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Abstract: In this paper, we present a generative design approach using constraint-based 

programming to handle the duct routing for ceiling mounted fan coil systems in 

buildings. This work utilises and builds on the result from previous approach using 

case-based reasoning and constraint satisfaction problem to deal with the space 

configuration of complex design problems for ceiling mounted fan coil systems in 

buildings. In this work, our approach automates the distribution routing using 

constraint-based approach. Comparatively to previous work, the system we have 

developed generates parametric-based models where further interactive modification 

and interaction is made possible for the end user. This approach has been tested in real 

case scenario working with our industrial partners.   
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1. Introduction 

Standardisation is widely recognised as a key element in reducing the design time, 

cutting construction cost, and ensuring efficient design solutions. If the design of any 

complex artefact is suitably restricted by adhering to a library of predefined components 

and assembly details, it becomes possible to automate a great deal of the design process. 

In the case of pipe/duct routing, there are in any case good value-engineering reasons 

to use standard components and details. Barnard and Medjdoub and Medjdoub et al. 

[1,2] have shown that it is possible to define and implement standard solutions to 

produce designs comparable with the current practice. The main beneficiaries will be 

engineers, manufacturers, suppliers, building users, and managers. They all stand to 
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benefit from standardised solutions, reduced capital costs, and improved performance. 

This work utilises and builds on the result from previous projects presented in 

Medjdoub et al. [3,4]. In [3] we have presented a hybrid approach using case-based 

reasoning and constraint satisfaction problem approach to deal with the space 

configuration of complex design problems for ceiling mounted fan coil systems in 

buildings. 

This project is concerned with developing a new approach to deal with complex and 

combinatorial problems (NP-hard problem) in building services design and more 

precisely in pipe/duct routing. Currently, building services engineers solve these 

problems ‘by hand’. Starting from the fresh air load, a schematic solution is defined. 

The engineers proceed to equipment selection, and then equipment location, followed 

by pipe/duct routing governed by objective requirements (e.g. minimise number of 

bends, and minimise pipe length).  

Algorithms to generate pipe/duct routing have been studied for more than 50 years. In 

1961 Lee [5] suggested the Maze algorithm which consists to divide a space into cells 

and labels and chooses the next cell until the target cell is reached. Next, Hightower [6] 

proposed the escape algorithm, also known as the line-search algorithm. More recent 

research tried to find the global optimum route path. Examples include an evolution-

based algorithm [7,8,9] and an ant colony optimization scheme [10,11]. The target of 

route optimization is usually the minimum cost of the pipe routing path. In many 

studies, the cost consists of the pipe length cost and the cost of all bent parts, which 

require expensive bending fabrication or elbow fitting processes. Park [12], Kimura and 

Ikehira [13] and Ando and Kimura [14] also considered the operability costs such as 

the costs incurred to determine valve locations and safety clearances. However, there 

are still limitations when attempting to make use of the aforementioned approached to 

create a fully automatic routing system for actual building services design work. The 

main reason for this is that pipe routing algorithms generally do not consider the 

knowledge and the preference of the designer suitably as required in the actual design 

work. This type of limitation is not a matter purely related to the optimization algorithm 

itself. It is rather a matter of knowledge representation prior and during the design 

automation process. Therefore, the knowledge representation during the design phase 

is certainly becoming an important issue in the area of design automation. Moreover, 

from a practical point of view, it is also important that the implemented routing 
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algorithm can be utilized effectively in real case scenario and interfacing with building 

information modelling systems. 

In this paper, we focus on the duct route generation for ceiling mounted fan coil systems. 

