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We consider the application of tomography to the reconstruction of 2-D vector fields. The most convenient sen-
sor configuration in such problems is the regular positioning along the domain boundary. However, the most
accurate reconstructions are obtained by sampling uniformly the Radon parameter domain rather than the
border of the reconstruction domain. This dictates a prohibitively large number of sensors and impractical sen-
sor positioning. In this paper, we propose uniform placement of the sensors along the boundary of the recon-
struction domain and interpolation of the measurements for the positions that correspond to uniform sampling
in the Radon domain. We demonstrate that when the cubic spline interpolation method is used, a 60 times
reduction in the number of sensors may be achieved with only about 10% increase in the error with which the
vector field is estimated. The reconstruction error by using the same sensors and ignoring the necessity of
uniform sampling in the Radon domain is in fact higher by about 30%. The effects of noise are also examined.
© 2010 Optical Society of America
OCIS codes: 110.0110, 110.6955, 110.6960, 100.3190.
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. INTRODUCTION
he vectorial Radon transform of a 2-D vector field arises
aturally in applications the measurements of which are

nherently line integrals of the inner product of the inves-
igated vector field with a fixed vector. The reconstruction
f the examined vector field, by means of inverting the
ectorial Radon transform, allows one to determine the
nternal structure of a system without physically probing
he interior. Typical examples of vector fields that can be
ecovered include blood flow in vessels [1,2]; oceanic fluid
esoscale velocity [3–5]; fluid flow [6–13]; electric field in
err materials [14–16]; the gradient of the refractive in-
ex field [11]; velocity of heavy particles [17]; density in
upersonic expansions and flames [18]; non-destructive
tress distribution of transparent specimens [19,20]; tem-
erature distributions and velocity vector fields in fur-
aces [21]; and magnetic fields in tokomaks [22].
The problem of reconstructing a 2-D vector field in the

ontinuous domain from line-integral measurements is
nderdetermined [10,11,19,23]. In particular, it has been
hown that only one component of the vector field can be
ecovered from the tomographic measurements. The re-
overed component is either the curl-free (irrotational)
art or the divergence-free (solenoidal) part, depending
n the physical principle of the measurements, namely
he relation between the obtained set of measurements
nd the investigated vector field.
However, it has been recently demonstrated [24] that

n the discrete domain, the problem is tractable. In par-
icular, it was shown that one may estimate both compo-
ents of a 2-D vector field at a finite number of points of a
omain by simply using the integrals of the projections of
he field along lines tracing the domain [24]. This is pos-
ible of course, under the assumption that the density of
1084-7529/10/061331-11/$15.00 © 2
he sampling points does not violate the Nyquist limit of
ignal sampling, i.e. that the field is band-limited and it
oes not contain frequencies that are higher than half the
ampling frequency. Cases which cannot be dealt with by
his approach are fields that contain singularities, as sin-
ularities make the field to be not band-limited. With the
ssumption of a band-limited field, the solution of the
roblem is always possible, as for a sampling grid of N
N, one has N2 unknowns, and 6N2 measurements, con-

idering all pairs of points on the perimeter of the grid,
hen the paired points do not belong to the same side of

he perimeter.
The reconstruction method described in [24] is based on

inear algebra. It formulates the tomographic vector field
econstruction problem in terms of a system of linear
quations. This matrix formalism is analogous to the
adon transform scheme. Hence, solving the system of

inear equations that was obtained in [24] is equivalent to
nverting the vectorial Radon transform. According to the
heory of the Radon transform [25], a necessary require-
ent for producing accurate reconstructions is to sample
niformly the Radon domain parameter space, defined by
he length of the normal to a tracing line, �, and the angle
his normal forms with the positive x axis, � (see Fig. 1).
owever, sampling this space uniformly has two major
rawbacks:

(i) the required sensors are not placed uniformly in the
x ,y� Cartesian coordinates of the domain;

(ii) the sensors that have to be placed at the ends of a
ine tracing the domain may be impractically close to the
ensors of another tracing line, as dictated by the uniform
ampling of the �� ,�� space.

