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Abstract: Porous silica-based materials are attractive for biomedical applications due to their biocompatibility and 

biodegradable character. In addition, inorganic supports such as porous silicon are being developed due to 

integrated circuit chip compatibility and tunable properties leading to a wide range of multidisciplinary 

applications. In this contribution, biosilica extracted from a rarely studied plant material (Equisetum 

Myriochaetum), its conversion to silicon and the potential for both materials to be used as supports for enzyme 

immobilization are investigated. E. myriochaetum was subject to conventional acid digestion to extract biogenic 

silica with a % yield remarkably higher (up to 3 times) than for other Equisetum sp. (i.e. E. Arvense). The surface 

area of the isolated silica was ~400 m2/g, suitable for biotechnological applications. Biogenic silicon was obtained 

by magnesiothermic reduction. The materials were characterized by SEM-EDX, XRD, FT-IR, ICP-OES, TGA and 

BET analysis and did not contain significant levels of class 1  heavy elements (such as Pb, Cd, Hg and As). Two 

commercial peroxidases, horseradish peroxidase (HRP) and Coprinus cinereus peroxidase (CiP) were 

immobilized onto the biogenic materials using three different functionalization routes: (A) carbodiimide, (B) amine 

+ glutaraldehyde and (C) amine + carbodiimide. Although both biogenic silica and porous silicon could be used as 

supports differences in behaviour were observed for the two enzymes. For HRP, loading onto biogenic silica via 

the glutaraldehyde immobilization technique (route B) was most effective. The loading of CiP showed a much 

higher peroxidase activity onto porous silicon than silica functionalized by the carbodiimide method (route A). 

From the properties of the extracted materials obtained from Equisetum Myriochaetum and the immobilization 

results observed, these materials appear to be promising for industrial and biomedical applications. 
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1. Introduction 

Equisetum spp. (also known as horsetail) are classified as one of the most ancient species of living vascular 

plants [1]. A remarkable characteristic of Equisetum spp. is their ability to take up monosilicic acid from the soil 

and accumulate silica in their tissues [2-4] providing mechanical strength and rigidity to the plant [2-4]. This 

natural silica, often referred to as biogenic silica or biosilica, is present in the form of amorphous silica [5-8]. The 

ability of plants to produce biogenic silica with a wide range of morphologies under mild physiological conditions 

is of great interest to scientists (and industry) as it gives the material exceptional properties, such as ordered 

hierarchical porous structures applicable for catalysis [9], biosensing [10] and biomedical applications [10]. 

Further, plants and other biological organisms (i.e. sponges and diatoms) produce silica in amounts 

corresponding to gigatons per annum, whereas industrial processes merely produce megatons of material [11]. 

Biogenic silica in plants is present together with a cell wall matrix, including polymers (i.e. cellulose), proteins, 

other carbohydrates, lipids, metal ions (such as Ca, K, S, Cl, Na, Al and P), and phenolic compounds, which also 

play an important role in the hierarchical structures of biosilica [12-14]. The distribution and amount of silicon and 

other metal ions vary between individual plant families [7,15] and, within the plant, depending on the anatomical 

region studied [2,16,17]. Horsetail species can be classified into two distinct subgenera based on the stomatal 

position [18]: Equisetum (i.e. E. arvense) and Hippochaete (i.e. E. hyemale). In these two subgenera (Equisetum 

and Hippochaete) can be found the giant horsetails E. telmateia and E. myriochaetum, respectively. E. 

myriochaetum is the largest giant horsetail recorded to date, reaching 24 ft. in height [19], which is up to 5 times 

taller than the common horsetail E. arvense (~5 ft.). E. myriochaetum is native to Mexico (North America), and is 

known as the Mexican giant horsetail; however, it can be found in other countries of the Americas such as 

