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Abstract 11 

Species distribution models of stray cats were developed using two types of 12 

occurrence data, one using a combined dataset of stray cats and cat colonies in 13 

Auckland and projected to the larger New Zealand area and a second based on 14 

population density as an analogue for country wide stray cat occurrence. 15 

Environmental variables used for running the models consist of current bioclimatic 16 

conditions and a future climate scenario (RCP8.5 for year 2070 CCSM model). 17 

Commonly occurring bias due to latitude, the background area used to derive points 18 

for model evaluation, inherent spatial autocorrelation of occurrence points and 19 

correlated bioclimatic variables were addressed before Maxent was used to produce 20 

the suitability maps for the models. Results show that the North Island consistently 21 

provide more suitable areas for stray cats with increased suitable areas in a high 22 

emission climate change condition. The important protected areas at risk from the 23 

increased suitability to stray cats are also presented. 24 
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1.0 Introduction 31 

 32 

The cat (Felis catus) has been identified as one of the world’s most invasive species 33 

(Lowe et al., 2000). However, it is also the most common, and popular, companion 34 

animal in countries like New Zealand (MacKay, 2011). This means that the cat 35 

population, and issues associated with both predation by cats and the welfare of the 36 

cats themselves are anthropogenic in nature. The population densities of urban free-37 

living, un-owned  cats (also known as ‘stray cats’; see Farnworth et al., 2010), have 38 

been demonstrated to be closely linked to human population density (Aguilar and 39 

Farnworth 2012; 2013). These populations of unowned individuals, including loose 40 

aggregations around ad hoc provision of food and shelter known as cat colonies 41 

(Sparkes et al., 2013), are concomitantly protected by their carers, perceived as a 42 

public nuisance (Ash et al., 2013) and predators of localised populations of wildlife 43 

(Gillies and Clout 2003; Woods et al., 2003; van Heezik et al., 2010). Therefore the 44 

management of stray cats is consistently identified as challenging and difficult. Not 45 

leaset because  it is reported from a wide range of perspectives which include animal 46 

welfare, landscape ecology and environmental and biodiversity conservation (Marston 47 

& Bennett 2009; Loss et al., 2013; van Heezik 2010). The issue is further confounded by 48 

the multifaceted human-cat relationship  which is dominated by emotional 49 

attachments to domestic cats or their perceived prey. Cat management is particularly 50 

difficult in New Zealand because the cat is the most common  companion (pet) animal  51 

(Argante 2008) and therefore exists in most  complex spatial environments. Associated 52 

concerns around stray cat populations include, but are not limited to, threats to 53 

wildlife and biodiversity, the spread of pathogens to the companion (pet) cat 54 

population and other species and economic considerations in the implementation of 55 

management measures (Levinthal, 2010; Simking et al., 2010; Dickman et al., 2010). 56 

Practical management approaches such as Trap-Neuter-Return (TNR), capture and 57 

rehoming and euthanasia seek to address the growth of stray cats in a humane way. 58 

(Farnworth et al., 2011, 2013). Despite these measures there is no clear evidence that 59 

the management of urban cat populations has been effective. Marston and Bennett 60 



(2009) suggest that, in Melbourne Australia, the urban cat population is driven by 61 

unowned individuals that have not been sterilised. Within New Zealand, studies show 62 

that the sterilisation rate for owned cats is approximately 90% (McKay et al., 2009; 63 

Farnworth et al., 2010) and the seeming growth of the stray cat population whose 64 

density may exceed 50 cats/Km2 (Aguilar and Farnworth, 2012) must therefore be self-65 

perpetuating. This is of concern as anthropogenic food sources likely provide enough 66 

nutrition to ensure increased fecundity and survival rates while reducing home ranges 67 

of stray cats (Schmidt et al., 2007) which are not curtailed in the same way as feral cats 68 

