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ABSTRACT

Accurate in situ measurements of oceanic bubble size distributions beneath breaking waves are needed for a

better understanding of air–sea gas transfer and aerosol production processes. To achieve this goal, a novel high-

resolution optical instrument for imaging oceanic bubbles was designed and built in 2013 for the HighWind Gas

Exchange Study (HiWinGS) campaign in the North Atlantic Ocean. The instrument is able to operate auton-

omously and can continuously capture high-resolution images at 15 frames per second over an 8-h deployment.

The large number of images means that it is essential to use an automated processing algorithm to process these

images. This paper describes an automated algorithm for processing oceanic images based on a robust feature

extraction technique. Themain advantages of this robust algorithm are it is significantly less sensitive to the noise

and insusceptible to the background changes in illumination, can extract circular bubbles as small as one pixel

(approximately 20mm) in radius accurately, has low computing time (approximately 5 seconds per image), and is

simple to implement. The algorithm was successfully used to analyze a large number of images (850 000 images)

from deployment in the North Atlantic Ocean as part of the HiWinGS campaign in 2013.

1. Introduction

Bubble plumes entrained by breaking waves in the open

ocean have a significant influence on various oceano-

graphic phenomena, including air–sea gas transfer (Farmer

et al. 1993; Wanninkhof et al. 2009), marine aerosol pro-

duction (Fuentes et al. 2010), and scavenging of surfactants

(Zhou et al. 1998). Also, they have an important influence

on the optical (Frouin et al. 2001; Stramski 1994; Stramski

and Tegowski 2001; Zhang et al. 1998) and acoustical

(Ainslie 2005; Terrill and Melville 2000) properties in the

upper ocean. The most important factor in understanding

these processes is the distribution of bubble sizes in the

top few meters of ocean (Deane and Stokes 2002). The

bubble plumes formed during the first seconds after awave

breaks are characterized by very high void fraction (0.1%–

10%), rapid changes in bubble size distributions, and a

wide range of bubble radii, from a few microns to a few

millimeters (Czerski et al. 2011). Consequently, a detailed

understanding of the physics requires in situ and precise

measurements of bubble populations with adequate tem-

poral and spatial resolution.

A high-resolution bubble imaging instrument was de-

signed and successfully deployed in the North Atlantic

Ocean. The instrument frame rate was 15 frames per
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second and the effective exposure time for each frame

was 4 ms. The image resolution was 2048 3 2048 pixels,

and the total recording time for a single deployment was

approximately 8.5h. Extracting bubble sizes accurately

from these images is very important for further data anal-

ysis. Oceanographic conditions change slowly over many

hours, so any meaningful monitoring of bubble plumes

must record data over long time periods while maintaining

high time resolution. Therefore, an automated and robust

algorithm is required for bubble image analysis.

Several algorithms have been developed in the past to

analyze bubble images. Some of these algorithms have

been used to analyze oceanic images. For instance, Stokes

and Deane (1999) developed an optical instrument to

study the bubbles within breaking waves. Their image

processing algorithm included two preprocessing opera-

tions: correcting nonuniform illumination and thresh-

olding. Correcting the nonuniform illumination involved

four steps: morphological operation (closing) to estimate

the background illumination, convolution with a 15 3 15

Gaussian kernel to smooth the image, subtraction of the

smoothed image from the original image to remove

background illumination variation, and scaling to improve

the image contrast. Thresholding was then applied to

create a new binary image followed by aHough transform

to detect the bubbles in that binary image. Leifer et al.

(2003) introduced another instrument for imaging bubbles

within breaking waves. They used a thresholding tech-

nique to produce binary images. However, this can po-

tentially introduce large errors in themeasured bubble size

distribution because of the change in the background il-

lumination. Furthermore, the bubbles positioned within

the light sheet aremuchbrighter compared to the bubbles

outside the sheet. Thomanek et al. (2010) demonstrated

an automated gas bubble imaging system to measure

bubble sizes at the seafloor. They used a Canny edge

detector and the MATLAB function ‘‘regionprops’’ to

determine the size and center of each bubble. In com-

parison to thresholding, edge detection is more accurate

in terms of identifying bubbles in inhomogeneous illu-

minated areas and analyzing images with a gradual

decrease in light intensities. However, the main disad-

vantage of edge detection is the enhancing and shrinking

in the bubble boundaries. Zielinski et al. (2010) showed a

laboratory setup that consists of frontal illumination and

video camera to image bubbles in an aquarium. They

used a sequence of optical flow algorithm, thresholding,

and region filtering to process the video images. The

optical flow analysis was also used by Boelmann and

Zielinski (2015) to identify bubbles in images collected

by a remotely operated underwater vehicle in west

Svalbard. In the optical flow method, the apparent mo-

tion of bubbles in the images can be related to each other

as a collection of displacements in the image plane.