Ecuador, Venezuela, Colombia, Peru, Costa Rica, etc. Studies done with this plant have been mainly based on 

its potential use as a medicinal plant (herbal extracts) to treat diabetes or kidney diseases [20-22]. However, a 

few studies have been made on its structural composition and morphology [23,24]. Hence, interest in this plant 

emerges from examining if the enormous difference in size compared with other Equisetum spp. also affect the 

properties of the biosilica present (i.e. structures and porosity) and; therefore, its potential applications. For 

example, porous silica-based materials have attracted great attention in hosting biological catalysts due to their 

biocompatibility and biodegradable character [25]. Great advancements have been made in the use of porous 

silica materials for enzyme immobilization [26], however, an appropriate immobilization strategy is required 

depending on the biomolecule, the silica source and the targeted application [26,27]. Alternative inorganic 

supports like porous silicon (PSi) have also been widely employed in this field [28-30]. For example, 

acetylcholinesterase immobilized on silicon surface showed enhanced storage stability, retention of enzymatic 

activity, thermal stability and pH stability [31]. β-Glucuronidase attached to porous silicon surface through a Si-C 

bond displayed high activity and photoluminescence (PL) properties of the substrate were retained [28]. 

Glutathione-S-transferases immobilized onto porous silicon multilayer thin films resulted in enhanced enzyme 

function in contrast to that observed for the enzyme free in solution [32]. Further interest in PSi materials by the 

scientific community has been shown due to its compatibility with chip-based technologies, easy fabrication, 

tunable properties and multidisciplinary applications [33-37]. Due to their high surface area and 

photoluminescence nature in the visible region they can serve for a vast array of applications including chemical 

[38-40] and biological sensors [41,42] as well as optoelectronics devices [43]. Similarly to porous silica, PSi is 

biodegradable [44] and its surface chemistry can be easily modified [45] allowing this material to entrap 

molecules such as proteins [46], DNA [47], and other biomolecules whose release can be controlled to serve as 

drug delivery systems [48]. In our previous work, immobilization of an industrially important peroxidase enzyme 

from Coprinus cinereus onto electrochemically synthesized PSi was investigated for increasing its shelf life 

against hydrogen peroxide [30]. Further, Cytochrome C was co-immobilized with peroxidase to increase the half-

life of the enzyme by acting as a reducing agent for the removal of oxidative equivalents during catalytic reaction 

[49]. In this current study, the potential of biosilica extracted from a rarely studied plant (E. Myriochaetum), its 

conversion to silicon and possible applications of both biogenic materials as supports for enzyme immobilization 

are investigated.  
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2. Materials and methods 

2.1. Materials 

Nitric acid (HNO3, 70%), sulphuric acid (H2SO4, >95%), acetic acid (CH3COOH, laboratory reagent grade), 

ethanol (EtOH, 99%), magnesium powder (99%) hydrochloric acid (HCl, 36%) and sodium hydroxide pellets 

(NaOH, ≥97.0%) were obtained from Fisher Scientific. 10-Undecenoic acid 98%, 2, 2'- Azino-bis(3-

ethylbenzothiazoline-6- sulphonic acid) diammonium salt (ABTS), 3-aminopropyltriethoxysilane (APTES), N-

Hydroxysuccinimide (NHS), N-(3-dimethylamonopropyl)-N' ethylcarbodimiide hydrochloride (EDC), glutaradehyde 

(GDA, 50%) and peroxidase from horseradish (Type VI- A, salt free, lyophilized powder 950-2000 U/mg) were 

obtained from Sigma Aldrich. A commercial peroxidase, Baylase® RP; hereafter named Coprinus cinereus 

peroxidase (CiP), was kindly donated by Bayer Mexico (Puebla, Mexico). Phosphate buffer was prepared by 

using monobasic potassium phosphate also from Sigma Aldrich. Succinic anhydride was obtained from Fluka. 

Standard solutions for each element were prepared from 1000 ppm stock solutions purchased from BDH 

Laboratory Supplies. Distilled-deionized water (ddH2O) with conductivity less than 1 μS cm-1 (25 °C) was used for 

all experiments.  

