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Virtual sensors for 2D vector field tomography
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We consider the application of tomography to the reconstruction of 2-D vector fields. The most convenient sen-
sor configuration in such problems is the regular positioning along the domain boundary. However, the most
accurate reconstructions are obtained by sampling uniformly the Radon parameter domain rather than the
border of the reconstruction domain. This dictates a prohibitively large number of sensors and impractical sen-
sor positioning. In this paper, we propose uniform placement of the sensors along the boundary of the recon-
struction domain and interpolation of the measurements for the positions that correspond to uniform sampling
in the Radon domain. We demonstrate that when the cubic spline interpolation method is used, a 60 times
reduction in the number of sensors may be achieved with only about 10% increase in the error with which the
vector field is estimated. The reconstruction error by using the same sensors and ignoring the necessity of
uniform sampling in the Radon domain is in fact higher by about 30%. The effects of noise are also examined.
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1. INTRODUCTION

The vectorial Radon transform of a 2-D vector field arises
naturally in applications the measurements of which are
inherently line integrals of the inner product of the inves-
tigated vector field with a fixed vector. The reconstruction
of the examined vector field, by means of inverting the
vectorial Radon transform, allows one to determine the
internal structure of a system without physically probing
the interior. Typical examples of vector fields that can be
recovered include blood flow in vessels [1,2]; oceanic fluid
mesoscale velocity [3-5]; fluid flow [6-13]; electric field in
Kerr materials [14-16]; the gradient of the refractive in-
dex field [11]; velocity of heavy particles [17]; density in
supersonic expansions and flames [18]; non-destructive
stress distribution of transparent specimens [19,20]; tem-
perature distributions and velocity vector fields in fur-
naces [21]; and magnetic fields in tokomaks [22].

The problem of reconstructing a 2-D vector field in the
continuous domain from line-integral measurements is
underdetermined [10,11,19,23]. In particular, it has been
shown that only one component of the vector field can be
recovered from the tomographic measurements. The re-
covered component is either the curl-free (irrotational)
part or the divergence-free (solenoidal) part, depending
on the physical principle of the measurements, namely
the relation between the obtained set of measurements
and the investigated vector field.

However, it has been recently demonstrated [24] that
in the discrete domain, the problem is tractable. In par-
ticular, it was shown that one may estimate both compo-
nents of a 2-D vector field at a finite number of points of a
domain by simply using the integrals of the projections of
the field along lines tracing the domain [24]. This is pos-
sible of course, under the assumption that the density of
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the sampling points does not violate the Nyquist limit of
signal sampling, i.e. that the field is band-limited and it
does not contain frequencies that are higher than half the
sampling frequency. Cases which cannot be dealt with by
this approach are fields that contain singularities, as sin-
gularities make the field to be not band-limited. With the
assumption of a band-limited field, the solution of the
problem is always possible, as for a sampling grid of N
X N, one has N? unknowns, and 6 N2 measurements, con-
sidering all pairs of points on the perimeter of the grid,
when the paired points do not belong to the same side of
the perimeter.

The reconstruction method described in [24] is based on
linear algebra. It formulates the tomographic vector field
reconstruction problem in terms of a system of linear
equations. This matrix formalism is analogous to the
Radon transform scheme. Hence, solving the system of
linear equations that was obtained in [24] is equivalent to
inverting the vectorial Radon transform. According to the
theory of the Radon transform [25], a necessary require-
ment for producing accurate reconstructions is to sample
uniformly the Radon domain parameter space, defined by
the length of the normal to a tracing line, p, and the angle
this normal forms with the positive x axis, 6 (see Fig. 1).
However, sampling this space uniformly has two major
drawbacks:

(i) the required sensors are not placed uniformly in the
(x,y) Cartesian coordinates of the domain;

(ii) the sensors that have to be placed at the ends of a
line tracing the domain may be impractically close to the
sensors of another tracing line, as dictated by the uniform
sampling of the (p, 6) space.

In this paper, we show how these problems may be
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Fig. 1. Tracing line AB unites two virtual sensors that reside at
points A and B. The tracing line is defined by the two parameters
p and 6 (Radon domain coordinates) and goes through the digi-
tized square reconstruction region of size 2U X 2U. The line seg-
ment is sampled with sampling step As. The angle between the
line segment and the positive direction of the x-axis is w. The size
of the tiles with which we sample the 2-D space is P X P. Also
shown is the unit vector §, which is parallel to line segment AB.

overcome by using virtual sensors. The data values at
these sensors that correspond to uniform sampling in the
(p,6) domain are obtained from the known values of the
true sensors that are placed at regular points in relation
to the Cartesian coordinates (x,y) by using interpolation.
This approach allows one to use as many tracing lines as
one can afford, taking into consideration the computa-
tional cost of solving the corresponding system of linear
equations. However, the increase of the number of the
available line-integral data in such a way is not limited by
physical constraints on sensor placement.

