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Abstract—In decomposition-based multiobjective evolutionary
algorithms, the setting of search directions (or weight vectors),
and the choice of reference points (i.e., the ideal point or the
nadir point) in scalarizing functions, are of great importance to
the performance of the algorithms. This paper proposes a new
decomposition-based many-objective optimizer by simultaneously
using adaptive search directions and two reference points. For
each parent, binary search directions are constructed by using
its objective vector and the two reference points. Each individual
is simultaneously evaluated on two fitness functions—which are
motivated by scalar projections—that are deduced to be the dif-
ferences between two penalty-based boundary intersection (PBI)
functions, and two inverted PBI functions, respectively. Solutions
with the best value on each fitness function are emphasized.
Moreover, an angle-based elimination procedure is adopted to
select diversified solutions for the next generation. The use of
adaptive search directions aims at effectively handling problems
with irregular Pareto-optimal fronts, and the philosophy of using
the ideal and nadir points simultaneously is to take advantages
of the complementary effects of the two points when handling
problems with either concave or convex fronts. The performance
of the proposed algorithm is compared with seven state-of-the-art
multi-/many-objective evolutionary algorithms on 32 test prob-
lems with up to 15 objectives. It is shown by the experimental
results that the proposed algorithm is flexible when handling
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problems with different types of Pareto-optimal fronts, obtain-
ing promising results regarding both the quality of the returned
solution set and the efficiency of the new algorithm.

Index Terms—Dynamic decomposition, evolutionary algo-
rithms, many-objective optimization, reference points.

I. INTRODUCTION

MULTI-OBJECTIVE optimization problems (MOPs)
with at least four conflicting objectives are known

as many-objective optimization problems (MaOPs) [1], [2].
Due to extensive existences of MaOPs in real-world appli-
cations, such as automotive engine calibration [3], water
resource system planning [4], car controller optimization [5],
and optimal product selection from software product lines [6],
they have recently drawn steady attention in the evolutionary
multiobjective optimization community. A number of many-
objective evolutionary algorithms have been specially designed
to handle MaOPs [7]–[15]

In this paper, the following unconstrained MOP (or MaOP)
is considered:

Minimize F(x) = (f1(x), f2(x), . . . , fm(x))T

subject to: x ∈ � (1)

where x = (x1, x2, . . . , xn)
T is the decision vector, and

n denotes the number of decision variables. In MOP (1),
� ⊆ R

n is called the decision space; F(x) ∈ R
m, denoting

the objective vector of x, consists of m objective functions
fi(x), i = 1, 2, . . . , m. Due to the nature of conflict among
all the objectives, there is no single optimal solution avail-
able for an MOP, but a set of solutions representing tradeoffs
among different objectives. For solutions x and y, x is said
to Pareto dominate y if and only if fi(x) ≤ fi(y) holds for
every 1 ≤ i ≤ m and there exists at least one j ∈ {1, 2, . . . , m}
such that fj(x) < fj(y). If neither x Pareto dominates y nor y
Pareto dominates x, then they are Pareto nondominated with
each other. A solution x∗ is Pareto-optimal if there is no
other solution x ∈ � such that x Pareto dominates x∗. The
F(x∗) is then called the Pareto-optimal (objective) vector. All
the Pareto-optimal solutions constitute the Pareto-optimal set.
Accordingly, the set of all the Pareto-optimal vectors is called
the Pareto-optimal front (PF) [9].