2.2. Silica extraction  

Equisetum myriochaetum was collected from Xochicalco (Mexico) in July-October 2015. The height of the plant 

was 6-7 feet. Fresh samples were stored in dry, dark conditions at room temperature. Plant material was 

separated into stems and branches and dried in an oven at 50 °C prior to acid digestion in concentrated 

HNO3/H2SO4 (4:1), 25 g of dry starting material was processed with 1 L of acid. To avoid acid burning, plant 

material was first covered with nitric acid and the sulphuric acid was then added carefully into the system. The 

mixture was stirred and left in a fume hood until a fine white precipitate was obtained and the release of oxides of 

nitrogen had stopped, usually around 48 h. Precipitates were isolated and washed with copious amounts of 

deionized water until the pH value of the water was around 5. The samples were then lyophilised before being 

heat-treated under air at 650 °C for 5 h with a heating rate of 10 °C/min. Simultaneously, a non-giant Equisetum 

spp., arvense, was also treated similarly in order to compare properties of the silica extracted.  

2.3. Magnesiothermic reduction of silica  

Magnesium and biogenic silica were mixed at a molar ratio 1.5:1. The mixture was then heated in a ceramic tube 

furnace at 650 °C for 2 h in an Argon (Ar) atmosphere. Leaching of side products (i.e. MgO, Mg2Si, Mg2SiO4, and 

SiO2) was carried out by the addition of a 2 M HCl solution at 70 °C for 1 h. The collected product was washed 3 

times with EtOH and the resulting solids treated with a 2% HF solution. After 10 seconds, aliquots of water were 

added. The final product was washed three times with EtOH and dried at 120 °C for 4 h in an Ar atmosphere. All 

heat treatments were performed with a heating rate of 10 °C/min.  

2.4. Silica and silicon functionalization  

Three different functionalization routes (see Fig.1) were compared to determine the highest protein loading on 

biogenic silica; for silicon the established route A and B were applied exclusively. In the first route (A), silicon and 

biogenic silica substrates were functionalised using 10-undecenoic acid in the manner previously described [49]. 

For the second route (B) the biogenic silica was first modified through the addition of 100 mM 3-aminopropyl 

groups (i.e. APTES or APDEMS) in 0.5 M acetic acid for 30 min. The substrate was washed 3 times with EtOH 

and treated with glutaric dialdehyde (2% incubated for 2 h at 57 °C). In this case, protein loading (1 mg/mL) was 

for 2 h at 4 °C in 1 M phosphate buffer (pH 6). The final route (C) used 100 mM succinic anhydride in 0.2 M 

phosphate buffer (pH 7.5) for 4 h as an alternative linker for amine functionalised silica substrates. The substrate 

was washed 3 times with EtOH prior to protein loading in the manner of route (A). 
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Fig. 1. Functionalization routes used for protein loading to biogenic material/s. 

2.5. Enzyme kinetic assays  

The oxidation of 10 µM of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) was monitored by 

measuring absorbance over time at 405 nm using a Cary50 or a Perkin Elmer 950 UV-Vis spectrophotometer. 

The reaction was catalyzed with 10 mM H2O2 and conducted in 60 mM phosphate buffer (pH 6.0). Activity of the 

enzyme loaded particles, washes, unloaded particles and crude enzyme was measured and used to calculate 

enzyme loading based on U/m2. 

2.6. Statistical testing 

Significance between means was tested in Microsoft excel using the students t-test function (n = 4), a P value 

≤0.05 was accepted as signifying a significant difference. The tests were two-tailed and the variance between the 

samples was not assumed to be equal. 

2.7. Characterization  

The morphology of the samples was determined by SEM (JEOL JSM-840A operating in secondary electron 

mode, 20 kV accelerating voltage).  Samples were attached to aluminum stubs using double-sided carbon 

adhesive tape and carbon coated (Edwards, sputter coater S150B). The crystallinity of the precipitates obtained 

was characterized using XRD (PANalytical X’Pert PRO, Cu Kα radiation with a wavelength of 1.54056 Å). Ground 

samples were packed into an aluminum sample holder and scanned from 5 to 80 of 2 at an accelerating 

voltage of 45 kV, 40 mA filament current, using a scan speed of 0.02 s­1 at room temperature. Diffraction 

patterns were analyzed using the X’Pert­HighScore Plus (Version 2.0a) program for diffractogram manipulation, 

background determination and peak identification. FTIR spectrometer (Agilent Technologies Cary 640/660 

attached with ZnSe crystal) or ATR (Perkin Elmer Spectrum 100 FTIR Spectrometer with Diamond/KRS-5 crystal) 

was used to detect the functional groups present in the samples. Spectra were averaged from 32 scans at 4 cm-1 

resolution with air as a background. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was 

used to identify changes in surface chemistry using a Thermo Scientific Nicolet 6700 FT-IR fitted with a Spectra 