This paper is organized as follows. In Section 2 we for-
mulate the problem, set up our notation and give a brief
summary of the algebraic reconstruction method pre-
sented in [24]. In Section 3 we present an example of
static electric field reconstruction and demonstrate the ef-
fect of the use of interpolated data on the quality of recon-
struction. In Section 4 we examine the effect of the em-
ployment of interpolated measurements on resilience to
noise. We conclude in Section 5.

2. RECONSTRUCTION METHODOLOGY

The treatment in this study is similar to the one in [24].
We perform the analysis in the digital domain. Let us as-
sume that we have the digitized square 2-D domain that
is shown in Fig. 1, within which we want to recover vector

field £(x,y)=f,(x,y)%+f,(x,y)¥. The length of each side of
the square domain is taken to be equal to 2U, and the ori-
gin of the axes of the coordinate system is chosen to be at
the center of the domain. The square domain is divided
into tiles of finite size, P X P, so that 2U/P is an integer.

The goal is to recover vector field £(x,y) at the center of
every tile of this space, namely the sampling points of the
domain.

Moreover, we assume, in line with [24], that ideal point
sensors that integrate only the component of the field pro-
jected on the line reside on predetermined and regularly
placed positions of the whole border of the 2-D square do-
main. These positions are the middle points of the bound-
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ary edges of all boundary tiles. However, in order to
achieve the best vector field reconstruction, the data
should not be collected by these regularly placed sensors,
but by sensors that correspond to uniform sampling of pa-
rameters p and 6. Therefore, we propose to use interpo-
lated measurements that correspond to uniform sampling
of the (p, 6) space.

Let us consider a tracing line AB (see Fig. 1) that con-
nects two sensors. In terms of parameters p and 6, the
equation of the line is

p=xcos f+ysin 6. (1)

Sampling p and 6 parameters uniformly results in a set of
such lines. Each tracing line (p, 6) of the set yields a line-
integral measurement of the projection of the vector field
along the line’s direction. Since we assumed that each
pair of sensors measures only the integral of the compo-
nent of the vector field along the scanning line (p, 6), the
integral transform that models the process of data acqui-
sition is given by

J1=f ?(x,y)-éds:f fids. (2)
AB AB

Here §=cos wX+sin wy is the unit vector along the inte-
gration (measurement) line AB and w is the angle be-
tween the tracing line and the positive direction of the
x-axis (see Fig. 1). In addition, ds is an element of path
length along this line, - is the symbol for the dot product

of two vectors, and fj is the component of £(x,y) along AB.
In order to translate into the digital domain, the integra-
tion expressed by Eq. (2) in the continuous domain the in-
tegral of the vector field along the tracing line has to be
expressed in terms of the components of the field at the
sampling points of the 2-D grid. To do that, the tracing
line is sampled with step As (see Fig. 1), and the value of
the vector field assigned to each center of segment of
length As is the unknown value of the field at the nearest
sampling point of the reconstruction domain. Along each
segment of length As, the vector field is assumed con-
stant, equal to the assigned value of the vector field at the
corresponding sampling point of the line. It is possible,
then, to approximate the integral of Eq. (2) by a sum, by
projecting the value of the field at each sampling point / of
the line onto the vector that represents the direction of
the line:

Ji= 20+ As. (3)
l

Here £;=(f;,f,;) are the unknown vector field values at
sampling points / and As=AsS. The number of Egs. (3) we
have depends on the number of tracing lines between the
virtual sensors we consider. In general, it is an overdeter-
mined system of linear equations, and its solution is ob-
tained in the least-square error sense.

To summarize, our formulation of the vector field recon-
struction problem may be written in matrix form as

Cg=b, (4)

where b e RE~*1 is the vector that contains the projection
measurements between virtual sensors wrapped into a
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vector, g e RE*1 is the set of the components of the vector
field to be reconstructed at all sampling points of the 2-D
digitized domain written as a vector, and C e R6*Ce is the
system matrix containing the weight factors between
each of the components of the vector field at every recon-
struction point and each of the corresponding tracing line
orientations from the set of measurements. System ma-
trix C is obtained from the analysis described in [24]. The
solution of the overdetermined system (4) that minimizes
the norm of the residual vector is obtained by solving the
system of equations

c’cg=C"p, (5)

where CT denotes the transpose of C and the matrix of co-
efficients CTC is square. Hence, the least-square error so-
lution (or else the vector field reconstruction result) is
given by

g=(CTC)"'C™p. (6)

In the next section we demonstrate that the reconstruc-
tion results we obtain using interpolated line-integral
measurements observed at virtual sensors as described
above are more accurate than the ones obtained in [24],
where reconstruction was based on line-integral measure-
ments collected by sensors that resided at regular points
in relation to the Cartesian coordinates (x,y).