Three main tasks are carried out to generate the duct route (see Figure 1), which are: 

(a) Main duct routing between the ventilation riser and the selected fan coil; (b) Branch 

duct routing between the selected fan coil and start point of precedent duct; and (c) 

Local duct routing between the fan coils and the diffusers. Our approach automates the 

distribution routing using constraint-based approach. Comparatively to previous work: 

(1) the system we have developed generates parametric-based models where further 

interactive modification and interaction is made possible for the end user; (2) This 

approach has been tested in real case scenario working with our industrial partners; (3) 

The software prototype has been implemented imbedded in a BIM system 

(Microstation form Bentley Systems) 

 

 

 

 

Figure 1: Duct routing strategy with local ducts (solid lines), branch ducts (dot lines) 

and main duct (dash line) 

In sections 2 we present the distribution routing knowledge base. Next, in section 3 

and 4, we describe the constraint model and the solution generation approach. The 

Riser Main Duct Route 

Branch Duct Routes 

Local Duct Routes 
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interactive parametric-based user interface and the benchmarking exercise are 

presented in sections 5 and 6. Finally, the conclusion is presented in section 7.  

2. Knowledge Model 

The knowledge model holds the main pipe/duct classes. Each defined class is 

characterized by a set of attributes and class constraints. Based on the inheritance 

mechanism, there are two sub-classes of the duct/pipe class including: rectangular 

duct/pipe class and circular duct/pipe class. The rectangular duct/pipe class represents 

the duct with rectangular section, and its sub-classes include branch duct class and main 

duct class. The circular duct/pipe class represents the duct or pipe with circular section, 

and its sub-classes include local duct class and pipe class. Figure 2 illustrates the class 

structure of our knowledge model. The knowledge and constraint models have been 

implemented in Java using the constraint library JSolver. We have used Java Native 

Interface and MicroStation’s API method to access Bentley DGN files in order to 

interface the knowledge and constraint models with the BIM model. 
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Figure 2: Duct/pipe object structure and the mechanism of inheritance 

2.1 Duct/pipe class 

The duct/pipe class is characterised by a zigzag line defined by a polyline including 

bends and segments. As illustrated in Figure 3, the attributes of the duct/pipe class are: 

(1) The zigzag line defined by a set of joints (N joints) characterised by 3D point 

coordinates (Xi, Yi, Zi); (2) Number of segments (Ns) where each pair of successive 

joints defines a segment; (c) The number of bends between two successive segments 

(Nb); The bending angle q i  (where iÎ [0,n-3]) between two adjacent segments where q i
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Î  [90 o, -90o [; and the total length L Î  [ maxmin , LL ]. All these attributes are integer-

constrained variables. We used an arc-consistency on integers constraint programming 

technique which explains the need for a distance increment; but this is not too limitative 

as engineer and architects are used to reasoning with dimensional modules.  

 

 

Figure 3: The attributes of the zigzag line 

The two following class constraints have been defined to ensure the geometrical 

consistency of the duct/pipe class: 

 (c1) Nb = N – 2 

 (c2) Ns = N – 1 

A modification of a variable domain composing the constraint (c1) or (c2) entails the 

modification of variable domains of the other related variables, thanks to the arc-

consistency on integers that we used. Arc-consistency technique asserts that these 

constraints will always be respected for a specific instantiation and try to rule out 

variable domain values which have no chance to be in a solution. But this technique 

does not reduce a domain variable to its minimal size; solutions are complete but they 

are not all consistent. This is a problem we will have to deal with when generating the 

solutions. 
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2.2 Duct/pipe sub-classes 

We know that a local duct connects the diffuser with the fan coil and a branch duct 

connects the selected fan coil with the duct, while the main duct connects the selected 

fan coil with the riser. The duct/pipe sub-classes (i.e. the branch and main duct) have 

additional parameters such as W (width) and H (height) to represent the section size of 

each segment, meanwhile, the local duct and the pipe have additional parameter such 

as R (radius) to represent the circular size of the segment section. Figure 4 illustrates 

10 PP , 21PP  and 32 PP  segments of a duct/pipe, where R, W and H of the duct/pipe 

segments will depend on the flow rate passing through that segment. 

