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particularly difficult to refute when studying attention in the
course of social interaction.

Fiebich and Gallagher [36] build up a strong case for
studying joint attention as a fundamental part of social in-
teraction. In fact, they propose an instrumental account of
basic joint action and proceed to argue that intentional joint
attention is a basic joint action, and as such it is involved
in most complex joint actions, being substituted in very
exceptional cases (mostly when face-to-face interaction is
not possible) by a certain use of language. Actually, joint
attention is the precursor of many fundamental types of social
interactions, such as imitation or even social referencing, the
process whereby the agent seeks out emotional information
from the interlocutor, “in order to make sense of an event
that is otherwise ambiguous or beyond that individual’s own
intrinsic appraisal capabilities” [42]. Additionally, Scassellati
[32] argues that if a robot is supposed to be able to engage in
social dynamics, it must possess, as humans, a set of metarep-
resentational abilities that would allow it to understand the
intentional stance of its interlocutors. These abilities have been
collectively called a “theory of mind”, and are reviewed in the
context of robotic cognitive system design by Scassellati [32]
in his seminal publication. This concept, originally stemming
from philosophy and psychology, is supported by findings
in neuroscience regarding the existence of “mirror neurons”
that are instrumental for observers to infer the intention of
others. Scassellati then proceeds by showing that some of these
abilities subsume gaze following and joint attention. Although
none of the two “theory of mind” models analysed by the au-
thor is shown to be exactly suited for robotic implementation,
Scassellati demonstrates that such an implementation would
be an important contribution to socially-capable robotics. In
conclusion, joint attention presents the perfect opportunity to
experience attentional mechanisms in action in the context of
social interaction.

On the other hand, as referred in the previous section,
attention is a multisensory experience2; as such, although
vision has been by far the most studied sensory modality
in studying attention (and, by consequence, joint attention),
it should always be considered in the context of the inter-
action between more than one sensor, most notably vision
and audition, the two quintessential noncontact sensors in
humans. Other sensors indirectly involved in socially-relevant
attention processes would be, for example, those relating to
proprioception (i.e., sensors that provide feedback on one’s
pose).

Finally, all attentional mechanisms inherit the uncertainty
congenital to both perceptual and actuation processes; there-
fore appropriate modelling and computational tools should be
applied in their development in robotic cognitive systems.

Therefore, we find that an ideal approach to the study of the
influence of automatic multisensory attentional mechanisms
in the context of social interaction with robots should be
regulated by the following agenda:

2Actually, attention processes have been found to exist for virtually all
types of human sensing – for auditory attention, see for example [43]. Tactile
sensing is another representative example [44], having already spurred similar
solutions in robotics [45].

• How do these mechanisms influence joint attention?
• What is the interplay between the automatic mechanisms

underlying multiple sensory modalities and actions in the
course of joint attention?

• How does one deal with the uncertainty inherent to
attention?

Consequently, our article may be construed as a pertinent
follow-up to the just over half-a-decade old seminal sequence
of publications by Kaplan and Hafner [29, 30], although aim-
ing at different surveying objectives. As will be further detailed
in section IV, this review focusses only on the scientific
issues raised by the automatic mechanisms involved in joint
attention. Also note that, as we mentioned in the introductory
section, we are not as interested in the developmental temporal
sequence of emergence of complex social skills as we are
in the hierarchical emergence of complex social behaviours
that underpin adaptive social interaction (i.e., a complex joint
action is more than just the sum of its basic joint actions).

Therefore, in the following sections we will proceed by
introducing the main models and approaches to joint attention
implementation in robots, followed by a discussion of the
main scientific issues that relate to our motivations and the
above-mentioned agenda, and wrap up by drawing conclusions
regarding these matters.

III. MODELS AND APPROACHES

A. Brooks, Scassellati and Breazeal
The work surveyed in this subsection is the result of the

effort of a group of researchers led by Rodney Brooks who
have driven one of the three main pioneering endeavours in
modelling joint perception, and closely related processes, such
as imitation.

This endeavour received its first major impulse with Brian
Scassellati’s manifest for the development of humanoid robots
including (at least parts of) a “theory of mind” [32]. Following
the ideas represented in this manifest, several frameworks
were developed around well-known robotic platforms, starting
with the Cog upper-torso humanoid robot [46–48]. For this
particular robot, Brooks, Scassellati et al. mainly address
issues related to attention detection.

Next, Breazeal and Scassellati [49–52] teamed up to develop
the Kismet active head robot (Fig. 2), taking Scassellati’s
paradigm one step further by adding a model for the emer-
gence of social coordination, integrating perception, attention,
drives, emotions, behaviour arbitration, and the emulation of
expressive acts. As the corollary of their joint work, the two
researchers wrote one of the most seminal publications on
robotic imitation [53].

Cynthia Breazeal then went on to continue studying social
interaction with robots through another platform – a doll-like
robot with marginally humanoid features called Leonardo (or
Leo). With this platform she added more emphasis to the study
of the emergence of intentional understanding [54–56].

Scassellati, in the meanwhile, continued to work separately
on joint attention and related mechanisms – see, for example,
[57], where Doniec et al. use a robot named Nico to study the
influence of imperative pointing and reaching in the learning
of joint attention.
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Figure 2. Kismet, the late 1990s active head robot built at the Massachusetts
Institute of Technology (MIT) by Cynthia Breazeal and colleagues, now
residing at the MIT Museum ( c© Jared C. Benedict / Wikimedia Commons /
CC-BY-SA-2.5).

B. Asada, Ishiguro, Nagai and Sumioka

Another pioneering group was embodied by the team orig-
inally teamed up by Minoru Asada, roughly beginning with
the group’s cognitive developmental robotics (CDR) paradigm
proposal [58], which, according to the authors, “aims to under-
stand the cognitive developmental processes that an intelligent
robot would require and how to realize them in a physical
entity”.

Within this group, Hiroshi Ishiguro tried to address multi-
sensory attention and multimodal human-robot communication
through work supported by the Robovie robot [59, 60]. Imai,
Ono, and Ishiguro [61] took advantage of this platform to
devise a framework able to attract a human’s attention by
pointing at an object and establishing mutual gaze.