3. EXAMPLE: ELECTRIC FIELD IMAGING

We consider the case where the vector field that we want
to recover is the electric field created by a static charge.
There are many ways to recover the electric field from
boundary data. However, here we use the electric field
only to demonstrate our method. In order to avoid prob-
lems with singularities, we place the source of the vector
field outside the bounded 2-D area. In a real physical sys-
tem, we do not expect to have to deal with real singulari-
ties anyway. We would like to stress that the problem we
solve is intentionally kept simple in order to demonstrate
the method. So, instead of avoiding singularities by using
a realistic version of Coulomb’s law for sources of finite
size, we place the source outside the domain of interest
and make it infinitesimally small.

For a static electric field, every voltage difference be-
tween any two points is the line-integral of the field pro-
jected along the line that connects these two points.
Therefore, we assume that the boundary sensors measure
the potential, so that the difference in the measurements
between any two such sensors gives the vectorial Radon
transform of the electric field. For the simulations we
present here, the potential in all these sensors is obtained
by using Coulomb’s law. It must be noted that the electric
field is irrotational, so according to [10], only transversal
measurements would be helpful to recover this field. How-
ever, the only realizable measurements for this applica-
tion are longitudinal.

For our experiments, we employed the digital square
reconstruction domain of Fig. 1 and chose 2U=11 as do-
main size and P=1 as tile size. Hence, the domain con-
sisted of 121 tiles and the number of the unknowns (the
E, and E, components of the field at the center of every
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tile of the domain) was 242. In addition, the line segments
joining sensors were sampled with a step equal to 1 (As
=1). Four different cases for the location of the source of
the vector field are reported. To exemplify the theory of
the study described in this paper, we performed five sets
of experiments for each source location.

The first set of experiments was performed following
the analysis described in [24]. Hence, we considered the
practical case where ideal point sensors are regularly
placed (RS) in relation to the Cartesian coordinates (x,y)
in known and predetermined positions of the whole bor-
der of the domain. These positions were the middle points
of the boundary edges of all boundary tiles. Therefore, we
used 11 sensors in every side of the boundary of the
square domain. We considered all possible voltage differ-
ences between pairs of these sensors, apart from sensors
lying on the same border line, and we formed the system
of linear equations according to the description of [24].
The number of linear equations was 726.

In the second set of experiments, we used the same sen-
sor placement as in the first set of simulations. However,
we performed the vector field reconstruction by relying
only on interpolated line-integral data observed at virtual
sensors that corresponded to uniform sampling of the
(p,0) Radon space, as proposed in this paper. To obtain
the positions where the virtual sensors had to be inserted,
we considered for the Radon domain parameters the sam-
pling steps recommended in [26,27]: Ap=1 and A#=3°.
The data values of the virtual sensors were obtained from
the data of the true sensors that were regularly placed in
relation to (x,y) by using some interpolation method. In
this study we examined the following methods: 1-D linear
interpolation (IP1) [28], 1-D piecewise cubic spline inter-
polation (IP2) [28], 1-D piecewise cubic Hermite interpo-
lation (IP3) [28], bilinear interpolation (IP4) [28], bicubic
interpolation (IP5) [28] and 2-D spline interpolation (IP6)
[28] (see Appendix A). The selected sampling steps of pa-
rameters p and 6 resulted in having 6 samples for the ra-
dial parameter and 120 samples for the angular param-
eter so that the region of interest (Fig. 1) was fully
covered. Consequently, the overdetermined system of lin-
ear equations, the solution of which gave the recon-
structed field, had 720 (=6 X 120) equations, almost the
same number as in the first set of experiments.

In the third set of experiments, we used uniform sam-
pling (US) in the parameter space, the same as in the sec-
ond set of experiments. However, the sensor placement
was different. In particular, the vector field recovery was
not based on interpolated measurements, but we assumed
that there are sensors at the ends of all lines that trace
the domain and that are uniformly distributed in the
(p, 0) space.

In the fourth and fifth sets of experiments, the vector
field reconstruction was performed as in the second and
third sets of experiments, respectively, apart from the fact
that the employed sampling rates were increased twofold:
Ap=0.5 and A#=1.5°. This resulted in having 2640 (=11
X 240) linear equations. We must note that for the case
where interpolated measurements are used for the recon-
struction, such an increase of line-integral data is not lim-
ited by the physical limitations that the sensor placement
imposes. In addition, this increase was made taking into
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consideration that the resulting system of equations
would not be prohibitively large and its solution would
not increase the processing time significantly.

The reconstruction results, namely the solution of the
overdetermined systems of linear equations for the five
sets of experiments and the four source locations were ob-
tained by applying the least-squares method. The House-
holder orthogonalization method [29], which is a numeri-
cally useful procedure in order to solve mean square value
problems for cases where the condition number of the ma-
trix of coefficients is large [30], was also tested for our re-
construction problem. However, the results we obtained
were identical with the results we obtained using the
least-squares method. Moreover, it must be noted that
since the residual we computed by using the least-squares
method was not large when compared with the solution
vector, there was no need to use the Cholesky method
[31].