Being simple, flexible, free from derivatives and being
able to approximate the true PF with multiple solutions in a
single run [16], [17], multiobjective evolutionary algorithms
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(MOEAs) have achieved great successes when optimizing
MOPs with mostly two or three objectives [18]–[22]. Since
the output of MOEAs for an MOP is a set of Pareto non-
dominated solutions, Pareto dominance naturally becomes a
feasible criterion for selecting individuals during the evolu-
tionary process [23]. In differentiating between individuals
for 2- or 3-objective MOPs, Pareto dominance is popular and
effective. However, the performance of this criterion degen-
erates greatly on MaOPs mainly due to the fact that the
number of Pareto nondominated solutions increases rapidly
with the number of objectives [2], [7]. As a natural con-
sequence, Pareto-based MOEAs, such as the nondominated
sorting genetic algorithm (NSGA-II) [19] and the improved
strength Pareto evolutionary algorithm [18], may suffer from
great performance deterioration because of insufficient selec-
tion pressures toward the true PF. Although non-Pareto-based
MOEAs, such as the decomposition-based (or aggregation-
based) and indicator-based approaches, do not suffer from
ineffectiveness in distinguishing individuals (because they do
not rely on the Pareto-dominance to push the population
toward the true PF), they may need to face the problem of
diversity maintenance especially for problems with an irreg-
ular PF [24]. For decomposition-based approaches, such as
the MOEA based on decomposition (MOEA/D) [21], one key
point is the setting of weight vectors, which have significant
influences on the distribution of a population [25], [26]. In
indicator-based approaches, the population is guided by using
an indicator, such as the hypervolume (HV) [27] and R2 indi-
cator [28], which can simultaneously evaluate convergence and
diversity [29], [30]. However, according to [29], in the calcu-
lation of HV, the choice of the reference point is a crucial
issue. The HV may prefer the knee points and the boundary
of the PF if the reference point is set improperly, which may
make the final solutions obtained by HV-based MOEAs dis-
tributed not widely along the whole front [23], [31]. Similarly,
R2-based approaches, if not designed properly, may also suf-
fer from the loss of diversity. For example, the many-objective
meta-heuristic based on the R2 indicator (MOMBI) [32] was
experimentally demonstrated to be ineffective in maintain-
ing a set of diversified solutions for some MaOPs [33].
Another shortcoming of indicator-based (especially HV-based)
approaches is the high computational cost [34], [35], which
seriously restricts their applications to MaOPs.

Decomposition-based MOEAs are very popular when han-
dling both MOPs and MaOPs. In these algorithms, two issues
are of great importance to the performance of the algorithms.
One is the settings of weight vectors. According to a latest
study [24], the performance of decomposition-based algo-
rithms strongly depends on the shapes of the PFs. For prob-
lems with an irregular (i.e., discontinued, degenerated, etc.)
PF, such as DTLZ5-7 and WFG3, decomposition-based algo-
rithms with fixed weight vectors may suffer from performance
degeneration as some weight vectors may have no intersection
with the PF [24], or many subproblems can only find the
solutions on the boundary of the PF [36]. Therefore, to deal
with problems with irregular PFs, decomposition-based algo-
rithms need to dynamically adjust weight vectors so as to
adapt the distribution of search directions to the shape of the

PF [24], [37]–[39]. The other is the choice of the reference
points in the scalarizing functions. The ideal point was widely
used in most of the decomposition-based approaches, such
as MOEA/D [21], MOEA/DD [9], NSGA-III [8], and refer-
ence vector guided evolutionary algorithm (RVEA) [40]. As
explained in [36] and [41], this may be problematic sometimes.
For example, for problems with convex PFs, scalarizing func-
tions using the ideal point may pull most solutions toward the
central region of the PF [36], [41]–[43]. It was demonstrated
recently in [36] that the simultaneous use of both ideal and
nadir points is a feasible way to improve the performance
of decomposition-based algorithms for problems with both
convex and concave PFs.

Given the above facts, this paper proposes a new
decomposition-based many-objective optimizer which uses
two reference points (i.e., both ideal and nadir points) and
adaptive search directions. In the new algorithm, each solu-
tion is evaluated on two fitness functions which consider the
ideal and nadir points, respectively. These fitness functions
are defined based on the scalar projection and the perpendic-
ular distance from the objective vector to a search direction.
In addition, binary search directions are considered for each
solution in the current population within which solutions are
selected one by one according to the angle information. Since
the proposed algorithm mainly adopts two basic concepts, i.e.,
scalar projection and angle, we use PAEA to name the new
proposal. In PAEA, as discussed previously, the simultaneous
use of two reference points aims at handling both convex and
concave PFs, while adaptively adjusted search directions are
designed for problems with irregular PFs. Main innovations
of PAEA are summarized as follows.

1) The simultaneous use of two reference points. In PAEA,
the search is guided by pulling the current solutions
toward the ideal point, and pushing them away from the
nadir point simultaneously. Since the effect of the use of
the ideal point is complementary with that of the nadir
point, PAEA is expected to be effective when handling
both convex and concave PFs.