In this paper, we show how these problems may be
010 Optical Society of America
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vercome by using virtual sensors. The data values at
hese sensors that correspond to uniform sampling in the
� ,�� domain are obtained from the known values of the
rue sensors that are placed at regular points in relation
o the Cartesian coordinates �x ,y� by using interpolation.
his approach allows one to use as many tracing lines as
ne can afford, taking into consideration the computa-
ional cost of solving the corresponding system of linear
quations. However, the increase of the number of the
vailable line-integral data in such a way is not limited by
hysical constraints on sensor placement.
This paper is organized as follows. In Section 2 we for-
ulate the problem, set up our notation and give a brief

ummary of the algebraic reconstruction method pre-
ented in [24]. In Section 3 we present an example of
tatic electric field reconstruction and demonstrate the ef-
ect of the use of interpolated data on the quality of recon-
truction. In Section 4 we examine the effect of the em-
loyment of interpolated measurements on resilience to
oise. We conclude in Section 5.

. RECONSTRUCTION METHODOLOGY
he treatment in this study is similar to the one in [24].
e perform the analysis in the digital domain. Let us as-

ume that we have the digitized square 2-D domain that
s shown in Fig. 1, within which we want to recover vector
eld f��x ,y�= fx�x ,y�x̂+ fy�x ,y�ŷ. The length of each side of
he square domain is taken to be equal to 2U, and the ori-
in of the axes of the coordinate system is chosen to be at
he center of the domain. The square domain is divided
nto tiles of finite size, P�P, so that 2U /P is an integer.
he goal is to recover vector field f��x ,y� at the center of
very tile of this space, namely the sampling points of the
omain.
Moreover, we assume, in line with [24], that ideal point

ensors that integrate only the component of the field pro-
ected on the line reside on predetermined and regularly
laced positions of the whole border of the 2-D square do-
ain. These positions are the middle points of the bound-

ρ
θ

s

B
y

U

U

P

P

−U

−U

A

w x

∆s

ig. 1. Tracing line AB unites two virtual sensors that reside at
oints A and B. The tracing line is defined by the two parameters
and � (Radon domain coordinates) and goes through the digi-

ized square reconstruction region of size 2U�2U. The line seg-
ent is sampled with sampling step �s. The angle between the

ine segment and the positive direction of the x-axis is w. The size
f the tiles with which we sample the 2-D space is P�P. Also
hown is the unit vector ŝ, which is parallel to line segment AB.
ry edges of all boundary tiles. However, in order to
chieve the best vector field reconstruction, the data
hould not be collected by these regularly placed sensors,
ut by sensors that correspond to uniform sampling of pa-
ameters � and �. Therefore, we propose to use interpo-
ated measurements that correspond to uniform sampling
f the �� ,�� space.

Let us consider a tracing line AB (see Fig. 1) that con-
ects two sensors. In terms of parameters � and �, the
quation of the line is

� = x cos � + y sin �. �1�

ampling � and � parameters uniformly results in a set of
uch lines. Each tracing line �� ,�� of the set yields a line-
ntegral measurement of the projection of the vector field
long the line’s direction. Since we assumed that each
air of sensors measures only the integral of the compo-
ent of the vector field along the scanning line �� ,��, the

ntegral transform that models the process of data acqui-
ition is given by

J1 =�
AB

f̄�x,y� · ŝds =�
AB

f�ds. �2�

ere ŝ=cos wx̂+sin wŷ is the unit vector along the inte-
ration (measurement) line AB and w is the angle be-
ween the tracing line and the positive direction of the
-axis (see Fig. 1). In addition, ds is an element of path
ength along this line, · is the symbol for the dot product
f two vectors, and f� is the component of f��x ,y� along AB.
n order to translate into the digital domain, the integra-
ion expressed by Eq. (2) in the continuous domain the in-
egral of the vector field along the tracing line has to be
xpressed in terms of the components of the field at the
ampling points of the 2-D grid. To do that, the tracing
ine is sampled with step �s (see Fig. 1), and the value of
he vector field assigned to each center of segment of
ength �s is the unknown value of the field at the nearest
ampling point of the reconstruction domain. Along each
egment of length �s, the vector field is assumed con-
tant, equal to the assigned value of the vector field at the
orresponding sampling point of the line. It is possible,
hen, to approximate the integral of Eq. (2) by a sum, by
rojecting the value of the field at each sampling point l of
he line onto the vector that represents the direction of
he line:

Ji = �
l

f̄l · �s. �3�

Here f�l= �fxl , fyl� are the unknown vector field values at
ampling points l and �s=�sŝ. The number of Eqs. (3) we
ave depends on the number of tracing lines between the
irtual sensors we consider. In general, it is an overdeter-
ined system of linear equations, and its solution is ob-

ained in the least-square error sense.
To summarize, our formulation of the vector field recon-

truction problem may be written in matrix form as

Cḡ = b,¯ �4�

here b� �RCr�1 is the vector that contains the projection
easurements between virtual sensors wrapped into a
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ector, g� �RCc�1 is the set of the components of the vector
eld to be reconstructed at all sampling points of the 2-D
igitized domain written as a vector, and C�RCr�Cc is the
ystem matrix containing the weight factors between
ach of the components of the vector field at every recon-
truction point and each of the corresponding tracing line
rientations from the set of measurements. System ma-
rix C is obtained from the analysis described in [24]. The
olution of the overdetermined system (4) that minimizes
he norm of the residual vector is obtained by solving the
ystem of equations

CTCḡ = CTb̄, �5�

here CT denotes the transpose of C and the matrix of co-
fficients CTC is square. Hence, the least-square error so-
ution (or else the vector field reconstruction result) is
iven by

ḡ = �CTC�−1CTb̄. �6�

In the next section we demonstrate that the reconstruc-
ion results we obtain using interpolated line-integral
easurements observed at virtual sensors as described

bove are more accurate than the ones obtained in [24],
here reconstruction was based on line-integral measure-
ents collected by sensors that resided at regular points

n relation to the Cartesian coordinates �x ,y�.

. EXAMPLE: ELECTRIC FIELD IMAGING
e consider the case where the vector field that we want

o recover is the electric field created by a static charge.
here are many ways to recover the electric field from
oundary data. However, here we use the electric field
nly to demonstrate our method. In order to avoid prob-
ems with singularities, we place the source of the vector
eld outside the bounded 2-D area. In a real physical sys-
em, we do not expect to have to deal with real singulari-
ies anyway. We would like to stress that the problem we
olve is intentionally kept simple in order to demonstrate
he method. So, instead of avoiding singularities by using

realistic version of Coulomb’s law for sources of finite
ize, we place the source outside the domain of interest
nd make it infinitesimally small.
For a static electric field, every voltage difference be-

ween any two points is the line-integral of the field pro-
ected along the line that connects these two points.
herefore, we assume that the boundary sensors measure
he potential, so that the difference in the measurements
etween any two such sensors gives the vectorial Radon
ransform of the electric field. For the simulations we
resent here, the potential in all these sensors is obtained
y using Coulomb’s law. It must be noted that the electric
eld is irrotational, so according to [10], only transversal
easurements would be helpful to recover this field. How-

ver, the only realizable measurements for this applica-
ion are longitudinal.

For our experiments, we employed the digital square
econstruction domain of Fig. 1 and chose 2U=11 as do-
ain size and P=1 as tile size. Hence, the domain con-

isted of 121 tiles and the number of the unknowns (the
and E components of the field at the center of every
x y
ile of the domain) was 242. In addition, the line segments
oining sensors were sampled with a step equal to 1 ��s
1�. Four different cases for the location of the source of

he vector field are reported. To exemplify the theory of
he study described in this paper, we performed five sets
f experiments for each source location.

The first set of experiments was performed following
he analysis described in [24]. Hence, we considered the
ractical case where ideal point sensors are regularly
laced (RS) in relation to the Cartesian coordinates �x ,y�
n known and predetermined positions of the whole bor-
er of the domain. These positions were the middle points
f the boundary edges of all boundary tiles. Therefore, we
sed 11 sensors in every side of the boundary of the
quare domain. We considered all possible voltage differ-
nces between pairs of these sensors, apart from sensors
ying on the same border line, and we formed the system
f linear equations according to the description of [24].
he number of linear equations was 726.
In the second set of experiments, we used the same sen-

or placement as in the first set of simulations. However,
e performed the vector field reconstruction by relying
nly on interpolated line-integral data observed at virtual
ensors that corresponded to uniform sampling of the
� ,�� Radon space, as proposed in this paper. To obtain
he positions where the virtual sensors had to be inserted,
e considered for the Radon domain parameters the sam-
ling steps recommended in [26,27]: ��=1 and ��=3°.
he data values of the virtual sensors were obtained from

he data of the true sensors that were regularly placed in
elation to �x ,y� by using some interpolation method. In
his study we examined the following methods: 1-D linear
nterpolation (IP1) [28], 1-D piecewise cubic spline inter-
olation (IP2) [28], 1-D piecewise cubic Hermite interpo-
ation (IP3) [28], bilinear interpolation (IP4) [28], bicubic
nterpolation (IP5) [28] and 2-D spline interpolation (IP6)
28] (see Appendix A). The selected sampling steps of pa-
ameters � and � resulted in having 6 samples for the ra-
ial parameter and 120 samples for the angular param-
ter so that the region of interest (Fig. 1) was fully
overed. Consequently, the overdetermined system of lin-
ar equations, the solution of which gave the recon-
tructed field, had 720 �=6�120� equations, almost the
ame number as in the first set of experiments.