However, this method is prone to inaccuracies caused by

illumination changes, occlusion, and noise (Nixon and

Aguado 2002). Wang and Socolofsky (2015) developed a

stereoscope imaging system for measurement of natural

seep bubble size distributions in theGulf ofMexico. They

applied Canny edge detection for low-density bubble

images. For high-density bubble images, they used a So-

bel gradient mask to obtain a binary image and a water-

shed transform to perform image segmentation on the

overlapping bubbles. However, the watershed transform

is sensitive to noise (Honkanen et al. 2005).

On the other hand, a number of algorithms have been

developed to analyze bubble images collected from

chemical reactors and bioreactors. For instance, Taboada

et al. (2006) presented a semiautomated image analysis

algorithm to count bubble sizes and oil droplets in complex

dispersions occurring in bioreactors. Their algorithm con-

sists of two stages: preprocessing to obtain a binary image

and postprocessing to extract circular bubbles and droplets

using the Hough transform. The first preprocessing

stage was achieved using commercial imaging software

(Image-Pro Plus 5.0, Media Cybernetics) and consists of

three filtering operations (median, flatten, and well filter)

and twomorphological operations (opening and skeleton).

Honkanen et al. (2005) described an experimental setup to

image a turbulent flow in a pipe and to detect in focus,

overlapping, and elliptical bubbles. Three preprocessing

steps were carried out according to their recognition al-

gorithm: median filter to remove background noise, image

normalization to normalize pixel intensities, and thresh-

olding and grayscale gradients to obtain a binary image.

The overlapping elliptical bubbles in this binary image

were extracted by examining the perimeter arcs of indi-

vidual bubbles. This is achieved by calculating the overall

perimeter of a segment, finding the connected points at the

perimeters of the overlapping objects, grouping the pe-

rimeter arcs for the same object, and fitting ellipse to the

clustered perimeter arcs of the object. The main disad-

vantage of their algorithm is it is computationally expen-

sive. Zhong et al. (2016) established an experimental

setting to image bubbly water in a gas–liquid reactor. Their

image analysis method was based on three preprocessing

operations (background subtraction, median filtering, and

thresholding), forming a template database of single-

bubble images, splitting contours for every overlapped

bubble, and reconstructing the segmented bubbles. The

main drawbacks in this method are that it cannot run au-

tonomously because single-bubble images are required for

every bubble in the original image and it is very sensitive to

the background change in illumination.

The algorithms discussed above used preprocessing

techniques such as filtering to remove noise and low-level
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feature extraction approaches such as thresholding and

edge detection to extract basic features in the image to

speed up the subsequent high-level feature extraction

stage (Gonzalez and Woods 2008; Nixon and Aguado

2002). However, there are many limitations in the

performance of these techniques. The performance of

thresholding techniques is limited by the object (bubble)

size, contrast, noise, mean difference between the object

and the background intensities, and variances of object

and background (Lee and Chung 1990). Noise reduction

by filtering operations results in blurred and distorted

edges since both noise and edges contain high-frequency

contents (Liu and Fang 2015). Traditional edge detector

operators such as Sobel, Laplacian, Roberts, and Canny

are based on gradient methods (Gonzalez and Woods

2008; Nixon and Aguado 2002). Therefore, these first-

order detectors are sensitive to noise (Liu and Fang 2015).

Abdou and Pratt (1979) developed a quantitative figure of

merit to evaluate the ability of these traditional operators

to detect edges as close as possible to the ideal edges. They

demonstrated that this figure of merit substantially de-

creased with reducing the signal-to-noise ratio in the im-

age. Liu and Fang (2015) used the Abdou figure of merit

to evaluate applying these traditional edge detector op-

erators on various images with the same noise level. They

showed that the performance of these detectors depends

significantly on the shape of the objects in these images.

Moreover, they found that the detection accuracy de-

creased to approximately 54% in an image of circular

coins. Because of these difficulties, any preprocessing

must be applied in such a way as to not remove or distort

the underlying signal of interest, and the ideal solution is

an algorithm that avoids the preprocessing stage entirely.

This paper describes a robust automated algorithm for

analyzing oceanic images based on the Hough transform.

The algorithm uses the intensity information in the images

directly without any preprocessing stage. The algorithm

can extract circular bubbles over a wide radii range from 1

to 25 pixels (approximately 20–406mm) accurately. The

paper is organized as follows: a brief description of the

imaging instrument is given in section 2; the deployment

and measurement in the ocean is illustrated in section 3;

section 4 describes the automated bubble extraction al-

gorithm, its implementation, and evaluation; section 5

presents bubble size distributions obtained from applying

the algorithm on a sequence of images; the discussion of

the results is in section 6; and we conclude with section 7.

2. Optical instrument for imaging bubbles

Many acoustical and optical techniques have been

developed to measure bubble size distributions in the

laboratory and open sea. The acoustical techniques

(Farmer et al. 1993; Medwin 1970; Medwin 1977) are

sensitive to bubble radii from 1 to 500mm and low void

fraction, while optical techniques (Geißler and Jähne
1995; Jähne and Geißler 1995; Leifer et al. 2003; Wang

and Monahan 1995) can be used to measure bubble

distributions at low and high void fraction and over a

wide radii range, from 20mm to 5mm.

