 that was observed with a frequency of ≥ 10%.  Table 

includes mutational frequency at the conclusion of the experiment (rounded to the nearest 

integer), and the passage number in which mutation was first detected at ≥ 10% frequency.  

Genes A and A* are in the same reading frame so shared mutations cause the same amino 

acid change in both genes.  Amino acid change in table refers to gene 
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Table 5.3 - Every mutation in line B1 that was observed with a frequency of ≥ 10%.  Table 

includes mutational frequency at the conclusion of the experiment (rounded to the nearest 

integer), and the passage number in which mutation was first detected at ≥ 10% frequency.  

Genes A and A* are in the same reading frame so shared mutations cause the same amino 

acid change in both genes.  Amino acid change in table refers to gene A.  For mutations in 

genes D and E, top mutation refers to D, bottom to E. 

 

 

Position Gene Mutation Amino acid 
change 

First detected 
(passage #) 

Frequency at 
100 hours 

572 D 
E 

GGT→GGC 
GTA→GCA 

G61G 
V2A 95 23% 

686 D 
E 

GAA→GAG 
AAG→AGG 

E99E 
K40R 95 12% 

794 D 
E 

CTT→CTC 
TTA→TCA 

L135L 
L76S 95 16% 

1031 F ATG→GTG M11V 15 4% 

1301 F ACT→GCT T101A 5 100% 

1305 F GGT→GAT G102D 20 100% 

1307 F TAT→CAT Y103H 10 0% 

1318 F CAT→CAG H106Q 15 0% 

1639 F ATG→ATT M213I 10 100% 

2277 F ACT→ATT T426I 10 0% 

3320 H GCT→GCC A130A 55 92% 

3339 H GAT→AAT D137N 15 0% 

3340 H GAT→GGT D137G 15 100% 

3389 H GAG→GAT E153D 65 1% 

3423 H ATT→GTT I165V 70 70% 

3426 H GCC→TCC A166S 65 5% 

3430 H GAG→GGG E167G 65 23% 

4614 A/A* GCG→TCG A212S 65 27% 

4817 A/A* GAC→GAT D279D 75 44% 

4835 A/A* CGG→CGA R285R 95 13% 

4918 A/A* CAG→CGG Q313R 80 36% 
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Position Gene Mutation Amino acid 
change 

First detected 
(passage #) 

Frequency 
at 100 hours 

92 A/A* GCT→ACT A500T 15 0% 

362 C GCT→GTT A77V 50 0% 

756 D 
E 

TTT→CTT 
CGT→CGC 

F123L 
R63R 33 0% 

781 D 
E 

AAC→AGC 
ACA→GCA 

N131S 
T132A 31 0% 

841 D 
E 

GTG→GCG 
TGA→CGA 

V151A 
STOP153R 50 97% 

988 Intergenic T→C  30 0% 

1301 F ACT→GCT T101A 5 100% 

1307 F TAT→CAT Y103H 10 0% 

1319 F GCC→ACC A107T 25 99% 

1449 F AAT→AGT N150S 31 69% 

1968 F AAC→GAC N323D 20 99% 

2277 F ACT→ATT T426I 10 0% 

2710 G GCC→ACC A106S 70 2% 

3320 H GCT→GCC A130A 70 81% 

3339 H GAT→AAT D137N 20 8% 

3340 H GAT→GGT D137G 20 100% 

3423 H ATT→GTT I165V 75 23% 

3426 H GCC→TCC A166S 75 70% 

3581 H GCT→GCC T217T 31 3% 

4658 A/A* GAT→GAC D226D 31 3% 

4760 A/A* GGC→GGT G260G 20 0% 

4802 A/A* CCT→CCC P274P 55 92% 

4918 A/A* CAG→CGG Q313R 70 39% 
 

Table 5.4 - Every mutation in line B2 that was observed with a frequency of ≥ 10%.  Table 

includes mutational frequency at the conclusion of the experiment (rounded to the nearest 

integer), and the passage number in which mutation was first detected at ≥ 10% frequency.  

Genes A and A* are in the same reading frame so shared mutations cause the same amino 
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acid change in both genes.  Amino acid change in table refers to gene A.  For mutations in 

genes D and E, top mutation refers to D, bottom to E.  
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 Number of unique mutations detected with a frequency of 
Line > 0.1%  > 0.5% > 1% 
A1 21 8 6 
A2 42 8 8 
B1 171 38 26 
B2 119 22 16 
Ratio B:A 4.60 3.75 3.00 
 
  
Table 5.5 – Low frequency mutations.  The number of unique mutations detected in each line 

after 100 passages at three different thresholds.  The bottom row shows the ratio of unique 

mutations (unique to the line rather that the environment) in the mutagenic lines to the control 

lines.
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5.2.2  Indels 

Indels were rare in all lines.  After passage 100, the average number of 

indels per genome (calculated from the sum of the total indels with Q >= 40 

divided by the average read depth) was 0.068 for A1, 0.085 for A2, 0.075 for B1 

and 0.074 for B2.  As discussed in section 3.1.2, the impaired error checking 

capability of dnaQ926 only appears to increase the frequency of substitutions, 

so it is expected that indels appear at similar frequencies in mutagenic and 

non-mutagenic lines. 

 

In line B1, an insertion was detected at a frequency of 1.05% at position 

5350 (GC --> GTTC) in passage 65.  However, no reads were found containing 

this insertion in the sequenced passages preceding and following it.  This 

insertion causes a frameshift of two base pairs in genes A and A*, altering three 

amino acids and introducing a premature stop codon. 

 

In line B2, an insertion at position 2372 (GTT --> GTTT) was first 

detected in passage 31.  This increased in frequency until a peak of 4.07% in 

passage 45, after which it began to decline in frequency, becoming 

undetectable from passage 60 onwards (figure 5.5).  This insertion is in an 

intergenic region and has no effect on coding sequences or protein structure. 

 

No indels were detected in lines A1 and A2 at a frequency of 1% or 

greater. 
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Figure 5.1 - Frequency of the insertion at position 2372 in line B2 between passages 30 and 60.  This was the only indel observed in any line that persisted over 

multiple time points.
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5.2.3  Evolutionary trajectories in lines A1 and A2 

As described in chapter 4, lines A1 and A2 experienced similar changes 

in fitness over the course of the experiment and ended with identical genotypes 

other than one non-synonymous mutation each.   

 

Both lines were characterised by sequential selective sweeps where 

substitutions rose to become the dominant variants in the population over a 

short number of passages (figures 5.6 & 5.7).  All four non-synonymous 

substitutions that became fixed appeared in the same order in both lines, and 

appeared after a similar number of generations (table 5.7).  These data 

correlate very well with the fitness measurements, giving weight to the 

assumption that these mutations are adaptive (figure 5.8). 