In the third set of experiments, we used uniform sam-
ling (US) in the parameter space, the same as in the sec-
nd set of experiments. However, the sensor placement
as different. In particular, the vector field recovery was
ot based on interpolated measurements, but we assumed
hat there are sensors at the ends of all lines that trace
he domain and that are uniformly distributed in the
� ,�� space.

In the fourth and fifth sets of experiments, the vector
eld reconstruction was performed as in the second and
hird sets of experiments, respectively, apart from the fact
hat the employed sampling rates were increased twofold:
�=0.5 and ��=1.5°. This resulted in having 2640 �=11
240� linear equations. We must note that for the case
here interpolated measurements are used for the recon-

truction, such an increase of line-integral data is not lim-
ted by the physical limitations that the sensor placement
mposes. In addition, this increase was made taking into
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onsideration that the resulting system of equations
ould not be prohibitively large and its solution would
ot increase the processing time significantly.
The reconstruction results, namely the solution of the

verdetermined systems of linear equations for the five
ets of experiments and the four source locations were ob-
ained by applying the least-squares method. The House-
older orthogonalization method [29], which is a numeri-
ally useful procedure in order to solve mean square value
roblems for cases where the condition number of the ma-
rix of coefficients is large [30], was also tested for our re-
onstruction problem. However, the results we obtained
ere identical with the results we obtained using the

east-squares method. Moreover, it must be noted that
ince the residual we computed by using the least-squares
ethod was not large when compared with the solution

ector, there was no need to use the Cholesky method
31].

The relative magnitude reconstruction error values
i.e., the absolute values of the differences between the
agnitudes of the reconstructed fields and the theoretical

nes as obtained by using directly the governing Cou-
omb’s law divided by the theoretical magnitude) and the
bsolute angular reconstruction error values (i.e., the ab-
olute angular differences (in degrees) between the recon-
tructed vector field values and the theoretical ones) for
he five sets of experiments and for the four locations of
he source were calculated. The means of these errors per
econstruction tile are shown in Figs. 2–5.

We note from these figures that the cases where we
sed interpolated measurements obtained at virtual sen-
ors that correspond to uniform sampling in the �� ,��
pace outperform the case where reconstruction was
ased on line-integral data obtained at sensors that are
egularly placed in relation to the �x ,y� coordinates. In
ddition, the higher the sampling rate of parameters �
nd �, the more accurate the obtained reconstruction. By
areful inspection of Figs. 2–5, we may also see that the
nterpolation method that led to the most accurate recon-
truction was the 1-D piecewise cubic spline interpolation
28,32,33]. In particular, it was found that the average
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ig. 2. Comparison of the reconstruction performance for the ca
arly placed sensors (RS) in relation to �x ,y� coordinates; (ii) inter
o uniform sampling of the Radon space and the employed interp
IP2), the piecewise cubic Hermite (IP3), the bilinear (IP4), the bi
arameter space using the actual measurements. The location of
ifference in vector field orientation measured in degrees
as 34% lower when we employed interpolated data (us-

ng the 1-D piecewise cubic spline method) that corre-
pond to uniform sampling in the Radon domain with
�=0.5 and ��=1.5°, as opposed to the regular position-

ng of sensors in the �x ,y� domain, while the average error
n magnitude was lower by 30%. The reconstructed vector
elds for the case where we used interpolated data (1-D
iecewise cubic spline method) that correspond to uniform
ampling in the Radon domain with ��=0.5 and ��
1.5° are shown in Fig. 6(a). For the sake of comparison,
ig. 6(b) depicts also the respective theoretical electric
elds that were obtained by using directly the governing
oulomb’s law.
From Figs. 2–5, we can also see that, as expected, when

niform sampling of the parameter space is used, the use
f actual measurements results in more accurate recon-
tructions than when interpolated measurements are
sed. In particular, it was found that for sampling steps
�=0.5 and ��=1.5°, the case where actual measure-
ents were used led to 8% and 14% lower angular and
agnitude errors on average, respectively, as opposed to
sing interpolated measurements and the 1-D piecewise
ubic spline method. However, by relying on interpolated
easurements, the number of the overall sensors re-

uired is about 60 times lower than the respective num-
er when actual measurements are used. Hence, the em-
loyment of interpolated measurements that is proposed
n this paper results in a much more practical sensor con-
guration.