Yukie Nagai turned the group’s focus towards the develop-
mental process of attention detection, instead of just devising
a framework simply capable of performing it (Fig. 3). Nagai
et al. [62–65] present a framework that learns the correlation
between the gaze of a human and an object in the visual
field at a certain position, namely by investigating the role of
motion information in this process (resorting to the concept of
motionese, a stimulus-driven attentional feature) [66, 67]. The
robot progressively learns to estimate human gaze direction in
order to find objects more rapidly, thereby acquiring a gaze
following skill.

Motion and also transfer entropy were also investigated
by Asada’s research team through Sumioka et al. [68–71],
although only in [68] an actual physical robot was used, while
the rest were simulated experiments. Transfer entropy is an
information theoretic measure used to detect causality that
shares some of the desired properties of mutual information
but additionally takes into account the dynamics of information
transport.

The most recent research efforts by this group include
studying joint attention from a multisensory perspective [72]
and joint attention coordination through contingency [73]
(again, in simulation only), including IJA, RJA and AJA.

Figure 3. Yukie Nagai shown demonstrating the performance of her group’s
developmental learning process for joint attention during interaction with a
robot [63, 65] – reproduced by kind permission.

Figure 4. Frederic Kaplan shown holding an AIBO robot, a model used in a
set of pioneering studies in robotic joint attention by his research team [74]
– reproduced by kind permission.

C. Hafner, Kaplan and Oudeyer

Another important research team, fronted by Frédéric Ka-
plan and Verena V. Hafner, although arguably not as prolific
in the development of robotic applications specifically relating
to joint attention as the previous groups, has nevertheless
arguably produced the most influential sequence of surveys
on this subject to date [29, 30], helping to frame most of the
research work in this area from 2004 onwards (Fig. 4).

As a first example of research work by this group more
closely related to the study of joint attention processes in
robots, Hafner and Kaplan [74] showed how four-legged
robots can learn to interpret each other’s pointing gestures. In
this work, one of the robots took the role of a caregiver/teacher
pointing to an object, and the other, the learner, would then
have to interpret the pointing gesture correctly in order to find
the object. At more or less the same time, Hafner and Kaplan
[75] and Kaplan and Oudeyer [76] investigated issues related
with the emergence of the self and with the identification with
others. The objective was to find internal abstract measures
allowing for a distinction between autonomous behaviour and
coupled interactions with peers.

D. Other Approaches

Ever since the pioneering efforts by the aforementioned
research groups, either in parallel with these endeavours or
inspired by their success, a great deal of research has followed
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the interest for the study of joint attention and related mech-
anisms. In the following text, we will present a transversal
review of what we feel to be a representative sample of this
body of work, with the primary aim of surveying research in
robotics and computational modelling that will allow us to
follow the agenda defined in section II-B.

In 2001, Kozima and Yano [77, 78] designed a robot called
Infanoid (also used later on by Nagai [66]) with the ability
to track faces and objects with salient colour, to point and
reach for those objects, and to alternate gaze between faces
and objects.

Haasch, Hofemann, Fritsch, and Sagerer [79] presented
a multimodal object attention system capable of identifying
objects referenced by the user with gestures and verbal in-
structions, and tested it using the BIRON robot companion
[80] devised in the scope of the COGNIRON European project
[14]. Their system was able to detect known and unknown
objects and would store newly acquired object information
in a scene model for later retrieval. This way, the growing
knowledge base of the robot companion would improve the
interaction quality as the robot could more easily focus its
attention on objects it had been taught previously.

Hoffman, Grimes, Shon, and Rao [81, 82] presented an
elegant solution, closely related to the approach proposed by
Breazeal et al. [51] for Kismet and Leonardo in the sense that
they used stimulus-driven and goal-directed attention mecha-
nisms to fuel a gaze imitation process for joint attention. How-
ever, Hoffman et al.’s approach differs from the latter in its
emphasis on the use of a unifying probabilistic framework at
all levels, producing a maximum a posteriori (MAP) estimate
of the object attended to by the human instructor from three
different vision-based sources: (1) a model-based algorithm
for estimating an instructor’s gaze direction, (2) a bottom-
up image saliency algorithm for highlighting behaviourally-
relevant regions in the image, and (3) a top-down saliency
map that biases the imitator to specific object preferences of
the instructor, as learned over time.

Yücel, Salah, Meriçli, and Meriçli and colleagues [83, 84]
presented a cognitively-inspired, virtually task-independent
gaze-following/fixation and object segmentation mechanism
for robotic joint attention. In their first approach [83], the
head pose of the caregiver was determined by the proposed
system and gaze direction estimated from it. At the same time,
the depth of the object along the direction of gaze would
be inferred from head orientation. The intersection of gaze
direction and depth provided the system a coarse estimate for
centre-of-mass of the object. Finally, using salient features and
pooling a number of estimates, the final segmentation of the
fixated object would be performed. In their most recent work
[84] (Fig. 5), Gaussian process regression and neural networks
were contrasted to interpolate gaze direction. Then, the authors
combined gaze interpolation with image-based saliency to
improve the target point estimates, and in the process tested
three different saliency schemes, the three of which were
shown to improve object location estimation when compared
to using regression alone. They further concluded that it was
not possible to “single out any of the saliency schemes as being
clearly superior to the others”. This work was experimentally

Figure 5. Experimental setting of the work by Yücel et al. [84] – reproduced
by kind permission. To evaluate their method, several experiments were
performed to model joint attention between a human experimenter (in the
photo, on the left, co-author Cetin Meriçli is shown acting out the human
experimenter’s role) and an embodied agent. In this setting, the experimenter
and the robot place themselves roughly 1.5 meters apart at opposite sides of
a table, on which a number of objects are placed in a non-occluding fashion.
A session of joint attention is initialised when the experimenter establishes
eye-contact with the robot, which leads to a fully-frontal face image being
acquired. The experimenter fixates his/her attention to one of the objects by
looking at them in random order for a certain duration of time.

supported by an Aldebaran Nao humanoid robot [85] as the
main interaction unit and the FESTO Robotino robot [86] for
navigation.

