
 

 

 

Title: Identification of novel flowering genes using RNA-Seq pipeline employing 1 

combinatorial approach in Arabidopsis thaliana time-series apical shoot meristem data  2 

Abstract:  3 

Floral transition is a crucial event in the reproductive cycle of a flowering plant during which many 4 

genes are expressed that govern the transition phase and regulate the expression and functions 5 

of several other genes involved in the process. Identification of additional genes connected to 6 

flowering genes is vital since they may regulate flowering genes and vice versa. Through our 7 

study, expression values of these additional genes has been found similar to flowering genes FLC 8 

and LFY in the transition phase. The presented approach plays a crucial role in this discovery. An 9 

RNA-Seq computational pipeline was developed for identification of novel genes involved in floral 10 

transition from A. thaliana apical shoot meristem time-series data. By intersecting differentially 11 

expressed genes from Cuffdiff, DESeq and edgeR methods, 690 genes were identified. Using 12 

FDR cutoff of 0.05, we identified 30 genes involved in glucosinolate and glycosinolate biosynthetic 13 

processes as principle regulators in the transition phase which provide protection to plants from 14 

herbivores and pathogens during flowering. Additionally, expression profiles of highly connected 15 

genes in protein-protein interaction network analysis revealed 76 genes with non-functional 16 

association and high correlation to flowering genes FLC and LFY which suggests their potential 17 

and principal role in floral regulation not identified previously in any studies. 18 
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 23 

1. Background 24 

 25 

RNA-Seq is now a frequently used method in plant biology. Studies using mutant analysis on 26 

A.thaliana have uncovered a range of genes involved in flowering (Koornneef, Hanhart and van 27 

der Veen, 1991). Analysis of A. thaliana apical shoot data suggest that certain known genes are 28 

commonly regulated during the transition phase (Klepikova et al., 2015). Recent RNA-Seq studies 29 

on fruit plants such as blueberry have used Cuffdiff software (Trapnell et al., 2012) with default 30 

parameters (Gupta et al., 2015) to identify candidate genes. Similar studies have also been 31 

performed in A. thaliana using different computational approaches with default parameters for 32 

alternative splicing detection (Liu, Loraine and Dickerson, 2014). Many of these RNA-Seq studies 33 

focus on identification of differentially expressed genes (DEGs) using bioinformatics tools. 34 

However, very often these comparative studies fail to consider optimal parameters required for 35 

upstream processing of the data prior to DEG analysis. Due to this, RNA-Seq studies involving 36 

plants sometimes do not generate optimal results. 37 



Accurate mapping of raw RNA-Seq reads is essential for identification of DEGs. A recent 38 

study by Zhao and Zhang (Zhao and Zhang, 2015) showed that divergent genesets can influence 39 

the outcome of the analysis. They characterized the impact of genome annotation choice on read 40 

mapping and transcript quantification by analyzing RNA-Seq datasets (Zhao and Zhang, 2015). 41 

In addition, certain parameters also affect mapping of reads to the transcriptome. For example, in 42 

the popular splice junction mapper TopHat2 (Kim et al., 2013) there are parameters to control 43 

‘unique mapping’ and ‘mapping of concordant read pairs’. By changing the value of the ‘unique 44 

mapping’ parameter, reads are only aligned the specified number of times to the genome and 45 

therefore the overall mapping rate is affected. Similarly, by switching on the ‘mapping of 46 

concordant read pairs’ parameter, both read pairs map to the same sequence in correct 47 

orientation with suitable distance between them. Parameters such as ‘maximum fragment length’ 48 

also affect how the reads are mapped for paired-end reads. Default values of these parameters, 49 

which are designed for mammalian genomes, when applied in plants can result in the loss of 50 

paired reads that map further than certain default base pairs (bp). Therefore, using default 51 

parameters can lead to false positive results. Furthermore, commercial RNA-Seq software such 52 

as CLC Genomics fails to consider this aspect, which can lead to generation of unreliable results. 53 

Therefore, considering the impact of parameters on read mapping to identification of DEGs, a 54 

standardized computational pipeline is required. 55 

In this study, we identified novel DEGs which can potentially regulate the function of flowering 56 

genes using a bioinformatics pipeline from plant RNA-Seq time-series data processing (Fig. 1). 57 

The pipeline which consisted of three components: data processing; Differential Gene Expression 58 

(DGE); and Gene Ontology (GO) annotation and enrichment, was applied to A. thaliana apical 59 

shoot data. We identified several thousand differentially expressed genes during the transition 60 

phase (i.e. from vegetative to reproductive developmental phase) by intersection of DGE results 61 

obtained from Cuffdiff, DESeq and edgeR tools. Expression profiles of the overlapped genes were 62 

studied and GO enrichment analysis was used to identify a list of novel candidate genes involved 63 

in flowering. Finally, we identified several genes with crucial protein interactions and potential 64 

roles in the regulation of flowering.    65 

 66 

2. Methods 67 

2.1 Data analysis pipeline 68 

The pipeline workflow (Fig. 1), starts with conversion of reads in SRA format to FASTQ format as 69 

FASTQ files were needed for sequence alignment (Ostell and McEntyre, 2007). A quality metric 70 

report was generated using FastQC tool (Andrews, 2010) which briefly outlines metrics of 71 

sequence quality, quality scores, sequence content, sequence length distribution, sequence 72 

duplication levels, overrepresented sequences, adapter content and Kmer content. Based on the 73 

metrics, reads were trimmed to generate trimmed read files for each sample using Cutadapt 74 

(Martin, 2011). Following read trimming, samples were again checked for contaminated 75 

sequences, adapters, and poor-quality reads so that they could be removed before alignment. 76 

Sample reads were then each aligned to the A. thaliana genome using TopHat2 (Kim et al., 2013) 77 

which is a fast splice junction mapper based on Bowtie2 (Langmead and Salzberg, 2012). 78 

Cufflinks and Cuffmerge were used for transcript assembly and transcript merging. DGE was 79 

performed using Cuffdiff (Trapnell et al., 2012). For DGE analysis using DESeq and edgeR, BAM 80 



files obtained from Tophat2 are converted to raw read counts using HTSeq (Anders, Pyl and 81 

Huber, 2015). There are many other transcript quantification tools available, such as RSEM (Li 82 

and Dewey, 2011) and StringTie (Pertea et al., 2015), which utilize the BAM file generated from 83 

Tophat2 and reference GTF file and produce Reads Per Kilobase of transcript per Million (RPKM) 84 

reads. HTSeq utilizes a simpler approach and produces raw read count from the SAM file and 85 

reference GTF file. Raw reads were then used for DGE using DESeq (Anders and Huber, 2010) 86 

and edgeR (Robinson, McCarthy and Smyth, 2010). There are many other tools available for 87 

RNA-Seq DGE analysis such as NPEBseq (Bi and Davuluri, 2013), NOISeq (Tarazona et al., 88 

2012), baySeq (Hardcastle and Kelly, 2010), DEGSeq (Wang et al., 2009) and EBSeq (Leng et 89 

al., 2013). Cuffdiff was chosen as it is specifically designed for DGE analysis from transcripts, 90 

spliced regions and promoters, and is best suited to use in conjunction with TopHat2. Since some 91 

of the samples in the study did not contain any replicates, DESeq and edgeR were chosen 92 

because both the tools are designed to work with and without replicates. Additionally, coupling 93 