This section provides a brief description of the

bubble imaging instrument that we designed to capture

high-quality images and to increase the measured

bubble size range. More details about the design con-

siderations and hardware components can be found in

Al-Lashi et al. (2016, manuscript submitted to IEEE

J. Oceanic Eng.) The camera and its control electronics

were housed in a waterproof pressure case (see Fig. 1).

Strobe lighting illuminated a thin slice of water ap-

proximately 4 cm 3 4 cm 3 5mm, and this sample

volume was positioned a few centimeters in front of

the camera housing.

The hardware components of the bubble imaging

system can be divided into six modules: the power

management board to supply the necessary power to the

components; the strobe system to form the light sheet;

the machine vision camera; the single-board computer

that controls the camera and saves the images on the

solid-state drive; and the waterproof enclosure to pro-

tect the electronic modules. The principal operation of

the instrument is based on the formation of a light sheet

in front of an optical Perspex window. Images are

formed by focusing the scattered light caused by the

bubbles inside the light sheet through a megapixel tel-

ecentric lens mounted on a high-resolution charge-

coupled device (CCD) camera.

The hardware components were mounted in a wa-

terproof housing that is divided into three chambers

separated by two steel disks as shown in Fig. 1. The top

chamber contains the single-board assembly with the

main electronics, the middle chamber contains the

camera assembly with the imaging components, and

the bottom chamber contains the strobe assembly with

the illumination components. The mirror assembly was

fixed outside the housing to form the light sheet in front

of camera optical window.

3. Deployments and measurements in the open sea

The bubble imaging instrument in its autonomous

configuration was deployed 7 times in the North At-

lantic Ocean in 2013 (including buoyancy and in-

strument configuration trials) and deployment lengths

ranged from a few hours to five days. These deployments

were part of the High Wind Gas Exchange Study

(HiWinGS) campaign to study air–sea gas exchange
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during storms. As part of this campaign, a suite of

bubble measurement instruments was mounted on a

large free-floating buoy. The average hourly wind

speed during the deployments ranged from 10 to

30m s21, and the significant wave height varied from

1 to 10m. Figure 2 shows the bubble instrument

mounted on the free-drifting spar buoy as the buoy is

being deployed. The camera was positioned approxi-

mately 2m below the ocean surface when the buoy was

floating upright. The design and performance of the

spar buoy was well described in Pascal et al. (2011).

Whitecaps (the patches of foam left at the surface after

the passage of a breaking wave) were imaged by an-

other camera system positioned above the water sur-

face. To synchronize both instruments, the power

supplied to them was controlled by two timers that

were programmed at preset intervals. The total num-

ber of captured images during seven deployments was

approximately 850 000.

Depending on the bubble shapes and the activities in

the ocean, the captured images can be classified into

three main categories: large bubble, small bubble, and

complex images. The vast majority of these captured

images contain small bubbles. The number of complex

and big bubble images in the seven deployments was 5

and 269, respectively. These images are classified auto-

matically by the algorithm as illustrated in the imple-

mentation section (section 4a).

The air bubbles in the light sheet appear as bright

circular objects in the images. The bubble shape

depends on the surface tension that dominates the shape

as a bubble gets smaller. Therefore, small bubbles tend

to be spherical, while large bubbles are more likely

nonspherical (Leighton 1994). More complex bubble

shapes can be described mathematically using spherical

harmonics (Leighton 1994). Figure 3 shows a sample of

the captured images during deployment in the North

Atlantic Ocean. The big bubbles are mainly non-

spherical in Fig. 3a, while the small bubbles are circular

in Fig. 3b. Moreover, the small bubbles that are not lo-

cated in the light sheet appear as disks. Some of the

small bubble images also contain marine creatures, such

as a copepod, as shown in Fig. 3c.

FIG. 2. The bubble imaging instrument discussed here attached

to a spar buoy during deployment in the sea. The spar buoy length

is 11m. The automated algorithm described in this paper was used

to analyze the images collected by the bubble imaging instrument

while it was mounted in this configuration.

FIG. 1. (left) A cross section through the instrument housing, showing the layout of the

hardware components. (right) The bubble optical imaging instrument and its housing. The case

diameter is 225mm 3 160mm, and its length is 407mm.
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Complex images contain bubble features that are not

extracted by the automated algorithm described in this

paper. We chose to implement a simpler algorithm that

avoids processing complex images since the number of

these images is significantly small (five images only).

However, bubbles in these images can still provide

valuable information. For instance, the bubble plume

shown in Fig. 3d could provide useful information

about bubble formation mechanisms (Deane and

Stokes 1999).