 

Each line contained a unique synonymous mutation at high frequency.  

Because these mutations do not change the amino acid sequence, they are 

unlikely to have any significant effect on fitness and are likely to be selectively 

neutral.  However, these synonymous mutations rose in frequency at the same 

rate as another mutation at position 1305.  In both lines, this mutation rose in 

frequency from passage 60 to passage 80 in both lines.  This correlates with 

the large gains in fitness over the same period (figure 4.1), indicating that this 

mutation is adaptive.  Although the synonymous mutations may have had no or 

negligible effect on fitness, they most likely became fixed during the selective 

sweeps of mutation 1305 by hitchhiking on the same genome. 
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Although both lines were nearly identical in genotype at passage 100, 

over the course of the experiment there were mutations unique to both lines 

that rose in frequency but were ultimately lost.  In line A1, mutations at positions 

4622 and 4613 appeared from passage 30, and appeared to compete over the 

next 40 passages, reaching highs of over 90% and 40% frequency respectively, 

before both were ultimately lost, although there was later a slight re-emergence 

of 4622 (figure 5.6).  Interestingly both these mutations were synonymous, yet 

were apparently not selectively neutral.  A non-synonymous mutation at position 

4627 also appeared in the population around this time, but did not increase in 

frequency beyond 11%, perhaps hitchhiking with a synonymous mutation.  At 

passage 70, the adaptive mutation at 1305 was first detected and rapidly 

increased in frequency at the expense of these mutations. 

 

In line A2, a synonymous mutation at position 3320 rose in frequency 

rapidly from passages 30 and 40 and persisted at high frequency.  This 

mutation rapidly decreased in frequency between passages 70 and 80, which 

inversely correlates with an increase in frequency of the adaptive mutation at 

1305 (figure 5.7).  This indicates that 1305 appeared on a genotype that did not 

already include 3320, and hard a large selective advantage over it.
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Position 

A1 A2 

Frequency 
Order 

Frequency 
Order 

> 5% > 90% > 5% > 90% 

1301 10 20 2 10 30 2 

1305 70 90 4 70 90 4 

1639 10 10 1 10 10 1 

3340 50 60 3 70 80 3 

1660 70 90 4    

1321    70 90 4 
 

Table 5.6 - Mutations found in lines A1 and A2 at high frequency after 100 passages.  Table 

shows the passage in which they were first detected at greater than 5% and 90% frequency, 

and the order in which they reached > 90% frequency.
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Figure 5.2 - Population dynamics of line A1 over 100 passages.  All mutations that were detected at 20% frequency or higher over the course of the experiment are 

included.  Both lines featured similar selective sweeps by mutations at 1639, 1301, 3340, and 1305.  A synonymous mutation hitchhiked along with 1305.  Two 

synonymous mutations appeared to rise in frequency after passage 20 and compete before being ultimately lost.
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Figure 5.3 - Population dynamics of line A2 over 100 passages.  All mutations that were detected at 20% frequency or higher over the course of the experiment are 

included.  Both lines featured similar selective sweeps by mutations at 1639, 1301, 3340, and 1305.  A synonymous mutation 1321 hitchhiked along with 1305.  One 

synonymous mutation 3320 rapidly rose in frequency between passages 30 and 40, persisted for a number of passages, and then declined in frequency during the 

selective sweep of 3340.  A non-synonymous mutation at 4623 (brown) also rose in frequency from passage 20 to 30 but did not persist.
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Figure 5.4 – Correlation between mutational and fitness changes in line A2.  Fitness data is indicated by the blue line, while other lines represent changes in 

mutation frequency.



     

 141 

5.2.4  No mutations appeared in certain genes at high frequency 

Some genes appeared to be much more tolerant of mutations than 

others.  In the non-mutagenic lines, mutations with a frequency of 10% or 

greater were only observed in genes A/A*, G and F.  Line B1 also contained 

substitutions in genes D/E (overlapping), while in line B2, substitutions were 

detected in genes C and G.  However, these did not increase above 15% 

frequency and did not persist for longer than two time points. 

 

5.2.5  Evolutionary trajectories in line B1 

 The evolutionary trajectories of lines A1 and A2 showed populations with 

little variation other than occasional selective sweeps in which beneficial 

mutations appeared and rose in frequency.  However, the lines evolved at 

increased mutation rates were characterised by multiple mutations that co-

occurred, many of which did not persist or become the majority allele. 

 

During the first 30 passages of line B1, a number of mutations were 

present at a frequency of 10% or greater (figure 5.9).  The four adaptive 

mutations that became fixed in lines A1 and A2 also did so in line B1.  1301, 

already present in the ancestral phage preparation, was the first to become 

fixed.  However, whereas the remaining three mutations became fixed via 

sequential selective sweeps in the non-mutagenic lines, in B1 they increased in 

frequency together.  It can be seen that although 1639 appeared first, mutations 

3340 and 1305 appeared soon after, and almost certainly on the 1639 

background.  Since all these mutations have been shown to be strongly 

adaptive, the genotype containing all three quickly outcompeted all others and 
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rose to 100% frequency by passage 30.  This resulted in the diversity that had 

arisen over the first 30 passages being eliminated. 

 

No new mutations were detected between passages 30 and 50 at a 

frequency of 10% or greater.  From passage 55 onwards, mutations were again 

detected over this threshold.  One of these was a synonymous mutation at 

3320 which quickly rose to be the most common variant at that position.  

However, this mutation correlated with another large fitness increase between 

passages 40 and 60, despite being the only new high frequency mutation at 

that time (figure 5.10).  This mutation also reached a frequency of over 80% in 

line B2, suggesting that it was in fact adaptive.
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Figure 5.5 - Mutational frequencies in line B1 over 100 passages.  Three adaptive mutations (1639, 3340, and 1305) that were shared with lines A1 and A2 

appeared on the same genotype and became fixed by passage 30, eliminating the diversity that had previously arisen in this time.  Although other mutations such as 

3320 and 3423 later became the major allele, they did not rise in frequency as rapidly as the earlier adaptive mutations or those seen in lines A1 and A2.  Mutations 

that were not discussed in detail are shown in black for clarity.
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Figure 5.6 - Frequency of a silent mutation at 3320 in B1 (red) and the fitness of that line (blue).  Between passages 40 and 60, this was the only mutation to 
significantly change in frequency, which correlates with the increase in fitness over this period.
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5.2.6  Evolutionary trajectories in line B2 

Line B2 acquired many high frequency mutations over the course of the 

experiment.  B2 shared two mutations with A1, A2 and B1, but also lacked two 

mutations that arose in all other lines.  One of the mutations that did not appear 

in B2, at position 1639, was the first to arise and be fixed in the non-mutagenic 

lines, and also arose early in B1. 