HTSeq with DESeq and edgeR helps in direct integration of raw read counts from htseq-count as 94 

input into DESeq and edgeR programs. Post-analysis was performed using the SpliceR (Vitting-95 

Seerup et al., 2014) tool for annotation of transcript features obtained from Cuffdiff (Trapnell et 96 

al., 2012). Results from Cuffdiff, DESeq and edgeR were merged to obtain collective DEGs in the 97 

sample pairs. The final step of the pipeline consisted of gene enrichment, pathway analysis and 98 

protein-protein interaction (PPI) network analysis using the Araport portal (Krishnakumar et al., 99 

2015), ClueGO (Bindea et al., 2009) and GeneMania (Montojo et al., 2010) for identifying novel 100 

gene clusters associated with flower development.       101 

       102 

2.2 Sample collection and data preparation 103 

Experiments were conducted by Klepikova et al (Klepikova et al., 2015) where a single A. thaliana 104 

plant (Col-0) was grown in conditions for preventing crossbreeding. Plants were harvested at 7-105 

16 days old to obtain synchronized plants at different developmental stages, denoted by S7 to 106 

S16 respectively. Hand-dissected shoot apical meristems were fixed in two biological replicates 107 

using tissues from 15 individuals in each sample. 9-14-day old plants were collected in two 108 

replicates for a second independent experiment denoted by S9N to S14N respectively.  Sequence 109 

reads for each sample were obtained from the NCBI Sequence Read Archive under project ID 110 

PRJNA268115. A quality report was generated using the FastQC tool to obtain the statistics of 111 

reads (Andrews, 2010). The SRA data was converted to FASTQ format using the ‘fastq-dump’ 112 

tool available in the SRA Toolkit, NCBI (Sayers et al., 2009). 113 

 114 

2.3 Read trimming, reference genome mapping and transcript assembly 115 

Adapter trimming and genome mapping represents the pre-processing step, as seen in Fig. 1. 116 

First 15 base pairs of the reads were trimmed using Cutadapt to remove adapter sequences and 117 

improve the quality of the reads to keep reads with a Q-score greater than or equal to 30 (Martin, 118 

2011). Each sample consists of two reads; therefore, each read was trimmed and a FastQC report 119 

was regenerated on the trimmed data to examine the quality and verify that the resultant reads 120 

satisfied the criterion. Trimmed reads were mapped to the A. thaliana genome (TAIR10) using 121 

the TopHat2 aligner (Langmead and Salzberg, 2012; Kim et al., 2013). We ran TopHat2 on both 122 

the reads, with the values of the following default parameter changed to suit A. thaliana: minimum 123 



intron length (-i) was set to 40, maximum intron length (-I) was set to 5000, segment length was 124 

set to 20, segment mismatches was set to 2, no multi-hits (-g=1), minimum normalized depth (F) 125 

was set to 0 and minimum anchor length was set to 10 (-a=10). The parameter values are 126 

summarized in Table 1. Trimmed reads were also aligned using Bowtie2 with minimum (i) and 127 

maximum (I) intron length set to 30 and 5000 respectively. Previously, it was reported in some 128 

studies that the minimum functional intron length for monocots and dicots was found to lie 129 

between 70 to 73 nucleotides (nt) (Goodall and Filipowicz, 1990). However, certain genome-wide 130 

studies performed on A. thaliana and O. sativa datasets provides evidence of introns shorter than 131 

60 nt with size range of 20 to 59 nt in length (Deutsch and Long, 1999; Wang and Brendel, 2006). 132 

Similarly, the maximum intron length for plant genomes, which is otherwise set to 500bp, is much 133 

larger than vertebrates. Since each read is cut into segments that are mapped independently, the 134 

segment length for shorter reads in our case should be decreased from its default value. By setting 135 

the max multihits option to 1, we are forcing unique mapping of the reads to the genome which 136 

will allow best mapping of the read to the genome. By setting the value of minimum anchor length 137 

to 10 instead of 8, TopHat2 will report junctions spanned by reads with at least this many bases 138 

on each side of the junction. Finally, to eliminate the heuristic filter associated with vertebrate 139 

genomes, minimum normalized depth was set to 0 instead of 300.  140 

Reads aligned using TopHat2 were then used by Cufflinks (Fig. 1) for assembling 141 

individual transcripts with –i 40 and -I 5000 parameters (Trapnell et al., 2012). In plant genomes, 142 

the difficulty of estimation of transcript abundance arises due to multi-reads and the genome 143 

becomes highly-repetitive. Therefore, to address the uncertainty, an Expectation-Maximization 144 

algorithm (EM) has been applied using Cufflinks for estimating transcript abundance which 145 

computes fractional distribution of each multi-read after read alignment in the E-step and then 146 

estimates relative abundance of transcripts in the M-step until it converges. After obtaining the 147 

transcripts for each read, transcripts from two comparable samples were merged using Cuffmerge 148 

(Trapnell et al., 2012). For example, for comparing S7 with S8, the transcripts of each read of the 149 

two samples which is equal to 4 read transcripts were merged to form an assembled transcript 150 

GTF file for further analysis.  151 

 152 

2.4 Differential gene expression analysis on time-series apical shoot data 153 

 154 

Differential expression analysis of the reads was carried out by testing the samples at day 8 to 16 155 

(S8 to S16) after germination against the sample from day 7 (S7) to obtain DEGs at each 156 

consecutive stage. The reason why day 7 was chosen for benchmarking was that plants at this 157 

stage after germination had the first and second leaves visible; while on day 16th they had ten 158 

visible leaves. Comparisons of two samples from consecutive days were also made (Table 2). 159 

These analyses were carried out using Cuffdiff (Trapnell et al., 2012). The multi-read-correct 160 

option was enabled to carry out an initial estimation procedure for accurately weighting reads for 161 

mapping to multiple locations on the genome. Quartile normalization was used to obtain 162 

Fragments Per Kilobase Million (FPKM) and fragment counts via the ratio of 75th quartile fragment 163 

counts to 75th quartile value across all samples. False discovery rate (FDR) adjusted p-values 164 

(known as q-values) were obtained from the analysis and significantly expressed genes were 165 

obtained by filtering q-values less than or equal to 0.05.  166 



Sequence read counts were obtained from the reads aligned by Tophat2 using the HTSeq 167 

tool to generate raw read counts (Anders, Pyl and Huber, 2015). The read counts were then used 168 

to produce a list of differentially expressed genes using DESeq (Anders and Huber, 2010) and 169 

edgeR (Robinson, McCarthy and Smyth, 2010). As in the previous step, comparative analysis of 170 

S7 against S8 to S16 and step-wise analysis were conducted. Since the dataset contains partial 171 

replicates for 5 samples (S9N to S14N), we used blind dispersion estimation for samples with no 172 

replicates along with the sharing mode set to ‘fit-only’ and we used pooled empirical dispersion 173 

for samples with one or more replicates. The negative binomial method was applied for obtaining 174 

DEGs. Results were filtered based on FDR <= 0.05 and log2 fold-change less than -2 and greater 175 

than 2. To compare samples involving replicates, the generalized linear model (GLM) was applied 176 

for estimating common and tagwise dispersion. To compare samples for which no replicates were 177 

found, Fisher’s exact test was applied with the biological coefficient of variation set to 0.2 178 

(Benjamini and Hochberg, 1995). For performing DGE analysis using edgeR for samples having 179 

no biological replicates, we used common BCV (Biological Coefficient of Variation) with square-180 

root dispersion value which was set to 0.4 for humans and 0.1 for genetically identical organisms. 181 