As opposed to simply designing a system with a prepro-
grammed modular ability of attention detection, Carlson and
Triesch [87] conceived a computational model to deal with the
emergence of gaze following through reinforcement learning.
In the course of their research, the authors identify a basic
set of mechanisms which they claim are sufficient for the
development of this skill.

Andry, Gaussier, Moga, Banquet, and Nadel [88] proposed a
neural network (NN) architecture designed to exhibit learning
and communication capabilities via what the authors claim to
be a “proto-imitation” behaviour dealing with (and, according
to the authors, taking advantage of) the ambiguity inherent to
perception. This approach is implemented in the perspective
of studying turn-taking and gestural communication between
two agents. Synchronisation is obtained as a global attractor
depending on the coupling between agents’ dynamics. Addi-
tionally, the authors discuss the non-supervised context of the
imitation process by presenting experiments in which the same
architecture is able to learn perception-action associations
without any explicit reinforcement. Learning is supported by
the ability to detect novelty or irregularities in the rhythm
of communication. Ten years later, Boucenna, Gaussier, and
Hafemeister [89] followed up by designing a system mod-
elling joint attention for social referencing by using gaze
following, facial expression recognition and motion detection
mechanisms (the first two learnt autonomously) to associate
an emotional value to an attended object. The authors claim
that this framework is complementary to the developmental
model proposed by Nagai et al. [63].

Following a similar line of interest, Ikegami and Iizuka
[90] proposed a coupled dynamical recogniser as a model for
simulating turn-taking behaviour. A recurrent neural network
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(RNN) is used to produce the motor outputs of mobile robot
agents with two wheels, which then compete in simulation to
take turns on a two-dimensional arena. By using a genetic al-
gorithm technique, the authors show that turn-taking behaviour
is developed between two agents, which is established even in
the presence of a variety of dynamics.

Ito and Tani [91–93] presented research on the engagement
of a humanoid robot with humans (more specifically, the Sony
QRIO SDR-4XII [94]), including stable and unstable phases
of interaction using particular entrainment imitation dynamics.
More specifically, they proposed an extended scheme of RNNs
for constructing a mirror system by which recognition of
the other’s movements and generation of self-motion can be
naturally synchronised in the real-time imitation processes in
the context of joint attention.

The research team of Roseli Romero [95, 96] proposed
an architecture that simulates an individual’s operant condi-
tioning (a type of learning in which an agent’s behaviour is
modified by its consequences) through histories (sequences)
of reinforcement. It is composed by three main modules: (1)
a stimulus perception module, working upon a vision system
based on the work by Breazeal and Scassellati [49] described
earlier; (2) a response emission module, composed by a
learning mechanism that constructs a nondeterministic policy
for response emission, in other words, to determine what
response is to be emitted in the presence of a certain antecedent
stimulus; and (3) a consequence control module, composed
by a motivational system that simulates the intrinsic needs
of the robot and detects reinforcements received from the
environment. The motivational system is formed by “necessity
units” that are implemented as a simple perceptron with recur-
rent connections (similar to a RNN), thereby, simulating the
homoeostases (self-regulating processes to achieve metabolic
equilibrium) of living organisms. More recently, the same
group of researchers compared the contingency learning pro-
cess that they originally proposed with two other approaches
[97], ultimately determining experimentally that, between the
three, an extension of the TG relational reinforcement learning
algorithm [98] yielded the best performances. Experiments
throughout this body of work were conducted using the robotic
head—WHA8030 of Dr. Robot.

While most of the approaches mentioned so far have fo-
cussed on dealing with responding to joint attention through
attention detection, and considerably less on the process of
initiating joint attention by the robot through attention manip-
ulation, very few exceptions study the relevance and imple-
mentation of mechanisms for ensuring joint attention. A rare
example would be the work by Huang and Thomaz [99, 100],
where the authors propose a framework that models IJA, RJA
and EJA, tested using the upper-torso robot Simon. In the
proposed model, RJA and IJA run exclusively. Conversely, EJA
is a permanently ongoing monitoring process that coordinates
with IJA to ensure that the other agent attends to the right
focus. The authors perform an experimental evaluation that
allows them to ultimately conclude that RJA and EJA both
contribute to a greater acceptability of the robot by the human
interlocutor, and moreover argue that EJA improves the robot’s
performance in interactive tasks.

IV. DISCUSSION OF TARGETED SCIENTIFIC ISSUES

Kaplan and Hafner [29, 30] identified four prerequisites
for joint attention: (1) the ability to track the observable
attentional behaviour of other agents (attention detection);
(2) the capability of influencing the FOA of other agents
(attention manipulation); (3) the ability to engage and regulate
social interaction (social coordination); (4) the ability to view
oneself and the other as intentional agents, and as such to
acknowledge each other’s intentions (intentional understand-
ing). These prerequisites are intrinsically and fundamentally
related to automatic attention-related mechanisms. In reality,
this happens to a point where not only perception of the other’s
intent is modulated by these processes, but also self-goals are
intentionally relayed to the other by taking advantage of the
subconscious knowledge of involuntary attentional reactions
of the interlocutor. This fact is made particularly clear in
the sociological study by Muhl, Nagai, and Sagerer [101],
investigating how humans react to artificial agents in HRI
and how this reaction is influenced by attention, and also by
the work of Schillaci, Bodiroža, and Hafner [102], who study
the effects of different attentional models during this kind of
interaction.

Consequently, in this section we will analyse a total of
twenty (20) of the models presented above3 in the light of
the agenda we established in section II-B.

We will start by assessing the use of state-of-the-art imple-
mentations of stimulus-driven preattentive and automatic overt
attention processes in the context of robotic social interaction.
We will then successively link these processes to each of
Kaplan and Hafner’s prerequisites:

• first, we will analyse how the authors of those models
tackled the mapping between the robot’s self, the other
and the third entity involved in joint attention through
prediction, thus providing a bridge between prerequisites
(1), (2) and (4);

• second, we will evaluate how their approach to addressing
prerequisites (3) and (4) affects goal, action and be-
haviour selection, and therefore modulates attention (i.e.,
through top-down influences).

