Role of transglutaminase 2 in A₁ adenosine receptor- and β_2 -adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells

Falguni S. Vyas, Carl P. Nelson and John M. Dickenson*

School of Science and Technology

Nottingham Trent University

Clifton Lane

Nottingham

NG11 8NS

*To whom correspondence should be addressed

Tel: +44-115 8486683

E-mail: john.dickenson@ntu.ac.uk

Abstract

Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A₁ adenosine receptor and β_2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A₁ adenosine receptor and β_2 adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8 h hypoxia $(1\% O_2)$ followed by 18 h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N⁶-cyclopentyladenosine (CPA; A₁ adenosine receptor agonist), formoterol (β_2 -adrenoceptor agonist) or isoprenaline (non-selective β adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenationinduced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin ($G_{i/o}$ -protein inhibitor), DPCPX (A_1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A₁ adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β_2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A_1 adenosine receptor and β_2 -adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and $G_{i/o}$ -protein dependent manner in H9c2 cardiomyoblasts.

Key words

 A_1 adenosine receptor, β_2 -adrenoceptor, cardiomyocytes, transglutaminase 2, preconditioning, post-conditioning.

1. Introduction

Ischaemic preconditioning or classical pre-conditioning is a well-characterized phenomenon in which transient exposure to ischaemia protects the myocardium from infarction induced by a subsequent and prolonged ischaemic attack (Murry et al. 1986). Ischaemic postconditioning is a more recently identified cardioprotective phenomenon, which involves brief periods of ischaemia applied during the start of reperfusion, after a prolonged ischaemic insult (Zhao et al. 2003). The molecular mechanisms underlying ischaemic pre-/postconditioning have been extensively studied, resulting in a number of membrane-bound receptors, predominantly belonging to the G protein-coupled receptor (GPCR) superfamily, being implicated in cardioprotection including the A₁ adenosine receptor (Sommerschild and Kirkebøen 2000; Headrick et al. 2003; Peart and Headrick 2007; Fretwell and Dickenson 2009; Urmaliya et al. 2011; Salie et al. 2012). Direct stimulation of the aforementioned receptors or pharmacological activation of signalling pathways associated with them can mimic the cardioprotective effects of ischaemic pre- and post-conditioning (Burley and Baxter 2009; Sanada et al. 2011; Cohen and Downey, 2015; Hausenloy and Yellon, 2016).

The signal transduction mechanisms triggered by the A₁ adenosine receptor and β_2 adrenoceptor include several protein kinases, such as protein kinase C (PKC; Henry et al. 1996), protein kinase B (PKB; Chesley et al. 2000; Germack et al. 2004) and extracellularsignal-regulated kinase 1/2 (ERK1/2; Schmitt and Stork, 2000; Germack and Dickenson, 2005; Shenoy et al. 2006). These pro-survival kinases belong to the Reperfusion Injury Salvage Kinase (RISK) pathway, which when activated promotes cardioprotection (Hausenloy and Yellon, 2007). It is interesting to note ERK1/2, a prominent member of the RISK pathway, is involved in A₁ adenosine receptor and β_2 -adrenoceptor-induced tissue transglutaminase (TG2) activation (Vyas et al. 2016; Vyas et al. 2017).

Transglutaminases (TGs) are a family of calcium (Ca²⁺) dependent enzymes (TG1-7 and Factor XIIIa) that catalyse the post-translational modification of proteins (Eckert et al., 2014). TG2 is a ubiquitous member of the TG family that possess several enzymic functions that include transamidation, protein disulphide isomerase and protein kinase activity (Gundemir et al. 2012). Although TG2 has been implicated in protection of cardiomyocytes against ischaemia/reperfusion injury by regulating ATP synthesis, at present very little is known regarding its potential role in pre- and post-conditioning (Szondy et al. 2006). We have recently shown that TG2 activity can be modulated by the A1 adenosine receptor and β_2 -adrenoceptor in H9c2 cardiomyoblasts (Vyas et al. 2016; Vyas et al. 2017). Therefore, the primary aim of this study was to determine the role of TG2 in A₁ adenosine receptor and β_2 -adrenocepor-induced pre- and post-conditioning against hypoxia/reoxygenation-induced cell death in H9c2 cells. The results obtained indicate for the first time that TG2 plays an anti-apoptotic role in the A₁ adenosine receptor and β_2 -adrenocepor-induced pharmacological pre- and post-conditioning in H9c2 cells. It is conceivable that TG2 is a downstream effector of the Reperfusion Injury Salvage Kinase pathway and as such TG2induced post-translational modification of mitochondrial proteins that are associated with cell death/survival may play a prominent role in cardioprotection.

2. Materials and methods

2.1. Materials

Formoterol, forskolin, ICI 118,551 ((±)-erythro-(S*,S*)-1-[2,3-(Dihydro-7-methyl-1Hinden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride), PD 98059 (2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one) and propranolol were obtained from Tocris Bioscience (Bristol, UK). DPCPX (1,3-dipropylcyclopentylxanthine), IBMX (3-isobutyl-1-methylxanthine) isoprenaline, MTT (3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), N',N'-dimethylcasein, N⁶-cyclopentyladenosine (CPA), pertussis toxin, protease inhibitor cocktail, phosphatase inhibitor cocktail 2 and horseradish peroxidase conjugated ExtrAvidin[®] (ExtrAvidin[®]-HRP) were obtained from Sigma-Aldrich Co. Ltd. (Gillingham, Dorset, UK). The TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) along with purified standard guinea-pig liver TG2 were obtained from Zedira GmbH (Darmstadt, Germany). Biotin cadaverine (N-(5aminopentyl)biotinamide) was purchased from Invitrogen UK (Loughborough, UK). CytoTox 96 non-radioactive cytotoxicity assay kit was from Promega (Southampton, UK). DMEM (Dulbecco's modified Eagle's medium), foetal bovine serum, trypsin (10X), L-glutamine (200 mM), penicillin (10,000 U/ml)/streptomycin (10,000 μ g/ml) were purchased from Lonza, (Castleford, UK). All other chemicals were of analytical grade. Antibodies were obtained from the following suppliers: polyclonal anti-cleaved caspase-3 (Asp175) and monoclonal anti-GAPDH were purchased from New England Biolabs Ltd. (Hitchin, UK); antiprotein S100-A6 antibody was obtained from Abcam (Cambridge, UK); monoclonal antitransglutaminase 2 (CUB 7402) and monoclonal β -actin from ThermoFisher Scientific (Loughborough, UK).

2.2. Cell culture

Rat embryonic cardiomyoblast-derived H9c2 cells were obtained from the European Collection of Animal Cell Cultures (Porton Down, Salisbury, UK). It is important to note that H9c2 cells, derived from embryonic rat heart tissue (Kimes and Brandt, 1976), are increasingly used as an *in vitro* model for studies exploring cardioprotection since they display similar morphological, electrophysiological and biochemical properties to primary cardiac myocytes (Hescheler et al. 1991). Furthermore, recent studies have demonstrated that H9c2 cells are energetically more similar to primary cardiac myocytes than mouse atrial HL-1 cells and thus represent a viable in vitro model to investigate simulated cardiac ischaemia/reperfusion injury (Kuznetsov et al. 2015). In addition to their increasing use in studies exploring cardioprotection, H9c2 cells show hypertrophic responses comparable to primary neonatal cardiac myocytes and therefore also represent a useful cell model system to study heart disease (Watkins et al. 2011). Cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 2 mM L-glutamine, 10% (v/v) foetal bovine serum and penicillin (100 U/ml)/streptomycin (100 μ g/ml). Cells were maintained in a humidified incubator (95% air/5% CO₂ at 37°C) until 70-80% confluent and sub-cultured (1:5 split ratio) using trypsin (0.05% w/v)/EDTA (0.02% w/v).

2.3. cAMP accumulation assay

H9c2 cells (5000 cells/well) were seeded on a white 96 well microtitre plate, with clearbottomed wells (Fisher Scientific, Loughborough, UK) and cultured for 24 h in fully supplemented DMEM. The medium was removed and the monolayer treated with a range of concentrations of formoterol for 20 min in serum-free DMEM (40 µl/well) in the presence of 20 mM MgCl₂ and 500 µM IBMX. Following stimulation, cAMP levels within cells were determined using the cAMP-Glo[™] Max Assay kit (Promega UK, Southampton, UK). Briefly, 10 µl of cAMP detection solution were added to all wells and incubated for 20 min at room temperature. After incubation, Kinase-Glo[®] reagent (50 μ l/well) was added and incubated for 10 min at room temperature, following which luminescence levels across the plate were read using a plate-reading FLUOstar Optima luminometer (BMG Labtech Ltd, Aylesbury, UK). Forskolin (10 μ M) was used as a positive control and the luminescence values were converted to cAMP levels using a cAMP standard curve (0-100 nM), according to the manufacturer's instructions.