 182 

2.5 Alternative splicing classification analysis using SpliceR 183 

 184 

To obtain statistics of transcript level information, we utilized SpliceR (Vitting-Seerup et al., 2014) 185 

to classify isoform transcripts obtained from Cuffdiff. Output files containing FPKM tracking, count 186 

tracking and read group tracking files enabled us to detect exon skipping/inclusion (ESI) events, 187 

alternative transcription start site (ATSS), alternative transcription termination site (ATTS), 188 

alternative 3’ splice site (A3), alternative 5’ splice site (A5) and mutually exclusive exon (MEE) 189 

events.  Additionally, the average number of transcripts per gene and the average number of ESI 190 

events per transcript were computed using the spliceR function for each of the “Against S7” and 191 

“Step Analysis” sample pairs.  192 

 193 

2.6 GO enrichment, pathway and protein-protein interaction analysis  194 

 195 

Results obtained from the overlap of Cuffdiff, DESeq and edgeR were used for functional 196 

enrichment to categorize genes and their associated functions. Overlapping DEGs had to express 197 

more than once in “Against S7” and “Step analysis” results to be retained for further analysis. GO 198 

enrichment functional annotation and clustering of the genes were performed using the Araport 199 

portal (Krishnakumar et al., 2015) to identify genes associated with enriched categories. Gene 200 

identifiers (e.g. AT1G02335) were used as inputs into the Araport Thalemine tool. These 201 

identifiers were then used for enrichment in gene ontologies (biological process, cellular 202 

component and molecular function). Pathway analysis was performed using the ClueGo plugin 203 

(Bindea et al., 2009) of the Cytoscape software (Shannon et al., 2003). Gene identifiers were 204 

used to identify the association and clustering of genes in pathways using KEGG (Ogata et al., 205 

1999), REACTOME (Croft et al., 2014) and WikiPathways (Kutmon et al., 2015) databases. 206 

Enrichment or depletion of GO categories in ClueGO was performed using the two-sided 207 

hypergeometric test and FDR was calculated for the enriched GO categories using the Benjamin 208 

and Hochberg approach (Benjamini and Hochberg, 1995). Gene enrichment and clustering 209 

results obtained from Araport and Cytoscape were further filtered with FDR <= 0.05 to identify 210 



highly significant enriched clusters. A PPI network was constructed using the GeneMania plugin 211 

(Montojo et al., 2010) of the Cytoscape software (Shannon et al., 2003) to obtain prevalent 212 

interactors and their degree of interactions from the network. 213 

 214 

2.7 Calculation of relative expression values 215 

 216 

To calculate relative expression values, FPKM counts were used in each sample pair and counts 217 

were normalized by dividing by the sample pair read count by the maximum read count value 218 

from all other sample pairs (i.e. S7-S8 to S7-S16) to obtain relative expression value between 0 219 

and 1. Expression profiles of each gene were constructed by comparing expression values from 220 

Cuffdiff and DESeq-edgeR.   221 

 222 

2.8 Calculating correlation of expression values 223 

 224 

For calculating correlation between the expression profiles, Pearson Correlation Coefficient 225 

(PCC) was used. Expression profiles of differentially expressed genes involved in flower 226 

development were compared against expression profiles of FLC and LFY genes to obtain PCC 227 

between them. Also, difference in expression using PCC was also evaluated by comparing 228 

expression profiles of genes obtained from Cuffdiff, DESeq and edgeR with those obtained from 229 

Klepikova et al. (Klepikova et al., 2015). 230 

 231 

2.9 Data availability 232 

 233 

An apical shoot meristem time-series dataset has been deposited by other researchers in the 234 

NCNI SRA database under project ID PRJNA268115 (Klepikova et al., 2015) has been used in 235 

this study. Analysis pipelines listing the data processing and differential gene expression steps 236 

constructed and revealed through our research has been provided as Linux shell scripts which 237 

can downloaded from GitHub https://github.com/deshpan4/RNA-Seq-pipeline.  238 

 239 

3. Results 240 

3.1 Differential expression analysis of time-series apical shoot data 241 

 242 

Results obtained from DGE of five sample pairs were computed in “Against S7” and “Step 243 

Analysis” manner as detailed in Table 2. When comparing with S7, 5,266 DEGs were obtained 244 

for S7-S10, 2,841 genes for S7-S11, 4,760 for S7-S12, 6,337 for S7-S13 and 2,532 genes for S7-245 

S14 pair. DGE using “Step analysis” was performed to identify genes differentially expressed from 246 

the previous day which yielded fewer genes as compared to that obtained from “Against S7” 247 

sample pairs.  248 

Next, we studied the overlap between Cuffdiff, DESeq and edgeR for sample pairs in 249 

“Against S7” and “Step Analysis”. By overlapping DEGs, 418 genes were found for S7-S10 with 250 

FDR <= 0.05. Using the same cutoff, S7-S11 generated 277 genes, S7-S12 produced 520 genes, 251 

S7-S13 gave 1,534 genes and S7-S14 gave 150 genes (Table 3). On the other hand, 28 genes 252 

were found for S9-S10, 3 genes for S10-S11, 7 genes for S11-S12, 38 genes for S12-S13 and 253 

https://github.com/deshpan4/RNA-Seq-pipeline


74 genes were found for S13-S14. Overlapping genes were also found for Cuffdiff-edgeR, 254 

DESeq-edgeR and Cuffdiff-edgeR-DESeq pairs (Table 3). From Cuffdiff-DESeq-edgeR overlap, 255 

we identified 690 genes in “Against S7” and 19 genes in “Step analysis” which are significantly 256 

expressed in more than one sample pair. This set of common genes is referred to as CGenes in 257 

the following analysis.    258 

 259 

3.2 GO enrichment and pathway analysis of differentially expressed genes in the transition phase 260 

 261 

GO enrichment analysis applied to CGenes were classified in three categories: Biological Process 262 

(BP), Molecular Function (MF) and Cellular Component (CC). Results from GO enrichment (Fig. 263 

2) of common genes obtained from “Against S7” sample pairs show 664 genes were significantly 264 

enriched in BP and CC ontologies with p-values < 0.05. Whereas those obtained from “Step 265 

Analysis” sample pairs show 18 genes significantly enriched only in the BP ontology with p-value 266 

< 0.05. From the pathway analysis of “Against S7” DEGs, 30 genes have been found to be 267 

involved in Glucosinolate Biosynthesis, 2-Oxocarboxylic acid metabolism, Sulfur metabolism, 268 

Cysteine and methionine metabolism with FDR ≤ 0.05 whereas for “Step Analysis” only 4 genes 269 

were found to be involved in 2-Oxocarboxylic acid metabolism, C5-Branched dibasic acid 270 

metabolism, Valine, leucine and isoleucine biosynthesis.  271 

Additionally, pathway analysis using ClueGo revealed 33 genes associated with 8 GO 272 

terms which were found specifically in KEGG and REACTOME (Table 4). Pathway enrichment of 273 

19 common genes from “Step Analysis” sample pairs shows association of BCAT4, IMD1 and 274 

IPMI2 genes in the valine, leucine and isoleucine biosynthesis pathways with significant term p-275 

value < 0.05.      276 

 277 

3.3 Analysis of expression profiles of enriched genes involved in glucosinolate biosynthesis and 278 
metabolism 279 
 280 