4. Automated bubbles extraction algorithm

Bubbles in the image appear as high-intensity rings or

disks as shown in Fig. 4. The intensities of the bubble

wall pixels are higher than the surrounding pixels in the

image background and can be used by an algorithm to

automatically locate and extract the position and size of

the bubbles. There are a number of possible algorithms

that could be used for the extraction. These range from

model-based approaches to deformable approaches

that can accommodate large variations in shape char-

acteristics. Here, we are primarily interested in ex-

tracting bubbles in the size range 20–500mm and these

are spherical to a good approximation due to surface

tension. Hence, a model-based approach using the

Hough transform is chosen for its robustness. The au-

tomated algorithm described in this section is not

suitable to extract noncircular and overlapped bubbles

in complex images.

a. Hough transform for circular shapes

The Hough transform (Hough 1960) is a high-level

feature extraction technique based on shape matching

(Nixon andAguado 2002). In particular, it is widely used

to extract lines (Duda and Hart 1972), circles (Kimme

et al. 1975), and arbitrary shapes (Ballard 1981) from

images. The technique is based on an evidence gathering

FIG. 3. Sample of the images captured during deployment in the North Atlantic Ocean. The

dimensions of these images are 4 cm 3 4 cm. (a) Nonspherical bubbles. (b),(c) Two types of

circular bubbles: rings and disks. The ring bubble appears as a bright ring (high intensity)

around a dark center (low intensity), while the disk bubble appears as a filled circle. (c) A

copepod. (d) Complex image that contains a bubble plume.
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approach where votes are cast in an accumulator array

that is parameterized according to the model of the

shape to be extracted, and it can be shown to be an

optimal form of template matching.

The Hough transform operates on the principle that

candidate edge points have high intensities. In practice

this means that an edge detector is often required as a

preprocessing stage to transform object boundaries

(Ballard 1981; Deane and Stokes 1999; Kimme et al.

1975; Zheng et al. 2004). However, because of the for-

mation of the images from the bubble camera, it is

possible to avoid this step as the edges are already in this

form. This is advantageous because the gradient-based

edge operators can amplify noise and skew peaks off

center in the accumulator (Gonzalez and Woods 2008;

Nixon and Aguado 2002).

1) ACCUMULATOR SPACE

The equation of circle is given by

(x2 x
0
)2 1 (y2 y

0
)2 5 r 2 , (1)

where the point (x0, y0) represents the circle center,

points (x, y) correspond to the circle locus, and r rep-

resents the circle radius. A bright pixel in the image is a

candidate for a point on the locus of a number of pos-

sible circles. The algorithm votes by incrementing the

accumulator for those values of the parameters (x0, y0, r)

that satisfy Eq. (1) given the pixel coordinates (x, y).

This corresponds to a cone in the three-dimensional

accumulator space parameterized by (x0, y0, r). The

votes from all sets of edge points of a circle in the image

will pass through the same point in the accumulator

space. Thus, this point has the maximum vote (peak) in

the accumulator space and can be used to extract circle

parameters. Since higher intensities indicate greater

confidence in edge points, this can be used to weight the

vote in the accumulator space,

A(x
0
, y

0
, r)1 5 g(x, y), (2)

whereA is the accumulator value at the coordinates (x0,

y0, r) and g is the pixel intensity at coordinates (x, y). For

each value of r, the accumulator coordinates (x0, y0) are

calculated using the parametric form of Eq. (1),

x
0
5 x2 r cosu, y

0
5 y2 r sinu , (3)

where u 2 [0, 2p). The spatial resolution of the co-

ordinates (x, y, r) in the accumulator space is one pixel,

and u is quantized to 18.

2) PEAK DETECTION

Promising circles are indicated by large values in the

accumulator array. To avoid multiple circles being de-

tected where only one exists in the image, it is necessary to

do peak detection. The accumulator array is searched for

local maxima by selecting the accumulator cells that have

FIG. 4. Hough transform feature extraction without peak filtering. (a) A slice in an origin

image that contains ring and disk bubbles. (b) The extracted circles are highlighted with white

color. There are a significant number of extracted circles that are not related to the oceanic

bubbles. The peaks in the accumulator space that correspond to these extra circles are due to

bubble wall thickness and bubble wall background.
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higher votes than their 3 3 3 spatial neighborhood.

However, there are many additional peaks in the accu-

mulator array that are not relevant to the circular bubbles.

For instance, peaks may be created by the surrounding

bubble walls, the bubble walls and background, and the

marine creatures. These are similar to the bubble peaks.

Moreover, the bubble wall can generate many peaks due

to its thickness. Figure 4 shows extracted circles in an im-

age that corresponds to these redundant peaks. Thus, it is

very important to filter out these unwanted peaks.

The peak filtering can be divided into six stages: radial

distribution (RD), suppressing wall thickness peaks,

filtering surrounding bubble walls or wall background

peaks, filtering edge peaks, and filtering copepod peaks.

The radial distribution measures the homogenous dis-

tribution of the pixel intensities around the bubble

center in the image space. It can be expressed as

RD5

����
ð2p
u50

eiug(x, y) du

����ð2p
u50

g(x, y) du

. (4)

The pixel coordinates (x, y) are calculated using Eq. (2)

for each candidate peak in the accumulator space. To

implement this measure, the RD value calculated in Eq.