We will end our discussion by reviewing experimental val-
idation methods and criteria which indirectly but unavoidably
shape how the scientific issues are targeted, since researchers
will naturally try to achieve the highest scores possible for the
criteria they select.

A. Preattentive and Automatic Overt Attention Processes for
Social Interaction

The attentional mechanism that drives involuntary processes
of overt attention and active perception (i.e., the attentional
capture, resulting from the so-called pop-out stimulus effect)
has been identified as the fast, automatic, preattentive evalua-
tion of the relevance of the incoming stimuli according to basic
features, which is then encoded into sensory-centred spatially

3More concretely, analysis is performed by assessing model relevance case-
by-case, and only if an actual physical robot is used, or, if simulated, close
to final implementation.
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organised maps (such as saliency maps [41], which in the
case of vision are said to be retinotopically arranged4) mod-
ulated by goal-directed influences [24–26, 103]. As discussed
earlier, this evaluation is performed according to behavioural
relevance; therefore, if the task is social interaction in the con-
text of joint attention, behaviourally-relevant features should
naturally include socially-relevant features.

Another fundamental issue is the unit of attention [24]:
should one consider location, features or objects, or a con-
junction of all of the above, as seems to be the current
consensus? The use of saliency maps, in a way, provides
the means for unifying the first two units, while the notion
of grouping features to form volatile perceptual units called
proto-objects – see [104, 105] – supports full conjunction
of all the above. Attention, as a perceptual mechanism, is
a multisensory process; therefore, it is also important, in
the context of social interaction, to take into account visual,
auditory and visuoauditory units of attention.

There is some debate on what constitutes the actual set
of basic features (also called primitive features or attributes)
[24]. Colour, luminance (either independently or associated
to colour), orientation, size (including length and spatial
frequency) and motion seem to be indisputably basic, while
luminance onset (flicker), stereoscopic depth and tilt, shading,
novelty, or, in audition, hearing one’s own name, and many
others are often proposed as primitive features, although
not consensually [24]. Two particularly interesting saliency
metrics – which are not at first glance biologically plausible
nor are they actual basic features (in fact, they result from
mechanisms that try to profit from the underlying statistics
of basic features) – have nevertheless had great success in
predicting human overt visual attention behaviours: Bayesian
surprise (strongly related to novelty), introduced by Itti and
Baldi [106, 107], and information maximisation, introduced
by Bruce and Tsotsos [108, 109]. Additionally, a particularly
important issue is if faces, the main vehicles of social intention
display, are, themselves, basic features or not – either only
detected as such (1), or individually recognised as belonging
to different individuals (2), or even classified as conveying a
specific emotion through expressions (3). Palermo and Rhodes
[110] show that, apparently, (1) is basic, while (2) and (3) are
probably not.

The relevance of each of these features is then weighted
in terms of priority, as explained in section II-A, through
attentional sets selected according to top-down influences.
However, Corbetta and Shulman [26] demonstrate that in the
human brain there are mechanisms that override the current
attentional set when the agent is faced with unexpected and
overbearing events (e.g. a loud noise, or a sudden flash of
light). Additionally, recently attended regions of space are less
likely to be re-attended in the near future – this is called
inhibition of return (IOR) [24, 25], and it is debatable if it
is actually a self-contained process or the manifestation of an

4The reason for this is that the computational framework of the visual
saliency map models what is believed to be a direct flow from the retina
to an early representation, where features are extracted and represented in
parallel [40], thus translating to computer vision implementations through a
pixel-wise association of saliency values.

underlying process or set of processes.
So, in a nutshell, stimulus-driven pop-out effects play a

crucial role in joint attention:

1) they automatically draw perception towards features that
potentially promote the initiation of joint attention;

2) they attribute task- and socially-relevant value to per-
ceived stimuli, therefore expediting joint attention as an
ongoing process;

3) they embody common ground for sharing self-intention
and the intention of the other.

In the work of Kirchner and Alempijevic [111], the reader
may find a very interesting account of the practical importance
of attention detection (included in what the authors refer to as
the robotic “Read” action/ability) and manipulation (similarly
subsumed within the robotic “Elicit” action/ability) in a robot-
centric perspective regarding HRI.

On the other hand, top-down influences, despite their ob-
vious importance, are mostly neglected in existing models
when compared to bottom-up influences, given the difficulty
in concretely defining such cues [24, 25]. Among these
influences, the hardest to conceptualise are precisely those
with social relevance, such as the agent’s emotions, desires
and motivations [24] – we will address these specifically
in section IV-C, given their importance for joint attention.
Prior knowledge relating to contextual information, however,
has recently been the subject of important research efforts –
previous experience for a specific perceptual scene, or also
the semantic category of that scene (the so-called gist [112])
are important examples of this type of cognitive, top-down
influences [24].

Visual attentional mechanisms and broad computational
frameworks were thoroughly discussed by Frintrop, Rome,
and Christensen [24] (among which two particularly seminal
contenders would be the work by Koch and Ullman [40]
and Tsotsos et al. [113], which differ mainly on how they
approach the computation of the final saliency map), while
computational models of visual attention were extensively
reviewed by Borji and Itti [25]; we highly recommend reading
these groundbreaking publications for more information in the
overall outlook on these issues. There is no systematic survey
of mechanisms and computational models of attention for any
other sensory modality, such as audition, as far as we are aware
of.

The models presented in section III are compared in Table I
in terms of preattentive and automatic attention capabilities,
including the respective computational approach and the basic
features used for each model, and also the supporting hardware
and sensors. As can be seen in this table, preattentive and
automatic mechanisms of attention have been extensively used
to drive joint attention. However, not all mechanisms share the
same popularity: in vision, for example, colour, motion-related
and face basic features are used by 80%, 55% and 80% of the
surveyed work, respectively, as opposed to 45% for luminance
and orientation; auditory basic features are clearly less popular
than their visual counterparts (obviously due to most solutions
– 65% – being visual-only); finally, IOR is only modelled
explicitly in very few occasions (10%).
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Table I
COMPARISON OF SURVEYED RESEARCH WORK IN TERMS OF HARDWARE, SENSORY CAPABILITIES,

AND PREATTENTIVE AND AUTOMATIC ATTENTION MECHANISMS.