(i.e. those that live in a wild state away from human populations and responsible for at 69 

least 14% of extinctions of global bird, mammal and reptile species and 8.2% of these 70 

species becoming endangered (Medina et al., 2011). A thriving stray cat population 71 

may also present substantial problems as, although large, the ability of urban areas to 72 

support the cat population is finite (Ferreira et al., 2011). Urban environments may 73 

therefore act as centres from which stray cats disperse into the surrounding 74 

environments which may be either semi-urban or rural. Dispersing individuals may use 75 

human habitations as a staging source which is particularly problematic when human 76 

environments are closely associated with protected areas of ecological value. 77 

 78 

The growth of the urban stray cat population is of concern because urban areas are 79 

not isolated. They contain within them and at their boundaries areas of potential, and 80 

categorical, ecological value. Such areas may be protected by law but incursion by local 81 

cats cannot be curtailed (van Heezik et al., 2010). Pet cats tend to have a limited home 82 

range and reduced likelihood of dispersal as their territory is centred around food and 83 

shelter provided by the owner (Kays et al., 2004). However, stray cats may experience 84 

significant pressure to disperse dependent upon a number of factors: for example, the 85 

frequency and availability of food (Liberg et al., 2000), the carrying capacity of the 86 

location and the level of habituation towards humans of the individual cat. In the latter 87 

example it is reasonable to say that an unsocialised individual that is fearful of humans 88 

may actively disperse to avoid contact with people. Stray cats may also experience a 89 

greater need to hunt than pet cats although this is difficult to quantify. As such there is 90 



a need to be able to understand how human population, stray cat population and 91 

proximity to areas of ecological interest may overlap which is best presented as a GIS 92 

model. 93 

 94 

New Zealand is considered a leader in eradication efforts of mammalian pests such as 95 

rats, possums and stoats (Keitt et al., 2011). Considerable resources and pest 96 

management strategies are in place at both national and regional bodies in charge of 97 

conservation. No measures however, are in place for the particular challenge arising 98 

from stray cats preying on wildlife which will include both small mammals, birds, 99 

reptiles, insects and amphibians (Gillies and Clout 2004; Flux 2007). The predation of 100 

birds, particularly in reserves adjacent to human habitation, was recorded and 101 

quantified for Dunedin (New Zealand) and it was noted that owned cats alone may 102 

place an unsustainable burden upon a range of urban bird populations (van Heezik et 103 

al., 2010).  104 

 105 

Using a species distribution modelling approach to produce maps showing the 106 

suitability of areas for a particular species has become widespread in application with a 107 

rapidly growing volume of work reporting improved or newer algorithms and software 108 

tools, applications for important species at different geographic and timescales with 109 

social-economic or non-biological information layers (Guisan et al., 2013, Booth et al., 110 

2014, Sherrouse et al., 2014). In this effort, we used methods and modelling practice in 111 

species distribution modelling proven to reduce several bias types and produce robust 112 

model measurement metrics. The combination of ArcGIS and Maxent (Phillips, 2006) 113 

was used for processing available stray cat and cat colony data used in earlier studies 114 

(Aguilar & Farnworth 2012; Aguilar & Farnworth 2013). Maxent (version 3.3.3k) is a 115 

presence-only tool based on optimization algorithms reported to provide better 116 

performance compared to other tools (Elith et al., 2006). Maxent has become one of 117 

the most widely used species distribution modelling tool (Fourcade et al., 2014 ) with 118 

example of work on models for the distribution of invasive species (Domíguez-Vega et 119 

al., 2012; Elith et al., 2006; De Queiroz et al., 2013), endangered and threatened flora 120 



and fauna (Sochat et al., 2010), organisms with economic significance (Blanchard et al., 121 

2014) and even ancient species (Connolly et al., 2012). Since the software was first 122 

made available by Phillips et al., (2006), techniques, evaluation methods and various 123 

measures of performance and interfaces with other GIS software resulted in 124 

addressing recognised concerns with the ‘presence-only’ modelling approach that is 125 

implemented. These include techniques to address spatial autocorrelation, background 126 

data bias, environmental heterogeneity and latitudinal bias that contributed to 127 

assurance or confidence from the results of modelling potential species distribution 128 

using Maxent. (Brown 2014) 129 

 130 

This work contributes to the effort in developing a stray cat management strategy 131 

through the establishment of NZ wide maps of suitability for stray cats and cat colonies 132 

under current conditions and future climate scenarios.  133 

 134 

 135 

2.0 Methodology 136 

 137 

Maxent requires the geographic locations of occurrences and a set of environmental 138 

layers used to determine the probability of occurrence for each cell represented in the 139 

area covered. We used stray cat and cat colony data sourced from animal welfare 140 

organisations and reported in previous papers (Aguilar & Farnworth, 2012; Aguilar & 141 

Farnworth, 2013) as the basis running two models, one based solely from actual data 142 

modelled in Auckland and projected to the entire country and another using 143 

population as an analogue for presence data. The first model (A) was run with the 144 