(4) needs to be compared with an absolute value. It is

found by evaluating a number of images that the RD

values for the bubble peaks are less than 0.4.

TheRD is very efficient in removing the peaks between

the bubble walls and background. In a highly dense

bubble image, approximately 60%–75% of the unwanted

peaks are removed by theRDmeasure.Nevertheless, it is

not effective in filtering the wall thickness and the sur-

rounding walls peaks. Before proceeding to the next re-

fining stages, the peaks on the candidate list are sorted in

descending order according to their accumulator votes

and radii. Consequently, the larger circles are selected

first from the list in the next stages. It was decided to

follow this hierarchical approach that concentrates first

on the larger circles because many false smaller circles

exist inside the bubble, on the bubble wall, and between

the bubble wall and the background. The wall thickness

peaks can be identified by comparing the distance be-

tween each candidate peak with all the peaks in the ac-

cumulator array. The distance between two circles with

peak coordinates (x1, y1, r1) and (x2, y2, r2) can be cal-

culated using the following formula:

d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x

1
2 x

2
)2 1 (y

1
2 y

2
)2

q
2 (r

1
1 r

2
) , (5)

where d is positive if the circles do not overlap and it

measures the minimum distance between the circle loci.

Equation (5) was used to remove the entire set of

overlapping peaks that belong to a particular bubble.

This set of overlapping peaks includes the wall thickness

peaks as well as the small circle peaks on the bubble wall

and between the bubble wall and background. These

redundant peaks are removed from the candidate list by

following the hierarchical approach mentioned in the

previous paragraph. The larger peaks are first selected

from the candidate list. Then their distances are com-

pared with the smaller peaks on the list using Eq. (5). It

was found by evaluating a number of images that d# 1 is

adequate to detect the entire set of smaller peaks that

overlap with the bubble peak. Consequently, these

overlapping peaks are removed from the list.

The surrounding wall peaks are generated by the

walls of adjacent bubbles. It is observed that some parts

of the background are covered by the surrounding wall

circles in the image space. Therefore, the detection of

the surrounding wall peaks is based on counting the

number of pixels at the circumference in the image

space that have intensities less than double the back-

ground intensity.

Even though copepods are not circular, many con-

nected circles are generated inside the copepod bodies

due to their high pixel intensities. The copepod and

bubble peaks in the accumulator space can be very

similar and therefore it is challenging to distinguish be-

tween them. Two criteria have been used to identify the

copepod peaks. These are the peak value in the accu-

mulator space, and the distance between this peak and

its neighbors. The copepod peak is the one with the

highest vote and has a close distance with at least three

neighboring peaks. If these two conditions are satisfied,

then the distance between the connected circles in this

region is evaluated using Eq. (5). The algorithm con-

tinues evaluating the distance between each new de-

tected copepod circle and its neighbors when satisfying

the value of d in Eq. (5). Two types of images were an-

alyzed to select the right value of d. The first type of

image contains copepods with different shapes and sizes,

while the second type contains only bubbles. It was

found that d # 12 in Eq. (5) is adequate to detect the

entire set of peaks that belong to a particular copepod.

Moreover, it would not detect the bubbles in the

copepod-free images. These copepod peaks are re-

moved from the candidate list.

The bubbles that are close to the image edges appear

as incomplete circles. Therefore, it is not possible to

extract them with the same accuracy. The peaks of

theses incomplete bubbles are excluded from the

candidate list by testing how close their coordinates

are from the edge of the accumulator array, and the

reduction in effective field of view for large bubbles
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can be compensated appropriately in any final histo-

gram calculation.

3) CLASSIFICATION

After refining the unwanted peaks, the remaining

peaks in the accumulator space are classified into two

categories: rings (bright rings around dark center) and

disks (filled circles). The illumination around the ring

bubble wall varies because the light source does not il-

luminate the light sheet evenly from all directions, but it

has an increased intensity around the centers of the

mirrors creating the light sheet. As a consequence, the

ring bubbles appear as four dots for the smallest re-

solvable bubbles in the image space as shown in Fig. 4.

The coordinates and radii of the ring and disk bubbles

are successfully detected by the hierarchical approach of

radii extraction that was described in the previous sec-

tion [section 4a(2)]. However, the bubble rings have a

more precise bubble radii distribution than the disks.

This is because the circular bubble rings are in the light

sheet (in focus) and are very well identified. The ring

center intensity is close to the background intensity and

is lower than its circumference intensities. In contrast,

the filled disks (out of focus) are not in the light sheet

and the pixel intensities are irregularly distributed

around their centers. Therefore, these out of focus

bubbles are excluded from the bubble size distribution

calculations.

The classification into rings and disks is achieved by

comparing the average intensity of the central bubble

region with that of its periphery.