. VIRTUAL SENSORS AND NOISE
n important issue when solving inverse problems is the
ensitivity of the solution to noise. In this section we in-
estigate the effects of noise on the use of interpolated
easurements obtained at virtual sensors that corre-

pond to uniform sampling of the �� ,�� space. In all ex-
eriments reported in Section 3 , the sensors were placed
xactly at the positions we had decided, and the measure-
ent taken by each sensor was exactly the value pre-
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icted by Coulomb’s law. In a practical system, however,
ome of the sensor measurements are expected to have in-
ccuracies, and some of the sensor positions are also ex-
ected to be somehow inaccurate. To emulate these ef-
ects, we considered the following.

(i) A noise value was added to a measurement as a
raction of the true value, with random sign. For example,
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e consider a 2% error, then the coordinates of this sensor

RS IP1 IP2 IP3 IP4 IP5 IP6 US
0

1

2

3

4

5

A
ve

ra
g

e
R

el
at

iv
e

M
ag

n
it

u
d

e
E

rr
o

r
(%

)

∆ ρ=1, ∆ θ=3°
∆ ρ=0.5, ∆ θ=1.5°

ource of the electric field was at �−21,−12�.

RS IP1 IP2 IP3 IP4 IP5 IP6 US
0

1

2

3

4

5

A
ve

ra
g

e
R

el
at

iv
e

M
ag

n
it

u
d

e
E

rr
o

r
(%

) ∆ ρ=1, ∆ θ=3°
∆ ρ=0.5, ∆ θ=1.5°

ource of the electric field was at (24, 14.5).

RS IP1 IP2 IP3 IP4 IP5 IP6 US
0

1

2

3

4

5

A
ve

ra
g

e
R

el
at

iv
e

M
ag

n
it

u
d

e
E

rr
o

r
(%

) ∆ ρ=1, ∆ θ=3°
∆ ρ=0.5, ∆ θ=1.5°

source of the electric field was at (−16, 21).
f the s
f the s



w
w

s

b
o
s
t
s
p
d
i

s
w
s
n
p
s
t
o
t

7
m
s
p
t
r

w
h
a
a
a
a
m
f
l
p
u
a
u
W
S
i
0
n
t
a
s
T

5
T
t
t
m
i
a
b
a

o
s
o
o
a
w
u

s
d
c

F
e
�
c
p
c
=
f

1336 J. Opt. Soc. Am. A/Vol. 27, No. 6 /June 2010 Giannakidis et al.
ere shifted by 2% of the corresponding correct values,
ith a positive or negative sign chosen at random.
(iii) Both the above errors were considered

imultaneously.

We performed four series of experiments by perturbing,
y the three types of noise described above, (a) only 25%
f the sensors, (b) 50% of the sensors, (c) 75% of the sen-
ors, (d) all sensors. In order to evaluate the robustness of
he employment of interpolated data as proposed in this
tudy against noise, we examined for each series of ex-
eriments the following three cases: (a) when integral
ata from regularly placed sensors were used; (b) when
nterpolated measurements that correspond to uniform

ig. 6. Simulation results when the location of the source of the
lectric field was (from top to bottom) at (19, −19), (−16, 21),
−21,−12�, and (24, 14.5): (a) the recovered vector field when re-
onstruction was based on interpolated line-integral data (1-D
iecewise cubic spline method) obtained at virtual sensors that
orresponded to uniform sampling of the Radon space with ��
0.5 and ��=1.5°; (b) the theoretical electric field as computed

rom Coulomb’s law.
ampling with ��=0.5 and ��=1.5° were used; and (c)
hen actual measurements that correspond to uniform

ampling with ��=0.5 and ��=1.5° were used. For every
oise value (of each noise type, each reconstruction ap-
roach, and each percentage of perturbed sensors), fifty
imulations were performed and the average reconstruc-
ion errors in relative magnitude and absolute vector field
rientation were obtained. The source for all the simula-
ions was located at (19, −19).