The relative magnitude reconstruction error values
(i.e., the absolute values of the differences between the
magnitudes of the reconstructed fields and the theoretical
ones as obtained by using directly the governing Cou-
lomb’s law divided by the theoretical magnitude) and the
absolute angular reconstruction error values (i.e., the ab-
solute angular differences (in degrees) between the recon-
structed vector field values and the theoretical ones) for
the five sets of experiments and for the four locations of
the source were calculated. The means of these errors per
reconstruction tile are shown in Figs. 2-5.

We note from these figures that the cases where we
used interpolated measurements obtained at virtual sen-
sors that correspond to uniform sampling in the (p,6)
space outperform the case where reconstruction was
based on line-integral data obtained at sensors that are
regularly placed in relation to the (x,y) coordinates. In
addition, the higher the sampling rate of parameters p
and 6, the more accurate the obtained reconstruction. By
careful inspection of Figs. 2-5, we may also see that the
interpolation method that led to the most accurate recon-
struction was the 1-D piecewise cubic spline interpolation
[28,32,33]. In particular, it was found that the average
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difference in vector field orientation measured in degrees
was 34% lower when we employed interpolated data (us-
ing the 1-D piecewise cubic spline method) that corre-
spond to uniform sampling in the Radon domain with
Ap=0.5 and AH=1.5°, as opposed to the regular position-
ing of sensors in the (x,y) domain, while the average error
in magnitude was lower by 30%. The reconstructed vector
fields for the case where we used interpolated data (1-D
piecewise cubic spline method) that correspond to uniform
sampling in the Radon domain with Ap=0.5 and A6
=1.5° are shown in Fig. 6(a). For the sake of comparison,
Fig. 6(b) depicts also the respective theoretical electric
fields that were obtained by using directly the governing
Coulomb’s law.

From Figs. 2-5, we can also see that, as expected, when
uniform sampling of the parameter space is used, the use
of actual measurements results in more accurate recon-
structions than when interpolated measurements are
used. In particular, it was found that for sampling steps
Ap=0.5 and A#=1.5°, the case where actual measure-
ments were used led to 8% and 14% lower angular and
magnitude errors on average, respectively, as opposed to
using interpolated measurements and the 1-D piecewise
cubic spline method. However, by relying on interpolated
measurements, the number of the overall sensors re-
quired is about 60 times lower than the respective num-
ber when actual measurements are used. Hence, the em-
ployment of interpolated measurements that is proposed
in this paper results in a much more practical sensor con-
figuration.

4. VIRTUAL SENSORS AND NOISE

An important issue when solving inverse problems is the
sensitivity of the solution to noise. In this section we in-
vestigate the effects of noise on the use of interpolated
measurements obtained at virtual sensors that corre-
spond to uniform sampling of the (p, #) space. In all ex-
periments reported in Section 3 , the sensors were placed
exactly at the positions we had decided, and the measure-
ment taken by each sensor was exactly the value pre-
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Fig. 2. Comparison of the reconstruction performance for the cases when reconstruction was based on: (i) line-integral data from regu-
larly placed sensors (RS) in relation to (x,y) coordinates; (ii) interpolated line-integral data obtained at virtual sensors that corresponded
to uniform sampling of the Radon space and the employed interpolation method was the 1-D linear (IP1), the 1-D piecewise cubic spline
(IP2), the piecewise cubic Hermite (IP3), the bilinear (IP4), the bicubic (IP5), and the 2-D spline (IP6); (iii) uniform sampling (US) of the
parameter space using the actual measurements. The location of the source of the electric field was at (19, -19).
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Fig. 3. Asin Fig. 2, but here the location of the source of the electric field was at (-16, 21).

dicted by Coulomb’s law. In a practical system, however,
some of the sensor measurements are expected to have in-
accuracies, and some of the sensor positions are also ex-
pected to be somehow inaccurate. To emulate these ef-
fects, we considered the following.

(1) A noise value was added to a measurement as a
fraction of the true value, with random sign. For example,
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2% mnoise means that the sensor measurement was
changed by 2% of the value dictated by Coulomb’s law.
The change was either incremental or decremental, the
choice made at random for each sensor.

(i1) A sensor was moved away from its true position by
a fraction of the true position. For example, if according to
the theory, a sensor should be placed at position (x,y), and
we consider a 2% error, then the coordinates of this sensor
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Fig. 4. As in Fig. 2, but here the location of the source of the electric field was at (-21,-12).
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Fig. 6. Simulation results when the location of the source of the
electric field was (from top to bottom) at (19, -19), (-16, 21),
(-21,-12), and (24, 14.5): (a) the recovered vector field when re-
construction was based on interpolated line-integral data (1-D
piecewise cubic spline method) obtained at virtual sensors that
corresponded to uniform sampling of the Radon space with Ap
=0.5 and A#=1.5°; (b) the theoretical electric field as computed
from Coulomb’s law.

were shifted by 2% of the corresponding correct values,
with a positive or negative sign chosen at random.