4) IMPLEMENTATION

To implement Eqs. (1)–(3), it is necessary to specify the

size and resolution of the accumulator. To speed up the

image analysis, the maximum bubble radius needs to be

known before running the algorithm. To find this radius,

the average intensity of each single image in two major

deployments (8.5 h each) was calculated. It was found

that the maximum bubble radii in high-intensity images

did not exceed 20 pixels (approximately 400mm).

Therefore, the radii range used in the algorithm is from

1 to 25 pixels (approximately 20–406mm). The accumu-

lator coordinates (x0, y0) have the same range as the im-

age space (2048 3 2048) and the resolution for the

coordinates (x0, y0) and r is one pixel. The implementation

of the algorithm can be summarized as follows.

1) Calculate the image histogram to assess the image

type (small bubbles, big bubbles, or complex im-

age). This is accomplished by examining the num-

ber of pixels at a particular gray level in the image

histogram. The algorithm continues running the

next steps (2–11) only if the image contains small

bubbles.

2) Build the three-dimensional accumulator array

A(x0,y0,r) using the voting scheme in Eq. (2). For

each value of r, there are 2048 rows and 2048

columns of the accumulator coordinates (x0,y0).

This array can be built by varying the coordinates

of the circle locus (x,y) in Eq. (3) from 0 to 2047 for a

particular value of r. The value of u in Eq. (3) is

varied from 0 to 2p for a given circle locus (x,y). The

vote of the accumulator arrayA(x0,y0,r) in Eq. (2) is

incremented only for the coordinates (x0,y0) that lie

within the image dimension.

3) Find the peaks in the accumulator array by selecting

the accumulator cells that have higher votes than

their 3 3 3 spatial neighborhood. This can be

accomplished by comparing the vote of each accu-

mulator cell A(x0,y0,r) with its neighbors. A list of

peaks is created in this step. This list contains the

accumulator votes and coordinates that have larger

votes than its neighborhood.

4) Refine the peaks list using the radial distribution

measure in Eq. (4). The circle loci for each accu-

mulator coordinate (x0,y0,r) on the list of peaks are

calculated by varying u in Eq. (3) from 0 to 2p. The

intensity values of these locus coordinates in the

image space are summed to calculate the RD in Eq.

(4). The accumulator vote and coordinate for a

given peak are removed from the list if the RD

value is larger than 0.4.

5) Sort the peaks in descending order according to

their radii and votes so that priority is given to the

larger bubbles as shown in section 4a(2). This can be

done by calculating the product of the accumulator

vote and the radius of each peak and comparing its

values with all the peaks on the list.

6) Refine the list by removing the surrounding walls

and wall background peaks. The circle loci for each

accumulator coordinate (x0,y0,r) on the list of peaks

are calculated by varying u in Eq. (3) from 0 to 2p. A

counter is created and incremented by 1 if the

intensity value for a given locus coordinate in the

image space is less than double the background

intensity. The peak is discarded from the list if the

counter value is larger than 180.

7) Refine the list by removing the wall thickness peaks

usingEq. (5). The distancebetween peak coordinates

(x1, y1, r1) and (x2, y2, r2) on the list are calculated

and the peaks of smaller circles (lower votes) are

removed from the list if (x1 2 x2)
21(y1 2 y2)

2 #

(r11r211)2.

8) Refine the list by removing the peaks at the edges.

For a given accumulator coordinate (x0,y0,r), its
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peak is discarded if (x02 r), 0 or (x01r). 2048 or

(y0 2 r) , 0 or (y01r) . 2048.

9) Refine the list by removing the peaks caused by

copepods. The distance between the coordinate

with the highest vote peak (x1, y1, r1) and other

peak coordinates (x2, y2, r2) on the list are calculated

using Eq. (5). A counter is created and incremented

by 1 if (x1 2 x2)
21 (y1 2 y2)

2 # (r11r2112)2. The

highest vote peak and its neighbors will be regarded

as copepod peaks if the counter value is equal or

larger than 3. In this case, the algorithm continues

evaluating the distance between theses detected

copepod peaks and its neighbors. The neighbor-

hood peaks will also be discarded from the list if

(x1 2 x2)
21 (y1 2 y2)

2 # (r11r2112)2.

10) Classify the peaks as rings or disks. For a given

accumulator coordinate (x0,y0) on the list, the locus

coordinates of two circles with radii r and 0.1r are

calculated by varying u in Eq. (3) from 0 to 2p.

The average intensities of these two circle loci in

the image space are calculated and compared with

the circle center intensity.

11) Calculate the histogram of the bubble rings and

disks, and save them in two different files.

12) Load the next image in the directory and repeat

steps 1–11.