 

 

Figure 4: Duct/pipe with a set of 4 joints, 3 segments and 2 bending angles 

3 The constraint model 
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Our constraint model makes the distinction between design specification constraints 

and implicit constraints which are implicitly applied during the solution search process 

in order to reduce the combinatorial complexity. 

3.1  Design specification constraints 

These constraints include dimensional and topological constraints over the pipes/ducts, 

fan coil equipment (fans, diffusers, etc.) and the building components (beams, walls, 

columns, etc.). Dimensional constraints are applied to the attributes of a single object 

whereas topological constraints are applied between two or more architectural objects 

and include inclusion constraint and non-overlapping constraints. 

 

3.1.1 Dimensional constraints 

Dimensional constraints are applied to set the position of the starting and ending joints 

of the duct. For example, the starting joint of a local duct is fixed and corresponds to 

the ventilated outlet point of a fan coil. The end joint of the local duct is also fixed and 

corresponds to the inlet point of a diffuser. The relevant dimensional constraints can be 

defined as: 

),,(.),,(. zyxPFCUzyxPDuct istart   where PnFCUi .  

),,(.),,(. zyxPDiffuserzyxPDuct iend   where DiffnFCUi .  

Where ),,(. zyxPDuct start  = the start joint of the local duct 

),,(. zyxPDuct end  = the end joint of the local duct 

),,(. zyxPFCU i  = the outlet point i of the fan coil 

PnFCU .  = the number of the outlets of the fan coil 

),,(. zyxPDiffuseri  = the inlet point of diffuser i 

DiffnFCU .  = the number of the diffusers per fan coil 
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Figure 5: (a) Start joint of the branch duct (solid line (b) Start joint of the branch duct 

(solid line)  

 

3.1.2 Inclusion constraint 

The inclusion constraint defines a 3D domain area where the duct joints must be 

located. It is a conjunction of six inequalities. The inclusion constraint is defined as: 

Duct.X ³ Space.X -
Space.L

2
; 

Duct.X £ Space.X +
Space.L

2
; 

Duct.Y ³ Space.Y -
Space.W

2
;  

Duct.Y £ Space.Y +
Space.W

2
;  

Duct.Z ³ Space.Z -
Space.H

2
;  

Duct.Z £ Space.Z +
Space.H

2
;  

 

 

 

 

 

 

Where Duct.X & Duct.Y & Duct.Z = the 3D coordinates of the joint 

Space.X & Space.Y = the 3D reference point of the space 

Space.L = the length of the space 

Space.W = the width of the space 

Space.h = the height of the space 

All the variables are constrained variable on integer  
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3.1.3 Non-Overlapping Constraints  

It is complex to solve a non-overlapping constraint between the duct and the other 

objects (equipment, building components, etc.), especially when the duct is oblique. If 

the duct lays out in the right direction (follow X-axis and/or Y-axis) and the non-

overlapping objects have rectangular shapes, we can apply the non-overlapping 

constraints with 4 orientations {North, East, South, & West} as described in Medjdoub 

and Yannou [15,16]. This constraint is a disjunctive constraint generating four 

possibilities and consequently increasing the complexity of the problem. Orthogonal 

geometry characterises the majority of the cases, but if the duct lays out in the oblique 

direction, we have developed the following constraints: 

 Non-overlapping constraint between an oblique duct and an object 

If the object has a rectangular shape, it will be characterised by its length L and width 

W. based on the geometrical construction illustrated in Figure 6(a). The duct will not 

overlap with the object if the distance 21OO  between the central point 1O  of the 

rectangle and the duct segment 21DD  is greater than 

22

22
















 WL
; 21OO  being 

orthogonal to the duct. This constraint will remove few possible solutions as in fact the 

duct will not overlap with the enclosed circle but has the advantage to be a conjunction 

while decreasing the complexity. The same approach will be used to a non-overlapping 

constraint with an object with a non-orthogonal geometry where we use its enclosed 

circle to not overlap with the duct D1D2 (see Figure 6(b))  
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Figure 6: (a) non-overlapping between the duct and the square object, (b) non-overlap 

between the duct and the non-square object 

The two duct segment do not intersect (see Figure 7) if and only if one segment lies 

entirely to one side of the line containing the other duct segment, this can be expressed 

in the following conjunctive constraints using the notion of a scalar cross product:  