Basic Visual Featuresd Basic Auditory Featurese

Study Platforma Sensorsb Approachc C L O M F AL HV ON MS IOR

Scassellati [46, 48] UT VA+P D + + - + + + - - - +
Breazeal and Scassellati [49–52] AH VA D + - - + + - + - - -

Breazeal [54–56] TR/HR VA+P D + - - + + - + + + -
Doniec and Scassellati [57] UT V NN + - - - + - - - - -

Ishiguro et al. [59–61] HR VA D ? ? ? ? ? - + - - -
Nagai et al. [62–65] UT V NN + + - + + - - - - -

Nagai et al. [66] HR V NN + - + + + - - - - -
Nagai et al. [67] HR V D + + + + + - - - - -

Sumioka et al. [68] HR V NN + + + + + - - - - +
Hafner and Kaplan [74] TR V D - + + - - - - - - -

Kozima and Yano [77, 78] HR V D + - - - + - - - - -
Haasch et al. [79] MR VA D + ? ? - + + + + + -

Hoffman et al. [81, 82] AH V+P P + + + - + - - - - -
Yücel et al. [83] HR V D + + + + + - - - - ?
Yücel et al. [84] HR V P vs NN + + + - + - - - - ?
Andry et al. [88] TR V D - - - + - - - - - -

Boucenna et al. [89] AH V NN + - + + + - - - - -
Ito and Tani [91–93] HR V NN + - - + - - - - - -

Romero et al. [95–97] AH VA NN + + + - + - + ? - -
Huang and Thomaz [99, 100] UT VA D - - - - + - + ? - -

In general: + implemented; - not implemented; ? not clear from author’s description.
a UT – upper-torso; AH – active head; TR – toy robot; HR – humanoid robot; MR – non-humanoid mobile robot.
b V – vision-only; VA – visual and auditory sensors; P – proprioceptive sensors (only if explicitly used in the context of joint attention experiments).
c D – deterministic; NN – neural network; P – probabilistic; vs – comparative study (versus).
d C – colour; L – luminance; O – orientation; M – motion; F – faces.
e AL – auditory localisation of sound source; HV – human voice detection; ON – own name detection; MS – multiple sound sources.

Similarly, from Table I it becomes clear that deterministic
(and mostly heuristic) solutions are the most prevalent com-
putational approaches to modelling (55%), followed by neural
networks (40%), and finally, from a significant distance, by
probabilistic solutions (10% of the sample). We argue that
deterministic solutions are of very little application value in
unconstrained, realistic conditions, while neural network-based
solutions are only marginally better; we posit, on the con-
trary, that probabilistic approaches would be the appropriate
approach to deal with uncertainty, according to the desiderata
we defined in section II-B.

The reasons for the current status quo in this respect are
clear – solutions that attempt to be generic have acknowledged
the importance of these mechanisms and approaches, while
tailor-made solutions, constituting the noticeable majority,
have used these tools only while they are useful for their
purposes. For example, it is not a coincidence that colour is a
highly popular basic visual feature. Most experiments in the
literature involve identifying brightly coloured and contrasting
objects, which evidently greatly simplifies segregation, but at
the significant expense of the usability of the proposed systems
in unconstrained, real-world, social HRI applications. In fact,
our assessment of this survey is that, as time goes by, solution
proposals resulting from research efforts in this area have
consistently been more and more specific. We conjecture that

the complexity of modelling joint attention has led researchers
further away from acknowledging the potential of automatic
attentional mechanisms and probabilistic approaches to mod-
elling.

B. Automatic Anticipatory and Predictive Mechanisms for
Closing the Action-Perception Loop – Going from Dyadic to
Triadic Representations

In neuroscience, the ideomotor principle (IMP) [114] em-
phasises the importance of anticipating (implicitly or explic-
itly) the sensory consequences of our actions and the actions
of others for: 1) adaptive behaviour, 2) guidance of attention,
3) mentalising abilities and 4) social learning, all of which
are a powerful means for building artificial cognitive systems
that can acquire new knowledge autonomously, that learn
from humans or that adapt to particular environments and
preferences of the users [53, 115].

In the context of joint attention, three requisites need to be
fulfilled so as to apply the IMP:

1) the ability to predict the sensory consequences of one’s
own actions through egocentric representations;

2) the ability to predict the sensory consequences of the
other’s actions through dyadic representations;

3) the ability to establish triadic correspondences by relat-
ing egocentric and dyadic representations of the third
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entity.
A substantial amount of robotic cognitive systems for joint

attention typically use sensory-centred saliency maps, already
aiming to provide an egocentric representation. Traditional
two-dimensional saliency-maps, however, are related to vision,
and as such have been modelled retinotopically in order to
follow what is known to happen in the superior colliculus and
the dorsal pathways of the human brain5, meaning that they
each relate to a single visual sensor and respective image-
plane. However, as discussed earlier, attention is multisensory
and joint attention is a dynamic and evolving form of basic
joint action; this means that saliency maps must subsequently
be subjected to a multitude of different, complex, 3D-based
transformations6:

• saliency maps resulting from visual and auditory percep-
tion must be both related and integrated into a single
egocentric reference;

• saliency maps must be temporally registered in order to
accommodate egomotion (i.e., head and body motion);

• the information conveyed by saliency maps must eventu-
ally be related in sensorimotor fashion, so as to perform
all types of motor commands needed to perform joint
attention (e.g., head turns, gaze shifts, pointing gestures,
etc).