Steps 2–10 are explained in more detail in section 4a(2).

b. Evaluation

To demonstrate the performance, the Hough trans-

form was evaluated using synthetic and real images. To

simulate the bubble images, the following model was

used to generate bubbles:

psf5 255

�
12

dist

spd

��
1

2
1

r

2 rmax
cos

�
4 tan21y

x

�	
, (6)

where psf is the point spread function that describes the

blurring around a particular circle locus(x, y), spd rep-

resents the blurring of the bubble wall, dist represents

the distance between the circular bubble locus (x, y) and

its center, r represents the bubble radius, rmax repre-

sents the maximum radius in the synthetic image, and

the cosine expression simulates the variation in illumi-

nation around the bubble due to the nonuniformity of

the four light sources forming the light sheet; the inverse

tangent is computed using atan2 to retain sign in-

formation. The spd value in Eq. (6) was gradually in-

creased from 1 to 6 to expand the blurring of the bubble

walls and to reduce the distance between them. More-

over, the bubble radii were in the range 1–50 pixels and

randomly positioned in the images. The resolution of

these images was 2048 3 2048 pixels and the number

of bubbles was between 400 and 700. The total number

of synthetic images was 60, where 10 images were tested

for each spread value. The absolute errors in the co-

ordinate �x,y and radius �r are calculated as follows:

�
x,y

5 jD
x,y

2T
x,y
j, (7)

�
r
5 jD

r
2T

r
j ,

where D and T stand for the detected and true circles,

respectively.

Table 1 shows the maximum and the average errors in

the coordinates and radii obtained from increasing the

spd value from 1 to 6. There is a gradual increase in the

maximum and average errors when this value exceeds 2.

In addition, the average errors in the radii are much

greater than the coordinates. It has been found that the

majority of these radii errors result from bubbles with

radii smaller than 3 pixels and that the absolute error in

the radius is61 pixel. This is because the shapes of these

small bubbles change from rings to disks in response to

the increase in the spd value. Figure 5 shows the effect of

increasing the spd value from 1 to 6 on the bubble shapes

and distance between them. It is clear that the pixel in-

tensities forming the bubble walls vary substantially and

that a significant number of the bubbles are overlapping

when the spread is 6. However, the algorithm correctly

extracts these overlapped bubbles as shown in Fig. 5d. In

addition, Fig. 5d shows that the algorithm does not de-

tect the incomplete bubbles at the image edge.

The algorithm was evaluated using 80 real images.

The selected images contain a large number of ring and

disk bubbles and copepods as shown in Fig. 6. The figure

shows that the algorithm extracts themajority of the ring

TABLE 1. Comparison between the errors in the coordinate �x,y and radius �r using different spd values (blurring) in Eq. (6).

Spread (pixels) Max �x,y Max �r �x,y percentage in 10 images (%) �r percentage in 10 images (%)

1 0 0 0 0

2 0 0 0 0

3 2 1 0.3 15

4 8 7 1.17 16.1

5 8 8 2.52 14.53

6 9 9 4.99 25.48
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and disk bubbles in these images without counting the

copepod.

5. Bubble size distributions

The bubble extraction algorithm was applied to the

entire sequence of images collected in two main de-

ployments of the bubble imaging instrument. The bub-

ble imaging instrument was configured to capture

images for 40min every 3 h. The total number of pro-

cessed images was approximately 850 000. Figure 7

shows a sample of the data collected during de-

ployment in the North Atlantic Ocean on 25 October

2013. The wind speed was 26m s21. The void fraction

versus time of recording is shown in Fig. 7a. The 1-s

averages were calculated based on the 15 sequential

frames taken in that 1 s, and this average was calculated

for every second throughout the 40-min measurement

period. A subsection identified by the vertical dashed

line in Fig. 7a is plotted in more detail in Fig. 7b.

The circle (16:18:33), diamond (16:19:45), and triangle

(16:19:51) in Fig. 7b are the markers for the three

bubble size distributions plotted in detail in Fig. 7c.

Each distribution was scaled by the measured volume of

water, which was approximately 4.034.030.5 cm3. The

bubble numbers quoted here are the bubble number per

micron radius increment per unit volume, which is the

conventional unit used in the oceanography literature.

Each size distribution shown is also a 1-s average, and

the total number of bubbles counted to calculate each

1-s size distribution was 28 (circles), 542 (diamonds), and

1225 (triangles).

6. Discussion

The focus of this paper was the automated extraction

of bubble images using the Hough transform as the ba-

sis. Most of the methods based on the Hough transform

for circular shape detection use gradient information

that is obtained from applying a first-order edge detector

to the original image. Therefore, the success of these

methods significantly depends on accurate estimates of

the edge information. In our approach, the pixel in-

tensities are directly used to build the accumulator array

for the voting scheme. This was followed by several

stages of filtering and a hierarchical radial extraction

FIG. 5. Subregions of the synthetic images to illustrate the change in spread values in Table 1.

(a) The spread values are equal to 1. (b) The extracted bubbles in (a). The extracted bubbles are

highlightedwith a white dot in the center and awhite circumference line. (c) The spread value is

equal to 6. (d) The detected bubbles in (c). This region is taken from the top of an image and

therefore the incomplete bubbles at the edges are not extracted.
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approach to remove unwanted peaks. This improves the

detection accuracy of the Hough transform by approx-

imately 50% (Liu and Fang 2015).