𝑃4𝑃2
→    x 

𝑃4𝑃3
→    > 0 & 

𝑃4𝑃1
→    x 

𝑃4𝑃3
→    > 0 & 

𝑃4𝑃2
→    x 

𝑃2𝑃1
→    > 0 & 

𝑃2𝑃3
→    x 

𝑃2𝑃1
→    > 0 

 

Figure 7: The non-overlapping constraint between two oblique duct segments 

 

3.2 Approach to reduce the number of non-overlapping constraints 

Non-overlapping constraints are disjunctive constraints increasing the complexity of 

the NP-complete problem. Therefore, we have suggested an approach to reduce, a 
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priory and before the solution search strategy, the number of non-overlapping 

constraints to reduce this complexity.  

Non-overlapping constraints are applied between the equipment and the building 

components such as column, beams etc. It is clear that if we can reduce the number of 

those elements which should not overlap each other; we will decrease the complexity 

of the problem. One possibility we have explored is to group a set of small objects such 

as one fan and a set of diffuser in one cluster. This will have the advantage to apply the 

non-overlapping constraint between the duct and a set of clusters rather than every 

object and consequently reducing the complexity of the problem. Figure 8 illustrates an 

example: First, we combine the fan coil and its diffusers into one cluster. As we can see 

from figure 8, each fan coil and its diffusers are enclosed by a rectangle (dashed lines), 

and the distributed duct must not overlap with that rectangle instead of treating the fan 

coil and the diffusers separately. Therefore, five non-overlapping constraints (one fan 

coil and its four diffusers) are reduced into one.  

 

 

Figure 8: (a) 4 combined internal fan coil/diffuser clusters and 5 column clusters in 

the Y’ direction, (b) 4 combined fan coil/diffuser clusters and 4 column clusters in the 

X’ direction 

Next, we found that these fan coil/diffuser cluster number still too high, and in order to 

reduce the number of clusters furthermore, we have combined clusters into bigger 

clusters. To do so, we have used the duct routing direction to optimise the problem. 

In our approach and based on real practice, the duct route tends to follow the X’Y’ axis 

Riser 
(b) 

X’ 
Y’ 

 

Riser (a) 
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directions (X’ and Y’ are relative axis directions to the floor layout, see Figure 8). If we 

can group the clusters along the X’ and Y’ directions separately the number of non-

overlapping constraints can be reduced furthermore. As indicated in Figure 8a, the red 

dash-line represents duct in the Y’ axis direction. Next, we group all the objects within 

the Y’ axis direction in one cluster and constrain it to not overlap with the duct. In this 

particular example, thirty-five original non-overlapping constraints (constrained with 

fifteen fan coil/diffuser groups and twenty columns in the figure) have been reduced to 

nine non-overlapping constraints. Figure 8b illustrates similar approach on the X’ 

direction. 

4. Solution Generation 

The process of distribution routing consists of generating duct routes and sizing them. 

As described in section one, the generation process is done sequentially as follow: 

1. Main duct routing between the ventilation riser and the selected fan coil 

2. Branch duct routing between the selected fan coil and start point of precedent 

duct. 