The results of these experiments are shown in Figs.
–10. We observe that the employment of interpolated
easurements observed at virtual sensors that corre-

pond to uniform sampling of the �� ,�� space that is pro-
osed in this paper increases the resilience to all three
ypes of noise, when compared with the case of the sensor
egular positioning in the �x ,y� domain proposed in [24].

The assumed noise model in the above experiments
as signal dependent. Noise processes of this type are in-
erent in many fields such as optics [34], kinematics [35],
nd magnetic resonance imaging [36]. Nevertheless, we
lso conducted experiments with fixed sensor positions
nd additive Gaussian noise of zero mean and sigma vari-
nce. In order to evaluate the robustness of the employ-
ent of interpolated data against noise, we examined the

ollowing three cases: (a) when integral data from regu-
arly placed sensors were used; (b) when interpolated (1-D
iecewise cubic spline) measurements that correspond to
niform sampling with ��=0.5 and ��=1.5° were used;
nd (c) when actual measurements that correspond to
niform sampling with ��=0.5 and ��=1.5° were used.
e carried out simulations for the following values of

NR (in dB): 20, 25, 30, 35, 40, 45, 50, 55. The correspond-
ng standard deviation of the noise was: 0.0383, 0.0215,
.0121, 0.0068, 0.0038, 0.0022, 0.0012, 0.0007. For every
oise (sigma) value, fifty simulations were performed and
he average reconstruction errors in relative magnitude
nd absolute vector field orientation were obtained. The
ource for all the simulations was located at (19, −19).
he results of these experiments are shown in Fig. 11.

. DISCUSSION AND CONCLUSIONS
he analysis of the vector field tomography problem in

he continuous domain and the application of conven-
ional (scalar) tomography theory leads to an underdeter-
ined problem [4,10,11]. However, as was demonstrated

n [24], the recovery of all components of a 2-D vector field
t the sampling points of a 2-D digitized bounded domain
ased only on a finite number of line-integral data may be
chieved, assuming that the field is band-limited.
In this paper, we employ interpolated boundary data

btained at virtual sensors that correspond to uniform
ampling of the �� ,�� space. The simulation results point
ut that this employment leads to a significant reduction
f both the angular and magnitude reconstruction error
s compared with the case where data from sensors that
ere regularly placed in relation to �x ,y� coordinates were
sed.
The employment of data that are collected at virtual

ensors that correspond to uniform sampling in the �� ,��
omain allows us to use as many line-integral data as we
an afford, taking into consideration the computational
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ost of solving the corresponding system of linear equa-
ions. However, most importantly, the increase of the
umber of the available line-integral data in such a way

s not limited by physical constraints on sensor place-
ent. Hence, contrary to the case where the uniform

ampling in the �� ,�� domain is combined with actual
easurements, the employment of interpolated measure-
ents as proposed in this paper achieves reconstruction

f higher quality by maintaining at the same time a prac-
ical sensor configuration.

Another significant outcome of the study presented
ere is that the use of interpolated line-integral data ob-
ained on virtual sensors results also in improved noise
olerance. This result is of great importance, especially in
edical situations where dealing with noise is a major is-

ue.
Part of the noise is introduced by the assumption that

he value of the field remains constant along each seg-
ent of the tracing line. A more elaborate approach would

onsider the parts of each tracing line that belong to dif-
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ig. 7. Comparison of the reconstruction performance in noisy e
ensors were used; (ii) when interpolated measurements that co
iii) when actual measurements that corresponded to uniform sam
rientation and magnitude when noise was added to the measur
rrors in vector field orientation and magnitude when small per
ere a percentage of the true positions. (e), (f) Errors in vector fi
ositions were changed by a percentage of their true values. In a
erent tiles with which we have covered the domain of the
eld and calculate the contribution of the field on the in-
egral along each line taking that into consideration.
his, however, would make the process far too compli-
ated. We rely on the redundancy of the equations to re-
uce the error introduced this way.
The employment of interpolated data that correspond

o uniform sampling of the �� ,�� space offers the possibil-
ty to increase the number of the available line-integral
ata without being limited by physical constraints on sen-
or placement or total scanning time. However, generat-
ng additional data points through interpolation does not
ncrease the amount of available information. Hence, the
mount of information contained in the set of interpolated
ata was the same as in the original case of [24]. The ex-
lanation for the results presented in this paper lies in
adon transform theory [25]. In particular, the method
e developed is a direct algebraic reconstruction tech-
ique that performs inversion of the vectorial Radon
ransform. According to the theory of the Radon trans-