Auckland stray cat data with the Bioclim layers as environmental layers. The Auckland 145 

model was then projected into the entire New Zealand land mass with the same layer  146 

set at a larger, country wide coverage and similarly projected into a future climate 147 

scenario. This approach is similar to the process used when projecting locally occurring 148 

species to a global or wider regional scales such as the spread of invasive species 149 

(Ficetola et al., 2007; Thuiller et al., 2005), determining suitable areas for future 150 



translocations (Fouquet et al., 2010) and focussing efforts on areas that were 151 

previously unexplored (Raxworthy et al., 2003).  152 

 153 

For the other model (B), Auckland based stray cat and population density was used to 154 

determine the minimum non-zero value for stray cat density to determine the cut-off 155 

value of population density in order to select the New Zealand mesh blocks serving as  156 

basis for occurrence points. This was premised on the work of Aguilar and Farnworth 157 

(2012) where population density was identified as major factor indicating the presence 158 

of these cats. The mesh blocks were then converted to point features located at the 159 

centroid of each polygon to represent stray cat occurrence. Centroids of municipal 160 

polygonal area were used as presence points for modelling of locust species in Spain 161 

due to the varying spatial resolution of the species presence records derived secondary 162 

sources (Aragon et al., 2013). Similarly, tracks from GPS capuchin monkey daily routes 163 

where points at least 30m distances apart were extracted and used as presence or 164 

occurrence data in Maxent (Howard et al., 2012).  165 

 166 

Evident clustering of the stray cat data and the concentration of smaller mesh blocks at 167 

high population density areas hints at spatial autocorrelation that may result in the 168 

inability of the model to predict spatially independent data and lead to inflated 169 

performance measure values (Veloz 2009; Nazeri et al., 2014; Hijmans et al., 2012; 170 

Boria et al., 2014; Syfert et al., 2013). A tool in Arcmap named Spatially Rarefy 171 

Occurrence data was used to filter the occurrence points by eliminating redundant 172 

points and removing spatially autocorrelated points within a range of specified 173 

distances (Brown 2014).  This also included the grouping of occurrence points based on 174 

specific habitats or, in this case, suitable land class types for the stray cats grouped 175 

using the land cover classes specified in the Land Cover Database of New Zealand 176 

(LCDB Version 4.0) (Table 1). The tool creates groups of occurrence points which are 177 

used as input into a preliminary Maxent run. Using the common evaluation metric for 178 

predictive performance Area Under Curve or AUC (Swets, 1988), the group with the 179 

highest AUC value is selected for running the final model and projection.  180 



 181 

Table 1. Land cover classification from based on distances from LCDB grouped into 182 

favourable environments for stray cats. 183 

Land Class Name Group 

Urban Parkland/Open Space, Transport Infrastructure 
Built-up Area (settlement) 
 

5 

Orchard, Vineyard or Other Perennial Crop 
Indigenous Forest, High Producing Exotic Grassland 
 

4 

Tall Tussock Grassland, Manuka and/or Kanuka, Low 
Producing Grassland, Exotic Forest, Deciduous 
Hardwoods, Broadleaved Indigenous Hardwoods 
 

3 

Short-rotation Cropland, Mixed Exotic Shrubland, Gorse 
and/or Broom, Forest – Harvested, Flaxland, Fernland, 
Depleted Grassland 
 

2 
 

Surface Mine or Dump, Sub Alpine Shrubland, Sand or 
Gravel 
River, Permanent Snow and Ice Matagouri or Grey Scrub, 
Mangrove, Landslide, Lake or Pond, Herbaceous Saline, 
Vegetation, Herbaceous Freshwater Vegetation, Gravel 
or Rock, Estuarine Open Water, Alpine Grass/Herbfield 

1 

 184 

 185 

Environmental layers, which consisted of current bioclimatic variables, were 186 

downloaded from the WorldClim database (Hijmans 2005). This Bioclim set consisted 187 

of 11 temperature and 8 precipitation variables representing a 50-year mean for each. 188 

Most Bioclim variables were found to be highly correlated (Metzger et al., 2013) 189 

leading to difficulties in interpreting the contribution of each to the model. A tool 190 

included in the SDMToolbox allowed identification of correlated variables that can be 191 

excluded when Maxent is run. A range Spearman’s r correlation values (0.6, 0.7, 0.8 192 

and 0.9 - higher values represent higher correlation) was used to identify which 193 

environmental variables combination is to be used for both models. 194 

 195 



To overcome the commonly encountered overfitting problem (Philipps et al., 2011; 196 