(iii) Both the above errors were considered
simultaneously.

We performed four series of experiments by perturbing,
by the three types of noise described above, (a) only 25%
of the sensors, (b) 50% of the sensors, (¢) 75% of the sen-
sors, (d) all sensors. In order to evaluate the robustness of
the employment of interpolated data as proposed in this
study against noise, we examined for each series of ex-
periments the following three cases: (a) when integral
data from regularly placed sensors were used; (b) when
interpolated measurements that correspond to uniform
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sampling with Ap=0.5 and A#=1.5° were used; and (c)
when actual measurements that correspond to uniform
sampling with Ap=0.5 and A#=1.5° were used. For every
noise value (of each noise type, each reconstruction ap-
proach, and each percentage of perturbed sensors), fifty
simulations were performed and the average reconstruc-
tion errors in relative magnitude and absolute vector field
orientation were obtained. The source for all the simula-
tions was located at (19, —19).

The results of these experiments are shown in Figs.
7-10. We observe that the employment of interpolated
measurements observed at virtual sensors that corre-
spond to uniform sampling of the (p, ) space that is pro-
posed in this paper increases the resilience to all three
types of noise, when compared with the case of the sensor
regular positioning in the (x,y) domain proposed in [24].

The assumed noise model in the above experiments
was signal dependent. Noise processes of this type are in-
herent in many fields such as optics [34], kinematics [35],
and magnetic resonance imaging [36]. Nevertheless, we
also conducted experiments with fixed sensor positions
and additive Gaussian noise of zero mean and sigma vari-
ance. In order to evaluate the robustness of the employ-
ment of interpolated data against noise, we examined the
following three cases: (a) when integral data from regu-
larly placed sensors were used; (b) when interpolated (1-D
piecewise cubic spline) measurements that correspond to
uniform sampling with Ap=0.5 and A6=1.5° were used;
and (¢c) when actual measurements that correspond to
uniform sampling with Ap=0.5 and A#=1.5° were used.
We carried out simulations for the following values of
SNR (in dB): 20, 25, 30, 35, 40, 45, 50, 55. The correspond-
ing standard deviation of the noise was: 0.0383, 0.0215,
0.0121, 0.0068, 0.0038, 0.0022, 0.0012, 0.0007. For every
noise (sigma) value, fifty simulations were performed and
the average reconstruction errors in relative magnitude
and absolute vector field orientation were obtained. The
source for all the simulations was located at (19, —-19).
The results of these experiments are shown in Fig. 11.

5. DISCUSSION AND CONCLUSIONS

The analysis of the vector field tomography problem in
the continuous domain and the application of conven-
tional (scalar) tomography theory leads to an underdeter-
mined problem [4,10,11]. However, as was demonstrated
in [24], the recovery of all components of a 2-D vector field
at the sampling points of a 2-D digitized bounded domain
based only on a finite number of line-integral data may be
achieved, assuming that the field is band-limited.

In this paper, we employ interpolated boundary data
obtained at virtual sensors that correspond to uniform
sampling of the (p, ) space. The simulation results point
out that this employment leads to a significant reduction
of both the angular and magnitude reconstruction error
as compared with the case where data from sensors that
were regularly placed in relation to (x,y) coordinates were
used.

The employment of data that are collected at virtual
sensors that correspond to uniform sampling in the (p, 0)
domain allows us to use as many line-integral data as we
can afford, taking into consideration the computational
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Fig. 7. Comparison of the reconstruction performance in noisy environments for the cases: (i) when integral data from regularly placed
sensors were used; (ii) when interpolated measurements that corresponded to uniform sampling with Ap=0.5 and A#=1.5° were used;
(iii) when actual measurements that corresponded to uniform sampling with Ap=0.5 and A#=1.5° were used. (a), (b) Errors in vector field
orientation and magnitude when noise was added to the measurements of 25% of the sensors, as a percentage of the true value. (¢), (d)
Errors in vector field orientation and magnitude when small perturbations in the sensor positions were added. Position perturbations
were a percentage of the true positions. (e), (f) Errors in vector field orientation and magnitude when both sensors’ measurements and
positions were changed by a percentage of their true values. In all cases, 25% of the sensors were perturbed.

cost of solving the corresponding system of linear equa-
tions. However, most importantly, the increase of the
number of the available line-integral data in such a way
is not limited by physical constraints on sensor place-
ment. Hence, contrary to the case where the uniform
sampling in the (p,6) domain is combined with actual
measurements, the employment of interpolated measure-
ments as proposed in this paper achieves reconstruction
of higher quality by maintaining at the same time a prac-
tical sensor configuration.

Another significant outcome of the study presented
here is that the use of interpolated line-integral data ob-
tained on virtual sensors results also in improved noise
tolerance. This result is of great importance, especially in
medical situations where dealing with noise is a major is-
sue.