0 1 2 3 4
0

5

10

15

20

25

Additive Noise (% of Signal)

(b)

,y)
[uniform in (ρ,θ)]
rm in (ρ,θ)]

0 2 4 6 8 10
0

5

10

15

20

Sensor Misplacement (%)
R

el
at

iv
e

M
ag

n
it

u
d

e
E

rr
o

r
(%

)

(d)

0 1 2 3 4 5
0

10

20

30

Additive Noise & Sensor Misplacement (%)

(f)

ments for the cases: (i) when integral data from regularly placed
nded to uniform sampling with ��=0.5 and ��=1.5° were used;
with ��=0.5 and ��=1.5° were used. (a), (b) Errors in vector field

of 25% of the sensors, as a percentage of the true value. (c), (d)
ions in the sensor positions were added. Position perturbations

ientation and magnitude when both sensors’ measurements and
s, 25% of the sensors were perturbed.
lar in (x
olated
l [unifo

)

nviron
rrespo
pling

ements
turbat
eld or



f
t
p
d
m
H
s
j
r
a
n
t
c
�
c
m
m
i

A
H
m

f

k
t
t
v

A
�
�
N
t
v

w
s
a
s
t

% of t

1338 J. Opt. Soc. Am. A/Vol. 27, No. 6 /June 2010 Giannakidis et al.
orm [25], a necessary requirement to produce reconstruc-
ion results of great accuracy when using discrete ap-
roximations is to have uniform distribution of projection
ata as functions of the two Radon domain variables nor-
ally designated as the radial and angular coordinates.
ence, employing interpolated data collected at virtual

ensors that correspond to uniform sampling of the pro-
ection space results in feeding our reconstruction algo-
ithm with data that are more favorable to reconstruction
ccuracy. However, it must be noted that increasing the
umber of interpolated measurements does not increase
he accuracy of the reconstruction ad infinitum. Beyond a
ertain point, the benefit of achieving uniformity in the
� ,�� space is counterbalanced by the error of the numeri-
al solution of the system of equations, as the measure-
ents start becoming highly correlated and the coefficient
atrix difficult to invert. Also, the time it takes to do the

nterpolation grows exponentially.

PPENDIX A: INTERPOLATION METHODS
ere we give the mathematics of the six interpolation
ethods used in this paper.

1. 1-D linear interpolation: Consider an unknown 1-D
unction S�x�. Also, assume the value of this function is
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Fig. 8. As in Fig. 7, but 50
nown for x=xA and x=xB. 1-D linear interpolation takes
he two known values S�xA� and S�xB� and gives the in-
erpolated value S�x� at any point x that lies in the inter-
al �xA ,xB� by using the formula

S�x� = S�xA� + �x − xA�
�S�xB� − S�xA��

�xB − xA�
. �A1�

2. 1-D piecewise cubic spline interpolation:
ssume there is a set of N data points �xi ,Si�

i=1, . . . ,N ;x1�x2� . . .xN�. The approximation interval
x1 ,xN� is divided into N−1 subintervals by the so-called

nodes �xi�. In any subinterval �xi ,xi+1� �i=1, . . . ,N−1�,
he interpolated value at a point x that lies in this inter-
al is given by

S�x� = Si�x� = ai + bi�x − xi� + ci�x − xi�2 + di�x − xi�3,

�A2�

here the spline coefficients are determined by the given
et of data and the conditions of continuity of S�x�, S��x�,
nd S��x� at the interior nodes [31]. Hence, the cubic
pline consists of N−1 piecewise cubic polynomials be-
ween the data points.
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3. 1-D piecewise cubic Hermite interpolation:
cubic Hermite spline is also a third-degree spline. For

nterpolation on a set of points �xi ,S�xi�� �i=1, . . . ,N�,
nterpolation is performed in each subinterval �xi ,xi+1�
i=1, . . . ,N−1� by using the formula