Expression profiles were constructed from the set of enriched genes by selecting the highly 281 

enriched cluster from the CGenes set. Fig. 3 shows the relative expression profiles of the genes 282 

expressed in “Against S7” and “Step analysis” sample pairs that play major roles in Glucosinolate 283 

Biosynthesis (GluBP), Glycosinolate Biosynthesis (GlyBP), Glucosinolate Metabolic Process 284 

(GluMP), Glycosinolate Metabolic Process (GlyMP), Sulfur-Compound Biosynthetic Process 285 

(SCBP) and Sulfur-Compound Metabolic Process (SCMP). 21 genes have been found to be 286 

associated with GluBP and GlyBP, 27 associated with GluMP and GlyMP, 25 associated with 287 

SCBP and 37 have been found to be associated with SCMP. From the expression profiles 288 

expression of the genes peaks at S7-S8 and S7-S9 pairs in “Against S7”. The expression 289 

decreases to 0.4 in S7-S10. It continues to decrease until it reaches 0 in S7-S13 and continues 290 

for the rest of the samples for most of the genes. It is clearly visible that ACO1, ACO2, APS1 and 291 

AT4G05090 display different behavior where expression varies between 1 and 0.6 for SCMP. In 292 

SCBP, CYSD1 expression value remains constant between 0.6 and 0.8 whereas for CYP83B1 293 

value suddenly increases from 0.4 in S7-S12 to 0.9 in S7-S13, drops to 0.4 in S7-S14 and again 294 

increases to 0.9 in S7-S15 and S7-S16. In GBP, only CYP83B1 shows variable expression. Apart 295 

from these genes, certain other genes such as TGG1 and TGG2 show a “zig-zag” expression 296 

pattern which encodes myrosinase enzymes and helps in the breakdown of glucosinolates (Barth 297 



and Jander, 2006). As compared to these genes, CYP83B1 and CYP83A1 are expressed in the 298 

SCMP, SCBP and GluBP. These encode non-redundant enzymes which also metabolize oximes 299 

in glucosinolate biosynthesis (Naur et al., 2003). Where the expression of CYP83A1 follows a 300 

general curve of steep decrease in expression from S7-S9, expression of CYP83B1 is non-301 

identical and shows a “zig-zag” expression pattern like TGG1 and TGG2. Similarly, ACO1 and 302 

ACO2 in the SCMP also differ in their expression profiles despite being similar in structure and 303 

function. CYP79B3 also encodes a cytochrome protein however its expression is dissimilar from 304 

CYP83B1 which can be clearly distinguished in the GluBP where the value starts to decrease 305 

from S7-S8 to S7-S14 and increases from 0.08 to 0.43 in S7-S16. 306 

 307 

3.4 Expression profiles of differentially expressed flowering genes 308 

From CGenes, genes responsible for flowering and involved in regulation of flower development 309 

were identified. 5 genes were found to be involved in “Flowering”. 18 were found to be associated 310 

with “Flower Development”, 8 with “Regulation of Flower Development” and 3 with “Negative 311 

Regulation of Flower Development”. Fig. 4 shows expression profiles of genes involved in 312 

flowering, flower development, regulation of flower development and negative regulation of flower 313 

development. In “Against S7” sample pairs, many experimental genes such as FLC, SOC1, EMS1 314 

and FD have also been identified by enrichment analysis. Expression profiles of flowering genes 315 

shows that SOC1, FCA, SAP and AGL31 increase in expression as compared to FLC which 316 

decreases in expression in “Against S7”. All four genes show increase in expression in S7-S10 317 

which is followed by decrease in expression in S7-S11. FCA, SAP and SOC1 show highest 318 

expression in S7-S14 whereas the expression for AGL31 remains constant between 0.2 and 0.4 319 

and finally increases to 1 in S7-S16. In the “Flower Development” process, a large cluster of genes 320 

in “Against S7” sample pairs display a “zig-zag” pattern of expression. There are four gene 321 

clusters observed in this process. The first cluster consists of ATX1, RDR6, SOC1, KAN2, BPE, 322 

SRS2, FCA, the expression values of which increase in S7-S9, decrease in S7-S11 and increase 323 

again in S7-S12. The second cluster consists of ATX1, NAC054, NGA1 and F-ATMBP shows a 324 

decrease in expression followed by an increase in S7-S15 and S16. The third cluster consists of 325 

EMS1, KAN2, ABCB19, SOC1 and SAP1 shows a peak in expression value from S7-S14. The 326 

fourth cluster of genes consists of SPT, SRS2, ATX1 and FCA in S7-S14 where the expression 327 

varies between 0.7 and 0.8. In the “Regulation of Flower Development” process, POLA, FD, 328 

ATX1, SOC1, AGL31 and FCA show a decrease in expression in S7-S11 whereas ATX1 shows 329 

an increase in expression in S7-S11. In the “Negative Regulation of Flower Development” 330 

process, only FLC, AGL31 and POLA are expressed. It is important to note that FLC has been 331 

found to be involved in all the processes of flowering, flower development, regulation and negative 332 

regulation of flower development. 333 

3.5 Identifying important regulators using protein-protein interaction (PPI) network analysis 334 

Interactions between DEGs were studied for identifying most prevalent interacting genes and their 335 

regulation on neighboring genes. PPI network was constructed for identifying highly connected 336 

genes and their most prevalent interactions (Figure 5a). From PPI network analysis, 18 genes 337 

were found to have highest interactions with edges ≥ 100 and significantly involved in 338 

Glucosinolate Biosynthesis. PPI network analysis revealed that along with 18 genes, 114 genes 339 



(Figure 5b) were involved in induced systemic resistance, sulphur compound biosynthetic 340 

process, cellular biogenic amine metabolic process, sulphur metabolism and biosynthesis, anion 341 

transport, organic acid transport and cellular response to external stimulus.  342 

 343 

3.6 Identification of floral candidate genes 344 

 345 

FPKM expression values of FLC and LFY genes from Day-1 to 10 were used to identify potential 346 

novel genes from the CGenes set by selecting those displaying the highest correlation with FLC 347 

and LFY expression profiles and having no ontology information for A. thaliana. Results of 348 

correlation and GO enrichment analysis using Araport (Krishnakumar et al., 2015) showed that 349 

69 and 7 genes which displayed the highest correlation (PCC≥0.9) in expression to FLC and LFY 350 

respectively did not get enriched in any biological or molecular function (Fig. 6). These genes 351 

were labeled as novel genes which can regulate the expression of other known floral regulators 352 

during the flowering transition phase. For identification of genes regulated by FLC or LFY, node 353 

connections were studied by filtering out genes connected with FLC or LFY. Table 5 lists genes 354 

regulated and not regulated by FLC and LFY genes. 69 genes were found to be highly correlated 355 

by FLC out of which 14 genes were regulated and 55 genes were non-regulated. Similarly, for 356 

LFY, out of 7 genes 4 were regulated and 3 were non-regulated in the PPI network. 357 

 358 

3.7 Identification of alternative splicing classes in transcripts 359 

 360 

From the SpliceR analysis, we identified 1.23 transcripts per gene in the S7 sample and 361 

approximately 1.27 transcripts for each sample compared against S7 in the “Against S7” sample 362 

pairs, whereas 2.27 and 2.26 transcripts per gene were observed for the “Step analysis” sample 363 

pairs. Looking at ESI-AS events in “Against S7”, we observed 0.1 ESI events per gene for S7 and 364 