Tech Inc. DRIFTS accessory purged using a Balston FT-IR purge gas generator and blank spectra taken using 

milled KBr. DRIFT spectra comprising 512 scans between 4000-400 cm-1 were collected with a resolution of 2 

cm-1. The organic content was determined by TGA (Mettler Toledo TGA/SDTA 851e). Samples were heated at 10 
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C·min-1 from 30 C to 900 C in air to ensure complete combustion of all organic material. The sample surface 

area and the N2 adsorption-desorption isotherms were obtained on approximately 100 mg of sample powder by 

Gas adsorption analysis (Quantochrome Nova 3200e). Samples were degassed at 100 °C overnight prior to each 

analysis. The surface area was determined by the Brunauer–Emmett–Teller (BET) method [50] using a five-point 

adsorption isotherm in the relative pressure range of P/P0 = 0.05/0.3 at 77.35 K. Sample porosity (pore size 

distribution) was obtained by the Barrett-Joyner-Halenda (BJH) method [51] from the desorption branch of the 

isotherm. The concentration of silicon (Si), calcium (Ca), potassium (K), phosphorus (P), magnesium (Mg), 

aluminium (Al) and strontium (Sr) in the samples was determined by using ICP-OES (Optima 2100DV). A full 

spectrum qualitative analysis was also carried out in order to discard the presence of heavy metals such as lead 

(Pb). For native material, 50 mg were fused into a Ni crucible with solid ground NaOH (5 g) at 400 ºC during 15 

min using a temperature ramp of 10 C·min-1. Collected samples were dissolved in distilled water and after 1 h 

acidified with concentrated nitric acid (HNO3). Final samples (1000 ppm in 10% HNO3) were filtered through a 

0.45 μm disc filter prior to analysis. For acid digested plant material, 50 mg of sample was added to a 4 M NaOH 

solution and sonicated until complete dissolution. Standard solutions for each element (detected in the qualitative 

analysis) were prepared from 1000 ppm stock solutions purchased from BDH Laboratory Supplies. The amount 

of each element was determined by comparison with standards of known concentrations (0-100 ppm, correlation 

coefficient of 0.999) using a wavelength (nm) of 251.6 for Si, 317.9 (Ca), 766.5 (K), 213.6 (P), 285.2 (Mg), 396.1 

(Al) and 407.8 (Sr). 

3. Results and Discussion  

3.1. Equisetum myriochaetum: structural characteristics and composition  

Native E. myriochaetum was studied to identify the structural and elemental composition of the samples (branch 

and stem). SEM analysis (Fig. 2a) showed outer spotted surface along with stomatal openings (left) typically 

observed for Equisetum spp. and inner multi-laminate structure (right) [2,16]. It should be noted that the stomata 

observed in common horsetail (i.e. Equisetum Arvense) is morphologically different than that observed for giant 

horsetail (i.e. Equisetum Myriochaetum), presenting in this case radiating ribs around the stomatal pore (Fig. 2a 

inset). This characteristic ribs are thought to be present in mature stomata, i.e. formed late during the stem 

development, and are composed of cellulose impregnated with silica [52]. Elemental analysis of Equisetum 

myriochaetum, cf.  EDX spectra of the stem (Fig. 2b), showed the presence of a wide range of elements 

including the essential elements for the plant growth such as K, Ca, Mg, S, Cl, and P; and other non-essential 

elements such as Si was, as expected, detected in the plant material. 

 

Fig. 2. (a) Electron micrographs of Equisetum Myriochaetum plant showing outer spotted surface (left) with stomata shape 

(inset) and inner multi-laminate structure (right); and (b) typical EDX spectra of Equisetum myriochaetum. All elements 

detected in the sample are labelled.  