Part of the noise is introduced by the assumption that
the value of the field remains constant along each seg-
ment of the tracing line. A more elaborate approach would
consider the parts of each tracing line that belong to dif-

ferent tiles with which we have covered the domain of the
field and calculate the contribution of the field on the in-
tegral along each line taking that into consideration.
This, however, would make the process far too compli-
cated. We rely on the redundancy of the equations to re-
duce the error introduced this way.

The employment of interpolated data that correspond
to uniform sampling of the (p, ) space offers the possibil-
ity to increase the number of the available line-integral
data without being limited by physical constraints on sen-
sor placement or total scanning time. However, generat-
ing additional data points through interpolation does not
increase the amount of available information. Hence, the
amount of information contained in the set of interpolated
data was the same as in the original case of [24]. The ex-
planation for the results presented in this paper lies in
Radon transform theory [25]. In particular, the method
we developed is a direct algebraic reconstruction tech-
nique that performs inversion of the vectorial Radon
transform. According to the theory of the Radon trans-
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Fig. 8. Asin Fig. 7, but 50% of the sensors were perturbed.

form [25], a necessary requirement to produce reconstruc-
tion results of great accuracy when using discrete ap-
proximations is to have uniform distribution of projection
data as functions of the two Radon domain variables nor-
mally designated as the radial and angular coordinates.
Hence, employing interpolated data collected at virtual
sensors that correspond to uniform sampling of the pro-
jection space results in feeding our reconstruction algo-
rithm with data that are more favorable to reconstruction
accuracy. However, it must be noted that increasing the
number of interpolated measurements does not increase
the accuracy of the reconstruction ad infinitum. Beyond a
certain point, the benefit of achieving uniformity in the
(p, 6) space is counterbalanced by the error of the numeri-
cal solution of the system of equations, as the measure-
ments start becoming highly correlated and the coefficient
matrix difficult to invert. Also, the time it takes to do the
interpolation grows exponentially.

APPENDIX A: INTERPOLATION METHODS

Here we give the mathematics of the six interpolation
methods used in this paper.

1. 1-D linear interpolation: Consider an unknown 1-D
function S(x). Also, assume the value of this function is

known for x=x,4 and x=xp. 1-D linear interpolation takes
the two known values S(x4) and S(xp) and gives the in-
terpolated value S(x) at any point x that lies in the inter-
val (x4,xp) by using the formula

(S(xp) = S(x4))
S(x) =S(xa) + (X —xp) —————. (A1)
(xp —x4)

2. 1-D  piecewise  cubic  spline  interpolation:
Assume there is a set of N data points (x;,S;)
@@=1,...,N;x;<x9<...xy). The approximation interval
[x1,xx] is divided into N-1 subintervals by the so-called
N nodes (x;). In any subinterval [x;,x;.1] (i=1,...,N-1),
the interpolated value at a point x that lies in this inter-
val is given by

S(x) =8;(x) =a; + b;(x —x;) +c;(x - xi)2 +d(x - xi)s;

(A2)

where the spline coefficients are determined by the given
set of data and the conditions of continuity of S(x), S’ (x),
and S”(x) at the interior nodes [31]. Hence, the cubic
spline consists of N-1 piecewise cubic polynomials be-
tween the data points.
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Fig. 9. Asin Fig. 7, but 75% of the sensors were perturbed.

3. 1I-D  piecewise cubic Hermite interpolation:
A cubic Hermite spline is also a third-degree spline. For
interpolation on a set of points (x;,S(x;)) (=1,...,N),
interpolation is performed in each subinterval (x;,x;,1)
(i=1,...,N-1) by using the formula

S(x)=8;(x)=(1+2t)(1 - t)QS(xi) +#(1- t)2hM(xi)
+1%(3 = 26)S(x;41) + t2(¢ = DhM (x;41),
(A3)

where t=(x-x;)/h, h=x;,1-x;, and M(x;) and M(x;,;) are
the tangents at x; and x;, 1, respectively. The choice of tan-
gents is non-unique and there are several options avail-
able [31]. Hence, the cubic Hermite spline consists of
N-1 piecewise cubic Hermite polynomials between the
data points.

4. Bilinear interpolation: Assume that we want to find
the value of an unknown function S(x,y) at a point P(x,y).
It is assumed that we know the values Sg1, Sg2, Sgs, and
Sgq of function S(x,y) at the four points Q1(x1,y1),
R2(x1,y9), Q3(x9,y1), and Q4(xs,y5), respectively. The de-
sired estimate is given by:

S(ry) = (g —2)(y2-y) Sor+ (2o —x)(y —y1) Sos
(xe —2x1) (Y2 —y1) (2 —x1)(y2 —y1)
(x-x)(y2-y) (x -2y -y1)
B T R R PP T

(A4)