The proposed Hough transform has been shown to be

successful in extracting bubbles in synthetic and real

images as mentioned in section 4b. The test images

contain a large number of ring and disk bubbles that

overlap in some cases. In addition, the size of the bubble

radii was between 1 and 50 pixels (approximately

20–1000mm). The unwanted peaks caused by the over-

lapping bubbles have been effectively removed by

the hierarchical radial extraction approach that first

emphasizes the larger particles. Consequently, this hi-

erarchical approach gives a bias to detect larger bubbles.

However, this bias can be corrected and included as

error bars on the bubble size distributions. The accuracy

of extracting ring bubbles is much higher than the cor-

responding disk bubbles. This is because the bubbles in

the light sheet are in focus and are seen as a white ring

surrounding dark centers. Nevertheless, the unfocused

bubbles are observed as disks with an irregular distri-

bution of pixel intensities around the center. Therefore,

the histograms of the disk bubbles were saved in another

file to separate them from the ring bubbles.

FIG. 6. Subregions of the real images illustrating the algorithm extraction accuracy. (a) Ring

and disk bubbles. (b) The extracted ring and disk bubbles in (a). The extracted bubbles are

highlighted with a white dot in the center and a white circumference line. The brighter white

color was used to identify disk bubbles. (c) A copepod , and disk and ring bubbles. (d) The

extracted bubbles in (c), successfully avoiding false detection associated with the copepod.
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The entire image sequence for two major deploy-

ments was analyzed, and a sample of the bubble size

distributions measured during an 18-s period is shown in

Fig. 7. There is significant change in the bubble numbers

during these short periods. This is likely due to a com-

bination of highly inhomogeneous bubble plumes and

the advection of the bubbles past the optical instrument.

In general, the number of bubbles is significantly lower

when their size exceeds 100mm. Moreover, the smallest

extracted bubbles were approximately 20mm in radius,

which is equivalent to the Rayleigh resolution limit for

such types of oceanic bubble imaging instruments

(Deane and Stokes 1999; Walsh and Mulhearn 1987).

The required computation time and memory for the

Hough transform depends on the total number and size

of the bubbles in the image, the discrete resolution of the

accumulator parameters (radii and centers), and the

possible range of these parameters. The proposed al-

gorithmwas coded inC11 and used theOpenCv library

for computational efficiency (Bradski and Kaehler

2008). The C11 program requires approximately 5 s to

extract one frame on a 2.5-GHz Core i5Mac laptop with

4-GB system memory. It is mainly steps 2 and 3 of im-

plementation (feature extraction stage) that are time

consuming.

Although the proposed Hough transform is very ro-

bust to extract and count the bubbles, the algorithm’s

accuracy significantly decreases in particular images.

For instance, the bubbles can be large and nonspherical,

or tightly packed and highly illuminated as shown in

Figs. 3a and 3d, respectively. Bubbles with radii greater

than approximately 1mm are likely to show a signifi-

cant distortion from a spherical shape. An advanced

approach based on a combination of machine learning

and Hough transform may be required to process such

complex images.

The proposed algorithm in this paper can be extended

to extract elliptical bubbles. This can be done by defining

five parameters that represent an ellipse, instead of

three parameters that represent a circle. As a result, the

algorithm becomesmore complicated and slower since it

requires significantly greater computational recourses.

The complex and elliptical big bubble images were de-

tected and not processed by inspecting their image his-

tograms as illustrated in the implementation section

[section 4a(4)]. The percentage of these images was less

than approximately 0.04%.

7. Conclusions

We have presented an automated algorithm for bubble

extraction based on the Hough transform. The algorithm

effectively resolves bubbles with a radius of one pixel and

discriminates between bubbles and copepods. It was ap-

plied to analyze approximately 850000 captured images

from theocean.Themain limitationof this algorithm is that

it processes circular bubbles only and excludes noncircular

and significantly overlapped bubbles in complex images.

Themain novelty of this automated algorithm is that it

extracts the bubbles from the original image by using the

pixel intensities directly without applying any pre-

processing operations. Therefore, the algorithm is less

sensitive to noise because it does not use any first-order

edge operators. In addition, it is not susceptible to the

background changes in illumination and effectively ex-

tracts bubble sizes as small as one pixel in radius. This is

FIG. 7. Sample of the data processed by the bubble extraction algorithm. (a) The void fractionwith time

for one 45-min measurement period. (b) An enlarged section of the void fraction plot. (c) The detailed

bubble size distributions at the three marked times.
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because it avoids using any prefiltering and thresholding

operations. The implementation of this automated al-

gorithm is significantly simpler than the ones published

in literature and it has been applied to process 850 000

real ocean images. In addition, we have found that this

algorithm performs well for realistic ocean bubble dis-

tributions and removal of copepods. Real data from the

ocean were used to refine the algorithm, in contrast to

methods that are calibrated solely using laboratory data

collected in controlled conditions.

We believe that the proposed algorithm can be used to

extract circular bubbles in many other engineering,

medical, and chemical applications.
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