ICP-OES analysis showed that the silica present in the stems and branches was 28 ± 5% and 26 ± 2%, 

respectively. Other elements, such as K, Ca, P, Mg, Al and Sr were also detected in the samples (listed in order 

of decreasing %) (Supplementary material, Table S1). Although, Na could not be quantified due to sample 

preparation procedure, its presence in the plant material could not be discounted [53]. XRD analysis of the native 

plant samples revealed the typical diffraction patterns of cellulose (Supplementary material, Fig. S2). Cellulose 

can exist in many polymorphs (Cellulose I, II, III and IV with additional sub-classifications) due to the hydroxyl 
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groups within the structure being involved either in intra- or intermolecular hydrogen bonding, which results in a 

different arrangement of atoms throughout the structure [54]. However, the predominant naturally occurring 

structure in nature is Cellulose I [55]. This polymorph can present two different crystalline structures: triclinic (Iα) 

and monoclinic (Iβ), with the latter being most frequently found in plants [55]. Both samples contained cellulose Iβ 

with a primary peak at 2ϴ ~22.5° corresponding to the (002) plane; and, a secondary broad peak (2ϴ ~16.0°) 

corresponding to the overlap of the (101) and (10̅1) planes [54,56]. The reflection at 2ϴ ~34.7° was attributed to 

the (040) plane [54].  

Thermal decomposition (TGA analysis) of the plant material showed a slightly larger total % weight loss (% wt.) 

for the stems compared to the branches, being 74 ± 3% and 72 ±1%, respectively. The organic composition 

present in this species was found to be ~10% less than in other horsetail species such as E. arvense 

(Supplementary material, Table S3). As previously reported for Equisetum ssp. [16], four stages of weight loss 

were observed (Supplementary material, Table S1). In Stage 1, desorption of water and volatile organic oils 

occurs at T <150 °C. In Stage 2 (180-380 °C), the degradation of hemicellulose and cellulose by pyrolysis takes 

place, the maximum rate of weight loss occurring between 286-296 °C [57]. In Stage 3, degradation of lignin 

occurs [58,59]. The maximum rate of weight loss at this stage however occurs at different temperatures for stems 

and branches due to the complex structure of lignin thermal stability being known to vary between types and 

species of plants [60], and within different parts of the same species [16] in this case ~421 °C and ~450 °C, for 

stem and branch, respectively. Stage 4 (800-900 °C) is attributed to the dehydroxylation of silanol groups [61], it 

was only observed as a loss in weight for the stem, which is in agreement with our previous findings [16]. This 

data suggested that similarities in composition exist between distinct genera of Equisetum ssp. even if they are 

grown in different climates, soil composition, etc.  

3.2. Biogenic silica isolated from Equisetum myriochaetum  

After acid digestion and heat treatment of the plant material, the collected samples were mainly composed of 

silica as seen by XRD and ATR analysis (Supplementary material, Fig. S4). DRIFT technique was also used to 

characterize the material (Fig. 3). Spectra of the material isolated from E. myriochaetum (Fig. 3) exhibited 

absorption peaks which would be expected for silica, with the following major assignments; peaks at ~818, 1074 

and 1868 cm-1 can be attributed to Si-O-Si [62], ~978 cm-1 to Si-OH [62], ~1631 cm-1 to a polymeric state of H2O 

[63]. Absorbance above 3000 cm-1 is attributed to O-H stretching mode either in H2O or Si-OH groups [62,64], the 

sharp peak ~3746 cm-1 representing free (no H-bonding) silanol groups [65]. Additional peaks ~2929 cm-1 can be 

attributed to C-H [64] and explained as the residual organic component of the material previously detected by 

TGA (Supplementary material Fig. S2).  

 

Fig. 3. DRIFTS spectra of acid digested and heat treated E. myriochaetum branches and stems. 
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The purity of the biogenic silica was higher than 95% since the % weight loss of the samples was less than 5% 

(Supplementary material Table S3), this being attributed to traces of other biominerals that can be present in 

these samples, such as KCl [16] as evidenced from ICP-OES results (Supplementary material Table S1) by the 

detection of K (~7%) and traces of other elements such as P, Mg, Al and Sr. Note, Ca was completely removed 

from the initial sample. Further, the final biogenic silica did not show the presence of heavy metals such as Pb. 