Elith et al., 2011) bias files were created that limit the area from which background 197 

points used for model measurement and evaluation were selected. The bias file 198 

resulted from two correction rasters, one for latitudinal correction and the other for 199 

limiting the background used based on the presence locations used. Normally, Maxent 200 

uses the entire area for deriving background points resulting in a higher percentage of 201 

commission errors or false positives due to the selection of background points from 202 

localities that may be environmentally suitable but not occupied by the species. 203 

Several approaches to limit the area ranged from simple radial distances from known 204 

occurrences to minimum convex polygons from occurrences to more elaborate 205 

combinations of area definitions (Brown 2014; Barbet-Massin et al., 2012; Phillip et al., 206 

2009). We used the convex hull radial area connected with radial buffers from the 207 

occurrences. The radial buffer distances was based on home ranges collated from 208 

previous stray cat studies and calculated as the distance between the centres of circles 209 

that have areas equal to the maximum home range. (Table 1) Compared to mainly 210 

urban stray cats, feral cats in rural areas have greater home ranges as reported by 211 

different authors with the minimum of 42 ha reported in (Pierce et al., 1987) and a 212 

maximum of 2486 ha (Recio et al., 2010). This translates to a range from 0.07 to  56.2 213 

kilometre using the radius of the home range area as the end to end distance that the 214 

feral cat potentially travels. While rural feral home ranges are a magnitude greater 215 

than urban stray cats' home range, we use these maximum estimates considering the 216 

potential for stray cats to become feral. This value was used to limit the area from 217 

which background points were derived by Maxent in order to address a commonly 218 

observed overfitting characteristic of the algorithm (Radosavljevic & Anderson 2014, 219 

Elith et al., 2010, Brown 2014). 220 

 221 

Table 2. Distances reported as home ranges in previous studies. 222 

Reported home range (Ha) Rarefy Distance Location Reference 

Stray cats 0.07-2.86 2.99 Perth, Australia Lilith 2007 
 

2.70-7.9 4.98 
Canberra, 
Australia Barrat 1997 

 0.1-10.1 5.63 Christchurch Morgan 2002 



 0.5-21.8 8.27 Dunedin, NZ van Heezik et 
al., 2010 

Feral cats 
80-990 55.77 

NW Victoria, 
Australia 

Jones & Coman 
1982 

 490.2-1571.4 70.26 Mackenzie 
Basin, South 
Island, New 
Zealand 

Pierce 1987 

 82-840 51.37 Mackenzie 
Basin, South 
Island, New 
Zealand 

Norbury et al., 
1998 

 

178-2486 56.26 

Central South 
Island, New 
Zealand 

Recio et al., 
2010 

 223 

The availability of the latest scenarios for different future bioclimatic conditions based 224 

on the 5th IPCC report made the modelling of future suitability of stray cats possible 225 

(IPCC 2013; Carraro et al., 2014). Using the worst case scenario of RCP 8.5, Bioclim 226 

layers for the year 2070 (NCAR 2012) was included as a projection to enable the 227 

comparison between current and future suitability conditions for both Model A and B.  228 

 229 

The set of resulting suitability maps were overlayed over the protected areas of New 230 

Zealand as categorised in the IUCN system. Consisting of 3,954 areas over an area of 231 

108,327 square kilometres, the categories include Ia - Strict Nature Reserve, Ib – 232 

Wilderness Area, II – National Park, III – National Monument, IV – Habitat Species 233 

Management Area, V – Protected Landscape and Seascape. Included in the data 234 

available were categories Not Applicable and Not Reported. For purposes of presenting 235 

the suitability of these areas to stray cats, all of the protected areas were used. The 236 

result show which protected area are most suitable to stray cats based on the output 237 

of the two models for current and future conditions. 238 

 239 

Results and Discussion 240 

Environmental Data 241 



Consistent with the finding of Warren and Siefert (2011) that over-parameterization 242 

presents lesser  problems than under-parameterization, we use groups produced at 243 

the maximum value of Spearman’s r coefficient  less than 1. Also, since the 244 

geographical area of the New Zealand model enclosed the Auckland area, a lesser set 245 

of non-correlated variables resulted for Auckland with an extra 2 variables reported as 246 

non-correlated for the New Zealand map. (Model B with r=0.9 in Table 2) This set of 247 

variables was used to run both Model A and Model B as the extra variables in the 248 

former do not contribute significantly to model outputs while the evaluation of 249 

comparative measures between model is better served with a common set of 250 

environmental variables.  251 

 252 

Table 3. Bioclim variables that were not correlated at different Spearman’s r values 253 

