
CLOUD COVER

C O M P U T E R   0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0  ©  2 0 1 5  I E E E  P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y    S E P T E M B E R  2 0 1 5  93

EDITOR SAN MURUGESAN 
BRITE Professional Services;

san@computer.org

Today’s IT service providers are increasingly le-
veraging cloud computing to offer flexible, scal-
able, and cost-effective services. Typically, orga-
nizations can tune the quality of service (QoS) 

for cloud-based services by accessing hardware resources 
(such as the CPU and memory) and software configura-
tions (such as the number of service threads) that are 
shared, leased, and priced as utilities. Autoscaling—an 
automatic, elastic process that adjusts software configu-
rations and hardware resources to meet changing work-
loads’ needs—facilitates the necessary adaptive configur-
ing and resource provisioning in the cloud. 

However, cloud-based services ex-
hibit dynamics and uncertainty re-
lated to changing workloads, config-
urations, and demands on resources, 
which are hard to cope with. In ad-
dition, because many cloud services 
run on a shared infrastructure, the 
competing demands of some of the 
services can interfere with the QoS 
of others. This QoS interference has 
made autoscaling even more difficult 
to manage. We believe self- awareness 
can solve these problems.

LIMITATIONS AND 
OPPORTUNITIES
Current autoscaling systems have 

limited adaptivity. Today’s cloud QoS models rely on static 
offline analysis.1,2 This nondynamic approach doesn’t 
accurately model QoS sensitivity to changing configura-
tions, resources, and workloads or to QoS interference. 
Thus, it limits autoscaling quality and the cloud’s prom-
ised benefit as an on-demand, shared, and elastic resource.

Within a shared cloud infrastructure, the granularity 
of autoscaling control can affect both benefits and over-
head. Currently, organizations typically don’t change 
the level and granularity of control on an entire cloud, 
physical machine, virtual machine (VM), or service. 

Toward a Smarter 
Cloud: Self-Aware 
Autoscaling of Cloud 
Configurations and 
Resources
Tao Chen and Rami Bahsoon, University of Birmingham

Promoting self-aware autoscaling to 

intelligently handle the dynamics and 

uncertainty of changing workloads, 

configurations, and demands on resources at 

runtime can facilitate more scalable, elastic, and 

dependable cloud-based services.

r9clo.indd   93 8/21/15   10:59 AM



94 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

CLOUD COVER

Controlling an entire cloud1 might 
achieve global benefits but would 
also greatly increase overhead. On 
the other hand, a more local level of 
control—such as on a single service—
would yield low overhead but would 
be inadequate if global benefits are re-
quired.2 The challenge lies in dynam-
ically determining the level of control 
granularity needed.

The process of deciding the proper 
autoscaling level for hardware re-
sources and software configurations is 
far from trivial in the presence of QoS 
interference or of multiple, and possi-
bly conflicting, nonfunctional goals 
such as maximizing throughput or 
minimizing costs. 

One state-of-the art solution is 
carefully specifying if-condition-then- 
action mapping.1 For example, the 
mapping could state that if a service’s 
throughput drops below 100 requests 
per minute, the autoscaling system 
should increase the VM’s memory by 
200 Mbytes and the number of ser-
vice threads by 20. The difficulty is 
identifying the best autoscaling de-
cisions from among the many possi-
ble combinations of configurations 
and resources, and mapping them to 
the potential conditions in a way that 
best achieves the desired goals. Self- 
awareness can address this.

ENGINEERING SELF-AWARE 
AUTOSCALING
A system that is aware of its current 
state and environment can better rea-
son about its adaptive behaviors. For 
example, a self-aware autoscaling pro-
cess could obtain knowledge about its 
own or other participants’ impact on 
a managed service’s QoS models, the 
desired granularity of autoscaling 

control, and the quality of various run-
time decisions about tradeoffs. These 
tradeoffs include whether to choose 
throughput over cost or which compet-
ing cloud-based services to focus on.

Through self-awareness in the au-
toscaling process, we propose bidirec-
tional adaptations between the auto-
scaling logic and the managed services 
or VMs. Currently, the adaptation in 

the autoscaling process is often one-
way. Self-awareness provides the pos-
sibility of two-way adaptation so that 
the autoscaling process can effectively 
scale and adapt its managed services 
and VMs.

In one direction, the autoscaling 
logic adapts the software configura-
tions and hardware resources for a 
system’s managed services and VMs. 
Adaptations in the other direction 
capture and expand knowledge about 
the time-varying state of its managed 
services and VMs, as well as the en-
vironment. It uses this knowledge to 
build more accurate QoS models, iden-
tify the best levels of control granular-
ity, and yield better tradeoff decisions.