2.4. Transglutaminase activity assays

Time course profiles and concentration-response curves were obtained for isoprenaline. Following stimulation, cells were rinsed twice with 2.0 ml of chilled PBS, lysed with 500 μ l of ice-cold lysis buffer (50 mM Tris-HCl pH 8.0, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) protease inhibitor cocktail, and 1% (v/v) phosphatase inhibitor cocktail 2 and 3). Cell lysates were clarified by centrifugation at 4°C for 10 min at 14,000 x g prior to being assayed for TG activity, as described below. Protein was determined using the bicinchoninic acid (BCA) protein assay (Smith et al, 1985), using a commercially available kit (Sigma-Aldrich Co. Ltd), with bovine serum albumin (BSA) as the standard.

Biotin-labelled cadaverine incorporation assays were performed according to Slaughter et al. (1992) with the modifications reported by Lilley et al. (1998). Briefly, 96-well microtitre plates were coated overnight at 4° C with 250 μ l of N',N'-dimethylcasein (10 mg/ml in 100 mM Tris-HCl, pH 8.0). The plate was washed twice with distilled water, blocked with 250 μ l of 3% (w/v) BSA in 100 mM Tris-HCl, pH 8.0 and incubated for 1 h at room temperature. The plate was washed twice before the application of 150 μ l of either 6.67 mM calcium chloride or 13.3 mM EDTA (used to check background TG2 activity) assay buffer containing 225 μ M biotin-cadaverine (a widely used substrate to monitor TG amine incorporating activity) and 2 mM 2-mercaptoethanol. The reaction was started by the addition of 50 μ l of sample, positive control (50 ng/well of guinea-pig liver TG2) or negative control (100 mM

Tris-HCl, pH 8.0). After incubation for 1 h at 37°C, plates were washed as before. Then, 200 μ l of 100 mM Tris-HCl pH 8.0 containing 1% (w/v) BSA and ExtrAvidin®-HRP (1:5000 dilution) were added to each well and the plate incubated at 37°C for 45 min; it was then washed as before. The plate was developed with 200 μ l of freshly prepared developing buffer (7.5 μ g/ml 3, 3′, 5, 5′-tetramethylbenzidine and 0.0005% (v/v) H₂O₂ in 100 mM sodium acetate, pH 6.0) and incubated at room temperature for 15 min. The reaction was terminated by adding 50 μ l of 5.0 M sulphuric acid and the absorbance read at 450 nm. One unit of transglutaminase activity was defined as a change in A_{450} of 1.0 per hour. Each experiment was performed in triplicate.

2.5. Hypoxia-reoxygenation-induced cell death

H9c2 cells in glucose-free and serum-free DMEM were exposed to 8 h hypoxia using a hypoxic incubator (5% CO₂/1% O₂ at 37°C), where O₂ was replaced by N₂. Following hypoxic exposure, cells were reoxygenated in DMEM containing 1% foetal bovine serum for 18 h in a humidified incubator (95% air/5% CO₂ at 37°C). For pharmacological pre- and post-conditioning, cells were exposed to either CPA (100 nM; A₁ adenosine receptor agonist; 10 min), formoterol (1 μ M; selective β_2 -adrenoceptor agonist; 20 min) or isoprenaline (10 μ M; non-selective β -adrenoceptor agonist; 20 min) either before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following 8 h hypoxic exposure (post-conditioning). Where appropriate, cells were treated as follows: for 30 min with DPCPX (1 μ M; A₁ adenosine receptor antagonist), ICI 118,551 (1 μ M; selective β_2 -adrenoceptor receptor antagonist) or propranolol (1 μ M; non-selective β -adrenoceptor antagonist), for 1 h with TG2 inhibitors Z-DON (150 μ M; Schaertl et al. 2010) or R283 (200 μ M; Freund et al. 1994) or for 48 h with 1 μ M TG2 siRNA or negative control siRNA before the addition of the appropriate agonist. After the above treatments, the medium containing agonists and inhibitors was removed and replaced with either fresh glucose-free/ serum-free DMEM for

hypoxia or fresh DMEM containing normal glucose and 1% (v/v) foetal bovine serum for the remainder of the reoxygenation period.

2.6. MTT assay

H9c2 cells were plated in 24-well flat bottomed plates (15,000 cells per well) and cultured for 24 h in fully supplemented DMEM prior to hypoxia/reoxygenation. Cell viability was determined by measuring the metabolic reduction of MTT to a coloured formazan product. Cells were incubated for 1 h in 0.5 mg ml⁻¹ MTT (added during the last hour of reoxygenation), after which the medium was removed and replaced with 500 μ l DMSO. The reduction reaction was measured at 570 nm. Each experiment was performed in quadruplicate.

2.7. Lactate dehydrogenase assay

H9c2 cells were plated in 96-well flat bottomed plates (5,000 cells per well) and cultured for 24 h in fully supplemented DMEM prior to hypoxia/reoxygenation. Following experimentation, the activity of lactate dehydrogenase (LDH) released into the culture medium was detected using the CytoTox 96®non-radioactive cytotoxicity assay (Promega, Southampton, UK). Assays were performed according to the manufacturer's instructions and monitored at 490 nm. Each performed was performed in sextuplicate.

2.8. Western blot analysis of cleaved caspase-3 activity and TG2 expression

Protein extracts (20-30 µg per lane) were separated by SDS-PAGE (12% polyacrylamide gel for caspase-3 and 10% polyacrylamide gel for TG2) using a Bio-Rad Mini-Protean III system. Proteins were transferred to nitrocellulose membranes in a Bio-Rad Trans-Blot system using 25 mM Tris, 192 mM glycine pH 8.3 and 20% (v/v) MeOH). Following transfer, the membranes were washed with Tris-buffered saline (TBS) and blocked for 1 h at room temperature with 3% (w/v) skimmed milk powder in TBS containing 0.1% (v/v) Tween-20. Blots were then incubated overnight at 4°C in blocking buffer with the following primary antibodies: cleaved caspase-3 (1:500), GAPDH (1:1000), TG2 (1:500) or β-actin (1:1000). The primary antibodies were removed and blots washed three times for 5 min in TBS/Tween 20. Blots were then incubated for 2 h at room temperature with the appropriate secondary antibody (1:1000) coupled to horseradish peroxidase (New England Biolabs (UK) Ltd) in blocking buffer. Following removal of the secondary antibody, blots were extensively washed as above and developed using the Enhanced Chemiluminescence Detection System (Uptima, Interchim, France) and quantified by densitometry using Advanced Image Data Analysis Software (Fuji; version 3.52). The uniform transfer of proteins to the nitrocellulose membrane was routinely monitored by transiently staining the membranes with Ponceau S stain prior to application of the primary antibody.

2.9. Knockdown of endogenous TG2 with siRNA

H9c2 cells were transfected with anti-TG2 (catalogue number: A-092775-15-0005) or negative control siRNA (catalogue number: D-001910-01-05) at 1 µM for 48 h according to the manufacturer's protocol (Dharmacon, Cambridge, UK). Briefly, fully supplemented DMEM cell culture medium was removed and replaced with Accell delivery medium containing either TG2-specific siRNA targeting the open reading frame of rat TG2 mRNA or negative control (non-targeting) siRNA.

2.10. Proteomic analysis of TG2 biotin-X-cadaverine labelled substrate proteins

Cellular proteins acting as substrates for endogenous TG2-catalysed polyamine incorporation reactions were investigated as described by Singh et al. (1995). Cells were labelled with biotin-X-cadaverine (1 mM; 6 h) prior to stimulation with isoprenaline (10 μ M; 20 min). Following stimulation with isoprenaline, cells were rinsed twice with 2 ml of chilled PBS and lysed with 500 μ l of ice-cold lysis buffer (50 mM Tris-HCl pH 8.0, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) protease inhibitor cocktail, and 1% (v/v) phosphatase inhibitor cocktail 2 and 3). Cell lysates were clarified by centrifugation at 4°C for 10 min at 14,000 x g. Biotin-X-cadaverine labelled proteins were enriched using CaptAvidin[™]-agarose sedimentation beads (Life Technologies, Loughborough, UK) and processed for trypsin digestion (Trypsin, proteomics grade; Sigma-Aldrich, UK).