Models Spearman’s r values 

 

0.6 0.7 0.8 0.9 

Model A (Bioclim Auckland) bio15nz.asc bio15nz.asc bio15nz.asc bio15nz.asc 

 bio12nz.asc bio12nz.asc bio12nz.asc bio12nz.asc 

 bio9nz.asc bio9nz.asc bio9nz.asc bio9nz.asc 

 bio3nz.asc bio3nz.asc bio4nz.asc bio4nz.asc 

 bio2nz.asc bio2nz.asc bio3nz.asc bio3nz.asc 

 bio1nz.asc bio1nz.asc bio2nz.asc bio2nz.asc 

   bio1nz.asc bio1nz.asc 

     

Model B (Bioclim New 

Zealand) bio15nz.asc bio15nz.asc bio15nz.asc bio15nz.asc 

 bio12nz.asc bio12nz.asc bio12nz.asc bio12nz.asc 

 bio11nz.asc bio11nz.asc bio11nz.asc bio11nz.asc 

 

bio9nz.asc bio9nz.asc bio9nz.asc bio9nz.asc 

 bio8nz.asc bio8nz.asc bio8nz.asc bio8nz.asc 

 bio5nz.asc bio6nz.asc bio6nz.asc bio6nz.asc 

 bio3nz.asc bio5nz.asc bio5nz.asc bio5nz.asc 



 bio2nz.asc bio3nz.asc bio3nz.asc bio4nz.asc 

 bio1nz.asc bio2nz.asc bio2nz.asc bio3nz.asc 

  bio1nz.asc bio1nz.asc bio2nz.asc 

     bio1nz.asc 

 254 

 255 

Occurrence Data 256 

 257 

Presence reports of stray cats (Aguilar & Farnworth 2012) and cat colonies (Aguilar & 258 

Farnworth 2013) showed high levels of clustering in the central city districts of 259 

Auckland (Figure 1) 260 



 261 

Figure 1. Stray cats and cat colony occurrences in the city center (bottom) of Auckland 262 

(top-left), New Zealand (top-right) 263 

 264 

Spatial rarefication of location data for Auckland for Model A resulted in 131 points 265 

that were not spatially autocorrelated. This represents only 4% of the original 2953 266 

occurrences. Majority of the rarefied points were found within or nearest to the group 267 



5 landcover classes, an expected result considering the significant correlation between 268 

stray cat density and population density. (Table 4) 269 

 270 

For the occurrence data requirements of Model B, Auckland population mesh blocks 271 

with the minimum population density where there was non-zero stray cats or cat 272 

colony wwere found to be at 0.091 persons per square kilometre (the cut-off value). A 273 

total of 41,127 mesh blocks with population densities greater than the cut off value 274 

were converted into point features located at the centroid of each polygon. When the 275 

Spatially Rarefy Occurrence Data included in the SDMToolbox was run, a total of 5,888 276 

points resulted showing that 14% were non-spatially correlated.  277 

 278 

A Maxent run for Models A and B was conducted for each set of rarefied occurrences 279 

to determine comparative performance in terms of AUC. Resulted show that Group 5 280 

has better performance compared to other Groups. This is to be expected as the land 281 

cover types associated with higher human population densities are mainly under the 282 

land cover class for Group 5 (Buit-up area (settlements)) (Figure 2 and Table 4).  283 

 284 

Table 4. AUC values for the spatially rarefied data from the initial Maxent run. 285 

 

Raster 
Value 

AUC 
Training AUC Test No of Pts 

Model A Group 1 - 0.5 1 

 
Group 2 0.906 0.811 3 

 
Group 3 0.829 0.901 11 

 
Group 4 0.838 0.605 38 

 
Group 5 0.906 0.827 78 

 
All Points 0.836 0.737 131 

 
Original Points from Stray Cat Data 2,953 

     Model B Group 1 0.697 0.602 56 

 
Group 2 0.804 0.781 713 

 
Group 3 0.729 0.724 4663 

 
Group 4 0.853 0.655 80 

 
Group 5 0.919 0.900 376 

 
All Points 0.697 0.691 5,888 

 

Original Points from NZ Population 
Data 41,127 



 286 

 287 

The bias files included in the Maxent model resulted from combining latitudinal bias 288 

with and area coverage based on occurrence data (Figure 2) 289 

 290 

Figure 2. Occurrence data derived from NZ mesh blocks (Left) with rarefied group 5 291 