Recent research efforts have introduced spherical represen-
tations of egocentric space to deal with these issues. For
instance, Schillaci, Bodiroža, and Hafner [102] proposed a
saliency-based attentional model combined with a tesselated
egosphere, where information about salient areas is stored in
the egosphere’s edges, as proposed by Peters, Hambuchen,
Kawamura, and Wilkes [118] and Fleming, Peters, and Bo-
denheimer [119]. In another example, Ferreira, Dias et al.
[120, 121] proposed a log-spherical, egocentric inference grid
used in the context of human-robot interaction to implement
visuoauditory entropy-based exploration and also saliency-
driven attentional behaviours [122], shown to be both suitable
for real-time implementation [123] and for learning attentional
sets for top-down modulation [124].

So, how does one close the action-perception loop in an
egocentric perspective? Whilst active perception has been
mostly approached in the perspective of devising solutions
for choosing the appropriate focus of attention, the actual
directing of one’s senses towards locations of interest and the
implications of the motor control associated to these actions
have often been taken for granted, and recurrently understated.
When considering the action-perception loop, research efforts
in robotics have usually been focussed in determining the
influence that predicting future perceptions has on the current
choice of action: this, in fact, relates to the classical problem of
modelling closed-loop control. Contrastingly, closing the loop

5The dorsal pathway, and also the phylogenetically preceding superior
colliculus (shared by all vertebrates, from mammals to more primitive
creatures such as reptiles, conserved through evolution due to its fundamental
role in survival [116]), both mediate attention and the perceptual control of
action. For more information regarding these brain sites and for a summary
on their specific roles in visual attention, please refer to [117] and [24, 26],
respectively.

6As is also known to happen in the human brain.

Figure 6. The active intermodal mapping (AIM) hypothesis of Meltzoff and
Moore [129] adapted to the general context of joint attention.

by predicting the influence of motor knowledge on perception
has been much less investigated – notable exceptions to this
rule can be found, for example, in the works of Gilet et al.
[125], Chella and Macaluso [126]. However, evidence from
behavioural studies in humans demonstrate that actions are
planned and controlled in terms of their effect, and that this
accounts for much of our success as perceptual beings [127].
In fact, it has been shown that humans simulate the effects
of their actions in advance using what is called efference or
efferent copies [128]. Motor control in active perception com-
plicates even further when considering head-eye coordination,
including vergence for fixation on close objects.

The active intermodal mapping (AIM) hypothesis of facial
imitation by Meltzoff and Moore [129] posits that infants
match observations of adults with their own proprioception us-
ing a modality-independent representation of state. Mismatch
detection between infant and adult states is performed in this
modality-independent space. Consequently, infant actions and
corresponding motor commands cause proprioceptive feed-
back, closing the action-perception loop – see Fig. 6. Note
that this hypothesis is, in a way, the dyadic equivalent of the
efferent copy concept – simulation, in this case, is not of one’s
own action, but of the other’s. The AIM hypothesis has at times
been reproduced in the context of joint attention, as it clearly
indicates a roadmap to implementing the ability of relating
the egocentric reference with the interlocutor’s reference, and
solutions based on its modality-independent representation
have arguably become the most popular intermediaries from
egocentric to dyadic representations. Nevertheless, attention
detection mechanisms precede such a skill and therefore must
be an integral part of a cognitive framework for joint attention.

Many machine vision systems have looked at the problems
of identifying cues that indicate attention in order to establish
dyadic representations, such as deictic pointing [130], head
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Table II
COMPARISON OF SURVEYED RESEARCH WORK IN TERMS OF THE USE OF

ATTENTION DETECTION AND DYADIC AND TRIADIC MECHANISMS AND REPRESENTATIONS.

Attention Detection

Study Head Pose/Gaze Detection Pointing Detection Utterance Detection Representationa

Scassellati [46, 48] + + - RSM
Breazeal and Scassellati [49–52] - - + RSM

Breazeal [54–56] - + + AIM (RSM + PG + MS) + EO3D
Doniec and Scassellati [57] + - - RSM + EO3D

Ishiguro et al. [59–61] - - + ?
Nagai et al. [62–65] -b - - RSM + SOM

Nagai et al. [66] -b - - RSM + SOM
Nagai et al. [67] - - - RSM

Sumioka et al. [68] -b - - RSM + SOM
Hafner and Kaplan [74] - + - RSM + MLP

Kozima and Yano [77, 78] + - - -
Haasch et al. [79] - + + OSM

Hoffman et al. [81, 82] + - - AIM (RSM + CM + MS)
Yücel et al. [83] + - - RSM + EO3D
Yücel et al. [84] + - - RSM + EO3D
Andry et al. [88] - - - RSM + MS

Boucenna et al. [89] + - - RSM + MS
Ito and Tani [91–93] - - - RSM + MS

Romero et al. [95–97] + - + RSM
Huang and Thomaz [99, 100] - -c + RSM

In general: + implemented; - not implemented; ? not clear from author’s description.
a RSM – retinotopic feature or saliency map; EO3D – 3D egocentric object position detection; SOM – self-organising map of other’s face pattern for sensorimotor
mapping; MLP - multi-layer-perceptron coding left or right pointing by other; OSM – “object scene model”, consisting of a list of objects related to 3D positions
and respective attributes; AIM – active intermodal mapping [129] adaptation; MS – motor/effector space; PG - “posegraph” referred to motor/effector space; CM -
correspondence model in egocentric reference.
b In this case, although head pose and gaze direction are not directly measured, gaze following is learned indirectly through self-other sensorimotor mapping.
c In this case, a paper pointer with an ARToolKit marker was used.

pose [131], or gaze direction [132] in vision, or utterance
detection and speech recognition [133] in audition, impelled
by the fact that in the past few years it has become practical to
use these systems in real-time robotic systems [32]. Note that,
although the generation of most of these cues, such as pointing,
for example, is clearly a voluntary action, attention detection
based on these cues is mostly an involuntary response7. In fact,
systems that use a conjunction of stimulus-driven attention
mechanisms and deictic pointing gesture detection in HRI have
been a recent focus of research – see, for example, the work
by Schauerte, Richarz, and Fink [134]. Unfortunately, most
state-of-the-art solutions are still far from producing results
remotely close to human performance. For example, most of
the algorithms used for head pose and gaze direction estima-
tion are very dependent on frontal views of the interlocutor’s
face and/or a full set of facial features to be able to perform
satisfactorily [131, 132].