2) Adaptive multiple search directions. Each solution xi

in the current population defines binary search direc-
tions: one is the direction from F(xi) to the ideal point,
while the other is the direction from the nadir point
to F(xi). Moreover, solutions in the current population
are dynamically selected from previous parent and child
solutions according to the angle information. Therefore,
the search directions are adaptively adjusted according
to the distribution of current solutions.

3) The simultaneous evaluations of each solution on two
fitness functions. Based on two reference points and
two search directions for each parent individual, a child
solution (or a neighboring solution) is simultaneously
evaluated on two fitness functions which are deduced to
be the differences between two penalty-based boundary
intersection (PBI) functions [21], and two inverted PBI
(IPBI) functions [41], respectively. Solutions with the
best value on each fitness function are emphasized.

The rest of this paper is organized as follows. Section II
summarizes related works in the field. Section III presents
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details of our proposed PAEA, followed by the experimen-
tal study in Section IV. The discussions on the experimental
results are given in Section V. Finally, Section VI concludes
this paper and lists some research directions for future studies.

II. RELATED WORKS

To effectively handle MaOPs or complicated MOPs, many
works have been done to improve the performance of Pareto-,
decomposition-, and indicator-based algorithms.

For Pareto-based algorithms, many relaxed dominance rela-
tions have been proposed to increase the selection pressure,
such as ε-dominance [44], grid dominance [10], and θ -
dominance [45]. In addition, some customized diversity-based
approaches [46], [47] have been injected into these algorithms
to improve their performance. In indicator-based algorithms,
HV and R2 have been widely used because these performance
indicators can simultaneously evaluate convergence and diver-
sity. Bader and Zitzler [11] proposed an algorithm named
HypE, where the Monte Carlo simulation was used to approx-
imate exact HV values. Hence, the efficiency of the algorithm
has been improved significantly [48]. By improving the diver-
sity of MOMBI [32], Gómez and Coello [33] suggested an
improved algorithm MOMBI2 whose overall performance was
demonstrated to be improved when solving MaOPs. Finally,
the Two_Arch2 [49] can be seen as a hybrid many-objective
algorithm, where both indicator-based and Pareto-based selec-
tion principles were used.

Decomposition-based algorithms were very popular when
handling both MaOPs or complicated MOPs. By combining
dominance- and decomposition-based approaches, Li et al. [9]
proposed the MOEA/DD, where the convergence is addressed
by the Pareto-dominance relation and scalarizing functions,
and the diversity is maintained by a set of uniformly dis-
tributed weight vectors. To handle MaOPs more effectively,
Deb and Jain [8] improved the NSGA-II algorithm by replac-
ing the original crowding distance operator with a novel
clustering operator, and by supplying a set of well-distributed
reference lines to keep diversity among solutions. This leads
to NSGA-III which was shown to be effective for MaOPs.
Later, Yuan et al. [45] proposed the θ -DEA which enhanced
the convergence of NSGA-III by exploiting the fitness evalua-
tion scheme in decomposition-based MOEAs. In θ -DEA, each
solution is assigned to its nearest reference line in the same
manner as NSGA-III. The PBI function is used to rank solu-
tions assigned to a same reference line. Similar to NSGA-III,
the θ -DEA requires a set of reference lines for diversity main-
tenance. Cheng et al. [40] proposed an RVEA for MaOPs.
In the proposed algorithm, a scalarization approach, named
angle penalized distance, is used to balance convergence and
diversity of solutions in a high-dimensional objective space.

The above decomposition-based algorithms, i.e.,
MOEA/DD, NSGA-III, θ -DEA, and RVEA, need to
predefine a set of weight vectors or reference lines for
diversity maintenance. However, on the one hand, how to
set the weight vectors/reference points in a high dimen-
sional objective space is still an open question [2]. For
many-objective optimization, systematic approaches either

generate a huge number of points in the unit simplex [50],
or produce points distributed mainly on two layers in the
hyper-plane [8], [9]. On the other hand, according to the
studies in [24], the performance of decomposition-based
algorithms strongly depends on the shapes of PFs, and they
are particularly effective if the shape of the distribution of
weight vectors/reference lines is the same as or similar to
the shape of the problems’ PFs. However, these algorithms
with systematically generated weight vectors show severe
performance deterioration on problems with irregular (i.e.,
discontinued, degenerated, and convex) fronts, because the
shapes of the distribution of weight vectors are inconsistent
with those of the problems’ PFs. Therefore, it is of necessity
to develop more flexible algorithms.