 

As in line B1, many mutations were present simultaneously in B2.  

However, unlike in B1 where a single genotype quickly outcompeted others and 

the diversity was lost, here mutations were able to accumulate throughout the 

experiment.   

 

B2 also demonstrates examples of suspected clonal interference, where 

mutations reach high frequencies before declining when another, presumably 

more favourable, mutation arises and outcompetes it.  Multiple occurrences of 

genetic hitchhiking can also be observed (seen in figure 5.11 as lines that follow 

nearly identical trajectories), with two pairs of mutations that ended at over 90% 

frequency among these.  One of these pairs consisted of a mutation at 841 that 

affected two overlapping genes and a synonymous mutation.  The other pair 

contained two non-synonymous mutations in gene F at positions 1319 and 

1968.
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Figure 5.7 - Mutational frequencies in line B2 over 100 passages.  1301 and 3340 are the only mutations common with lines A1 and A2.  This line contained many 

mutations not seen in the other lines, and multiple examples of genetic hitchhiking, seen when two lines have nearly identical shapes (e.g. 1319 and 1968, 841 and 

4802).  Mutations that were not discussed in detail are shown in black for clarity.
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5.2.7  High resolution population dynamics 

Although obtaining sequence data from every five passages over the 

experiment gave a good overview of evolutionary dynamics, it was clear that 

much could have happened in the short time between passages that would 

have remained unseen.  To observe short-term evolutionary dynamics, 

populations from B1 and B2 were also sequenced from every passage between 

30 and 35. 

 

In line B1, this period marked the end of the selective sweep of 

mutations at 3340, 1639 and 1305; which eliminated most of the other 

mutations that had accumulated.  This can be seen in figure 5.12 where these 

three mutations approach 100% frequency, while the frequencies of the 

remaining mutations simultaneous declines towards zero. 

 

In contrast to this, so many low frequency mutations have accumulated 

in line B2 that they are not easily visualised on a graph (figure 5.13, figure 

5.14).  Most of these mutations do not appear to show any upward trend in 

frequency over time, suggesting that they are unlikely to be beneficial.
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Figure 5.8 - mutation frequencies in line B1 between passages 30 and 35.  Every mutation that 

reached a frequency of at least 1% during this time is included.  This figure is only intended to 

show the diversity of mutations at low frequency, so individual mutations are not colour-coded 

or labelled.  Data points have been removed for clarity.
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Figure 5.9 - mutation frequencies in line B2 between passages 30 and 35.  Every mutation that 

reached a frequency of at least 1% during this time is included. This figure is only intended to 

show the diversity of mutations at low frequency, so individual mutations are not colour-coded 

or labelled.  Data points have been removed for clarity.
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Figure 5.10 - mutation frequencies in line B2 between passages 30 and 35 with higher 

frequency mutations (> 30%) excluded.  Every mutation that reached a frequency of at least 1% 

during this time is included.  This figure is only intended to show the diversity of mutations at 

low frequency, so individual mutations are not colour-coded or labelled.  Data points have been 

removed for clarity.
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5.2.8  Competing mutations within a single codon 

In both mutagenic lines, (between passages 15-25 in B1 and 20-25 in 

B2) mutations appear at positions 3339 and 3340.  Both of these mutations are 

within a single codon, but result in a different amino acid; if both are present 

together the triplet codes for another amino acid still.  Although the short read 

lengths of NGS mean that it is usually only possible to detect mutational 

frequencies in a population rather than the sequences of individual genotypes, 

the proximity of these two nucleotides means that they appear on the same 

sequencing reads.  SAMtools was used to filter sequence data from these 

passages for reads containing both these positions, and Python was used to 

trim reads to just these two positions.  Only four reads were found where these 

mutations were present together.  In addition, the combined frequency of the 

two mutations did not exceed 99%.  This means the two mutations were most 

likely both beneficial and arose at similar times, but had to compete against 

each other.  On both occasions, 3340 became fixed at the expense of 3339, 

indicating that it had the larger selection coefficient. 

 

In the non-mutagenic lines, 3339 and 3340 did not compete in this way, 

with 3340 becoming fixed in both.  Since these mutations act on the same 

codon, they are not additive.  At normal mutation rates, when the likelihood of 

both mutations occurring in a population at the same time is low, which 

mutation becomes fixed may be mainly down to luck.  If 3339 had appeared 

first and became fixed before 3340 appeared in the population, 3340 would 

probably be lost even if its selection coefficient was far higher than 3339.  This 
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is because it would require a reversion of 3339 since the presence of both 

together would change the codon to a serine. 

 

This demonstrates an advantage of high mutation rates, because they 

minimise the possibility of a beneficial mutation being excluded because a less 

beneficial mutation has got lucky and appeared first. 

 

 Consider an ancestral gene with a selection coefficient of 1; two 

mutations in that gene, a and b, with selection coefficients of 1.5 and 2 

respectively; and the state ab where both mutations are present together with 

selection coefficient 0.5.  In a low mutagenic environment, it is unlikely the two 

mutations would appear at the same time, in which case the mutation that 

appears first will become fixed.  If this is a, it is almost impossible for b to 

become fixed, despite having a greater beneficial effect on fitness.  As long as 

the selection coefficient of ab is lower than a, the ab state would be selected 

against meaning that b would need to appear alongside a reversion of a in 

order to be selected for.  

 

In a high mutagenic environment, the likelihood of both a and b 

appearing in a population together is greater, meaning b would be more likely to 

outcompete a and become fixed.  Even in a situation where a became fixed, the 

probability of a reversion in a occurring at the same time as mutation b would 

be higher in this environment, meaning the b state may not be permanently 

lost.