The models presented in section III are compared in Table II
in terms of their internal representations of perception and
action and use of attention detection cues.

As can be seen in this table, attention detection processes
specifically designed for joint attention have been the object

7Magicians have used these involuntary responses to manipulate the atten-
tion of their audiences to their advantage for centuries.

of a substantial amount of research – 70% of the surveyed
approaches use some sort of attention detection method to
drive joint attention. In most other cases, even if head pose
and gaze direction are not directly measured, gaze following
is learned indirectly through self-other sensorimotor mapping.
For instance, head pose and gaze detection has been used
in more than half of the surveyed approaches (55%), either
through preprogrammed modelling as an innate ability (40%),
or resulting from a learning process (15%), in which case the
actual learning becomes one of the main research objectives.
Whenever auditory sensing is used (35% of the surveyed
work, according to Table I), utterance detection, predictably,
is nearly always used, with one exception (in other words, in
approximately 86% of the 7 auditory-capable systems). Deictic
pointing is the cue less used for detecting attention (20%
of the overall sample), mainly because it is hard to model
– see the work of Rouanet, Oudeyer et al. [135–137] for a
discussion on this matter and possible alternatives; also, note
how Huang and Thomaz [99, 100] circumvent this issue. A
very small minority (15%) represent exceptions that do not
use attention detection at all: instead, the authors rely on the
robot’s own attention processes (saliency, motion detection,
etc.) to somehow indirectly make the robot attend to the same
object as its interlocutor (a phenomenon referred to by Kaplan
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and Hafner [29, 30] as “coincidental simultaneous looking”).
On the other hand, representations for solving the

egocentric-dyadic-triadic prediction problem in the work re-
viewed in this text, as hinted earlier, are mainly dependent
on retinotopically-arranged feature or saliency maps (RSM –
85%). As a matter of fact, quite a few use these maps directly
to drive attention, without resorting to more sophisticated
motor mapping (approximately 29% of the 17 approaches
that use RSM, 25% overall). Conversely, only two approaches
(10%) aim for a more complete solution by modelling the
“simulation of other” through an adaptation of the AIM
hypothesis.

Again, it is our assessment that the overall complexity
and tractability of modelling joint attention, together with the
uncertainty inherent to this type of interaction, has limited the
comprehensiveness of current approaches.

C. Goal, Action and Behaviour Selection – Regulating and
Learning Social Interaction

A robot is incapable of engaging in social interaction if it
does not have an inkling of what socially-relevant task it is
carrying out, and how and when to switch between behaviours
that might be essential to accomplish the task at hand. On
the other hand, at first glance the nature and number of
possible socially-relevant tasks seems intractable for current
technologies in artificial cognitive systems.

To circumvent this problem, part of the research work pre-
sented in section III is based on the definition of small sets of
reasonable basic social behaviours, goals and respective tasks,
and simple heuristics to switch between the latter, mostly to
validate the capabilities of social engagement of the proposed
robots, usually with some grounding in developmental studies
in humans.

On the other hand, emotion recognition (analysis) [138],
and, to a lesser extent, emotion emulation (synthesis) [5] have
been a subject of a great deal of recent research. In the context
of joint attention, a considerable amount of work includes
emotion recognition to infer acknowledgement and validation
of correct RJA from the expressions and demeanour of the
other, while emotion emulation has also been used to build
expressive robots that convey analogous emotional content to
their interlocutor.

Finally, turn-taking is a pervasive process in social interac-
tion: turn-taking occurs during any form of communication,
where the interlocutors need to take turns in order to success-
fully understand one another. In fact, turn-taking can be seen as
two or more agents sharing a resource that cannot be allocated
to more than one agent at any given time [139]. Consequently,
even when dealing with primal behaviours such as joint
attention, where turn-taking corresponds to the RJA-(EJA)-
IJA cycle, tackling this problem is paramount, and mostly an
open research question [29], although some principled work
has already been carried out to study turn-taking in other, very
specific scenarios, such as spoken dialogue generation between
robots and humans – see, for example, Raux and Eskenazi
[140].

As explained earlier, all of these processes modulate au-
tomatic attentional mechanisms as top-down influences, and

therefore they are absolutely relevant to this survey. Conse-
quently, the models presented in section III are compared in
Table III in terms of:

• the potential top-down influences, such as which phases
of joint attention are modelled (given that they represent,
in fact, subtasks within the context of this social interac-
tion);

• a qualification of the set of emulated goals;
• the emotions and behaviours that may be driving the

robot;
• whether turn-taking is specifically taken into account.
The assessment of Table III yields the same observations

as in the previous discussions: potential top-down influences
are scarce (35%), robots with the ability to either infer or
expressively instil emotion even less (25%), while the clear
majority of the surveyed work only deal with a single phase
of the regulation of joint attention (65%).

D. Experimental Validation Methods and Criteria

Although not fundamental for our review, an interesting and
important matter to investigate are the methods and criteria
used by the teams involved in the research surveyed in this
text to tackle the issue of validating and benchmarking their
systems, given how challenging it is to conceptualise the nature
of the underlying processes and dynamics of joint attention.

Scassellati [48] suggested that techniques to evaluate joint
attention mechanisms such as the Autism Diagnostic Interview
and the Autism Diagnostic Observation Schedule [141] –
used, for instance, in the diagnosis and assessment of autism
and related disorders in children and adults8 – could be
adapted to validate robotic implementations with only minimal
modifications. However, in general, research work in robotic
implementations of joint attention have applied much less
elaborate evaluation methods and criteria.

The most ubiquitous quantitative criterion for joint attention
in robotics seems to be the detection success rate measure
(or its counterpart, total detection error), applied in experi-
ments where the robot’s focus of attention is matched to its
interlocutor’s, by comparing the robotic observer’s expectation
to the other’s deictic pointing or gazing targets – examples
of work using this evaluation method would be [56, 57, 68–
70, 75, 81, 89, 91, 99]. Some of these approaches use multiple
conditions, such as varying object positions, or, less frequently,
lighting conditions (e.g., [66]) or interaction sophistication
(e.g., [99], in which the effect of presence or absence of robot
RJA is studied). In some cases, the temporal or trial-by-trial
evolution of this success rate is measured (e.g., [81, 91, 99].