It was implied in [24] that there are two ways to improve
the performance of decomposition-based algorithms. One is
using dynamic weight vectors (or search directions) to adapt
the shapes of the PFs. The other is adjusting reference points
in scalarizing functions. Actually, there are already some
works along the two research directions. To dynamically adjust
weight vectors, Qi et al. [39] proposed an improved MOEA/D,
where an adaptive weight vector adjustment (MOEA/D-AWA)
is utilized to deal with MOPs with complex PFs. The weights
are adjusted periodically so that the weights of subprob-
lems can be redistributed adaptively. In the adaptive weight
adjustment strategy, by introducing an external population,
overcrowded subproblems are detected and removed, while
new subproblems are added into the real sparse regions.
Li and Landa-Silva [51] proposed an improved version of
MOEA/D, called EMOSA, which incorporates the simulated
annealing algorithm. In EMOSA, the weight vector of each
subproblem is adaptively modified at the lowest temperature
in order to make the search diversified toward unexplored
parts of the PF. Gu et al. [52] suggested a dynamic weight
design method based on the projection of the current nondom-
inated solutions and an equidistant interpolation. The results
indicated that the dynamic weight design method can dramat-
ically improve the performance of MOEA/D. Jiang et al. [37]
suggested a novel method called Pareto-adaptive weight vec-
tors (paλ) to automatically adjust weight vectors according to
geometrical characteristics of the PFs. In the adaptive NSGA-
III (A-NSGA-III) [38], Jain and Deb used a mechanism to
adaptively add and delete reference points, depending on the
crowdedness of population members on different parts of the
current Pareto nondominated front. To use RVEA to handle
irregular PFs, Cheng et al. [40] proposed a new reference
vector regeneration method based on a “replacement” strat-
egy, and it is more efficient than the “addition-and-deletion”
as in A-NSGA-III.

In the scalarizing functions, different reference points have
different search behaviors. In general, the ideal and nadir
points are suitable for problems having concave and convex
PFs, respectively. There are some works on the use of the nadir
point or both of the ideal and nadir points in decomposition-
based algorithms. Sato [41] proposed an MOEA/D variant with
the IPBI function (MOEA/D-IPBI) which evolves solutions
from the current nadir point by maximizing the scalarizing
function value. In MOEA/D-IPBI, the nadir point is estimated
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by finding the worst objective function value for each objec-
tive among all the current solutions. To approximate the whole
PF of a given problem, Saborido et al. [42] proposed the
GWASF-GA algorithm, where the fitness function is defined
by an achievement scalarizing function (ASF) based on the
Tchebycheff distance, in which both the utopian point (a point
that is strictly better than the ideal point) and the nadir point
are used as the reference points. It was shown that consider-
ing two reference points at the same time plays an important
role in obtaining a final set of nondominated solutions that
approximate the whole PF. Jiang and Yang [43] proposed the
MOEA/D-TPN algorithm to handle complex MOPs. In the
algorithm, the whole optimization process is divided into two
phases. In the first phase, the ideal point is used in the scalar-
izing (Tchebycheff) function, while the nadir point may be
used in the second phase if solutions found in the first phase
are more crowded at the intermediate part of the approximated
PF than at the boundaries. Recently, Wang et al. [36] studied
the effect of the reference point setting on the performance of
decomposition-based algorithms for problems with either con-
cave or convex PFs. They proposed a new MOEA/D variant,
i.e., MOEA/D-MR, where both ideal and nadir points are used.
In the algorithm, the whole population is divided into two
subpopulations. The first subpopulation uses the ideal point
as the reference point, while the second one adopts the nadir
point as the reference point. Experimental results on a set of
complicated 2- and 3-objective test problems showed that the
simultaneous use of two reference points indeed improves the
performance of the algorithm.