Samples (~50 µg protein) were reduced and alkylated (1 µl 0.5 M DTT, 56° C for 20 min; 2.7 µl 0.55 M iodoacetamide, room temperature 15 min in the dark), dried in a vacuum concentrator (Eppendorf, UK) and resuspended in 100 µl 50 mM tri-ethyl ammonium bicarbonate (TEAB). Trypsin (2 µg in 2 µl of 1 mM HCl), was added in and incubated overnight at 37° C in a thermomixer. Samples were then evaporated to dryness in a vacuum concentrator and resuspended in 5% (v/v) acetonitrile/0.1% (v/v) formic acid (20 µl) and transferred to a HPLC vial for MS analysis. Samples (3 µl) were injected by autosampler (Eksigent nanoLC 425 LC system) at 5 µl/min directly onto a YMC Triart-C₁₈ column (25 cm, 3 µm, 300 µm i.d.) using gradient elution (2-40% Mobile phase B, followed by wash at 80% B and re-equilibration) over either 110 (120 min run time) min (for spectral library construction using data/information dependent acquisition DDA/IDA) or 50 min (60 min run time) for SWATH/DIA (Data Independent Acquisition) analysis (Gillet et al., 2012; Huang et al., 2015). Mobile phases consisted of A: 2% (v/v) acetonitrile, 5% (v/v) DMSO in 0.1% (v/v) formic acid; B: acetonitrile containing 5% (v/v) DMSO in 0.1% (v/v)

A spectral library was constructed using the output from ProteinPilot 5 (SCIEX) combining four IDA runs per group (Control, formoterol treated), filtered, and aligned to spiked-in iRT peptides (Biognosys, Switzerland) using PeakView 2.2 (SCIEX) and the SWATH micro app 2.1 plug in. SWATH data extraction, quantitation and fold change analysis were carried out using SCIEX OneOmics cloud processing software (Lambert et al., 2013).

2.11. Validation of biotinylated TG2 substrates

The enriched biotin-X-cadaverine labelled proteins (500 µg) were incubated overnight at 4°C with 2 µg of rabbit anti-protein S100-A6 antibody. Immune complexes were precipitated using Pierce[™] Classic Magnetic IP/Co-IP Kit (Loughborough, UK). Precipitated proteins were resolved by SDS-PAGE (15% polyacrylamide gel), transferred to nitrocellulose and probed with ExtrAvidin[®]-HRP (1:5000 dilution). Reactivity was visualised using the Enhanced Chemiluminescence Detection System (Uptima, Interchim, France) and quantified densitometrically, as described above.

2.12. Data analysis

All graphs and statistics (two-way ANOVA followed by Dunnet's multiple comparison test) were performed using GraphPad Prism[®] software (GraphPad Software, Inc., USA). Results represent mean ± S.E.M. and p values <0.05 were considered statistically significant.

3. Results

In this study the optimal duration of hypoxia and reoxygenation was determined by monitoring cell viability using MTT reduction, LDH release and caspase-3 activation (data not shown). Based upon these findings, a time course of 8 h of hypoxia followed by 18 h reoxygenation was chosen for further experiments since it produced a significant loss in cell viability as well as significant activation of caspase-3, indicating that apoptosis had occurred (data not shown).

3.1. Role of TG2 in A1 adenosine receptor-induced pre-conditioning in H9c2 cells

We have previously reported that the A₁ adenosine receptor triggers pharmacological preconditioning against hypoxia-induced cell death in H9c2 cells (Fretwell and Dickenson, 2009, Vyas et al. 2016). In this study we have explored the role of TG2 in A_1 adenosine receptor mediated pre-conditioning against hypoxia/reoxygenation-induced cell death. The selective A1 adenosine receptor agonist CPA and antagonist DPCPX were used to explore A1 adenosine receptor-mediated pharmacological pre-conditioning. H9c2 cells were pharmacologically preconditioned with CPA (100 nM) for 10 min prior to 8 h hypoxia followed by 18 h of reoxygenation. Hypoxia/reoxygenation-induced reduction of MTT and release of LDH was significantly reduced by CPA (Fig. 1). Furthermore, pre-treatment with DPCPX (1 μ M) reversed CPA-induced protection (Fig. 1), confirming the involvement of the A₁ adenosine receptor. Since MTT reduction and LDH release do not discriminate between apoptotic and necrotic forms of cell death, caspase 3 activity was monitored by Western blotting using an anti-active caspase 3 antibody, as a marker of apoptotic cell death. Hypoxia/reoxygenationinduced caspase-3 activity was significantly reduced by CPA (Fig. 1). The role of TG2 in A_1 adenosine receptor-induced pre-conditioning was explored using pharmacological inhibitors of TG2 (Z-DON and R283) and knockdown of endogenous TG2 by siRNA. Transfection of H9c2 cells with TG2 siRNA significantly inhibited TG2 protein expression (Fig. 2). Pretreatment with TG2 inhibitors (either Z-DON (150 μ M) or R283 (200 μ M)) or transfection of

cells for 48 h with TG2 siRNA reversed CPA-induced protection, confirming the involvement of TG2 in A₁ adenosine receptor-induced pre-conditioning (Fig. 3). Finally, pre-treatment with pertussis toxin (16 h; 100 ng/ml) attenuated CPA-induced pre-conditioning, confirming G_{i/o}-protein coupling of the A₁ adenosine receptor (data not shown). Overall these data indicate a prominent role for TG2 in A₁ adenosine receptor-induced pre-conditioning.

3.2. Role of TG2 in A₁ adenosine receptor-induced post-conditioning in H9c2 cells We have previously reported that the A₁ adenosine receptor triggers pharmacological postconditioning against hypoxia/reoxygenation-induced LDH release (Fretwell and Dickenson, 2011). In this study, H9c2 cells were pharmacologically post-conditioned with CPA (100 nM) for 10 min at the start of 18 h of reoxygenation. Hypoxia/reoxygenation-induced reduction of MTT, release of LDH and activation of caspase 3 was significantly reduced following the addition of CPA at the onset of reoxygenation (Fig. 4). Furthermore, pre-treatment with DPCPX (1 μ M) reversed CPA-induced post-conditioning (Fig. 4). Pharmacological inhibition of TG2 (Z-DON (150 μ M) and R283 (200 μ M)) and TG2 siRNA reversed CPA-induced protection, indicating the involvement of TG2 in A₁ adenosine receptor-induced postconditioning (Fig. 5). Finally, pre-treatment with pertussis toxin attenuated CPA-induced post-conditioning (data not shown). Overall these data indicate a prominent role for TG2 in A₁ adenosine receptor-induced post-conditioning.

3.3. Role of TG2 in β_{2-} adrenoceptor-induced pre-conditioning in H9c2 cells

Our previous studies have indicated functional expression of the β_2 -adrenoceptor but not the β_1 -adrenoceptor in H9c2 cells (Vyas et al. 2017). Furthermore, the long-acting selective β_2 -adrenoceptor agonist formoterol triggers TG2 transamidase activity in H9c2 cells (Vyas et al. 2017). It is also notable that in mouse cardiomyocytes the β_2 -adrenoceptor stimulates anti-apoptotic and pro-apoptotic pathways via G_i and G_s -protein coupling, respectively (Zhu et al. 2001). In this study the role of TG2 in β_2 -adrenoceptor-induced cell survival was

assessed in H9c2 cells following exposure of cells to simulated hypoxia followed by reoxygenation. Pre-treatment with formoterol $(1 \ \mu M)$ had no significant effect on hypoxia/reoxygenation-induced decrease in MTT reduction (Fig. 6A) or release of LDH (Fig. 6B). In marked contrast, pre-treatment with the non-selective β -adrenoceptor agonist isoprenaline (10 µM) significantly attenuated hypoxia/reoxygenation-induced decrease in MTT reduction (Fig. 6C), release of LDH (Fig. 6D) and activation of caspase 3 (Fig. 6E and 6F). Furthermore, treatment with the selective β_2 -adrenoceptor antagonist ICI 118,551 (1 μ M) and the non-selective β -adrenoceptor receptor antagonist propranolol (1 μ M) reversed isoprenaline-induced protection (Fig. 6), suggesting mediation via the β_2 -adrenoceptor. Previous studies have shown that isoprenaline-induced cell survival involves Gi-protein coupling (Zhu et al. 2001; Salie et al. 2011). Pertussis toxin (16 h; 100 ng/ml) attenuated isoprenaline-induced pre-conditioning, indicative of $G_{i/o}$ -protein involvement (Fig. 7). Finally, pharmacological inhibition of TG2 (R283 and Z-DON) and TG2 siRNA attenuated isoprenaline-induced cell survival (Fig. 8). Overall, these data indicate that isoprenalineinduced β_2 -adrenoceptor activation triggers pharmacological pre-conditioning via a $G_{i/o}$ protein and TG2 dependent pathway.