     

 153 

5.3  Discussion 

5.3.1  Elevated mutation rate facilitates adaptation in line B1 

Mutations 1305, 1639 and 3340 arose independently in three lines of this 

experiment.  They were deemed to be adaptive due to this parallel evolution 

and their correlation with the observed fitness increases.  In the non-mutagenic 

lines these appeared and underwent selective sweeps one by one, with both 

lines taking 90 passages (~270 generations) for all three to be present at over 

95% frequency.  In B1, however, all three substitutions reached this frequency 

at passage 31 (~93 generations).  1639 was the first to be detected at passage 

10, followed by 3340 at passage 15 and 1305 at passage 25.  All these 

mutations increased in frequency together, suggesting that they were not 

competing with each other as happens in clonal interference, but appeared on 

the same genome, providing a net increase in fitness each time.  The most 

plausible explanation is that 1639 appeared first and while it was increasing in 

frequency, 3340 appeared on this background.  This would have increased 

fitness further, so the 1639/3340 genotype would have started outcompeting 

the 1639 alone genotype.  Soon after, 1305 appeared on a 1639/3340 genome, 

and quickly rose to become the only genotype in the population.  This 

demonstrates one consequence of evolution at high mutation rates - beneficial 

mutations can occur more frequently, leading to faster adaptation than is 

possible under normal conditions. 

 

Later in the experiment, mutations continued to arise in B1 that were not 

observed in lines A1 and A2.  Because fitness continued to rise until passage 
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80, it is probable that these mutations were also adaptive, and had simply not 

had enough time to arise in the non-mutagenic lines. 

 

5.3.2  A different evolutionary trajectory in line B2 

While line B1 had many similarities to the non-mutagenic lines A1 and 

A2, the fate of B2 was very different.  In every other line, a mutation at 1639 

appeared and quickly became fixed within the populations.  Because this 

mutation was the first to arise in both non-mutagenic lines (excluding 1301 

which arose in the ancestor), increased in frequency rapidly (> 95% after 10 

passages in A1 and A2), and correlates with a fitness increase in every line, it is 

likely to be one of the most beneficial mutations available.  In line B2 this 

mutation had over 2% frequency after passage 10, but did not exceed 1% 

frequency for the remainder of the experiment.  

 

As discussed in section 4.4.4, the failure of this mutation to persist could 

be attributed to negative epistasis, with it no longer being beneficial on the new 

genetic background that was a consequence of the elevated mutation rate.  

This is something that should be considered in any future models that try to 

account for adaptive evolution.  Just because a genotype with very high fitness 

exists, there is no guarantee that a line evolved at high mutation rate will 

achieve it. 

 

5.3.3  Lethal mutagenesis models and adaptive evolution 

One major drawback of the models for describing evolution at a high 

mutation is ongoing adaptive evolution.  These models assume starting fitness 
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is optimal and populations can only decline in fitness.  As the results presented 

here and in Springman et al (2010) show, this is untrue and adaptive evolution 

can still take place at high mutation rates.   

 

Assuming a constant environment, the number of available beneficial 

mutations and their magnitude should both decrease as evolution proceeds.  

Once the potential for further adaptation is minimised, it would be expected that 

deleterious mutations would continue to accumulate and fitness would decline 

until either an equilibrium was reached or the population went extinct. 

 

It is interesting to compare fitness in line B1 with the non-mutagenic 

lines.  After 40 passages, the same non-synonymous mutations were fixed in 

B1 as in A1 and A2 after 100 passages.  However figure 4.1 shows that A1 and 

A2 have a much higher fitness after 100 passages than B1 does after 40. 

Despite acquiring the adaptive mutations in approximately a third of the time 

taken by the lines evolved under non-mutagenic conditions, B1 failed to 

increase in fitness to the same extent.  This discrepancy is best explained by 

the lower frequency mutations that were present in B1 as a result of the 

elevated mutation rate but that A1 and A2 lacked.  This demonstrates that while 

mutagenic conditions can cause adaptation to occur more rapidly, it also results 

in a genetic background of low frequency deleterious mutations that impair the 

average fitness of the population. 

 

Given more time, it would be interesting to compare B1 and B2.  The 

models predict that fitness will eventually stop declining and equilibrate.  This 
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equilibrium fitness is calculated using the fitness of the optimal genotype.  

Since adaptive evolution is not considered, the optimal genotype is assumed to 

be that of the mutation-free wild-type.  However, in line B1 fitness far exceeded 

that of the wild-type by a factor of nearly three.  This new fitness optimum must 

be used to recalculate any subsequent fitness decline and equilibrium, which 

would increase over that calculated at the beginning.  Meanwhile, line B2 did 

not exceed the wild-type's fitness at any point of the experiment.  Despite being 

initiated from the same ancestor, B1 and B2 would now be expected to reach 

very different fitness equilibriums if the experiment was continued. 

 

5.3.4  Rarity of indels 

Indels appeared to be highly selected against.  Only a single indel 

persisted at a frequency of 1% or greater over all lines, and this was in an 

intergenic region.  This is in keeping with the literature, for example in 

Wichman’s 13,000 generation experiment (2005), only 4 indels were detected 

(compared to 137 substitutions), all of which were located in intergenic regions. 

 

One possibility for this is that with 95% of the genome consisting of 

protein coding regions, any indels that did occur were likely to result in 

frameshift mutations.  This would have been further exacerbated because 

ΦX174 contains regions were genes overlap but are in different reading frames, 

meaning multiple genes could be shifted out of frame by a single indel. 

 

The physical structure of the ΦX174 genome in relation to the capsid 

should also be considered.  In the final virion, 60 copies of protein J bind to the 



     

 157 

genome, anchoring it in place in the capsid (Hafenstein and Fane, 2002).  

Since the genome is small, a change in size from the insertion or deletion of 

nucleotides could potentially alter the configuration of the genome or the 

secondary structure of the ssDNA, affecting the interactions with the DNA 

binding protein and the viral capsid.  If this is indeed the case, indels that hinder 

viral assembly would be selected against even if they did not affect protein 

structure. 

 

5.3.5  An adaptive synonymous mutation 

In line B1, a synonymous mutation at position 3320 was detected in 

passage 50 with a frequency of 10%.  In subsequent passages, frequency rose 

quickly, reaching 46% by passage 55 and 74% by passage 65.  No other 

mutations showed a similar change in frequency over this period, meaning that 

the rise in frequency was not a result of genetic hitchhiking.  This increase in 

frequency also correlated with a rise in fitness that was observed between 

passages 40 and 60. 

 

Unfortunately, sequence data was unavailable for passage 60 in this 

line.  However, this was the only mutation to increase in frequency by over 10% 

between passages 40 and 55, suggesting it may play a role in this increase in 

fitness.  Further evidence is provided by line B2, where this mutation arose 

independently and reached a frequency of 81% by the experiment's conclusion.  