By simultaneously considering the above two aspects, this
paper proposes a new MOEA/D variant, i.e., PAEA, which
uses both adaptive search directions and two reference points.
The basic idea behind PAEA is using adaptive search direc-
tions to handle irregular PFs, and is taking advantages of
complementary effects of both reference points so as to
simultaneously deal with both concave and convex PFs. The
proposed PAEA will be compared with other related algo-
rithms on a large number of test problems whose PFs are either
irregular (e.g., DTLZ5-DTLZ7 and WFG1-WFG3), or concave
(e.g., DTLZ2-4 and WFG4-9), or convex (e.g., DTLZ2-4−1

and WFG4-9−1).

III. PROPOSED PAEA ALGORITHM

In this section, we first give the general framework of
the proposed approach, then we present details of main
algorithmic components in each section.

A. General Framework of PAEA

The framework of the proposed PAEA is shown in
Algorithm 1. In PAEA, apart from the population size N, there
are two additional parameters θ and α which are used in the
fitness functions and the handling of extreme solutions, respec-
tively. Details of the above two parameters will be given in
Sections III-C and III-D, respectively. First, a population P
with N individuals is initialized within the whole decision
space (line 1 in Algorithm 1). Then, for each individual x in
P, a random solution (denoted by x′, which is different from

Algorithm 1 Framework of the Proposed Algorithm (PAEA)
Input:

N (population size), θ (a parameter used in the fitness
functions) and α (a parameter used in handling extreme
solutions).

Output: The final population.
1: P ← initialization(N) // Generate an initial population

with N individuals.
2: while the termination criterion is not fulfilled do
3: Q ← variation(P) // Generate 2N offspring solutions

by using genetic operators
4: P′ ← environmentalSelection(P, Q) // Maintain a

diversified population with N individuals
5: P← P′
6: end while
7: return P

Algorithm 2 P′ ← environmentalSelection(P, Q)

Input: P, Q
Output: The new population P′

1: Normalize members in P ∪ Q using the method in [8]
2: S← binaryDirectionsSelection (P, Q)
3: P′ ← elimination(S) // Select N solutions by eliminating

individuals from S one by one
4: return P′

x) is selected from the whole population. By applying genetic
operators (crossover and mutation) to x and x′, we can get two
offspring of x, i.e., y1 and y2. All the offspring are stored in the
population Q (line 3 in Algorithm 1). Since each parent gen-
erates two offspring at a time, this will consume evaluations
as twice as the population size at each generation. Finally, the
environmental selection is adopted to select N diversified indi-
viduals from both P and Q (line 4 in Algorithm 1). The above
procedures are repeated until the termination criterion is ful-
filled. In the following sections, we will describe algorithmic
components in more details.

B. Environmental Selection

The pseudo-code of the environmental selection is given
in Algorithm 2. Since the optimization problems may have
different ranges for each objective, the population P ∪ Q is
recommended to be normalized. In PAEA, we adopt the same
method as in NSGA-III [8] to adaptively normalize P ∪ Q
(line 1 in Algorithm 2). The advantage of the normalization
of P ∪ Q is that it considers the normalization of both parent
and offspring individuals at the same time. Details of this nor-
malization technique can be found in [8]. Hereafter, when the
objective values of a solution are mentioned, we always refer
to the normalized ones.

Now, we consider the objective space. After normalization,
the ideal point zmin becomes a zero vector, and the nadir point
zmax = (zmax

1 , zmax
2 , . . . , zmax

m )T can be constructed by finding
the maximum value for each objective. For each individual
xi in P, we consider two search directions v1 and v2 along
which F(xi) approaches to the PF. As shown in Fig. 1(a),
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(a) (b)

Fig. 1. Illustrations of (a) two search directions and (b) scalar projection a1.

(a) (b)

Fig. 2. Illustrations of the calculation of (a) g1(y|v1, zmin) and (b)
g2(y|v2, zmax).

v1 = zmin − F(xi) and v2 = F(xi) − zmax. Along these
directions, a solution set S is constructed by selecting promis-
ing solutions from both P and Q with the help of a binary
directions selection procedure (line 2 in Algorithm 2).

As will be shown in Section III-C, the number of solutions
in S is 2N. Therefore, some technique is needed to prune the
population S so as to retain exactly N solutions. In PAEA, the
elimination function (line 3 in Algorithm 2) is designed for this
purpose, where effective techniques are developed to handle
extreme solutions and to eliminate solutions one by one. More
details of this procedure will be given in Section III-D.