3. Local duct routing between the fan coils and the diffusers 

 

4.1 Main duct and local duct generation: 

We proceed first by instantiating the number of bends, followed by the orientation and 

finally we minimize the length. We have used the “branch and bound” algorithm [17] 

which is the most common approach used in constraint programming to find the optimal 

solution. The procedure is described as: First, we create a constrained variable 

representing the objective function (total length) and find an initial solution. Then we 

introduce a new constraint that the value of the objective variable must be better than 

in the initial solution. We repeatedly solve the new problem and tighten the constraint 

on the objective variable until the problem becomes insoluble, and the last solution 

found is then the optimal solution. Each routing procedure for local and main ducts has 

its own 3D space domain and a set of objects to not overlap with. For the local duct, 

the 3D space domain is located strictly between the fan coil and the diffuser.  

 

4.2 Branch duct generation 

Following the main duct generation, the system will calculate the number of 

connections and their positions on the main duct. This will be followed with the same 
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generation algorithm used for the main ducts. For the branch duct, the domain is located 

strictly between the precedent duct outlet and the fan coil.  

 

5. Interactive parametric-based user interface 

Our approach has been implemented as a plugin to Microstation from Bentley System. 

The constraint library and the generation algorithms have been implemented using 

JSolver constraint library. In this section, we present the interactivity of the system 

through a real case scenario consisting of an office floor with a rectangular shape (see 

Figure 9). In this example we will describe the system we have developed and its 

interactivity. 

 

 

Figure 9: 3D BIM model (Microstation) of the office floor with rectangular shape 

The process includes two stages: (1) first the system automatically size and locate the 

fans and the diffusers in the 3D ceiling void. We have used case-based reasoning 

approach combined with constraint-based adaptation process to generate the 3D layout 

of the equipment (i.e. fans and diffusers). This approach (See figure 10) has been 

presented in Medjdoub and Chenini [3]; (2) In stage two, the system will generate 

automatically the duct routing. This is a staged process generating first the main ducts 

followed by branch ducts and ending by local ducts (see figure 11). 
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Figure 10: Output from stage 1 including the 3D layout of fans and diffusers 

 

Before generating the main duct. The user will select interactively from the BIM model 

the riser and the farthest fan coil. The system will then generate a set of solutions from 

which the user can select one as indicated in Figure 11. 

 

Figure 11: Riser, fan coil selection and main duct routing 

Next, the branch duct and local duct will be generated sequentially using the same 

generation algorithms, this will have the advantage to divide the complex problem in 

a set of sub-problems more likely to be generated in a reasonable response time. 

Figure 12 display the final solutions of the office building. 
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Figure 12: (a) duct generation, (b) isometric view of the BIM solution 

 

The generated solution is an instantiation of the none-oriented graph of constraints as 

defined in section 4 and corresponding to an oriented graph of constraints defining a 

parametric model. Comparatively to previous works on duct/pipe routing, this approach 

has an advantage in offering the possibility to the user/engineer to improve the 

generated solution interactively. Thus as indicated in figure 13, if the user is not 

completely satisfied with the solution (Figure 13a), he/she can just by dragging routine, 

(a) 

(b) 
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for example, move the duct up. The system will update the solution automatically (see 

Figure 13b). Any change of routing is driven by the parametric model of the solution. 

The clashes are solved by the automatic application of a non-overlapping constraint 

(see section 3.1.3) between any modified or additional duct/service and the surrounding 

objects.  

 

Figure 13: (a) Select and move the duct up, (b) The system will update automatically 

the new solution 

The final solution includes the full information model including the type of equipment 

size and location, the ducts type, size and location, and manufacturer information.   
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6. Testing and evaluation 

This approach has been evaluated using two other real case scenario by the engineers 

of our industrial partners AECOM. We have undertaken a qualitative evaluation, which 

is more appropriate to check the validity of the solution generated by our system. Thus, 

the engineers have assessed the solution by keeping the good duct routes and modifying 

the ones needing improvement. The final result (Table 3) shows that the solution can 

be compared with the ones produced by the engineers where between 4 and 8% 

improvement was required. The engineers have also suggested some improvements to 

the system.  

 

Example 1: Figure 14 illustrates the plan of an office building we have used as our first 

case study. Figure 15a illustrated the solution generated by our system and figure 15b 

illustrates the solutions generated by the engineers. Table 1 shows the response time of 

the solution. 