0.07 for each compared sample, whereas in the “Step analysis” sample pairs, 0.08 ESI events 365 

per gene were observed for both samples.  366 

 367 

4. Discussion 368 

Recent progress in determination of DGE in RNA-Seq data using several bioinformatics tools 369 

enabled easier identification of genes from samples. A number of tools for processing and 370 

analysing RNA-Seq data have been developed.  These include Cufflinks, edgeR, DESeq, RSEM 371 

and others which claimaccurate identification of DEGs. However, the accuracy can only be 372 

determined by comparison of results obtained from several computational tools with those 373 

obtained from published experimental studies. Using recently published tools for RNA-Seq data, 374 

a comparative analysis of results obtained from Cufflinks-Cuffdiff2, DESeq and edgeR was 375 

performed and analysis of intersection of DEGs from two or more tools was recommended in 376 

order to obtain more robust results (Zhang et al., 2014). In the current study, we have proposed 377 

an approach for the identification of DEGs in A. thaliana RNA-Seq time-series datasets which 378 

includes quality checking, adapter trimming, reference alignment, DEG analysis, alternative 379 

splicing classification, DEG merging, GO enrichment and pathway analysis (Fig. 1). The first step 380 

in identification of DEGs is to perform accurate genome alignment. Inaccurate parameters often 381 

result in the generation of incorrect read counts from the data which could potentially result in 382 



erroneous downstream processing. Previous investigations indicated use of default values for 383 

processing RNA-Seq data (Klepikova et al., 2015) which included similar minimum intron length 384 

values of 70 nt for plants and mammals (Goodall and Filipowicz, 1990). However, mean, medium 385 

and minimum intron length in A. thaliana and O. sativa was found to be much lower (Deutsch and 386 

Long, 1999; Wang and Brendel, 2006) than the previously identified and established value of 70 387 

nt. Therefore, to correctly identify DEGs from the data, custom parameter values were applied to 388 

generate precise alignment of samples against the reference genome. The pipeline was 389 

specifically focused on accurate processing and analysis of A. thaliana time-series datasets with 390 

application in flower development. The analysis was performed by comparing S7 with other 391 

samples in a way that S7 was treated as case and the comparing sample was treated as control 392 

to identify DEGs. Additionally, analysis was also performed by progressively analyzing the case-393 

control samples in a stepwise manner (Table 2).  394 

 395 

4.1 Known floral transition related genes and their interactions 396 

In A. thaliana the transition to flowering is controlled through the regulation of certain genes of 397 

which FLC and LFY are the most important (Deng et al., 2011; Siriwardana and Lamb, 2012). 398 

The transition process involves interaction of FLC with key genes such as SUPPRESSOR OF 399 

OVEREXPRESSSON OF CONSTANS 1 (SOC1), FLOWERING LOCUS T (FT) and 400 

FLOWERING LOCUS D (FLD) (Deng et al., 2011). However, other repressors such as 401 

TERMINAL FLOWER1 (TFL1), SHORT VEGETATIVE PHASE (SVP), TARGET OF EAT1/2 402 

(TOE1/2), MADS AFFECTING FLOWERING1 (MAF1) to MAF5, EMBRYONIC FLOWER1 403 

(EMF1) and EMF2 have also been found to be involved for regulation of flowering time (Hartmann 404 

et al., 2000; Piñeiro et al., 2003; Ratcliffe et al., 2003; Mathieu et al., 2009; Hanano and Goto, 405 

2011; Zhang et al., 2015). FLC in particular binds to more than 500 target sites in the Arabidopsis 406 

genome and regulates genes which function in developmental pathways (Deng et al., 2011). One 407 

of the known interactions of FLC is with FRIGADA (FRI) where both the genes interact to control 408 

flowering time (Caicedo et al., 2004). Expression of FLC is also regulated by PHD-polycomb 409 

repressive complex 2 (PRC2) consisting of VRN2, Su(z)12 homologue and PHD finger proteins 410 

VIN3 and VRN5. Repression of FLC is mediated by cold-induced epigenetic silencing mechanism 411 

during vernalization (De Lucia et al., 2008). Like FLC, expression of SVP is controlled by the 412 

trithorax (TrxG) protein called BRAHMA (BRM) (Li et al., 2015). Similarly, the  EARLY BOLTING 413 

IN SHORT DAYS (EBS) protein participates in flowering time regulation by repressing the FT 414 

protein and CURLY LEAF (CLF) protein represses the expression of AGAMOUS LIKE (AGL) 415 

genes (Piñeiro et al., 2003). 416 

On the other hand, LFY acts as a positive regulator of APETALA1 (AP1) and the 417 

expression of AP1 was observed late during photo-induction when examined during light 418 

treatments (Hempel et al., 1997). During shoot development, members of the SQUAMOSA 419 

PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor family genes viz, SPL9 and 420 

SPL15 have been known to control shoot maturation (Schwarz et al., 2008). Llike LFY, which is 421 

a floral meristem identity protein, CAULIFLOWER (CAL), FRUITFUL (FUL), AGAMOUS LIKE24 422 

(AGL24), SEP MADS box transcription factors SEP3/4 and LATE MERISTEM IDENTITY1/2 423 

(LMI1/2) are also floral meristem identity proteins in Arabidopsis (Kempin, Savidge and Yanofsky, 424 

1995; Ferrándiz et al., 2000; Ditta et al., 2004; Castillejo, Romera-Branchat and Pelaz, 2005; 425 



Saddic et al., 2006; Gregis et al., 2008; Pastore et al., 2011; Siriwardana and Lamb, 2012). 426 

Flowering during long days is also mediated by regulation of certain proteins. The transcription 427 

factor CONSTANS (CO) plays a major role in the long-day pathway as this protein is 428 

phosphorylated. Therefore it plays a major role in the abundance of the protein (Zhang et al., 429 

2015). Phosphorylated CO is preferentially degraded when CONSTITUTIVE 430 

PHOTOMORPHOGENIC 1 (COP1) ubiquitin ligase complex is activated (Sarid-Krebs et al., 431 

2015). Furthermore, COP1 protein has also been known to interact with the Arabidopsis 432 

cryptochromes (CRY1 and CRY2) through C-terminal domains (CCT) (Yang, Tang and 433 

Cashmore, 2001). During floral transition certain genes such as FLOWERING PROMOTIVE 434 

FACTOR1 (FPF1) are expressed in apical meristems and are involved in the GA-dependent 435 

signaling pathway which regulates the GA response in apical meristem (Kania et al., 1997). 436 

 437 

4.2 Overlapping of Cuffdiff with DESeq and edgeR genes 438 

The key step of RNA-Seq data analysis is to identify DEGs using appropriate statistical models. 439 

Once the FPKM counts from the sequencing reads were obtained, these were used for finding 440 

DEGs using Cuffdiff, DESeq and edgeR. The statistical model in Cuffdiff which is used to evaluate 441 

the changes in expression assumes that the number of reads produced by each transcript is 442 

proportional to its abundance, although it fluctuates because of biological variability between the 443 

replicates and technical variability during sequencing and library preparation. DESeq, on the other 444 

hand, allows the user to supply multiple as well as no replicates. DESeq is highly useful when no 445 

replicates are present in the datasets. The statistical model in DESeq uses a blind dispersion 446 

method that is particularly useful with no replicates where the outlier values cannot be captured 447 

during dispersion estimation. On the other hand, edgeR uses both the generalized linear model 448 