S�x� = Si�x� = �1 + 2t��1 − t�2S�xi� + t�1 − t�2hM�xi�

+ t2�3 − 2t�S�xi+1� + t2�t − 1�hM�xi+1�,

�A3�

here t��x−xi� /h, h�xi+1−xi, and M�xi� and M�xi+1� are
he tangents at xi and xi+1, respectively. The choice of tan-
ents is non-unique and there are several options avail-
ble [31]. Hence, the cubic Hermite spline consists of
−1 piecewise cubic Hermite polynomials between the

ata points.
4. Bilinear interpolation: Assume that we want to find

he value of an unknown function S�x ,y� at a point P�x ,y�.
t is assumed that we know the values SQ1, SQ2, SQ3, and
Q4 of function S�x ,y� at the four points Q1�x1 ,y1�,
2�x1 ,y2�, Q3�x2 ,y1�, and Q4�x2 ,y2�, respectively. The de-

ired estimate is given by:
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Fig. 9. As in Fig. 7, but 75
S�x,y� =
�x2 − x��y2 − y�

�x2 − x1��y2 − y1�
SQ1 +

�x2 − x��y − y1�

�x2 − x1��y2 − y1�
SQ2

+
�x − x1��y2 − y�

�x2 − x1��y2 − y1�
SQ3 +

�x − x1��y − y1�

�x2 − x1��y2 − y1�
SQ4.

�A4�

5. Bicubic interpolation: Assume we have an unknown
unction S�x ,y� that is defined in a rectangle in the �x ,y�
lane, a�x�b and c�y�d. Also, assume that the values
f function S�x ,y� are known at the grid points �xi ,yj� �i
1, . . . ,N ; j=1, . . . ,M� with a=x1�x2� . . .xN=b, c=y1
y2� . . .yM=d. The rectangle is decomposed by the grid

oints into subdomains Rij. Subdomain Rij contains the
oints �x ,y� with xi�x�xi+1, yj�y�yj+1 �i=1, . . . ,N−1; j
1, . . . ,M−1�. The 2D bicubic interpolation scheme is

dentical to a third-degree polynomial on every Rij:

S�x,y� = Sij�x,y� = �
k=0

3

�
l=0

3

aijkl�x − xi�k�y − yj�l. �A5�

he determination of the 16MN coefficients is performed
sing the data, the conditions of continuity of the deriva-
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ives (and cross derivatives) of S�x ,y�, and some special
oundary conditions [31].
6. 2-D spline interpolation: Assume we have the same

ectangle in the �x ,y� plane (a�x�b and c�y�d), as in
he previous interpolation method. Also, assume that the
alues of function S�x ,y� are known at the grid points
xi ,yj� �i=1, . . . ,N ; j=1, . . . ,M� with a=x1�x2� . . .xN=b,
=y1�y2� . . .yM=d. The interpolating spline consists of
uccessive 1-D splines and may be written as

S�x,y� = Sij�x,y� = �
k=1

�N−1�+3

�
l=1

�M−1�+3

cijkluik�x�vjl�y�. �A6�

oefficients cijkl are computed by relying on the available
ata and appropriate algorithms [33]. Also, functions
ik�x� and vjl�y� are chosen so that �u1 , . . . ,uN+2� form a
asis of all 1-D, real-valued functions on the bounded in-
erval �a ,b� that are piecewise third-degree polynomials
n every interval �xi ,xi+1�, �i=1, . . . ,N−1�. Similarly, func-
ions �v1 , . . . ,vM+2� are selected so that they form a basis
f all 1-D, real-valued functions on the bounded interval
c ,d� that are piecewise third-degree polynomials on ev-
ry interval �yj ,yj+1�, �j=1, . . . ,M−1� [33]. One such selec-
ion yields [33]
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ig. 11. Comparison of the reconstruction performance in noisy
nvironments for the cases: (i) when integral data from regularly
laced sensors were used; (ii) when interpolated (1-D piecewise
ubic spline) measurements that corresponded to uniform sam-
ling with ��=0.5 and ��=1.5° were used; and (iii) when actual
easurements that corresponded to uniform sampling with ��
0.5 and ��=1.5° were used. (a) Error in vector field orientation
nd (b) error in magnitude when Gaussian noise of zero mean
as added to the measurements of the sensors.
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uik�x� = �	x − a

h1
+ 2 − i
 , vjl�y� = �	y − c

h2
+ 2 − j
 ,

�A7�

ith

��t� = �
�2 − �t��3, if 1 � �t� � 2

4 − 6�t�2 + 3�t�3, if 1 � �1�

0, elsewhere
�, �A8�

nd h1��b−a� / �N−1�, h2��d−c� / �M−1�.
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