 

 

Figure 14: Floor zoning (4 zones) 
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4 Risers 



Automation in Construction, Elsevier, 2018, (Impact Factor: 3.432, SNIP: 2.68) 

 

 

Figure 15: (a) Solution generated by our system, (b) Solution generated by the 

engineers 

Table 1: Processing time (PC – quad Core Processor i5-6400 (3,2GHz)) 

Main Duct  

- Processing Time for Facility Layout 101 sec 

Branch Duct  

- Processing Time for Facility Layout 66 sec 

Local Duct for FCU  

- Processing Time for Facility Layout 21 sec 

 

 

(a) 

(b) 
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Example 2: Figure 16 illustrates the plan of an office building we have used as our 

second case study. Figure 17a illustrated the solution generated by our system and 

figure 17b illustrates the solutions generated by the engineers. Table 2 shows the 

response time of the solution. 

 

Figure 16: Floor zoning (2 zones) 
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Figure 17: (a) Solution generated by our system, (b) solution generated by the 

engineers 

Table 2: Processing time (PC – quad Core Processor i5-6400 (3,2GHz)) 

Main Duct  

- Processing Time 44 sec 

Branch Duct  

- Processing Time  35 sec per duct 

Local Duct for FCU  

- Processing Time  17 sec per duct 

 

Table 3: Qualitative evaluation of the solutions. 

 Duct type Engineers’ Evaluation 

Result To improve 

1 Main Duct 

Layout (duct 

connects riser 

and selected fan 

coil) 

- 96% of branch duct routes 

are good. 

- The engineer improved 

interactively 4% of the branch 

routes. 

 

The response time is too long 

(2min) with more complex 

configuration (250 objects and 

more). 

2 Local Duct 

Layout (duct 

connects fan 

coil and 

diffuser) 

- 93% of the branch duct 

routes are good. 

- The engineer improved 

interactively 8% of the branch 

routes. 

 

3 Branch Duct 

Layout (duct 

connects 

precedent duct 

and selected fan 

coil) 

- 92% of branch duct routes 

are good. 

- The engineer improved 

interactively 8% of the branch 

routes. 

Duct end points should be 

near the central inlets of fan 

coils. 
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Another limitation of our system is due to the complexity of the building geometry. 

Thus the pipe routing in non-rectangular shape is less accurate. This is mainly due to 

the complexity of the algorithm used and  

7. Conclusion 

The approach presented in this paper shows an interactive system to support pipe/duct 

routing in a fan coil system. The prototype developed is simple to use providing 

interactive modification functionality of the 3D parametric model. This approach has 

shown the potential to significantly reduce design costs by reducing design time by 

50% and improve the quality of the solution. The solution can produce additional 

benefits elsewhere in the supply chain while providing the full building information 

model of the technical solution including equipment and pipes/ducts information, their 

type, specifications, size, location and manufacturer. 

On the computational side, the constraint-based design approaches used did achieve a 

good synergy between the size/complexity of the problem, the geometry of the building, 

and the response time, while producing results that are comparable with the Engineers’ 

solutions.  

However, we experienced some limitations when dealing with buildings with complex 

geometries (e.g. curves), more the building geometry is complex more the response 

time is higher. This is due to the non-overlapping constraints used in the case of non-

orthogonal geometries which introduce more disjunctions (i.e. a node which increases 

the size of the tree search). Another advantage of this approach is the generation of 

parametric models providing the user the possibility to further improve the solution 

interactively.  

Finally, the methodology developed can be transferable to other BIM platforms; our 

approach has been implemented as a plugin totally independent from any BIM 

application. As mentioned previously, we have used JNI and Microstation’s API to 

interface our application and have access to the DGN file and the BIM model on 

Microstation. We can therefore use the same methodology to interface our application 

with existing BIM platforms.  
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