5. Bicubic interpolation: Assume we have an unknown
function S(x,y) that is defined in a rectangle in the (x,y)
plane, a <x<b and ¢ <y <d. Also, assume that the values
of function S(x,y) are known at the grid points (x;,y;) (i
=1,...,N;j=1,...,M) with a=x;<xs<...xy=b, c=y;
<y9<...yy=d. The rectangle is decomposed by the grid
points into subdomains R;;. Subdomain R;; contains the
points (x,y) with x; <x<x;,q, y;<y<yjy1 (@=1,...,N-1;j
=1,...,M-1). The 2D bicubic interpolation scheme is
identical to a third-degree polynomial on every R;;:

3 3
S(x,y) =8;(x,y) = >, >, ayulx —x)' @y -y)\.  (A5)

k=0 [=0

The determination of the 16 MN coefficients is performed
using the data, the conditions of continuity of the deriva-
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Fig. 10. As in Fig. 7, but all sensors were perturbed.

tives (and cross derivatives) of S(x,y), and some special
boundary conditions [31].

6. 2-D spline interpolation: Assume we have the same
rectangle in the (x,y) plane (a <x<b and c<y<d), as in
the previous interpolation method. Also, assume that the
values of function S(x,y) are known at the grid points
() (i=1,...,N;j=1,...,M) with a=x;<xy<...xy=b,
c=y1<y9<...yy=d. The interpolating spline consists of
successive 1-D splines and may be written as

(N-1)+3 (M-1)+3

Se,y) =Sy = > > cmun®viy). (A6)

k=1 =1

Coefficients c;j,; are computed by relying on the available
data and appropriate algorithms [33]. Also, functions
uip(x) and vj(y) are chosen so that (uq,...,up,9) form a
basis of all 1-D, real-valued functions on the bounded in-
terval [a,b] that are piecewise third-degree polynomials
on every interval [x;,x;,1], (i=1,...,N-1). Similarly, func-
tions (vq,...,Up.9) are selected so that they form a basis
of all 1-D, real-valued functions on the bounded interval
[c,d] that are piecewise third-degree polynomials on ev-
ery interval [y;,y;,1], (j=1,...,M-1) [33]. One such selec-
tion yields [33]

@ Regular in (x,y) (b)
60 . T Interpolated [uniform in (p,0)]
----- Actual [uniform in (p,0)]

Error in Vector Field Orientation (°)
Relative Magnitude Error (%)

0 : : : 0 : : :
20 30 40 50 60 20 30 40 50 60
SNR (dB) SNR (dB)
Fig. 11. Comparison of the reconstruction performance in noisy

environments for the cases: (i) when integral data from regularly
placed sensors were used; (i1) when interpolated (1-D piecewise
cubic spline) measurements that corresponded to uniform sam-
pling with Ap=0.5 and A§=1.5° were used; and (iii) when actual
measurements that corresponded to uniform sampling with Ap
=0.5 and A#=1.5° were used. (a) Error in vector field orientation
and (b) error in magnitude when Gaussian noise of zero mean
was added to the measurements of the sensors.
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x—a ) y-—c )
u,-k(x)=¢’< 7 +2—z), vﬂ(y)=<b< I +2—]>,
(AT)
with
@2-th3, if1<lt<2
D(t) =14 -6[t]*+ 3¢, if1<|1 ) (A8)

0, elsewhere

and hy=(b-a)/(N-1), hg=(d-c)/(M-1).

ACKNOWLEDGMENT

This work was supported by the Engineering and Physi-
cal Sciences Research Council (EPSRC) “Integrated Elec-
tronics” portfolio grant.

REFERENCES

1.

10.

11.

12.

13.

S. P. Juhlin, “Doppler tomography,” Proceedings of the 15th
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, October 28-31, 1993, San
Diego, California, USA (1993) pp. 212-213.

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volu-
metric bidirectional blood flow imaging spectral domain op-
tical coherence tomography using a modified Hilbert trans-
form,” Opt. Express 16,12350-12361(2008).

B. M. Howe, P. F. Worcester, and R. C. Spindel, “Ocean
acoustic tomography: Mesoscale velocity,” J. Geophys. Res.
92, 3785-3806 (1987).

W. Munk and C. Wunsch, “Observing the ocean in the
1990s,” Philos. Trans. R. Soc. London, Ser. A 307, 439-464
(1982).

D. Rouseff, K. B. Winters, and T. E. Ewart, “Reconstruction
of oceanic microstructure by tomography: a numerical fea-
sibility study,” J. Geophys. Res. 96, 8823—-8833(1991).

S. A. Johnson, J. F. Greenleaf, M. Tanaka, and G. Flandro,
“Reconstructing three-dimensional temperature and fluid
velocity vector fields from acoustic transmission measure-
ments,” ISA Trans. 16, 3, pp. 3-15, 1977.

D. M. Kramer and P. C. Lauterbur, “On the problem of re-
constructing images of non-scalar parameters from projec-
tions. Applications to vector fields,” ISA Trans. 26, 2674—
2677(1979).