Other examples of quantitative criteria would be time-to-
error detection and length of interaction by time or number
of utterances [56], human reaction time in RJA (also called
“social delay”) [57], and evolution of robot reaction time in
RJA [81]. Time to learning convergence is also important when
learning is used (e.g., [64, 66]). Another interesting (albeit
controversial) quantitative measure of joint attention success

8See the work by Dautenhahn and Werry [142] for a discussion on the use
of interactive robots in autism therapy.
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Table III
COMPARISON OF SURVEYED RESEARCH WORK IN TERMS OF THE USE OF POTENTIAL TOP-DOWN INFLUENCES.

Emotions Joint Attention Regulation

Study Emotion/Drive/Action Setsa Analysis Synthesis Interaction Cycle Phasesb Explicit Turn-Taking

Scassellati [46, 48] CA + AO + CJA - - (RJA + IJA)c -
Breazeal and Scassellati [49–52] BE + BD + SL + S + P + + IJA + RJA -

Breazeal [54–56] BE + BD + ... + + IJA + RJA -
Doniec and Scassellati [57] CA + AO + CJA - - IJA (LP) + RJA -

Ishiguro et al. [59–61] - - + IJA -
Nagai et al. [62–65] - - - RJA (LEC + LGF) -

Nagai et al. [66] - - - RJA (LEC + LGF) -
Nagai et al. [67] - - - IJA + RJA + EJA -

Sumioka et al. [68] - - - RJA (LEC + LGF) +
Hafner and Kaplan [74] - - - RJA -

Kozima and Yano [77, 78] ...c - - RJA + EJA -
Haasch et al. [79] - - - RJA -

Hoffman et al. [81, 82] - - - RJA -
Yücel et al. [83] - - - RJA (EC + GF) -
Yücel et al. [84] - - - RJA (EC + GF) -
Andry et al. [88] - - - - +

Boucenna et al. [89] - + + RJA (LEC + LGF) -
Ito and Tani [91–93] - - - - +

Romero et al. [95–97] CA + S + P + ... - + RJA (LEC + LGF) -
Huang and Thomaz [99, 100] CA + AO + CJA - - RJA + EJA + IJA +

In general: + implemented; - not implemented; ? not clear from author’s description.
a CA – capture attention; AO – address object; CJA – check joint attention; SL – sleep; S – socialise; P – play; BE – basic emotions (anger + disgust + joy + sorrow +
surprise/fear); BD – basic drives (social drive + stimulation drive + fatigue drive); “...” (ellipsis) – expandable action/task set.
b RJA – respond to joint attention; IJA – initiate joint attention; EJA – ensure/acknowledge joint attention; (L)EC – (learnt) maintaining eye contact; (L)GF – (learnt) gaze
following; (L)P – (learnt) diectic pointing.
c Rudimentary, incomplete implementations.

is obtained by using the result of the robot’s self-evaluation
(for example, the evolution of the “joy” emotion in [89]).

In addition to quantitative criteria, some researchers have
resorted to presenting questionnaires to human participants in
the experiments, partially relying on their (hopefully unbiased)
subjective assessment of success [56, 67, 99].

We suggest that ideas from the Feature Integration Theory
of attention by Treisman and Gelade [143] could additionally
be used in the extended context of joint attention in feature
and conjunction search experiments9 – in both cases a target is
placed among distractors, and the objective is to successfully
find the target and as quickly as possible [24]. In a first set of
feature search experiments, a unique (multisensory) feature of
the target pops-out comparing to distractors, and, in a second
first set of conjunction search experiments, a combination of
features is used. After measuring reaction times (RTs) and
detection success or accuracy (DA) in non-guided experiments,
a third set of experiments is conducted using joint attention.
Reaction times will be typically fast for the first set and slower
for the second set. After measuring RTs and DA in the non-
guided experiments, the third set of joint attention experiments
is conducted – RT and DA can then be benchmarked to assess
the robot’s RJA, under different experimental conditions.

9As far as the authors know, this has not been done before.

V. CONCLUSION

With this survey we have attempted to provide a deeper
insight in the modelling and implementation of automatic
multisensory attentional mechanisms for socially interactive
robots, using joint attention, acknowledged as a basic joint
action, as a most appropriate backdrop. We summarised the
contributions already made in these matters in robotic cogni-
tive systems research and analysed scientific issues which, in
our point of view, remain to be adequately addressed.

In our opinion, socially interactive robots would greatly
benefit from the development of probabilistic real-time frame-
works implementing automatic attentional mechanisms. These
would, in our opinion, effectively constitute middleware for
the development of more intelligent and complete socially
interactive robotic systems. In fact, we argue that this hier-
archical/modular architecture-oriented approach would equip
socially-skilled robots with fundamental innate and preac-
quired capabilities that humans already possess from a very
early age; it is our belief that failing to do so will most
probably ultimately result in robots exhibiting social deficits
similar to those of individuals suffering from autism spectrum
disorders.

However, we think that recent technological advances, such
as the massively parallel implementations made possible by
GPU computing and programmable logic devices, will allow
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the development of probabilistic automatic attentional frame-
works dealing with the challenges enumerated in section II-B.
We therefore predict that, at the time that this text is being
written, a new important phase in socially interactive robot
development is about to begin. Therefore, we are positive that
these advances will spur research that will undoubtedly tackle
these issues with improved chances of success, eventually
leading to the fulfilment of current robotics roadmaps for the
years to come [144].

Additionally, we predict that advances in this respect will
also collaterally influence many important fields, such as
human-machine interaction or automatic surveillance systems,
for which assessing intent or attention control might be crucial
factors. On the other hand, since robots offer the possibility
of studying the processes underlying joint attention in a
repeatable and separable fashion, we also expect this research
to shed further light on this important set of human social
skills.
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