Our self-aware autoscaling ap-
proach, shown in Figure 1, is consis-
tent with the EU’s Engineering Pro-
prioception in Computing Systems 
(EPiCS) project,3 a multinational, mul-
tidisciplinary, self-aware-computing 
research program. Our approach acts 
as decentralized middleware, in which 
each middleware instance contributes 
to self-awareness.

Our conceptual architecture in-
cludes modules based on various 
types of self-awareness4 (Figure 1, 
left) so that the system can be effec-
tively enriched with self-awareness 
capabilities important to autoscaling  
(Figure 1, right). These are implemented 

in processes run by our QoS modeler, 
region controller, and decision maker. 

QoS modeler
This element captures QoS sensitivity 
to QoS interference and changing con-
figurations, resources, and workloads.

The QoS modeling approach is 
enriched by self-awareness5,6 to dy-
namically self-adapt the selection and 
expression of QoS models at runtime. 
This self-awareness helps the system 
determine how its modeling can be af-
fected by:

 › the features of and changes 
to the managed cloud-based 
services that affect QoS, such as 
workload (stimulus awareness);

 › interactions entailing, for 
example, QoS interference and 
resource contention (interaction 
awareness); 

 › historical modeling errors and 
data trends (time awareness);

 › changes in nonfunctional goals 
(goal awareness); and

 › the suitability of the QoS mod-
eling algorithms being used 
(meta-self-awareness).

By leveraging improvements in 
machine- learning algorithms, self- 
awareness eliminates the need for 
heavy human analysis and prior 
design-time knowledge in the QoS 
modeling. However, because there is 
no single best algorithm for all situ-
ations,5 selecting the right one can 
be challenging. Meta-self-awareness 
can address this issue by allowing 
the modeling process to identify the 
algorithm that will best enable other 
self-awareness capabilities. 

The self-aware QoS modeling ap-
proach has been validated by prior 
research conducted in real cloud set-
tings.5,6 The results show that this 
approach offers several advantages—
including lower overhead, better ac-
curacy for workload spikes, and better 
stability when cloud-based services’ 
requirements change—over state-of-
the-art modeling approaches. 

Self- awareness represents a promising  
avenue for improving self-adaptivity  

and autoscaling.

r9clo.indd   94 8/21/15   10:59 AM



  S E P T E M B E R  2 0 1 5  95

Region controller
This element determines the best level 
of autoscaling control granularity—
yielding the best combination of ben-
efit and overhead—under a given set of 
circumstances.

Self-awareness helps with this 
by clustering nonfunctional goals 
into different regions,7 represent-
ing the logical groups for storing 
goals affected by the same software- 
configuration and hardware-resource 
parameters. The clustering helps sep-
arate the goals into different groups 
that can be considered in separate 
decision- making processes.

In this case, self-awareness is 
concerned with knowing how the 
region-controlling process can be af-
fected by:

 › factors such as QoS sensitivity 
and cost models (goal awareness), 
and 

 › conflicting or nonconflicting 
goals (interaction awareness). 

With such awareness, the control-
ler can self-adapt the regions and their 
content to changes in conditions. In 
particular, the controller could iden-
tify regions of goals that could be sep-
arated into different decision-making 
processes. This would enable dynamic 
implementation of autoscaling control 
granularity, which helps improve re-
sults and reduce overhead.

Decision maker
This element extensively reasons 
about and searches for the best 

decision as to the amount of scaling 
that should be applied to software con-
figurations and hardware resources.

Self-awareness can help improve 
tradeoff-related decision making at 
runtime, particularly in the presence 
of changing circumstances. Here, 
self-awareness is concerned with 
knowing how decision making can be 
affected by:

 › factors such as desired QoS 
levels, budget constraints, QoS 
sensitivity, and cost models (goal 
awareness); and 

 › interactions among regions of 
goals, which help determine 
which goals should be con-
sidered in the same decision- 
making process and which 

(Internal sensor)
Monitor internal 

services

(External sensor)
Monitor external 

services and 
workload

Physical machine

(Self-) Autoscaling process

Region 
controller

Decision maker

Sensor

VM VM

Self-awareness

(Stimulus-
awareness)

QoS modeler

(Interaction 
awareness)

QoS modeler, 
region controller, 
decision maker

(Time awareness)
QoS modeler

(Goal awareness)
QoS modeler, 

region controller, 
decision maker

(Meta-self-
awareness)

QoS modeler

(Internal actuator)
Adapt internal 

services and virtual 
machines (VMs)

(Self-expression)
Decision maker

Enriches

(External actuator)
Adapt external 

services and VMs

Actuator

VM

QoS modeler

…

Figure 1. Self-aware autoscaling system for the cloud. On the left is the mapping between architectural components and the desired 
computational self-awareness capabilities. On the right is the architecture enriched by those capabilities. QoS: quality of service.

r9clo.indd   95 8/21/15   10:59 AM



96 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

CLOUD COVER

could be considered in isolation 
(interaction awareness). 