(glm) and classical empirical Bayes methods, which are used for estimation of gene-specific 449 

biological variations even with those datasets having a minimal level of biological variations. 450 

Usage of Cuffdiff, DESeq and edgeR methods increase statistical power and help in rationale 451 

comparison and thus confirming the suitability of the results. Therefore, DE analysis has been 452 

carried out for further comparison in the present investigation. 453 

Results show that both Cuffdiff and edgeR displayed significant numbers of differentially 454 

expressed genes in S7-S10, S7-S12 and S7-S13 (Table 3). Overlapping of genes can be 455 

visualized by Venn diagrams constructed for transition phase samples (Fig. 7). We see in Fig. 7 456 

the intersection of Cuffdiff-DESeq-edgeR, Cuffdiff-DESeq and Cuffdiff-edgeR decreases in “Step 457 

analysis” sample pairs as compared to “Against S7” sample pairs. edgeR additionally displayed 458 

a greater number of DE genes in S7-S14, S7-S15 and S7-S16 which are not notably identified by 459 

Cuffdiff or edgeR. On the contrary, Cuffdiff displays the maximum number of DE genes from “Step 460 

analysis” results as compared to DESeq and edgeR. By comparing the results of Cuffdiff with 461 

DESeq and edgeR, we clearly observed that the overlap from Cuffdiff-edgeR was more significant 462 

than Cuffdiff-DESeq or DESeq-edgeR. This difference can be clearly observed in “Step analysis” 463 

for S10-S11 (Fig. 7g) where 1347 genes were found to be common for Cuffdiff-edgeR as 464 

compared to 4 for Cuffdiff-DESeq. Thus, the total number of common genes was significantly 465 

reduced for Cuffdiff-DESeq-edgeR intersection which is primarily due to a smaller gene count in 466 

Cuffdiff-DESeq. Thus only 1% of the genes were found to be common for Cuffdiff-DESeq-edgeR 467 



confirming that the decrease in the overlap is mostly due to DESeq results. A significant number 468 

of genes were found to have an overlap in S7-S13 pairs as shown in Fig. 7d.  469 

 470 
4.3 Comparison of profiles of differentially expressed genes 471 

FLC and LFY are the two most important genes which regulates transition to flowering and are 472 

widely known to play major role in flower development. Using PCC metric, we evaluated similarity 473 

in expression profiles of FLC and LFY obtained in this study and compared with profiles obtained 474 

from Klepikova et al (Klepikova et al., 2015). Consistent with the experimental findings, our results 475 

as shown in Fig. 8 (a, b, c and d) displays higher mean PCC of 0.86 and 0.88 for FLC and LFY, 476 

respectively which is consistent with published results (Michaels, 1999; Klepikova et al., 2015). 477 

From our results, SVP has been shown to be highly expressed in all samples during the transition 478 

phase which was consistent with the results from Klepikova et al. SOC1, on the other hand, 479 

showed a five-fold increase in expression during S7 to S10. Contrary to these results from 480 

Klepikova et al., our results showed consistently higher expression of SOC1 in transition phase 481 

samples from S7 to S14. Similarly, where the expression of FLD showed increase in later stages 482 

of floral induction (Klepikova et al., 2015), expression of FLD has been found to be consistently 483 

higher in all the stages of flower development in our results. However, we found correlation in 484 

expression patterns of genes from the SPL gene family between our results and those of the 485 

results of Klepikova et al. and others. . SPL3, SPL4 and SPL5 showed decrease in expression 486 

whereas SPL9 and SPL15 showed increase in expression which was consistent with published 487 

results (Schwarz et al., 2008). In “Against S7” sample pairs, expression of AP1 showed increase 488 

in late transition phase stages (i.e S13 and S14) consistent with Hempel et al. (Hempel et al., 489 

1997) and Ferrándiz et al. (Ferrándiz et al., 2000) whereas expression of AP1 was observed in 490 

S14 only (Klepikova et al., 2015). Experimental results show COP1 interact with CRY1 and CRY2 491 

proteins in apical shoots (Yang, Tang and Cashmore, 2001; Sarid-Krebs et al., 2015). 492 

Additionally, increased expression of FPF1 (from Cuffdiff and edgeR) has also been observed in 493 

our results which is consistent with the published results during the transition phase (Kania et al., 494 

1997). Expression profiles of FPF1, SPL9 and SPL15 have found to be correlated with LFY 495 

expression (Fig. 8b, d, e and f).   496 

Expression of experimental genes were roughly categorized into 4 different types, namely, 497 

(1) genes similar in expression to FLC displaying decrease in expression from S7-S8 to S7-S16 498 

and S15-S16, (2) genes displaying increase in expression from S7-S8 to S7-S16 and S15-S16, 499 

(3) genes having variable expression between 1 and 0.6, and (4) genes showing increase in 500 

expression followed by a decrease in expression. Genes displaying higher PCC to FLC are SNZ, 501 

SMZ, TOE2 and those having higher PCC to LFY are FPF1, CAL, AP1, SOC1, SPL9, SPL15, 502 

EMF2, CO, AGL71, MAF2 and MAF3. Genes having lower PCC are LHP1, EMF1, EBS, VRN2, 503 

CRY1, LD, FRI, FIE, FLD, BRM, COP1, CLF, SVP, PHYB, MAF1, CRY2, MAF4 and MAF5. TFL1 504 

showed increase in expression in S7-S14 whereas FT showed increase in expression in S7-S11 505 

which was followed by sudden drop in expression values for both TFL1 and FT.   506 

 507 

4.4 Comparison of expression profiles of cell-cycle related genes 508 

 509 

Expression patterns of cyclin dependent kinases (CDKs) obtained from the pipeline were also 510 

compared to obtain degree of variation between those obtained from Klepikova et al. (Klepikova 511 



et al., 2015) which included CDKA, CDKB, CDKC, CDKD, CDKP, CDPT and cyclin genes. Results 512 

from the comparison shows that most of the CDK genes exhibited moderate correlation with an 513 

average ranging between 0.60 – 0.70. While some of the CDKs such as CYCA3;4, CYCB1;1, 514 

CYCC1;2, CYCD1;1, CYCD2;1, CYCD6;1, CYCD4;2, CYCP3;1, CYCP3;2, CDKE;1, CDT1A, 515 

CYCJ18, CYL1 and CYCH;1 displayed particularly higher correlation above 0.90, some displayed 516 

particularly poor correlation which included CKS1, CDKB1;1, CDKB1;2, CDKA;1/СВС2, 517 

CYCA1;1, CYCB3;1, CYCB1;5, CYCB1;2/CYC1BAT, CYCC1;1, CYCD4;1, CYCP4;1, CYCT1;4, 518 

CDKD;3/CDKD1;3, CDKD;1/CDKD1;1 and CYCL1/RCY1 ranging between 0.20 – 0.60. 519 

Correlation analysis shows that some of the cyclin genes exhibit greater similarity, whereas the 520 

majority of CDKB and CDKD genes exhibits greater dissimilarity. Expression profiles of poorly 521 

correlated genes such as CKS1 obtained from Klepikova et al. shows single peak at M5 (Day-11) 522 

whereas two peaks were found on Day-9 and Day-12 in samples S7-S9 and S7-S12. 523 

Experimental results clearly show that CKS1 was constitutively expressed during mitotic and 524 

endoreduplication cycles (Jacqmard et al., 1999). This supports the hypothesis that the gene 525 

should be highly expressed during the flowering transition phase. Similarly, CDKB1;1 has also 526 

been found to be highly expressed in shoot meristem in A. thaliana (Skylar, Matsuwaka and Wu, 527 