It also reached a frequency of over 96% in line A2, but did not persist, 

presumably outcompeted by 1305 (figure 5.7). 
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Although synonymous mutations are usually assumed to be neutral, 

there is evidence that this is not always the case.  Changing a codon to 

corresponding with a more or less common tRNA can affect the speed and 

accuracy of transcription and translation (Plotkin and Kudla, 2011), which in turn 

can affect co-translational folding or gene expression (Agashe et al., 2013).  In 

a recent evolution experiment with Psuedomonas fluorescens, two synonymous 

mutations were detected that conferred a fitness increase similar to that of non-

synonymous mutations, which they determined to be due to elevated gene 

expression (Bailey et al., 2014).  There is also evidence that some other 

synonymous mutations in ΦX174 may be adaptive (Wichman et al., 2005). 

 

The mutation detected caused GCT to change to GCC, both of which 

encode alanine.  Data is unavailable for E. coli C, but in E. coli K12 the GCC 

codon is nearly thrice as abundant as GCT (Nakamura et al., 2000).  If this also 

applies to the host used here, then it is possible that the switch to a more 

abundant tRNA leads to an increase in expression.   

 

This mutation is located in gene H, the DNA pilot protein.  Although the 

tail that extends from the phage is made up of 10 copies of this protein (Sun et 

al., 2014), a ΦX174 virion contains between 10-12 copies (Burgess, 1969).  

While it is unclear why some virions contain extra copies of this protein and 

what determines this, it may be that increased expression results in more 

virions containing 12 copies, with these extra copies facilitating tail formation. 
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5.3.6  A shift to quasispecies? 

The mutation rates of DNA microbes fall around an average of 0.0034 

substitutions per genome per replication (sgr), (Drake et al., 1998), with wild-

type ΦX174 being consistent with this (Cuevas et al., 2009).  Mutation rates of 

RNA viruses, meanwhile, fall around an average of 0.76 sgr, approximately two 

orders of magnitude higher.  The mutation rate of ΦX174 in mutagenic 

conditions was measured in chapter 3 as 0.97 sgr, which is indistinguishable 

from many ribovirusues. 

 

As is most evident in figure 5.14, many low frequency mutations were 

present simultaneously in the population during evolution at a high mutation 

rate.  This is characteristic of a viral quasispecies, where instead of one 

dominant genotype a population consists of many closely related genotypes.  

This is often used to describe RNA viruses, but it appears that DNA viruses 

may behave in a similar manner when their mutation rate is artificially elevated 

to the same level.  In future, it would be interesting to see if the broad genetic 

background in line B1 facilitates adaptation to harsher conditions compared to a 

homogenous population grown from a single isolate.
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Chapter 6:  Conclusions



        

 161 

6.1 Summary 

Mutation is the ultimate source of the genetic variation required for 

evolution, yet deleterious mutations vastly outnumber beneficial mutations.  To 

compensate for this, mechanisms have evolved in all domains of life that 

prevent and undo mutations, lowering the mutation rate.  The mutation rate 

appears to be a trade-off between the fitness cost of deleterious mutations, the 

fitness advantage of beneficial mutations, and the cost of maintaining the 

molecular mechanisms.  The consequences of evolution at a high mutation rate 

are unclear.  Evolutionary theory and models predict that as the mutation rate 

increases a population will accumulate deleterious mutations over time and 

decrease in fitness (Agrawal and Whitlock, 2012) (Bull et al., 2007).  However, 

these do not account for every variable and are contradicted by empirical data 

(Springman et al., 2010).  In this thesis I have used experimental evolution to 

investigate how populations of bacteriophage ΦX174 were affected by an 

elevated mutation rate.   

 

To investigate the evolutionary consequences of an elevated mutation rate, 

I started chapter three by investigating possible ways to increase the mutation 

rate of bacteriophage ΦX174.  My main criteria for selecting a suitable method 

was that mutational spectrum bias was limited, and the relative frequencies of 

mutations would be as close to those observed under non-mutagenic 

conditions as possible.  Additionally, I wanted to minimise any potential non-

mutagenic effects that could interfere with the host or phage during the 

experiment.  I reviewed different chemical and physiological mechanisms that 

could achieve this, and selected a mutant host error checking gene as the most 
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suitable.  I created a strain of the host bacteria containing this mutant gene on a 

plasmid.  Using an amber reversion fluctuation test, I measured the mutation 

rate of ΦX174 infecting this strain and a control, and found that it was two 

orders of magnitude higher than wild-type. 

 

In chapter four I used this system to investigate how an elevated mutation 

rate affected bacteriophage fitness.  I evolved replicate lines of ΦX174 at 

normal and elevated mutation rates for approximately 300 generations. In line 

with previous work with this organism (Bull et al., 1997), the lineages of phage 

evolved at wild-type mutation rate underwent almost identical changes in 

fitness over the course of the experiment, ending with nearly identical 

genotypes.  However, the lines grown under mutagenic conditions evolved in 

very different ways.  Line B1 increased in fitness at a faster rate than the non-

mutagenic lines, while also sharing many of the same mutations.  Line B2 had 

a decline in fitness before reaching an equilibrium, while also acquiring many 

novel mutations that were not seen in the other three lines.  Lethal mutagenesis 

was not achieved in either of the populations. 

 

In chapter five I investigated evolutionary dynamics of the four lines by 

sequencing populations from multiple time points over the course of the 

experiment.  The small genome of ΦX174 allowed for very high coverage, 

meaning the frequencies of individual mutations in the population could be 

determined.  It was found that the rapid adaptation in line B1 was caused by 

three adaptive mutations that occurred at a similar time and increased in 

frequency together.  Meanwhile, many of the mutations in B2 were unique to 
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that line, while it failed to acquire some of the adaptive mutations shared by all 

other populations.  Since the mutation rate was high enough that all possible 

mutations had undoubtedly occurred, it is likely that the adaptive mutations in 

other lines were not beneficial on this line’s altered genetic background 

 

6.2 Lethal mutagenesis 

This work shows that while increasing mutation rate can result in a fitness 

decline, it can also facilitate adaptation.  Since current models do not account 

for adaptive evolution, further research on the evolutionary dynamics of lethal 

mutagenesis is required. 

 

These should be important considerations when looking at lethal 

mutagenesis as an antiviral strategy.  If being used therapeutically, a fitness 

decline would not be a success unless it resulted in complete viral extinction.  If 

a virus is mutagenised in vivo but not eliminated, the remaining viruses will 

possess a wide genetic background, which may allow a greater spectrum of 

beneficial mutations than were available before treatment.  It is possible 

therefore that unsuccessful lethal mutagenesis may result in making the 

infection worse or harder to treat. 