As expected, isoprenaline triggered transient (peaking at 20 min; Fig. 9A) and concentration dependent (Fig. 9B; EC₅₀ = 980 nM; $p[EC_{50}] = 6.13 \pm 0.15$; n=4) increases in TG2 catalysed biotin-cadaverine incorporation. The antagonists ICI 118,551 and propranolol blocked isoprenaline-induced TG2 activation (Fig. 9C). Responses to isoprenaline were inhibited following pre-treatment of cells with the TG2 inhibitors Z-DON and R283 (Fig. 9D). TG2 responses to isoprenaline were also blocked by pertussis toxin, indicating a role for $G_{i/o}$ proteins (Fig. 9E). We have recently shown that formoterol-induced TG2 activation involves ERK1/2, a component of the Reperfusion Injury Salvage Kinase pathway (Vyas et al. 2017). In this study, treatment with PD 98059 (MEK1/2 inhibitor; 50 μ M) blocked isoprenalineinduced TG2 activation suggesting ERK1/2 involvement (Fig. 9F). Finally, it is notable that isoprenaline triggers only a modest increase in cAMP (Fig. 10; EC₅₀ = 24 nM; $p[EC_{50}] = 7.63$ \pm 0.07; n=4). However, following treatment of cells for 16 h with pertussis toxin (100 ng/ml), isoprenaline triggered a robust cAMP response (EC₅₀ = 2.3 nM; p[EC₅₀] = 8.68 ± 0.09; n=4). Overall, these data suggest that isoprenaline-induced activation of the β_2 -adrenoceptor in H9c2 cells signals predominantly via G_{i/o}-proteins.

3.4. Role of TG2 in β_{2-} adrenoceptor-induced post-conditioning in H9c2 cells

H9c2 cells were pharmacologically post-conditioned with isoprenaline (10 μ M) for 20 min at the start of 18 h of reoxygenation. Hypoxia/reoxygenation-induced reduction of MTT, release of LDH and activation of caspase 3 was significantly reduced following the addition of isoprenaline at the onset of reoxygenation (Fig. 11). Pre-treatment with either ICI 118,551 (1 μ M) or propranolol (1 μ M) reversed isoprenaline-induced post-conditioning (Fig. 11). Furthermore, pertussis toxin attenuated isoprenaline-induced post-conditioning indicative of G_{i/o}-protein involvement (Fig. 12). Finally, pharmacological inhibition of TG2 (Z-DON (150 μ M) and R283 (200 μ M)) and TG2 siRNA reversed isoprenaline-induced protection, indicating the involvement of TG2 in β_2 -adrenoceptor-induced post-conditioning (Fig. 13). Overall these data indicate a prominent role for TG2 in β_2 -adrenoceptor-induced post-conditioning.

3.5. Identification of biotin-X-cadaverine labelled protein substrates

We have previously identified TG2 substrates following stimulation of the β₂-adrenoceptor with formoterol (Vyas et al. 2017). In this study, we identified TG2 substrates following stimulation with isoprenaline (10 µM for 20 min). Initially, cell extracts from biotin-Xcadaverine labelled cells (1 mM for 6h) were enriched using CaptAvidin[™]-agarose sedimentation beads. To identify the proteins captured and eluted from CaptAvidin[™]agarose beads, eluates were analysed by SWATH-MS (Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra; Huang et al. 2015). This technique allows quantification of mass spectrometry data and the results presented are shown as isoprenaline-induced fold-changes in proteins eluted from CaptAvidin[™]-agarose compared to control unstimulated cells. These experiments identified numerous proteins, including several novel TG2 substrates, whose profiles either increased or decreased following isoprenaline treatment (Table 1). Further work is needed to determine whether these changes represent altered transamidation and/or interactions with TG2 substrate binding partners.

Protein S100-A6 was chosen for validation via immunoprecipitation, SDS-PAGE and Western blot analysis since we recently identified this protein as a TG2 substrate that is transamidated following β_2 -adrenoceptor activation with formoterol (Vyas et al. 2017). Enhanced incorporation of the biotinylated amine into protein S100-A6 was shown using ExtrAvidin[®]-HRP following treatment with isoprenaline (Fig. 14). Furthermore, isoprenalineinduced increases in biotinylated protein S100-A6 were reversed by the TG2 inhibitors Z-DON (150 μ M) and R283 (200 μ M).

4. Discussion

At present there is very little information regarding the physiological role(s) of TG2 in the heart. Studies employing TG2 knockout mice have revealed a role for TG2 in protecting against ischaemia/reperfusion injury via the regulation of mitochondrial respiratory function (Szondy et al. 2006). In marked contrast, TG2 triggers apoptosis in rat neonatal cardiomyocytes exposed to H₂O₂-induced oxidative stress (Song et al. 2011). These conflicting reports suggest the role of TG2 in cardiac myocyte cell survival/apoptosis is unresolved and may depend upon the model employed and the mode of stress used to induce cell death. Our recent studies have shown that the A₁ adenosine receptor and β_2 adrenoceptor stimulate TG2 transamidase activity in the rat embryonic cardiomyoblastderived cell line H9c2 (Vyas et al. 2016; Vyas et al. 2017). Furthermore, we have demonstrated that TG2 plays a role in A₁ adenosine receptor-mediated cytoprotection against hypoxia-induced cell death in H9c2 cells (Vyas et al. 2016). Given the conflicting role of TG2 in cardiomyocyte cell survival/apoptosis we have extended our previous findings to investigate further the role of TG2 in A₁ adenosine receptor and β_2 -adrenoceptor-induced pre- and post-conditioning against hypoxia/reoxygenation-induced cell death in H9c2 cells. The data presented clearly show for the first time that pharmacological inhibition and siRNA knockdown of TG2 attenuates the A₁ adenosine receptor and β_2 -adrenoceptor-mediated preand post-conditioning in H9c2 cells exposed to simulated hypoxia/reoxygenation. The role of TG2 in protecting against hypoxia/reoxygenation-induced cell death is in agreement with Szondy et al. (2006). In contrast, TG2 appears to promote cardiomyocyte cell death when using H₂O₂-induced oxidative stress as the model for ischaemia/reperfusion injury (Song et al. 2011).

4.1. A₁-adenosine receptor-induced cell survival

The role of the A₁ adenosine receptor in ischaemic pre-conditioning and associated signalling pathways have been widely studied in many model systems (Peart and Headrick,

2007; McIntosh and Lasley, 2012; Headrick et al. 2013). Components of A₁ adenosine receptor-mediated cardioprotection include PKC (Henry et al. 1996), ERK1/2 (Germack and Dickenson, 2005) and the large-conductance Ca²⁺-activated K⁺ channel (Fretwell and Dickenson, 2009). In this study we have shown a role for TG2 in mediating A₁ adenosine receptor-induced pre-conditioning.

The role of the A₁ adenosine receptor in ischaemic post-conditioning is controversial (Burley and Baxter, 2009). Evidence for a role include studies showing that the infarct limiting protection of ischaemic post-conditioning was absent in A₁ adenosine receptor knockout mice (Xi et al. 2008). Likewise, the A₁ adenosine receptor antagonist DPCPX blocked ischaemic post-conditioning in normal and hyper-cholesterolemic rabbits (Donato et al. 2007). Cell-based studies using rat ventricular myocytes have also demonstrated that pharmacological post-conditioning with adenosine is blocked by DPCPX and involves the mitochondrial K_{ATP} channel (Lu et al. 2006). Finally, our own work has revealed A₁ adenosine receptor-induced pharmacological post-conditioning in H9c2 cells (Fretwell and Dickenson 2011). In contrast, several reports suggest that the A₁ adenosine receptor is not involved in ischaemic post-conditioning (Kin et al. 2005; Philip et al. 2006). The reasons for these differences may reflect differences in experimental protocol and model systems used. In this study we have shown for the first time that TG2 is involved in the anti-apoptotic effect of A₁ adenosine receptor-induced post-conditioning.