2013) which supports the evidence of multiple peaks observed in our results. 528 

 529 

4.5 Protein-protein interaction network analysis of differentially expressed genes 530 

 531 

Results of PPI network analysis shows most of the DEGs during the transition phase regulate 532 

other DEGs which provide induced resistance and protection against external factors such as 533 

stress, pathogens, herbivores, temperature variations, etc. A recent study on the relationship of 534 

glucosinolates to flowering in A. thaliana suggests that presence of the MAM1 gene affects 535 

glucosinolate accumulation and flowering time in the absence of APOP2 and APOP3 genes and 536 

leads to production of C3 glucosinolates (Jensen et al., 2015). Results from the PPI network 537 

analysis clearly show that MAM1 regulates several other genes in glucosinolates and displays a 538 

high expression profile correlation of 0.75 to FLC which supports the hypothesis of glucosinolate 539 

production and protection during flowering phase. Glucosinolates are sulphur and nitrogen-rich 540 

chemical compounds in plants that provide defense against pathogens and herbivores by forming 541 

a toxic compound upon herbivore attack when the cell wall is ruptured (Jensen et al., 2015; 542 

Mohammadin et al., 2017). Glucosinolates play a crucial role in flowering time regulation during 543 

transition from vegetative to reproductive phase and also provide protection from herbivores and 544 

pathogens for the plant’s vegetative and generative tissues during the transition phase. Therefore, 545 

differential expression of glucosinolates during the transition phase becomes essential. 546 

We also identified genes responsible for flowering and involved in flowering and in 547 

regulation of flower development from the clustering of 690 expressed genes. Expression profiles 548 

of these associated genes were constructed to observe similarities and differences among profiles 549 

of experimental genes (Fig. 4). SPT1, RDR6, SRS2, SAP, SOC1 clearly showed increase in 550 

expression at S12-S13 in “Flower Development” whereas it showed a “zig-zag” pattern of 551 

expression in “Against S7”. In contrast, genes such as NGA1 and NAC054 displayed a decrease 552 

in expression from 0.5 in S7-S13 to 0.1 in S7-S14 and a sudden increase to 1 in S7-S16. Genes 553 

such as SOC1 and F-ATMBP showed an increase in expression. Expression profiles of genes in 554 

“Step Analysis” showed a distinct peak at S12-S13 which strongly indicates that genes associated 555 



with flowering and flower development show identical expression profiles and are expressed only 556 

during transition phase. 557 
 558 

Conclusions   559 

 560 

In this study, we conducted rigorous investigation and analysis of apical shoot meristem time-561 

series dataset obtained from A. thaliana. We constructed a pipeline for identification of 562 

differentially expressed genes from overlap of three tools and identified 690 genes. Their 563 

functional enrichment was conducted for identification of genes associated with highly enriched 564 

biological processes. We also constructed expression profiles of genes enriched in flowering and 565 

in the regulation of flower development. We observed that some of these genes displayed distinct 566 

expression profiles when compared to those displayed by already known experimental genes 567 

which are commonly regulated during floral transition. Additionally, PPI network analysis was 568 

conducted to identify prevalent interactors and associated functions during the transition phase. 569 

76 novel genes were identified as showing stronger regulation in the network and displaying the 570 

highest correlation in expression with FLC and LFY genes. Further experiments will validate and 571 

confirm gene regulation and specific PPIs of the novel genes obtained from the current analysis. 572 

 573 
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Figure and Tables 790 

 791 

 792 
 793 
Fig. 1: Flowchart of the proposed RNA-Seq data analysis pipeline. The workflow is divided into three 794 
stages namely, data processing, differential gene expression and GO enrichment & network interaction 795 
analysis 796 
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Fig. 2: GO enrichment functional classification results. The above figure illustrates classification of genes 799 
into several functional categories obtained using the Araport tool (Krishnakumar et al., 2015). The genes 800 
obtained from Cuffdiff (Trapnell et al., 2012), DESeq (Anders and Huber, 2010) and edgeR (Robinson, 801 
McCarthy and Smyth, 2010) are used for GO classification. (a) Illustrates GO classification results of 802 
common genes obtained from Cuffdiff, DESeq and edgeR for genes obtained from “Against S7” sample 803 
pairs. The bar chart contains two different gene ontologies. Bars colored in red represent genes enriched 804 
in “Molecular Function” whereas bars colored in blue represent genes enriched in “Cellular Component”, 805 
(b) GO classification results of common genes obtained from Cuffdiff, DESeq and edgeR for genes 806 
obtained from “Step Analysis” sample pairs. The bar chart only contains genes enriched in “Molecular 807 
Function” which are colored in red. Other two gene ontologies were not observed for the gene set 808 
provided from these sample pairs.     809 
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Fig. 3: Expression profiles of common genes from Cuffdiff-DESeq-edgeR overlap. The above graphs 812 
show expression profiles of genes enriched in glucosinolate biosynthetic process, glycosinolate 813 
biosynthetic process, glucosinolate metabolic process, glycosinolate metabolic process, sulfur compound 814 
biosynthetic process and sulfur compound metabolic process. (a) to (f) shows expression profiles of gene 815 
clusters in “Against S7” sample pairs. Common genes were obtained by overlapping DEGs from Cuffdiff 816 
(Trapnell et al., 2012), DESeq (Anders and Huber, 2010) and edgeR (Robinson, McCarthy and Smyth, 817 
2010) and expressed in more than one sample pairs. 818 
 819 
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Fig. 4: Expression profiles of flowering genes. The above figure illustrates relative expression profiles of 820 
genes involved in flowering, flower development, regulation of flower development and negative 821 
regulation of flower development. (a), (b), (c) and (d) shows relative expression of genes in “Against S7” 822 
sample pairs  823 
 824 
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Figure 5: Protein-protein interaction network and Functional grouped network (FGN) of CGenes obtained 825 
from Cuffdiff-DESeq-edgeR overlap (Anders and Huber, 2010; Robinson, McCarthy and Smyth, 2010; 826 
Trapnell et al., 2012). (a) PPI network obtained from GeneMania (Montojo et al., 2010) showing 827 
interconnection and regulation of genes displayed by nodes which are colored in blue and edges colored 828 
in grey, (b) FGN obtained from ClueGO (Bindea et al., 2009) with GOTerms as nodes linked based on 829 
kappa score where node size represents enrichment significance.  830 
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Fig. 6: Expression profiles of common genes from Cuffdiff-DESeq-edgeR (Anders and Huber, 2010; 832 
Robinson, McCarthy and Smyth, 2010; Trapnell et al., 2012) overlap showing correlation to FLC and LFY 833 
genes. (a) shows DEGs showing higher correlation to FLC and regulation by FLC, (b) shows DEGs 834 
showing higher correlation to LFY and regulation by LFY, (c) shows DEGs having higher correlations to 835 
FLC and may or may not be regulated by FLC, (d) shows DEGs having higher correlations to LFY and 836 
may or may not be regulated by LFY 837 
 838 