The % yield of this process was for the branches remarkably much higher (up to 3 times more) than other 

Equisetum ssp. (Supplementary material Table S5). Therefore, biogenic material from branches was chosen to 

be reduced to silicon. The surface area of the isolated material was ~400 m2/g (Table 1), this value being slightly 

higher for stems. Further, the surface area were more than five times higher than that observed for E. Arvense 

and the pore size was seen to be monodisperse (Supplementary material Fig. S6). 

Table 1 The surface area, pore size and volume obtained from N2 adsorption measurements. 

Biogenic material SSA (m2·g-1) Pore size (nm) Vpore (cc·g-1) 

Silica (stem) 412 ± 17 4.9a 0.6b 

Silica (branch) 384 ± 13 4.9a 0.6b 

Silicon (branch) 287 12.1 0.9 

aStd. Dev. < 0.02 and bStd. Dev. < 0.1  

3.3. Biogenic silica reduction (Magnesiothermic process)  

Silica was successfully reduced to silicon as shown by XRD and ATR in Fig. 4.  The XRD diffraction pattern (Fig. 

4a) of biogenic silica (red line) showed a broad peak centered at ~22° corresponding to amorphous silica; 

however, for the biogenic silicon, three diffraction peaks were observed at 28.56°, 47.44° and 56.21° 

corresponding to the (111), (220) and (311) planes respectively, of crystalline silicon with the reference pattern: 

00-027-1402 [66].  FTIR spectra (Fig. 4b), showed typical vibration modes for silicon oxide  at 1078 cm-1, 960 cm-

1 and 800 cm-1, corresponding to the antisymmetric Si-O-Si stretching, Si-OH stretching and symmetric O-Si-O 

stretching modes, respectively [62]. FTIR spectrum of biogenic silicon showed a peak ~2045 cm-1 corresponding 

to Si-H stretching and a peak ~2145 cm-1 associated to stretching mode of SiH3 [67]. The oxide-related peaks 

were significantly decreased (blue line) after magnesiothermic reduction, confirming the final product was mainly 

comprised biogenic silicon. 

      

(a) (b) 
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Fig. 4. (a) XRD diffractograms and (b) FTIR spectra of extracted biogenic silica (red line) and reduced biogenic silica (blue 

line).  

The surface morphology of the biogenic silicon as studied by SEM (Fig. 5) showed an homogeneous distribution 

of pores with average diameter (n > 30) of 100 ± 25 nm. BET analysis showed a reduction of the surface area but 

an increase of the pore size and pore volume (Table 1). This could be explained as some of the structure was 

broken after magnesiothermic treatment with larger openings being present on the surfaces of the microparticles.  

 

Fig. 5. SEM images of the biogenic silicon after magnesiothermic treatment. 

3.4. Biogenic material functionalization  

After acid digestion and heat treatment of the plant material, the biogenic surface was functionalised to promote 

enzyme loading. The DRIFT technique was used to characterize the biogenic silica after each stage of 

functionalization due to its enhanced sensitivity to surface groups (Fig. 6a). In Supplementary material (Fig. S7) 

are found additional spectra for stems. After treatment with undecylenic acid for route (A) all materials exhibited 

an increase in the number of peaks attributed to the C-H chain. No new peaks were observed above 3000 cm-1 

suggesting the presence of new saturated C-H bonds, however little evidence of C=O (~1700 cm-1) was observed 

in the spectra. For routes (B) and (C) treatment with 3-aminopropyl groups also resulted in a change in the 

unsaturated C-H region;  new peaks were observed ~3300-3380 cm-1 and 1590 cm-1 representing N-H and C-N 

respectively [68] On treatment with GDA (route B) the appearance of a peak at ~1700 cm-1 suggested the 

introduction of C=O groups from the aldehyde [69,70]. On treatment with succinic anhydride (route C), several 

new peaks appeared at ~1720, 1460 and 1380 cm-1 which are interpreted as the introduction of –COOH groups 

to the surface. 