 

It is probable that a substantially higher mutation rate than the one used 

here would be needed to induce lethal mutagenesis in ΦX174, but it is unclear 

how much higher it would need to be.  Given that common mutagens such as 

MNNG increase mutation rate in phage by a similar amount as the dnaQ 

method used here (Springman et al., 2010), it seems unlikely that the larger 
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increase required would be possible in vivo.  This suggests that lethal 

mutagenesis is not a feasible antiviral strategy for DNA viruses.  However, RNA 

viruses which have higher mutation rates by orders of magnitude and exist 

closer to the threshold may still be able to be treated in this way. 

 

6.3 Reproducibility 

 In his book Wonderful Life (1989), Stephen Jay Gould hypothesised that 

if we were to “rewind the tape of life”, evolution would play out very differently 

and we may end up seeing Earth populated by descendants of the extinct 

Cambrian fauna, unrecognisable from life as we know it.  Richard Dawkins, 

meanwhile, said that the abundant evidence of convergent evolution in nature, 

such as the eye evolving independently over 40 times, means that similar traits 

would likely appear again (Dawkins, 2004). 

 

 The work presented in this thesis somewhat agrees with both 

viewpoints.  The convergent evolution in lines A1, A2, and B1 is strong, with 

four major adaptive mutations shared by the three lines.  This is probably 

facilitated by the small genome of ΦX174, which limits the number of potential 

pathways to adaptation.  The drastically different outcome in line B2, however, 

shows that evolution is not always repeatable, and that a high mutation rate 

exacerbates the differences, changing the genetic background and locking out 

adaptive pathways.   

 

 If nothing else, this work demonstrates the importance of sufficient 

replication of evolution experiments.  For example, in similar experiments to 
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this, it will be important to determine the difference between lethal mutagenesis 

being achievable and lethal mutagenesis being inevitable.
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A.1  OriginPositionFixer.py 
 
#!/usr/bin/env python3 
 
# This script will go through the VCF files mapped against the origin region and change 
# the positions to be consistent with the reference genome 
 
 
f = open("origin1.vcf","r") 
g = open("origin2.vcf","w") 
 
 
# Run through every line, writing notes directly to new vcf: 
 
for line in f: 
 if "#" in line: 
  g.write(line) 
 
# Origin ref genome has 696 positions.   
# 1-346 are equivalent to  5041 - 5386.  If position is <= 346, add 5040 
# 347-696 are equivalent to 1-350. If position is >=347, subtract 346 
   
 else: 
  s = line 
  a,b,c = s.split("\t",2) 
  b = int(b) 
  if (b <= 346): 
   b = b + 5040 
  elif (b >= 347): 
   b = b - 346 
  else: 
   g.write("error\n") 
  b = str(b) 
  g.write(a + "\t" + b + "\t" + c) 
 
f.close() 
g.close()
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A.2  OriginMerger.py 
 
# This script will parse the main VCF file.  After each line, it will search the VCF 
file 
# mapped against the origin region to see if that contains data for the same position.  
If 
# so, it will compare to see which has most reads and write that to a new output file. 
 
# This will only work in the current directory. Will use bash to navigate through the 
# directories and run this script 
 
main = open("main.vcf","r") 
origin = open("origin2.vcf","r") 
merged = open("merged.vcf", "w") 
 
# regular expression required to split with multiple delimiters 
import re 
 
# Take origin file and make a list containing each line, which will also be split into 
lists 
 
olist = [] 
 
for line in origin: 
 if "#" in line: 
  pass 
 else: 
  s = line.split()  
  s[1] = int(s[1]) 
  olist.append(s)   
 
# Run through every line.  Those that start with # will be written to the output: 
 
for line in main: 
 if "#" in line: 
  merged.write(line) 
  
# split the lines, and determine the position  
 
 else: 
  s = line.split() 
  pos = int(s[1]) 
   
  # now see if the list of lists contains the same position 
 
  match = 0 
  for item in olist: 
   if item[1] == pos: 
    match = 1 
#compare the depths of the two lists and write the highest one to file 
     
    discard1, odepth, discard2 = re.split('DP=|;DPB', item[7], 
maxsplit=2) 
    discard3, mdepth, discard4 = re.split('DP=|;DPB', s[7], 
maxsplit=2) 
    try: 
     odepth = int(odepth) 
    except ValueError: 
     break 
    mdepth = int(mdepth) 
    if odepth > mdepth: 
     print (pos, odepth, mdepth) 
     x = item 
     x[1] = str(x[1]) 
     y = "\t".join(x) 
     y = y + "\n" 
     merged.write(y) 
    elif odepth < mdepth: 
     merged.write(line) 
    else: 
     merged.write(line)     
    
   
  # if the position was not found in both files, use the one from main  
  if match == 0: 
   if len(s[3]) == 1: 
    merged.write(line) 
   else: 
    pass 
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main.close() 
origin.close() 
merged.close()  
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A.3 Consensus.py 
 
 
#!/usr/bin/env python3 
 
# This script takes a reference genome and parses the VCF file. 
# At each position it will check to see if the VCF contains a new major allele 
# (with frequency of > 50%).  It will write either the reference base or new allele 
# to a new FASTA file. 
 
# add reference genome as a string.  It has been prefixed with 'X' 
# to correct for position (because Python strings start at position 0) 
# actual reference genome not included in typed version of script 
reference = “X…” 
 
vars = open("snps40.vcf","r") 
consensus = open("consensus.FASTA", "w") 
consensus.write(">PhiX174_Consensus\n") 
 
# Take vcf file and make a list containing each line, which will also be split into 
lists 
 
varlist = [] 
for line in vars: 
 if "#" in line: 
  pass 
 else: 
  s = line.split()  
  s[1] = int(s[1]) 
  varlist.append(s)   
 
# Go through genome position by position 
position = 1 
while position < 5387: 
 base = "" 
  
 # check each line of VCF file to see if the current position is included. 
 # if so, check if it has a frequency of over 50% 
 for line in varlist: 
   if line[1] == position: 
    ref = line[3] 
    alt = line[4].split(",") 
    stuff = line[9].split(":") 
    depth = stuff[1] 
    freq = stuff[2].split(",") 
 
    if len(alt) == 3: 
     perc = round(float(freq[1])/float(depth) * 100,2) 
     if perc > 50: 
      base = alt[0] 
     perc = round(float(freq[2])/float(depth) * 100,2) 
     if perc > 50: 
      base = alt[1] 
     perc = round(float(freq[3])/float(depth) * 100,2) 
     if perc > 50: 
      base = alt[2]     
    elif len(alt) == 2: 
     perc = round(float(freq[1])/float(depth) * 100,2) 
     if perc > 50: 
      base = alt[0] 
     perc = round(float(freq[2])/float(depth) * 100,2) 
     if perc > 50: 
      base = alt[1] 
    elif len(alt) == 1: 
     perc = round(float(freq[1])/float(depth) * 100,2) 
     if perc > 50: 
      base = alt[0] 
 # if a new major allele, write that to output.  otherwise write reference 
 if base == "": 
  base = reference[position] 
 consensus.write(base) 
 # insert newline every 70 bases 
 if position % 70 == 0: 
  consensus.write("\n") 
 position += 1     
        
 
vars.close() 
consensus.close()
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A.4 VCFsimplifier.py 
 