Self-awareness that leverages ad-
vanced search-based algorithms helps 
decision making via extensive rea-
soning about the effects of various 
autoscaling decisions and tradeoffs on 
goal achievement. This is particularly 
helpful in situations with many possi-
ble software configurations and levels 
of hardware resources. More impor-
tantly, self-awareness provides knowl-
edge that helps the decision-making 
process self-adapt and improve. 

To unlock the full potential of self-
aware autoscaling in the cloud, 
providers and developers should 

design their services’ configurable pa-
rameters so that the services are acces-
sible and can be seamlessly adapted at 
runtime. Instead of using fixed bundles 
of VMs for scaling, providers should of-
fer flexible software configurations and 
levels of hardware resources. In addi-
tion, they should support both vertical 
and horizontal scaling.

For researchers, applying self-aware 
autoscaling within a cloud federation 
is still in its infancy. The difficulty 
lies in how self-awareness capabilities 
could be incorporated with multiple, 
heterogeneous, possibly competing 
cloud providers that, in some cases, 
work with different standards.

As cloud computing evolves, auto-
scaling will require novel principles 
and approaches to seamlessly man-
aging cloud- based services. Self- 
awareness represents a promising 
avenue for improving self- adaptivity 
and autoscaling. 

REFERENCES
1. I. Brandic et al., “LAYSI: A Layered 

Approach for SLA-Violation Propaga-
tion in Self-Manageable Cloud Infra-
structures,” Proc. IEEE 34th Ann. Conf. 
Computer Software and Applications 
(COMPSAC 10), 2010, pp. 365–370. 

2. H. Fernandez, G. Pierre, and T. 
Kielmann, “Autoscaling Web 

Applications in Heterogeneous Cloud 
Infrastructures,” Proc. IEEE Int’l Conf. 
Cloud Eng. (IC2E 14), 2014, pp. 195–204.

3. T. Becker et al., “EPiCS: Engineer-
ing Proprioception in Computing 
Systems,” Proc. 15th IEEE Int’l Conf. 
Computational Science and Eng. (CSE 
12), 2012, pp. 353–360. 

4. T. Chen et al., The Handbook of Engi-
neering Self-Aware and Self-Expressive 
Systems, tech. report; http://arxiv 
.org/abs/1409.1793, 2014.

5. T. Chen and R. Bahsoon, “Self- 
Adaptive and Sensitivity-Aware QoS 
Modeling for the Cloud,” Proc. 8th 
Int’l Symp. Software Eng. Adaptive and 
Self-Managing Systems (SEAMS 13), 
2013, pp. 43–52. 

6. T. Chen, R. Bahsoon, and X. Yao, 
“Online QoS Modeling in the Cloud: 
A Hybrid and Adaptive Multi-Learn-
ers Approach,” Proc. 7th IEEE/ACM 
Int’l Conf. Utility and Cloud Computing 
(UCC 14), 2014, pp. 327–336. 

7. T. Chen and R. Bahsoon, “Symbiotic 
and Sensitivity-Aware Architecture 

for Globally-Optimal Benefit in 
Self-Adaptive Cloud,” Proc. 9th Int’l 
Symp. Software Eng. Adaptive and 
Self-Managing Systems (SEAMS 14), 
2014, pp. 85–94. 

Selected CS articles and 
columns are also available for 
free at http://ComputingNow 
.computer.org.

TAO CHEN is a doctoral researcher 
at the School of Computer Science, 
University of Birmingham, UK. 
Contact him at txc919@cs.bham 
.ac.uk.

RAMI BAHSOON is a senior lec-
turer in software engineering at 
the School of Computer Science, 
University of Birmingham. Contact 
him at r.bahsoon@cs.bham.ac.uk.

Calls for Papers
IEEE Micro seeks general-interest submissions for publication 
in upcoming issues. These works should discuss the design, 
performance, or application of microcomputer and microprocessor 
systems. Of special interest are articles on performance evaluation 
and workload characterization. Summaries of work in progress and 
descriptions of recently completed works are most welcome, as are 
tutorials. IEEE Micro does not accept previously published material. 

Visit our author center (www.computer.org/micro/author.htm) for 
word, figure, and reference limits. All submissions pass through 
peer review consistent with other professional-level technical 
publications,and editing for clarity, readability, and conciseness. 
Contact IEEE Micro at micro-ma@computer.org with any questions.

www.computer.org/micro/cfp

r9clo.indd   96 8/21/15   10:59 AM