(Top right) and bias files (Bottom right). 292 

 293 

 294 

Results of the Maxent model using the Auckland stray cat data and projected into the 295 

entire New Zealand land mass with current and future climate conditions show some 296 

changes in the suitability for stray cats (Figure 3). Areas in the North Island are shown 297 

to have much more favourable conditions compared to the South Island with 298 



increasing areas for both in the future climate scenario. When a 10th percentile 299 

presence logistic threshold for both current and future conditions was used, an 300 

increase in the areas predicted to be presence areas for stray cats is evident (Figure 3). 301 

 302 

 303 

Figure 3. Maxent results with corrected occurrence data from Auckland stray cats (A), 304 

projected into the New Zealand terrestrial area under current conditions (B) and 305 

RCP8.5 climate conditions for 2070 (C), thresholded presence under current conditions 306 

(D), thresholded presence under RCP8.5 climate conditions for 2070 and (E) 307 

presence/absence and range contractions/expansions between D and E (F). 308 

 309 

 310 

Results of the population based model show similar characteristics of the 311 

environmental suitability of New Zealand to stray cats. Many of the population centers 312 



have greater values while higher altitudes, remote wilderness and the majority of the 313 

South Island are not as favourable. When the model was projected to RCP8.5 for the 314 

year 2070, a result consistent with Model A is shown, depicting a wider and more 315 

intense favorable suitability of the area covered. (Figure 4).  316 

 317 

A simple comparison of the two models show better AUC reported by Model B. For 318 

this instance, better performance measures for using population density as an 319 

analogue for stray cats compared to using actual presence data from a local region and 320 

expanding to a larger extent is implied. Caution is still warranted in this result 321 

however, and further model validation as well as testing with other occurrence data is 322 

required.  323 

 324 



 325 

 326 

Figure 4. Results of Model B using data from mesh block data based New Zealand 327 

population for current conditions (A) projected into RCP8.5 climate conditions for 2070 328 

(B), thresholded presence under current conditions (C), thresholded presence under 329 

RCP8.5 climate conditions for 2070 and presence/absence and range 330 

contractions/expansions between C and D (E).  331 

 332 

Both Models A and B show an increase in the number of presence cells in future 333 

conditions with Model B reporting presence et almost double the number of cells as 334 

Model A (Table 3). 335 

 336 



 337 

Table 3. Number of raster cells representing presence and absence resulting from 338 

thresholding current and future suitability maps. 339 

 Absent in Both 

(Non-

Occupancy) 

Range 

Contraction 

(Presence: 

current 

conditions only) 

Range 

Expansion 

(Presence: 

future 

conditions only) 

Present in 

Both 

(Occupancy) 

Model A                325,741  26,240  54,824  9,443  

Model B                200,962  1,489  117,260  95,606  

 340 

Clipping the resulting suitability maps with existing IUCN categories of protected areas 341 

of New Zealand (Figure 4) show the differences between the models (CD and EF in 342 

Figure 5) and the changes of suitability in current conditions and the future scenario of 343 

RCP8.5 for the year 2070 (CE and DE). A major difference between the two models is 344 

the greater proportion of suitable areas found in the North Island compared to the 345 

South Island for Model B. In terms of the climate change scenario, a movement of 346 

suitable areas to the South seems to be present in Model A while in Model b, an 347 

increased concentration of suitability to the South but limited in the North Island 348 

seems evident. 349 

 350 



 351 

Figure 5. IUCN categories of protected areas of New Zealand (A) with areas in Auckland 352 

(B) clipped with suitability of stray cats from Model A current conditions (C), Model A 353 

RCP 8.5 projected to 2070 (D), Model B current conditions (E) and Model B RCP 8.5 354 

projected to 2070 (F). 355 

 356 

 357 

Conclusion 358 

Species distribution modelling provide a convenient approach to the visualization of 359 

the spatial characteristics of stray cats in New Zealand that may impact areas that are 360 

considered to be environmentally significant  and protected under various categories.  361 

Modelling based on two data sources, one from actual occurrence data and another 362 

using population density as an analogue, provides a comparison of performance that 363 

hints at the advantages of the latter in cases when attempting to project from a 364 

smaller region to a much wider geographical area. Projections to a climate change 365 

based scenario show consistent increase in the area and intensity of suitability for 366 

stray cats. Overlaying the protected areas of the country into the suitability maps help 367 

identify which protected areas are more suitable for stray cats for the entire country in 368 

current and a future climatic condition.  369 

 370 
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