4.2. β₂₋adrenoceptor-induced cell survival

In the current study, formoterol had no significant effect on hypoxia/reoxygenationinduced decrease in MTT reduction or release of LDH. These observations contrast with previous studies reporting formoterol-induced cardioprotection in isolated rat hearts (Salie et al. 2011). The reason(s) for the discrepancy are unclear but may reflect the use of different models (e.g. cell line versus isolated heart) and end points (cell viability assays versus infarct size) employed. In marked contrast, isoprenaline, which we have shown in the present work to signal predominantly via G_I-protein, significantly attenuated hypoxia/reoxygenation-induced decrease in MTT reduction, release of LDH and caspase 3 activation via a TG2-dependent pathway. This is in agreement with previous studies showing that isoprenaline-induced cell survival involved G_I-protein coupling (Zhu et al. 2001; Salie et al. 2011). It is important to note that in H9c2 cells formoterol induces a robust cAMP response with no apparent G_{I/0}-protein coupling (Vyas et al. 2017). However, at present it is not clear why formoterol does not elicit increased cell survival despite triggering TG2 activation (Vyas et al. 2017). Possible explanations for this include; (i) only G_I-protein-mediated TG2 stimulation is cytoprotective, possibly via the selective activation of alternative enzymic functions of TG2 (e.g. protein kinase) not activated via G_S-dependent pathways, or (ii) opposing effects of robust formoterol-induced cAMP signalling on cell death which counteract TG2-induced cell survival. Indeed, the β_2 -adrenoceptor triggers a pro-apoptotic signal in cardiomyocytes via G_S-protein dependent signalling (Zhu et al. 2001). Overall these data highlight the need to carefully consider the signalling profiles (G_S versus G_i) when selecting β_2 -adrenoceptor agonists for use in studies investigating cardioprotection.

Finally, whilst previous studies have demonstrated β_2 -adrenoceptor-induced cardioprotection via pharmacological pre-conditioning in mouse and rat heart (Tong et al. 2005; Bernstein et al. 2011; Salie et al. 2001), very little is known regarding β_2 adrenoceptor-induced post-conditioning. However, it is notable that the β_2 -adrenoceptor plays a role in post-conditioning mediated by the anaesthetic desflurane in rabbit heart (Lange et al. 2009). Hence, the data presented in this study demonstrate β_2 -adrenoceptorinduced post-conditioning in a cell based model.

4.3. Role of TG2 in cell survival

TG2 appears to have a dual role in cell survival/apoptosis with its exact function being dependent upon many factors including cell type, cellular location, and mode of stress (Fésüs and Szondy, 2005; Tatsukawa et al. 2016). Although the A₁ adenosine receptor and

 β_2 -adrenoceptor stimulate TG2 transamidase activity in H9c2 cells (Vyas et al. 2016; Vyas et al. 2017) it is not known at present if the protective roles of TG2 observed in this study are dependent upon its transamidase activity. Whilst the TG2 inhibitors Z-DON and R283 blocked A₁ adenosine receptor and β_2 -adrenoceptor-induced TG2 transamidase activity (Vyas et al. 2016; Vyas et al. 2017) it is conceivable that the protective effects of TG2 are mediated via the protein disulphide isomerase and/or protein kinase functions of TG2. It is not known if Z-DON and R283 inhibit the protective effects of TG2 may relate to the non-enzymatic functions of TG2 (e.g. adapter protein and cell signalling regulator), although this would seem unlikely given the effects of Z-DON and R283 on A₁ adenosine receptor and β_2 -adrenoceptor-induced cell survival.

Whilst A₁ adenosine receptor and isoprenaline-induced TG2 transamidase activity is dependent upon G_{i/o}-protein coupling, at present the precise signal transduction mechanism(s) linking G_{i/o}-protein and TG2 activation is unclear. However, it would seem unlikely that stimulation of TG2 involves direct activation via G_i and/or Gβ_Y subunits. Our previous studies have shown that TG2 is phosphorylated in response to A₁ adenosine receptor and β₂-adrenoceptor activation via a pathway involving ERK1/2 (Vyas et al. 2016; Vyas et al. 2017). However, at present it is not known if A₁ adenosine receptor and β₂adrenoceptor-induced TG2 activity is dependent upon TG2 phosphorylation. Finally, since the A₁ adenosine receptor and isoprenaline trigger ERK1/2 activation in H9c2 cells via a G_{i/o}protein dependent pathway (data not shown) it is likely that TG2 activation proceeds via this route.

Cell death induced by hypoxia/reoxygenation is mainly mediated by mitochondrial dysfunction and opening of the mitochondrial permeability transition pore (Assaly et al. 2012). Hence it is likely that the cell survival role of TG2 observed in this study involves modulation of protein(s) associated with the intrinsic mitochondrial apoptotic pathway. For example, recent studies have shown that TG2 inhibits apoptosis via the down-regulation of

Bax expression and subsequent inhibition of caspase 3 and 9 (Cho et al. 2010). Furthermore, we have recently identified hexokinase 1 (HK1) and voltage-dependent anionselective channel protein 1 (VDAC1) as TG2 protein substrates following A1 adenosine receptor activation (Vyas et al. 2016). This is notable since hexokinases influence mitochondrial permeability transition pore opening and subsequent ischaemia/reperfusion injury via their interaction with VDAC1 (Calmettes et al. 2015). In this study, SWATH[™]-MS analysis identified 11 proteins not previously identified as TG2 protein substrates (e.g. adenine phosphoribosyltransferase) and 20 known substrates (Table 1) in response to isoprenaline stimulation. It is beyond the scope of the present discussion to describe the biological functions/roles of all of these proteins but it is interesting to note that induction of protein S100-A6 expression by tumour necrosis factor-a attenuates apoptosis in cardiac myocytes, suggesting a role for this TG2 substrate in cardioprotection (Tsoporis et al. 2008). Furthermore, five of the proteins, whose profile increased following isoprenaline stimulation, are involved with metabolism. Of these, it is notable that malate dehydrogenase is the primary enzyme in the malate-aspartate shuttle and recent studies have shown that inhibition of this important mitochondrial process is cardioprotective (Støttrup et al. 2010).

Further interrogation of the SWATH data identified a large number of proteins that displayed a pronounced decrease following treatment with isoprenaline, indicative of altered levels of transamidation of specific substrates and/or proteins interacting with them. It is notable that TG2 can catalyse simultaneous transamidation and deamidation of heat shock protein 20 and thus it is conceivable that β_2 -adrenoceptor-induced activation also promotes deamidation of TG2 substrates (Boros et al. 2006). Overall, these data have identified a large number of proteins whose elution profile from CaptAvidinTM-agarose beads changes markedly in isoprenaline treated cells. Future work will explore the role of such TG2mediated modifications in the cellular functions and signalling pathways mediated by the β_2 adrenoceptor. Further studies are also required to assess the temporal effects of hypoxia/reoxygenation on the cellular localization and transamidase activity of TG2. Whilst previous studies have identified mitochondrial TG2 substrates including the Bcl-2 family member Bax (Rodolfo et al. 2004) and adenine nucleotide translocator 1 (Malorni et al. 2009), it would be of interest to identify additional TG2 protein substrates that undergo cross-linking and/or incorporation of small molecule mono- and polyamines during hypoxia/reoxygenation in cardiomyocytes in order to clarify the mechanism(s) of TG2-mediated cell survival. In summary, we have shown for the first time that TG2 is involved in the A₁ adenosine receptor and β_2 adrenoceptor-induced pharmacological pre- and post-conditioning. Furthermore, since A₁ adenosine receptor and β_2 -adrenoceptor-induced TG2 activation is ERK1/2 dependent it is conceivable that TG2 is a downstream effector of the Reperfusion Injury Salvage Kinase pathway. Future experiments will endeavour to determine how TG2 protects against hypoxia/reoxygenation-induced cell death in H9c2 cardiomyoblasts.