S. J. Norton and M. Linzer, “Correcting for ray refraction in
velocity and attenuation tomography: a perturbation ap-
proach,” Ultrason. Imaging 4, 201-233(1982).

S. J. Norton, “Tomographic reconstruction of 2-D vector
fields: Application to flow imaging,” Geophys. J. Int. 97,
161-168 (1988).

S. J. Norton, “Unique tomographic reconstruction of vector
fields using boundary data,” IEEE Trans. Image Process. 1,
406—412 (1992).

H. Braun and A. Hauck, “Tomographic reconstruction of
vector fields,” IEEE Trans. Signal Process. 39, 464—
471(1991).

K. B. Winters and D. Rouseff, “A filtered backprojection
method for the tomographic reconstruction of fluid vortic-
ity,” Inverse Probl. 6, L33-1.38(1990).

K. B. Winters and D. Rouseff, “Tomographic reconstruction
of stratified fluid flow,” IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 40, 26-33(1993).

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Vol. 27, No. 6/June 2010/J. Opt. Soc. Am. A 1341

M. Zahn, “Transform relationship between Kerr-effect opti-
cal phase shift and non-uniform electric field distributions,”
IEEE Trans. Dielectr. Electr. Insul. 1, 235-246(1994).

H. M. Hertz, “Kerr effect tomography for nonintrusive spa-
tially resolved measurements of asymmetric electric field
distributions,” Appl. Opt. 25, 914-921(1986).

H. K. Aben, “Kerr effect tomography for general axisym-
metric field,” Appl. Opt. 26, 2921-2924(1987).

N. P. Efremov, N. P. Poluektov, and V. N. Kharchenko, “To-
mography of ion and atom velocities in plasmas,” J. Quant.
Spectrosc. Radiat. Transf. 53, 723-728(1995).

G. W. Faris and R. L. Byer, “Three-dimensional beam-
deflection optical tomography of a supersonic jet,” Appl.
Opt. 27, 5202-5212(1988).

V. A. Sharafutdinov, “Tomographic problem of photoelastic-
ity,” Proc. SPIE 1843, 234-243(1992).

H. Aben and A. Puro, “Photoelastic tomography for three-
dimensional flow birefringence studies,” Inverse Probl. 13,
215-221(1997).

A. Schwarz, “Three-dimensional reconstruction of tempera-
ture and velocity fields in a furnace,” Proceedings of
ECAPT, The European Concerted Action on Process Tomog-
raphy (International Society for Industrial Process Tomog-
raphy, 1994), pp. 227-233.

S. E. Segre, “The measurement of poloidal magnetic field in
a tokamak by the change of polarization of an electromag-
netic wave,” Plasma Phys. 20, 295-307(1978).

P. Juhlin, “Principles of Doppler Tomography,” Lund Insti-
tute of Technology, Sweden, Department of Mathematics,
LUTFD2/(TFMA-92)/7002+17P, August (1992).

M. Petrou and A. Giannakidis, “Complete tomographic re-
construction of 2-d vector fields using a system of linear
equations,” Proceedings of the 12th Annual Medical Image
Understanding and Analysis Conference (MIUA 2008) July
2-3, 2008, Dundee, Scotland, UK, pp. 132-136.

S. R. Deans, The Radon Transform and Some of Its Appli-
cations (Wiley, 1983).

M. Petrou and A. Kadyrov, “Affine invariant features from
the trace transform,” IEEE Trans. Pattern Anal. Mach. In-
tell. 26, 30—44(2004).

A. Kadyrov and M. Petrou, “Affine parameter estimation
from the trace transform,” IEEE Trans. Pattern Anal.
Mach. Intell. 28, 1631-1645(2006).

D. Kincaid and W. Cheney, Numerical Analysis: Mathemat-
ics of Scientific Computing(American Mathematical Society,
2002).

H. R. Schwarz, Numerische Mathematik (B. G. Teubner,
1986).

H. Schwetlick and H. Kretzschmar, Numerische Verfahren
fur Naturwissenschaftler und Ingenieure (Fachbuchverlag,
1991).

I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H.
Muehlig, Handbook of Mathematics (Springer, 2003).

C. de Boor, A Practical Guide to Splines (Springer-Verlag,
1978).

C. Habermann and F. Kindermann, “Multidimensional
spline interpolation: Theory and applications,” Comput.
Econ. 30, 153-169(2007).

R. M. Rangayyan, M. Ciuc, and F. Faghih, “Adapted-
neighborhood filtering of images corrupted by signal-
dependent noise,” Appl. Opt. 37, 4477-4487(1998).

T. D. Sanger, J. Kaiser, and B. Placek, “Reaching move-
ments in childhood dystonia contain signal-dependent
noise,” J. Child Neurol. 20, 489-496(2005).

G. Kriger and G. H. Glover, “Physiological noise in
oxygenation-sensitive magnetic resonance imaging,” Magn.
Reson. Med. 46, 631-677(2001).