         

Fig. 6. (a) DRIFTS spectra of E. myriochaetum branches (EMB) after functionalization by route A, B and C; and, (b) FTIR 

spectra of each step of immobilization of Silicon + CiP by routes A and B. 

(a) (b) 



9 
 
 

 

Note that, silicon surfaces are typically functionalized following route A, however, as anticipated, the biogenic 

silica functionalized using route B (treatment with GDA) showed the highest enzyme loading. Therefore, this 

functionalization method (route B) was also applied for biogenic silicon for a comparison study. Further FTIR 

spectra for each step of immobilization onto functionalized microparticles (by route A and B) for CiP (Coprinus 

cinereus peroxidase) was studied for biogenic materials, cf. FTIR spectra of immobilized peroxidase onto 

functionalized silicon (Fig. 6b). In Supplementary material (Fig. S8) are found spectra of immobilized 

peroxidase onto functionalized silica. It should be noted that characteristic silica peaks are still observed in the 

silicon spectrum, suggesting not all silica has been converted to silicon. After immobilization of the CiP, there was 

an intense peak ~1650 cm-1 corresponding to the amide I bond specific for enzymes arising from stretching 

vibrations of the C=O (70 to 85%) and C-N groups (10 to 20%) [71]. The intensity increase of the broad peak 

around 3000-3400 cm-1 would indicate the presence of peroxidase due to intermolecular hydrogen bond arising 

from -NH2 and -OH groups in the peroxidase [72-74]. For route B, the peaks at 1410 cm-1 from deformation 

modes of the Si-CH2 from the ethoxy moieties [75] and at 1625 cm-1 from NH2 bend [76] indicated the presence of 

3-aminopropyl on the microparticles. Characteristic IR peaks from functionalization (previously described in 

Fig.6a) were also observed for silicon microparticles. 

 

3.5. Activity of immobilized enzymes  

After functionalization of biogenic silica by the 3 routes, peroxidase from horseradish (HRP) was loaded onto the 

different substrates over a 4 h period and washed three times with 60 mM phosphate buffer (pH 5) to remove 

unbound enzyme. The enzyme activity of the loaded substrates was then determined (Fig. 7). An 

unfunctionalized commercial Silicon sample from pSiMedica (SSA=400 m2·g-1, pore size=10 nm) was employed 

to compare enzyme loading effectiveness with functionalization. Measured enzyme activity revealed significant 

differences in HRP loading between the substrates. In the case of both E. myriochaetum branch (EMB) and stem 

(EMS) derived substrates, loading without functionalization achieved a comparable result. In the case of 

functionalization using undecylenic acid (A) both substrates showed the lowest activity and performed 

significantly worse for EMB than loading without functionalization. Since this method was designed for silicon 

substrates (refer to Si and Si (A)) it was understandable that the route performed poorly with silica which lacks the 

desired Si-H groups necessary for interaction. Additionally, previous immobilization studies have suggested that 

HRP enzyme is absorbed into the pore spaces of silica particles [77]. For the biogenic silica, with average 5 nm 

pore size (Table 1), this adsorption could be limited due to the enzyme dimensions (elongated shape of 6.4 x 3.7 

nm). For the 3-aminopropyl functionalized substrates made with the aldehyde linker (B), for EMB at least, 

significantly greater loading was achieved compared to A and C for EMB. However, for the 3-aminopropyl 

functionalized substrates with EDC/NHS linker (C) the resulting loading was not significantly different to the non-

functionalized control and showed greater variability between replicates. What was apparent from the 

functionalization, loading and HRP activity studies was that the functionalization of biosilica is not a prerequisite 

for loading enzyme onto the biogenic substrate. Biogenic silica with readily available surface hydroxyls (Fig. 7) 

can intrinsically bind protein through mechanisms such as hydrogen bonding and electrostatic forces [78]. Under 

the conditions of our experiment (pH 6.0) and considering the nature of our protein molecule (pI 6-10), the 

potential for electrostatic interactions exist. Covalent tethering of the protein to the substrate is however desirable 

in many applications (i.e. if conditions will not permit/sustain electrostatic interactions). For this functionalization of 

the biogenic silica is required but the choice of the linker can obviously greatly influence the efficiency of the 

loading. That the use of 10-undecenoic acid had a negative impact on loading was interesting and suggests that 

the presence of the undecylenic acid blocked the inherent binding mechanism of the non-functionalized material. 