Conflict of Interest:

The authors state no conflict of interest.

Acknowledgements

We would like to thank Dr David Boocock and Clare Coveney (Jon van Geest Cancer Research Centre, Nottingham Trent University, UK) for help in the proteomic analysis of samples.

Figure legends

Figure 1. A₁ adenosine receptor-induced pharmacological pre-conditioning against hypoxia/reoxygenation-induced cell death. Where indicated, H9c2 cells were pre-treated for 30 min with DPCPX (1 μ M) before the addition of CPA (100 nM) for 10 min prior to 8 h hypoxia (1% O₂) followed by 18 h reoxygenation (H/R) or normoxia (NX). Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A) and release of LDH into the culture medium (B). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as a percentage of normoxia control cell values (=100%) and represent the mean ± S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001 and *****P*<0.0001, (a) versus normoxia control, (b) versus H/R control, (c) versus CPA alone in the presence of H/R.

Figure 2. Knockdown of endogenous TG2 by siRNA. H9c2 cells (6-well plate; 45,000 cells/well) were transfected for 48 h with 1 μ M TG2 siRNA or negative control siRNA using Accell delivery medium. Control cells were cultured for 48 h in fully supplemented DMEM. (A) Levels of TG2 were subsequently assessed by Western blotting. Levels of β -actin are included for comparison. (B) Quantified data expressed as the ratio of TG2 to β -actin and represent the mean \pm S.E.M. of three independent experiments. ***P*<0.01 versus Accell delivery medium control.

Figure 3. The role of TG2 in A₁ adenosine receptor induced pharmacological preconditioning against hypoxia/reoxygenation-induced cell death. Where indicated, cells were pre-treated with TG2 inhibitors (Z-DON (150 μ M) or R283 (200 μ M)) for 1 h or for 48 h with 1 μ M TG2 siRNA or negative control siRNA before the addition of CPA (100 nM) for 10 min prior to 8 h hypoxia (1% O₂) followed by 18 h reoxygenation (H/R) or normoxia (NX). Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A,E) and release of LDH into the culture medium (B,F). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as a percentage of normoxia control cell values (=100%) and represent the mean \pm S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001 and *****P*<0.0001, (a) versus normoxia control, (b) versus H/R control, (c) versus CPA alone in the presence of H/R.

Figure 4. A₁ adenosine receptor-induced pharmacological post-conditioning against hypoxia/reoxygenation-induced cell death. Following 8 h hypoxia cells were treated with the CPA (100 nM) for 10 min at the start of reoxygenation. Where appropriate, cells were pretreated with DPCPX (1 μ M) for 30 min prior to stimulation with CPA. Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A) and release of LDH into the culture medium (B). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as percentage of normoxic control (=100%) and represent the mean ± S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001, and *****P*<0.0001, (a) versus normoxia control response, (b) versus H/R control, (c) versus CPA alone in the presence of H/R.

Figure 5. The role of TG2 in A₁ adenosine receptor-induced pharmacological postconditioning against hypoxia/reoxygenation-induced cell death. Following 8 h hypoxia cells were treated with the CPA (100 nM) for 10 min at the start of reoxygenation. Where indicated, cells were pre-treated with TG2 inhibitors (Z-DON (150 μ M) or R283 (200 μ M)) for 1 h or for 48 h with 1 μ M TG2 siRNA or negative control siRNA prior to stimulation with CPA. Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A,E) and release of LDH into the culture medium (B,F). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as percentage of normoxic control (=100%) and represent the mean \pm S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001, and *****P*<0.0001, (a) versus normoxia control response, (b) versus H/R control, (c) versus CPA alone in the presence of H/R.

Figure 6. The effect of pharmacological pre-conditioning with formoterol and isoprenaline on hypoxia/reoxygenation-induced cell death. Where indicated, H9c2 cells were pre-treated for 30 min with ICI 118,551 (1 μ M) or propranolol (1 μ M) before the addition of formoterol (1 μ M) or isoprenaline (10 μ M) for 20 min prior to 8 h hypoxia (1% O₂) followed by 18 h reoxygenation (H/R) or normoxia (NX). Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A,C) and release of LDH into the culture medium (B,D). Caspase-3 activation was assessed via Western blotting using antiactivated caspase-3 antibody (E) and quantified (F). Data are expressed as a percentage of normoxia control cell values (=100%) and represent the mean ± S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001 and *****P*<0.0001, (a) versus normoxia control, (b) versus H/R control, (c) versus isoprenaline alone in the presence of H/R.

Figure 7. The role of $G_i/_0$ -proteins in isoprenaline-induced pharmacological pre-conditioning against hypoxia/reoxygenation-induced cell death. Where indicated, cells were pre-treated for 16 h with pertussis toxin (PTX; 100 ng/ml) before the addition of isoprenaline (10 µM) for 20 min prior to 8 h hypoxia (1% O₂) followed by 18 h reoxygenation (H/R) or normoxia (NX). Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A) and release of LDH into the culture medium (B). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as a percentage of normoxia control cell values (=100%)

and represent the mean \pm S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001 and *****P*<0.0001, (a) versus normoxia control, (b) versus H/R control, (c) versus isoprenaline alone in the presence of H/R.

Figure 8. The role of TG2 in isoprenaline-induced pharmacological pre-conditioning against hypoxia/reoxygenation-induced cell death. Where indicated, cells were pre-treated with TG2 inhibitors (Z-DON (150 μ M) or R283 (200 μ M)) for 1 h or for 48 h with 1 μ M TG2 siRNA or negative control siRNA before the addition of isoprenaline (10 μ M) for 20 min prior to 8 h hypoxia (1% O₂) followed by 18 h reoxygenation (H/R) or normoxia (NX). Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A,E) and release of LDH into the culture medium (B,F). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as percentage of normoxic control (=100%) and represent the mean \pm S.E.M. from four independent experiments. ***P*<0.01, ****P*<0.001, and *****P*<0.0001, (a) versus normoxia control response, (b) versus H/R control, (c) versus isoprenaline alone in the presence of H/R.

Figure 9. Effect of isoprenaline on TG2 transamidase activity in H9c2 cells. (A) Cells were stimulated with isoprenaline (10 μ M) for the indicated time periods. (B) Concentration-response curve for isoprenaline in cells treated with agonist for 20 min. (C) Cells were pretreated for 30 min with the antagonists ICI 118,551 (1 μ M) and propranolol (1 μ M) or (D) for 1 h with the TG2 inhibitors Z-DON (150 μ M) and R283 (200 μ M) prior to stimulation with isoprenaline (ISO; 10 μ M; 20 min). (E) Where indicated H9c2 cells were pre-treated for 16 h with 100 ng/ml pertussis toxin (PTX) prior to 20 min stimulation with 10 μ M isoprenaline. (F) Cells were pre-treated with PD 98059 (50 μ M) for 30 min prior to 20 min stimulation with 10 μ M isoprenaline. Cell lysates were subjected to the biotin-cadaverine incorporation assay and data points represent the mean \pm S.E.M. for TG2 specific activity from four

independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001 and *****P*<0.0001, (a) *versus* control response and (b) versus isoprenaline alone.

Figure 10. Isoprenaline-induced cAMP accumulation in H9c2 cells. Where indicated, cells were pre-treated for 16 h with 100 ng/ml pertussis toxin (PTX) prior to stimulation for 20 min with the indicated concentrations of isoprenaline. Levels of cAMP were determined as described in Materials and Methods. Data are presented as levels of cAMP in nM. The results represent the mean \pm S.E.M. of four experiments each performed in triplicate. **P*<0.05, ***P*<0.01, and *****P*<0.0001 versus control.

Figure 11. The effect of pharmacological post-conditioning with isoprenaline on hypoxia/reoxygenation-induced cell death. Following 8 h hypoxia cells were treated with the isoprenaline (10 μ M) for 20 min at the start of reoxygenation. Where indicated, H9c2 cells were pre-treated for 30 min with ICI 118,551 (1 μ M) or propranolol (1 μ M) prior to stimulation with isoprenaline. Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A) and release of LDH into the culture medium (B). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as a percentage of normoxia control cell values (=100%) and represent the mean ± S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001 and *****P*<0.0001, (a) versus normoxia control, (b) versus H/R control, (c) versus isoprenaline alone in the presence of H/R.