 
#!/usr/bin/env python3 
# This script parses vcf files and returns a text file containing  
# Position, reference and allele, depth, and frequency. 
# Only returns mutations with at least 10% frequency, but that number was adjusted as 
required 
 
f = open("snps.vcf","r") 
g = open("snps.txt","w") 
 
 
 
g.write("Position\tRef\tAllele\tDepth\tFreq\t%age\n") 
 
for line in f: 
 if "#" in line: 
  pass 
 else: 
  t = line.split() 
  pos = t[1] 
  ref = t[3] 
  alt = t[4].split(",") 
  stuff = t[9].split(":") 
  depth = stuff[1] 
  freq = stuff[2].split(",") 
  if len(alt) == 3: 
   # If three different mutations at that position 
   perc = round(float(freq[1])/float(depth) * 100,2) 
   if perc >= 10: 
    g.write(pos + "\t\t" + ref + "\t" + alt[0] + "\t" + depth + "\t" 
+ freq[1] + "\t" + str(perc) + "\n") 
   perc = round(float(freq[2])/float(depth) * 100,2) 
   if perc >= 10: 
    g.write(pos + "\t\t" +ref + "\t" + alt[1] + "\t" + depth + "\t" + 
freq[2] + "\t" + str(perc) + "\n") 
   perc = round(float(freq[3])/float(depth) * 100,2) 
   if perc >= 10: 
    g.write(pos + "\t\t" +ref + "\t" + alt[2] + "\t" + depth + "\t" + 
freq[3] + "\t" + str(perc) + "\n")    
  elif len(alt) == 2: 
   # If two different mutations at that position 
   perc = round(float(freq[1])/float(depth) * 100,2) 
   if perc >= 10: 
    g.write(pos + "\t\t" +ref + "\t" + alt[0] + "\t" + depth + "\t" + 
freq[1] + "\t" + str(perc) + "\n") 
   perc = round(float(freq[2])/float(depth) * 100,2) 
   if perc >= 10: 
    g.write(pos + "\t\t" +ref + "\t" + alt[1] + "\t" + depth + "\t" + 
freq[2] + "\t" + str(perc) + "\n") 
  else: 
   # If only one mutation at that position 
   perc = round(float(freq[1])/float(depth) * 100,2) 
   if perc >= 10: 
    g.write(pos + "\t\t" +ref + "\t" + alt[0] + "\t" + depth + "\t" + 
freq[1] + "\t" + str(perc) + "\n") 
 
f.close() 
g.close() 
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Appendix B – Genome sequences
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B.1  ΦX174 reference  

The sequence of the ancestral ΦX174 genome (GenBank ID AF176034.1), 

confirmed by Illumina sequencing. 

GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTT 
GATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAA 
ATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTG 
TCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTA 
GATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 
TGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTT 
TCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTT 
CGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCT 
TGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCG 
TCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC 
GGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTA 
CGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCAGAAGGAG 
TGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACT 
AAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGC 
CCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCA 
TCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGAC 
TCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTA 
CTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAA 
GGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTACTGGTTATATTGACCATGCCGCTTTTCTT 
GGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACA 
ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGC 
TCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTT 
TCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGC 
ATACTGACCAAGAACGTGATTACTTCATGCAGCGTTACCGTGATGTTATTTCTTCATTTGGAGGTAAAAC 
CTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTT 
GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGC 
CGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGAC 
TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTG 
TATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 
TTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGA 
AGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGAT 
TATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTT 
ATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC 
GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGC 
TTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGT 
TCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTA 
TATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTG 
TCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGC 
CTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTG 
AATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGC 
CGGGCAATAATGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGT 
TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTG 
CTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAA 
AGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCT 
GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTG 
GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGA 
TAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTAT 
CTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCTCTGCTGGTATGG 
TTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGATTGCCGA 
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GATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGAC 
CAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTA 
TGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCA 
AACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGAC 
TTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTT 
CTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 
TACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCG 
TCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTT 
CTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTAT 
TGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGC 
ATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 
TTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 
ATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGG 
GACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCC 
CTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATT 
GCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTACTATTCAGCGTTTGATGAATGCAATGCGACAG 
GCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTT 
ATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCG 
CAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGC 
CGTCTTCATTTCCATGCGGTGCATTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTC 
GTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCAT 
CGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAG 
CCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATA 
TGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACT 
TCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTG 
TCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGC 
AGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACC 
TGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGCA 
 
 

B.2  Consensus sequence of line A1 after 100 passages 
 
GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTT 
GATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAA 
ATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTG 
TCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTA 
GATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 
TGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTT 
TCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTT 
CGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCT 
TGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCG 
TCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC 
GGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTA 
CGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCAGAAGGAG 
TGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACT 
AAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGC 
CCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCA 
TCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGAC 
TCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTA 
CTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAA 
GGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTGCTGATTATATTGACCATGCCGCTTTTCTT 
GGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACA 
ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGC 
TCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTT 
TCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGC 
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ATACTGACCAAGAACGTGATTACTTCATTCAGCGTTACCGTGATGTTATCTCTTCATTTGGAGGTAAAAC 
CTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTT 
GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGC 
CGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGAC 
TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTG 
TATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 
TTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGA 
AGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGAT 
TATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTT 
ATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC 
GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGC 
TTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGT 
TCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTA 
TATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTG 
TCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGC 
CTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTG 
AATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGC 
CGGGCAATAATGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGT 
TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTG 
CTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAA 
AGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCT 
GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTG 
GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGA 
TAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTAT 
CTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGCTGGTGCTGGTGCTTCCTCTGCTGGTATGG 
TTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGATTGCCGA 
GATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGAC 
CAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTA 
TGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCA 
AACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGAC 
TTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTT 
CTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 
TACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCG 
TCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTT 
CTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTAT 
TGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGC 
ATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 
TTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 
ATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGG 
GACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCC 
CTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATT 
GCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTACTATTCAGCGTTTGATGAATGCAATGCGACAG 
GCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTT 
ATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCG 
CAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGC 
CGTCTTCATTTCCATGCGGTGCATTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTC 
GTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCAT 
CGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAG 
CCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATA 
TGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACT 
TCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTG 
TCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGC 
AGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACC 
TGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGCA 
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B.3  Consensus sequence of line A2 after 100 passages 
 