The protein loading reaction for routes A and C were the same, functionalization with 3-aminopropyl groups did 

not significantly influence binding compared to the non-functionalized material. Although route B provided some 

evidence of higher loading than other routes it is difficult to suggest on the basis of this work a definitive route for 

the loading of HRP to biogenic silica, this suggests that further optimization in the loading strategy is possible. 
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Fig. 7 HRP activity of differently functionalized substrates in Units (U/m2). EMB and EMS represent acid digested and heat 

treated E. myriochaetum (branches and stems respectively), Si represents a commercial porous silicon (n = 2). A, B and C 

represent the different functionalization pathways. Significance was tested between EMB and EMS substrates and 

represented as follows * (P <0.05), *** (P <0.001), n = 4. 

As protein loading on biosilica was best achieved by following route B (GDA), a comparison study with the 

biogenic silicon (from branches) was performed by using CiP peroxidase. With the two well-known 

functionalization techniques (A and B) for enzyme immobilization, CiP peroxidase showed much higher activity. 

Both routes found the accessibility to the immobilized enzymes into the microparticles to be key to their activities. 

Using route A, which is considered specific for silicon, 28-31% of the expected peroxidase activity was found; 

however, this value was reduced to 21-23% when biogenic silica was used. In contrast, using the GDA method 

(route B, specific for silica) a much lower activity was found for silicon compared to silica, being 14-16% of the 

expected activity for silicon and 20-22% for silica microparticles. From these results it was concluded that enzyme 

activity onto silicon microparticles was best achieved by using the undecylenic acid functionalization technique 

(route A), whereas, onto silica, non-significant differences in the CiP activity were found when using either route A 

or B. In comparison to immobilization studies using HRP, relatively lower activity was observed for the 

immobilized HRP. Note that the size of CiP was slightly bigger than HRP (approx. 6.8 x 4.6 nm [79]); however, 

immobilized CiP exhibited 10-fold higher activity than the immobilized HRP. This could be due to the improper 

orientation of HRP inside the pores of the materials or a possible ‘masking effect’ due to the presence of a large 

amount of enzyme inside the pores, which, if it occurs may contribute towards the inaccessibility of the active site. 

Additionally, a mass transfer effect is possible which would inhibit transfer of the substrate and the product 

formed within the immobilized system [80]. Further studies are needed to fully understand the effect of 

immobilization on these and other enzymes. 

 

4. Conclusions 

This work shows the potential of biosilica extracted from a rarely studied plant material (Equisetum 

Myriochaetum), its conversion to silicon and possible applications of both biogenic materials as supports for 

enzyme immobilization. The % yield of silica extracted from Equisetum myriochaetum was remarkably much 

higher (up to 3 times more) than other Equisetum ssp. (i.e. E. Arvense) previously studied. The isolated silica 

contained no heavy metals such as Pb and had purity higher than 95% where the remaining % was attributed to 

traces of other biominerals that can be present in these samples (i.e. KCl). The surface area and pore size of the 

biogenic silica was ~400 m2·g-1 and ~5 nm, respectively, which made this material attractive for biotechnological 

applications. The extracted amorphous silica was readily reduced to crystalline silicon with surface area and pore 
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size of the new material being 287 m2·g-1 and ~12 nm, respectively. Enzyme immobilization assays showed that 

the presence of the aldehyde linker (B) onto the silica surface enabled a significantly greater enzyme (in this case 

HRP) loading compared to the other routes tested. The loading and enzyme capacity of peroxidase from 

Coprinus cinereus was then compared with silicon showing the greatest enzyme activity for surfaces 

functionalised with carbodiimide (A), and a lower activity for silicon compared to silica was found for materials 

prepared using the glutaraldehyde immobilization technique (route B). In general, enzyme activity was found to 

be higher for CiP than for HRP for all biogenic materials. From the properties of the extracted materials obtained 

from Equisetum Myriochaetum and the immobilization results observed, these materials appear to be promising 

for industrial and biomedical applications. 
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