Figure 12. The role of $G_{i/o}$ -proteins in isoprenaline-induced pharmacological postconditioning against hypoxia/reoxygenation-induced cell death. Following 8 h hypoxia cells were treated with the isoprenaline (10 µM) for 20 min at the start of reoxygenation. Where indicated, cells were pre-treated for 16 h with pertussis toxin (PTX; 100 ng/ml) prior to stimulation with isoprenaline. Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A) and release of LDH into the culture medium (B). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as a percentage of normoxia control cell values (=100%) and represent the mean \pm S.E.M. from four independent experiments. **P*<0.05, ****P*<0.001 and *****P*<0.0001, (a) versus normoxia control, (b) versus H/R control, (c) versus isoprenaline alone in the presence of H/R.

Figure 13. The role of TG2 in isoprenaline-induced pharmacological post-conditioning against hypoxia/reoxygenation-induced cell death. Following 8 h hypoxia cells were treated with the isoprenaline (10 μ M) for 20 min at the start of reoxygenation. Where indicated, cells were pre-treated with TG2 inhibitors (Z-DON (150 μ M) or R283 (200 μ M)) for 1 h or for 48 h with 1 μ M TG2 siRNA or negative control siRNA prior to stimulation with isoprenaline. Cell viability was assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases (A,E) and release of LDH into the culture medium (B,F). Caspase-3 activation was assessed via Western blotting using anti-activated caspase-3 antibody (C) and quantified (D). Data are expressed as percentage of normoxic control (=100%) and represent the mean \pm S.E.M. from four independent experiments. **P*<0.05, ***P*<0.01, ****P*<0.001, and *****P*<0.0001, (a) versus normoxia control response, (b) versus H/R control, (c) versus isoprenaline alone in the presence of H/R.

Figure 14. Detection of biotin-X-cadaverine into protein S100-A6 following isoprenaline treatment of H9c2 cells. (A) Cells were incubated with 1 mM biotin-X-cadaverine for 6 h after which they were treated with isoprenaline (10 µM) for 20 min. Where indicated, cells were pre-treated with TG2 inhibitors Z-DON (150 µM) or R283 (200 µM) for 1 h prior to stimulation with isoprenaline. Biotin-X-cadaverine-labelled proteins were enriched using CaptAvidin[™] agarose sedimentation beads and eluted proteins subjected to immunoprecipitation using anti-protein S100-A6 antibody. Immunoprecipitated proteins were subjected to SDS-PAGE, transferred to nitrocellulose membrane and detected using ExtrAvidin[®]-HRP. Immunoprecipitated samples were also analysed on separate blots using anti-protein S100-A6 antibody to confirm equal protein loading. (B) Quantified data are expressed as the percentage of biotinylated protein S100-A6 in control cells (= 100%) and represent the mean \pm S.E.M. of three independent experiments. **P*<0.05 and ***P*<0.01, (a) versus control response, (b) versus 10 µM isoprenaline alone.

Table 1. Identification of proteins showing increased or decreased levels in eluates from

CaptAvidin^M-agarose columns following isoprenaline-induced β_2 -adrenoceptor activation.

Protein Name	Uniprot Accession	Uniprot Name	Absolute Fold Change*
Isoprenaline-induced increases			
^b Adenine phosphoribosyltransferase	P36972	APT_RAT	2.61
^a Protein S100-A6	P05964	S10A6_RAT	2.46
^e Collagen alpha-1(III) chain	P13941	CO3A1_RAT	2.27
^g Annexin A5	P14668	ANXA5_RAT	2.15
^h Protein disulfide-isomerase A5	Q5I0H9	PDIA5_RAT	2.02
^a Protein SET	Q63945	SET_RAT	2.01
^b Malate dehydrogenase, mitochondrial	P04636	MDHM_RAT	1.96
^e Collagen alpha-1(I) chain	P02454	CO1A1_RAT	1.91
^b Acetyl-CoA carboxylase 1	P11497	ACACA_RAT	1.81
^b L-lactate dehydrogenase A chain	P04642	LDHA_RAT	1.75
⁹ Caspase recruitment domain-containing protein 9	Q9EPY0	CARD9_RAT	1.74
^b Aldehyde dehydrogenase, mitochondrial	P11884	ALDH2_RAT	1.73
^d Ribonuclease inhibitor	P29315	RINI_RAT	1.71
Isoprenaline-induced decreases			
d40S ribosomal protein S24	P62850	RS24_RAT	-2.88
^d Transcription intermediary factor 1-beta	O08629	TIF1B_RAT	-2.87
^f PDZ and LIM domain protein 5	Q62920	PDLI5_RAT	-2.60
^d Cysteine and glycine-rich protein 1	P47875	CSRP1_RAT	-2.47
^g Lactadherin	P70490	MFGM_RAT	-2.24
^e Dynactin subunit 2	Q6AYH5	DCTN2_RAT	-1.90
dElongation factor 1-delta	Q68FR9	EF1D_RAT	-1.88
^a Transforming growth factor beta-1-induced transcript 1 protein	Q99PD6	TGFI1_RAT	-1.82
^e Dynactin subunit 1	P28023	DCTN1_RAT	-1.80
^a Integrin beta-1	P49134	ITB1_RAT	-1.79
°Vimentin	P31000	VIME_RAT	-1.78
^d Eukaryotic translation initiation factor 5	Q07205	IF5_RAT	-1.68
^e Cytoplasmic dynein 1 heavy chain 1	P38650	DYHC1_RAT	-1.57
^h Heat shock protein HSP 90-alpha	P82995	HS90A_RAT	-1.56
^c Tubulin beta-4B chain	Q6P9T8	TBB4B_RAT	-1.52
^b Fatty acid synthase	P12785	FAS_RAT	-1.42
^f 14-3-3 protein theta	P68255	1433T_RAT	-1.42
^f 14-3-3 protein zeta/delta	P63102	1433Z_RAT	-1.38

H9c2 cells were pre-incubated with biotin-X-cadaverine prior to treatment with isoprenaline (10 μ M) and biotin-cadaverine labelled proteins were captured and analysed by SWATH MS. *Absolute fold changes in isoprenaline-treated samples versus control (n=4) were calculated using SCIEX OneOmics with parameters MLR weight > 0.15, confidence >70%, algorithms used described by Lambert *et* al., (2013). Known TG2 targets appearing in the TG2

substrate database (Csósz et al., 2009) or identified by Yu et al. (2015), Almami et al. (2014), Vyas et al. (2016, 2017) are indicated in *italics*. Proteins are grouped according to their functions and/or cellular function as follows: ^acell signalling; ^bmetabolism; ^ccytoskeletal; ^dtranscription/translation; ^evesicular trafficking/extracellular matrix constituent; ^fstructural/scaffolding protein; ^gapoptosis; ^hprotein folding

References

Almami I, Dickenson JM, Hargreaves AJ, Bonner PLR (2014) Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signaling: a role for transglutaminase 2 in cytoprotection. Br J Pharmacol 171: 3946-3960.

Assaly R, d'Anglemont de Tassigny A, Paradis S, Jacquin S, Berdeaux A, Morin D (2012) Oxidative stress, mitochondrial permeability transition pore opening and cell death during hypoxia-reoxygenation in adult cardiomyocytes. Eur J Pharmacol 675: 6-14.

Bernstein D, Fajardo G, Zhao M (2011) The role of β-adrenergic receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol 31: 35-38.

Boros S, Ahrman E, Wunderink L, Kamps B, de Wong WW, Boelens WC, Emanuelsson CS (2006) Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Blood 62: 1044-1052.

Burley DS, Baxter GF (2009) Pharmacological targets revealed by myocardial postconditioning. Curr Opin Pharmacol 9: 177–188.

Calmettes G, Ribalet B, John S, Korge P, Ping P, Weiss JN (2015) Hexokinases and cardioprotection. J Mol Cell Cardiol 78: 107-115.

Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 87: 1172-1179.

Cho SY, Lee JH, Bae HD, Jeong EM, Jang GY, Kim CW, Shin DM, Jeon JH, Kim IG (2010) Transglutaminase 2 inhibits apoptosis induced by calcium-overload through down-regulation of Bax. Exp Mol Med 42: 639-650.

Cohen MV, Downey JM (2015) Signalling pathways and mechanisms of protection in preand postconditioning: historical perspective and lessons for the future. Br J Pharmacol 172: 1913-1932.