 
GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTT 
GATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAA 
ATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTG 
TCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTA 
GATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 
TGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTT 
TCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTT 
CGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCT 
TGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCG 
TCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC 
GGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTA 
CGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCAGAAGGAG 
TGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACT 
AAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGC 
CCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCA 
TCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGAC 
TCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTA 
CTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAA 
GGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTGCTGATTATATTGACCATGCTGCTTTTCTT 
GGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACA 
ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGC 
TCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTT 
TCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGC 
ATACTGACCAAGAACGTGATTACTTCATTCAGCGTTACCGTGATGTTATTTCTTCATTTGGAGGTAAAAC 
CTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTT 
GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGC 
CGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGAC 
TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTG 
TATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 
TTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGA 
AGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGAT 
TATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTT 
ATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC 
GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGC 
TTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGT 
TCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTA 
TATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTG 
TCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGC 
CTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTG 
AATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGC 
CGGGCAATAATGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGT 
TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTG 
CTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAA 
AGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCT 
GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTG 
GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGA 
TAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTAT 
CTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGCTGGTGCTGGTGCTTCCTCTGCTGGTATGG 
TTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGATTGCCGA 
GATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGAC 
CAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTA 
TGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCA 
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AACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGAC 
TTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTT 
CTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 
TACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCG 
TCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTT 
CTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTAT 
TGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGC 
ATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 
TTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 
ATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGG 
GACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCC 
CTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATT 
GCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTACTATTCAGCGTTTGATGAATGCAATGCGACAG 
GCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTT 
ATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCG 
CAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGC 
CGTCTTCATTTCCATGCGGTGCATTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTC 
GTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCAT 
CGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAG 
CCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATA 
TGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACT 
TCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTG 
TCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGC 
AGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACC 
TGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGTA 
 

B.4  Consensus sequence of line B1 after 100 passages 
 
 
GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTT 
GATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAA 
ATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTG 
TCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTA 
GATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 
TGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTT 
TCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTT 
CGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCT 
TGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCG 
TCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC 
GGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTA 
CGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCAGAAGGAG 
TGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACT 
AAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGC 
CCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCA 
TCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGAC 
TCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTA 
CTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAA 
GGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTGCTGATTATATTGACCATGCCGCTTTTCTT 
GGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACA 
ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGC 
TCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTT 
TCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGC 
ATACTGACCAAGAACGTGATTACTTCATTCAGCGTTACCGTGATGTTATTTCTTCATTTGGAGGTAAAAC 
CTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTT 
GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGC 
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CGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGAC 
TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTG 
TATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 
TTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGA 
AGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGAT 
TATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTT 
ATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC 
GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGC 
TTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGT 
TCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTA 
TATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTG 
TCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGC 
CTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTG 
AATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGC 
CGGGCAATAATGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGT 
TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTG 
CTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAA 
AGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCT 
GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTG 
GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGA 
TAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTAT 
CTTGCTGCTGCATTTCCTGAGCTTAATGCCTGGGAGCGTGCTGGTGCTGGTGCTTCCTCTGCTGGTATGG 
TTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGGTTGCCGA 
GATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGAC 
CAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTA 
TGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCA 
AACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGAC 
TTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTT 
CTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 
TACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCG 
TCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTT 
CTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTAT 
TGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGC 
ATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 
TTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 
ATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGG 
GACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCC 
CTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATT 
GCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTACTATTCAGCGTTTGATGAATGCAATGCGACAG 
GCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTT 
ATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCG 
CAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGC 
CGTCTTCATTTCCATGCGGTGCATTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTC 
GTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCAT 
CGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAG 
CCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATA 
TGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACT 
TCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTG 
TCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGC 
AGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACC 
TGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGCA 
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B.5  Consensus sequence of line B2 after 100 passages 
 
GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTT 
GATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAA 
ATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTG 
TCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTA 
GATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATC 
TGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTT 
TCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTT 
CGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCT 
TGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCG 
TCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTAC 
GGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTA 
CGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCAGAAGGAG 
CGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACT 
AAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGC 
CCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCA 
TCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGAC 
TCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTA 
CTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAA 
GGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTGCTGGTTATATTGACCATACCGCTTTTCTT 
GGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACA 
ACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGC 
TCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTT 
TCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGC 
ATACTGACCAAGAACGTGATTACTTCATGCAGCGTTACCGTGATGTTATTTCTTCATTTGGAGGTAAAAC 
CTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTT 
GATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGC 
CGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGAC 
TAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTG 
TATGGCAGCTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGT 
TTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGA 
AGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGAT 
TATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTT 
ATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAAC 
GCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGC 
TTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGT 
TCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTA 
TATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTG 
TCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGC 
CTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTG 
AATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGC 
CGGGCAATAATGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGT 
TTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTG 
CTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAA 
AGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCT 
GGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTG 
GTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGA 
TAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTAT 
CTTGCTGCTGCATTTCCTGAGCTTAATGCCTGGGAGCGTGCTGGTGCTGGTGCTTCCTCTGCTGGTATGG 
TTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGATTTCCGA 
GATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGAC 
CAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTA 
TGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCA 
AACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGAC 
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TTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTT 
CTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGA 
TACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCG 
TCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTT 
CTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTAT 
TGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGC 
ATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATG 
TTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGA 
ATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGG 
GACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCC 
CTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATT 
GCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTACTATTCAGCGTTTGATGAATGCAATGCGACAG 
GCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTT 
ATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCG 
CAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGC 
CGTCTTCATTTCCATGCGGTGCATTTTATGCGGACACTTCCCACAGGTAGCGTTGACCCTAATTTTGGTC 
GTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCAT 
CGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAG 
CCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATA 
TGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACT 
TCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTG 
TCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGC 
AGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACC 
TGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGTA
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Appendix C – Miscellaneous
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C.1  Initial phage preparation 

The initial phage preparation was derived from a single plaque, then amplified 

by growing in media with its host (chapter 4.2.3).  Illumina sequencing found 

this preparation contained a mutation at position 1301 with 48.8% frequency 

(chapter 4.3.1).  Sanger sequencing was performed on the original plaque.  

This screenshot of the chromatogram (from 4peaks) shows that this mutation 

was not present in the original plaque (highlighted base), so probably arose 

during the amplification step. 

 