 839 

 840 



 841 
 842 
Fig. 7: Venn diagrams summarizing the overlap between Cuffdiff (Trapnell et al., 2012), DESeq (Anders 843 
and Huber, 2010) and edgeR (Robinson, McCarthy and Smyth, 2010). (a), (b), (c), (d) and (e) shows 844 
overlapping genes from “Against S7” and (f), (g), (h), (i) and (j) shows overlapping genes from Step 845 
analysis. The overlapping genes are the DEGs in (a) S7-S10, (b) S7-S11, (c) S7-S12, (d) S7-S13, (e) S7-846 
S14, (f) S9-S10, (g) S10-S11, (h) S11-S12, (i) S12-S13 and (j) S13-S14 847 
 848 
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 850 
Fig. 8: Expression profiles of specific experimental genes in S7-S8, S7-S9, S7-S10, S7-S11, S7-S12, S7-851 
S13, S7-S14, S7-S15 and S7-16 using Cuffdiff (Trapnell et al., 2012) and DESeq (Anders and Huber, 852 
2010) and edgeR (Robinson, McCarthy and Smyth, 2010) for (a) FLC, (b) LFY, (c) SMZ, (d) FPF1, (e) 853 
SPL9, (f) SPL15, (g) SNZ and (h) TOE2 genes 854 
 855 

Table 1: List of some parameters used for reference alignment of reads using Tophat2. Each parameter 856 
contains their description, default value and the changed value for the analysis. 857 
Flag Meaning Default Value Changed Value 

-i The minimum intron length. 70 nt 40 nt 

-I The maximum intron length. 500000 nt 5000 nt 

--segment-length Each read is cut up into segments, 

each at least this long. These 

segments are mapped 

independently. 

25 segments 20 segments 

-g Instructs TopHat to allow up to this 

many alignments to the reference 

for a given read, and choose the 

alignments based on their 

alignment scores if there are more 

than this number. 

20 alignments 1 alignment 

-a The "anchor length". 8 bp 10 bp 

-F Minimum normalized depth 300 bp 0 bp 



 858 
Table 2: Comparison chart for differential expression analysis. Two analyses were carried out: first, all 859 
samples were compared to day 7 (S7) when plants had two leaves visible; second, a step-wise analysis 860 
was done between two successive days. 861 
Against S7 Step analysis 

S7 vs S10 S9 vs S10 

S7 vs S11 S10 vs S11 

S7 vs S12 S11 vs S12 

S7 vs S13 S12 vs S13 

S7 vs S14 S13 vs S14 

 862 
Table 3: Number of overlapping DEGs found in Cuffdiff, DESeq and edgeR results with FDR <= 0.05 863 

Against S7 Step analysis 

Sample 
pairs 

Cuffdiff
-
DESeq-
edgeR 

Cuffdiff
-DESeq 

Cuffdiff
-edgeR 

edgeR-
DESeq 

Sample 
pairs 

Cuffd
iff-
DESe
q-
edge
R 

Cuffdiff
-DESeq 

Cuffdiff
-edgeR 

edgeR-
DESeq 

S7-S10 418 497 870 1170 S9-S10 28 32 241 37 

S7-S11 277 348 550 887 S10-S11 3 4 1347 5 

S7-S12 520 544 997 1455 S11-S12 7 38 74 8 

S7-S13 1534 1674 2138 3630 S12-S13 38 90 78 41 

S7-S14 150 150 931 219 S13-S14 74 101 105 77 

 864 
Table 4: List of filtered GO terms along with associated genes found in KEGG (Ogata et al., 1999) and 865 
REACTOME (Croft et al., 2014) databases obtained from ClueGO analysis (Bindea et al., 2009) having 866 
Term PValue corrected with Benjamini-Hochberg < 0.05 for common genes obtained from “Against S7” 867 
sample pairs. 868 

GOID GOTerm Ontology 
Source 

Term PValue 
Corrected with 
Benjamini-
Hochberg 

Group PValue 
Corrected with 
Benjamini-
Hochberg 

% 
Associated 
Genes 

Nr. 
Genes 

Associated Genes Found 

GO:0000261 Monobactam 
biosynthesis 

KEGG 0.03 0.03 21.43 3.00 AK3, APS1, AT2G44040 

GO:0000270 Cysteine and 
methionine 
metabolism 

KEGG 0.01 0.00 10.10 10.00 ACO1, ACO2, AK3, ASP5, 
AT3G05430, CYSD1, 
HMT3, MS2, SERAT2;1, 
TAT3 

GO:0000920 Sulfur 
metabolism 

KEGG 0.00 0.00 19.51 8.00 AKN2, APK, APR1, APR2, 
APS1, AT4G05090, CYSD1, 
SERAT2;1 

GO:0000290 Valine, 
leucine and 

KEGG 0.02 0.02 17.39 4.00 BCAT4, IMD1, IPMI1, 
IPMI2 



isoleucine 
biosynthesis 

GO:0000660 C5-Branched 
dibasic acid 
metabolism 

KEGG 0.02 0.02 30.00 3.00 IMD1, IPMI1, IPMI2 

GO:0000380 Tryptophan 
metabolism 

KEGG 0.02 0.00 13.04 6.00 CYP79B2, CYP79B3, 
CYP83B1, SUR1, TGG1, 
TGG2 

GO:0000966 Glucosinolate 
biosynthesis 

KEGG 0.00 0.00 57.89 11.00 BCAT4, CYP79B2, 
CYP79B3, CYP79F1, 
CYP79F2, CYP83A1, 
CYP83B1, MAM1, SOT17, 
SOT18, SUR1 

GO:7438889 Cytosolic 
sulfonation 
of small 
molecules 

REACTOME 0.02 0.16 16.00 4.00 AKN2, APK, SOT17, SOT18 

 869 
Table 5: List of DEGs from Cuffdiff-DESeq-edgeR overlap (Anders and Huber, 2010; Robinson, McCarthy 870 
and Smyth, 2010; Trapnell et al., 2012) showing higher correlations to FLC and LFY and status of regulation  871 

Regulated by FLC and 

having higher 

correlation to FLC 

Not regulated by FLC but 

having higher 

correlation to FLC 

Regulated by LFY and 

having higher 

correlation to LFY 

Not regulated by LFY but 

having higher 

correlation to LFY 

AT1G03820, AT1G60710, 

AT1G67870, AT1G76800, 

AT2G22330, AT2G43150, 

AT2G43510, AT3G04940, 

AT3G09260, AT4G19380, 

AT4G22510, AT4G28660, 

AT4G39950, AT5G04080 

AT1G04240, AT1G06090, 

AT1G14700, AT1G20850, 

AT1G28400, AT1G28710, 

AT1G51680, AT1G65500, 

AT1G67910, AT1G70940, 

AT2G01950, AT2G02010, 

AT2G14580, AT2G22800, 

AT2G23600, AT2G30080, 

AT2G37040, AT2G37170, 

AT2G37180, AT2G37460, 

AT2G37640, AT2G38080, 

AT2G38800, AT3G02910, 

AT3G05727, AT3G10120, 

AT3G21550, AT3G22740, 

AT3G25190, AT3G49780, 

AT3G53560, AT3G61210, 

AT3G62930, AT4G01390, 

AT4G04610, AT4G14465, 

AT4G22485, AT4G22513, 

AT4G22517, AT4G22520, 

AT4G22530, AT4G24060, 

AT4G31990, AT4G32880, 

AT4G34560, AT4G36570, 

AT5G43580, AT5G50200, 

AT5G51890, AT5G52050, 

AT5G59330, AT5G60780, 

AT5G63180, AT5G63710, 

AT5G64110 

AT3G15170, AT5G44620, 

AT1G33790, AT4G36930 

AT1G70160, AT5G06530, 

AT5G14700 
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