Csósz E, Meskó B, Fésüs L (2009) Transdab wiki: the interactive transglutaminase substrate database on web 2.0 surface. Amino Acids 36: 615-617.

Donato M, D'Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, Wikinski RL, Gelpi RJ (2007) Ischemic postconditioning reduces infarct size by activation of A1 receptors and K⁺(ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 49: 287–292.

Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94: 383-417.

Fésüs L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579: 3297-3302. Fretwell L, Dickenson JM (2009) Role of large-conductance Ca²⁺-activated potassium channels in adenosine A₁ receptor mediated pharmacological preconditioning in H9c2 cells. Eur J Pharmacol 618: 37–44.

Fretwell L, Dickenson JM (2011) Role of large-conductance Ca²⁺-activated K⁺ channels in adenosine A₁ receptor-mediated pharmacological postconditioning in H9c2 cells. Can J Physiol Pharmacol 89: 24-30.

Freund KF, Doshi KP, Gaul SL, Claremon DA, Remy DC, Baldwin JJ, Pitzenberger SM, Stern AM (1994) Transglutaminase inhibition by 2-[(2-oxopropyl)thio]imidazolium derivatives: mechanism of factor XIIIa inactivation. Biochemistry 33: 10109-10119.

Germack R, Dickenson JM (2005) Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39: 429–442.

Germack R, Griffin M, Dickenson JM (2004) Activation of protein kinase B by adenosine A₁ and A₃ receptors in newborn rat cardiomyocytes J Mol Cell Cardiol 37: 989-999.

Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by Data-independent Acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics: 11(6), 0111.016717

Gundemir S, Colak G, Tucholski J, Johnson GVW (2012) Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta 1823: 406-419.

Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70: 212-221.

Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signaling; taking a RISK for cardioprotection. Heart Fail Rev 12: 217-234.

Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nature Reviews Cardiology 13: 193-209.

Headrick JP, Hack B, Ashton KJ (2003) Acute adenosinergic cardioprotection in ischemicreperfused hearts. Am J Physiol Heart Circ Physiol 285: H1797–H1818.

Headrick JP, Ashton KJ, Rose'meyer RB, Peart JN (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140: 92-111.

Henry P, Demolombe S, Pucéat M, Escande D (1996) Adenosine A₁ stimulation activates δ -protein kinase C in rat ventricular myocytes. Circ Res 78: 161–165.

Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69: 1476-1486.

Huang Q, Yang L, Luo J, Guo L, Wang Z, Yang X, Jin W, Fang Y, Ye J, Shan B, Zhang Y (2015) SWATH enables precise label-free quantification on proteome scale. Proteomics 15: 1215-1223.

Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98: 367-381.

Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao ZQ, Guyton RA, Headrick JP, Vinten-Johansen J (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67: 124–133.

Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M (2014) H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta 1853: 276-284.

Lambert J-P, Ivosev G, Couzens AL, Larsen B, Taipale M, Lin Z-Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A-C (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nature Meth 10: 1239-1245.

Lange M, Redel A, Lotz C, Smul TM, Blomeyer C, Frank A, Stumpner J, Roewer N, Kehl F (2009) Desflurane-induced postconditioning is mediated by β-adrenergic signaling. Anesthesiology 110: 516-528.

Lilley GR, Skill J, Griffin M, Bonner PLR (1998) Detection of Ca²⁺-dependent transglutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants. Plant Physiol 117: 1115-1123.

Lu J, Zang W-J, Yu X-J, Jia B, Chorvatova A, Sun L (2006) Effects of postconditioning of adenosine and acetylcholine on the ischemic isolated rat ventricular myocytes. Eur J Pharmacol 549: 133–139.

Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D'Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M (2009) The adenine nucleotide translocator1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16: 1480-1492.

McIntosh VJ, Lasley RD. (2012) Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17: 21-33.

Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136.

Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114: 208–221.

Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A_{2b} receptor cascade. Cardiovasc Res 70: 308–314.

Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279: 54783-54792.

Salie R, Moolman JA, Lochner A (2011) The role of β -adrenergic receptors in the cardioprotective effects of beta-preconditioning (β PC). Cardiovasc Drugs Ther 25: 31-46.

Salie R, Moolman JA, Lochner A (2012) The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol 107: 281.

Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning and translational aspects of protective measures. Am J Physio Heart Circ Physiol 301: H1723-H1741.

Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, Courtney S, Scheel A, Macdonald D (2010) A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J Biomol Screen 15: 478-487.

Schmitt JM, Stork PJS (2000) β_2 -adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G-protein Rap1 and the serine/threonine kinase B-Raf. J Biol Chem 275: 25342-25350.

Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S *et al* (2006) β -arrestindependent, G-protein independent ERK1/2 activation by the β 2 adrenergic receptor. J Biol Chem 281: 1261-1273.

Singh RN, McQueen T, Mehta K (1995) Detection of the amine acceptor protein substrates of transglutaminase with 5-(biotinamido) pentylamine. Anal Biochem 231: 261-263.

Slaughter TF, Achyuthan KE, Lai TS, Greenberg CS (1992) A microtiter plate transglutaminase assay utilizing 5-(biotinamido) pentylamine as substrate. Anal Biochem 205: 166-171. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76-85.

Sommerschild HT, Kirkebøen KA (2000) Adenosine and cardioprotection during ischaemia and reperfusion - an overview. Acta Anaesthesiol Scand 44: 1038–1055.

Song H, Kim BK, Chang W, Lim S, Song BW, Cha MJ, Yang J, Hwang KC (2011) Tissue transglutaminase 2 promotes apoptosis of rat neonatal cardiomyocytes under oxidative stress. J Recept Signal Transduct Res 31: 66-74.

Støttrup NB, Løfgren B, Birkler RD, Nielsen JM, Wang L, Caldarone CA, Kristiansen SB, Contractor H, Johannsen M, Bøtker HE, Nielsen TT (2010) Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovasc Res 88: 257-266.

Szondy Z, Mastroberardino PG, Váradi J, Farrace MG, Nagy N, Bak I, Viti I, Wieckowski MR, Melino G, Rizzuto R, Tósaki A, Fesus L, Piacentini M (2006) Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death Differ. 13:1827-1829.

Tatsukawa H, Furutani Y, Hitomi K, Kojima S (2016) Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 7: e2244.

Tong H, Bernstein D, Murphy E, Steenbergen C (2005) The role of β -adrenergic receptor signalling in cardioprotection. FASEB J 19: 983-985.

Tsoporis JN, Izhar S, Parker TG (2008) Expression of S100A6 in cardiac myocytes limits apoptosis induced by tumor necrosis factor- α . J Biol Chem 283: 30174-30183.

Urmaliya VB, Church JE, Coupar IM, Rose'Meyer RB, Pouton CW, White PJ (2009) Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell ischemia model involves cooperative activation of adenosine A2A and A2B receptors by endogenous adenosine. J Cardiovasc Pharmacol 53: 424-433.

Vyas FS, Hargreaves AJ, Bonner PL, Boocock DJ, Coveney C, Dickenson JM (2016) A₁ adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival. Biochem Pharmacol 107: 41-58.

Vyas FS, Nelson CP, Freeman F, Boocock DJ, Hargreaves AJ, Dickenson JM (2017) β_2 adrenoceptor-induced modulation of transglutaminase 2 transamidase activity in cardiomyoblasts. Eur J Pharmacol 813: 105-121.

Watkins SJ, Borthwick GM, Arthur HM (2011) The H9c2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In vitro Cell Dev Biol Anim 47: 125-131.

Xiao RP, Zhang SJ, Chakir K, Avdonin P, Zhu W, Bond RA, Balke CW, Lakatta EG, Cheng H (2003) Enhanced G_i signaling selectively negates β_2 -adrenergic receptor(AR)- but not β_1 -AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation. 108: 1633-1639.

Xi L, Das A, Zhao ZQ, Merino VF, Bader M, Kukreja RC (2008) Loss of myocardial ischemic postconditioning in adenosine A_1 and bradykinin B_2 receptors gene knockout mice. Circulation 118: S32–S37.

Yu C-H, Chou C-C, Lee Y-J, Khoo K-H, Chang G-D (2015) Uncovering protein polyamination by the spermine-specific antiserum and mass spectrometric analysis. Amino Acids 47: 469-481.

Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285: H579–H588.

Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by β_2 -adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98: 1607-1612.

Figure 1

Figure 2

Figure 4

Figure 12

Figure 14