C. Binary Directions Selection

As its name suggests, the binary directions selection chooses
elite individuals in two directions in terms of the fitness value
of an individual. A crucial issue here is how to measure the
quality of individuals. Ideally, the fitness of an individual
should reflect information concerning both convergence and
diversity. As shown in Fig. 1(b), a is a vector starting from
F(xi) and ending up with F(y), where y is one of xi’s two
children. On the one hand, a1, given by ‖a‖ cos〈a, v1〉, where
〈a, v1〉 denotes the angle between a and v1, is called the scalar
projection of a onto the direction v1. The larger the a1 is, the
closer the F(y) approaches to the PF. Inversely, if we consider
the negative value of a1, i.e., −a1, then a smaller value is
preferable. Thus, −a1 can be used as a measurement of conver-
gence for an individual. On the other hand, since the diversity
of the parent population is well kept by using an angle-based
strategy (which will be described in Section III-D), we expect
the offspring with better convergence is close to its parent. To
this end, the perpendicular distance d2 from F(y) to v1 can be
used as a diversity measurement.

Algorithm 3 S←binaryDirectionsSelection (P, Q)
Input: P, Q
Output: S

1: S← ∅
2: for each xi ∈ P do
3: Calculate fitness values of xi and its two child solutions

y1 and y2 by Eqs. (3) and (4)
4: Two solutions y′1 and y′2 with the smallest values on

each fitness function [Eqs. (3) and (4)] are selected from
the set {xi, y1, y2}

5: if y′1 = y′2 then
6: Select the solution with the second best value on

either g1 or g2, and use it to replace y′2 // g1 or g2 is
chosen randomly with a probability 0.5

7: end if
8: S← S ∪ {y′1, y′2} // Add y′1 and y′2 into S
9: end for

10: return S

Therefore, for an individual y, its convergence and diver-
sity (in the direction of v1) are measured by −a1 and d2,
respectively. Thus, the fitness of y can be defined as

g1

(
y|v1, zmin

)
= (−a1)+ θd2 (2)

where θ > 0 is a control parameter that is used to keep a
balance between convergence and diversity. Actually, (2) can
be represented by two PBI functions as gpbi(y|v1, zmin) −
gpbi(xi|v1, zmin), where gpbi(y|v1, zmin) and gpbi(xi|v1, zmin)

are the fitness value of y and xi in the direction v1 according to
the PBI decomposition approach [21]. As shown in Fig. 2(a),
d1 is the distance between zmin and F(y′), i.e., the projection
of F(y) on v1; d2 is the distance between F(y) and F(y′); and
d′1 is the distance between zmin and F(xi).

Therefore, according to Fig. 2(a), we have

g1

(
y|v1, zmin

)
= −a1 + θd2

=
(

d1 − d
′
1

)
+ θd2

= (d1 + θd2)−
(

d
′
1 + θ · 0

)

= gpbi
(

y|v1, zmin
)
− gpbi

(
xi|v1, zmin

)
. (3)

Similarly, the fitness of y, denoted by g2(y|v2, zmax),
can be also calculated in the direction v2 by using zmax

as a reference point. According to Fig. 2(b), this fitness
value is actually the differences between two IPBI func-
tions [41]. According to [41], IPBI function is defined by
maximize gipbi(y|v2, zmax) = d1− θd2. In this paper, we con-
sider the minus version, namely, minimize gipbi(y|v2, zmax) =
−d1 + θd2. Therefore, we obtain

g2
(
y|v2, zmax) = −a1 + θd2

= −
(

d1 − d
′
1

)
+ θd2

= (−d1 + θd2)−
(
−d
′
1 + θ · 0

)

= gipbi(y|v2, zmax)− gipbi(xi|v2, zmax). (4)
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(a) (b)

Fig. 3. Contour lines of g1(y|v1, zmin) with different values of θ , shown in
a 2-objective space. (a) F(xi) = (0.8, 0.2). (b) F(xi) = (0.2, 0.8).

(a) (b)

Fig. 4. Contour lines of g2(y|v2, zmax) with different values of θ , shown in
a 2-objective space. (a) F(xi) = (0.7, 0.9). (b) F(xi) = (0.9, 0.7).

For the fitness defined by (3) and (4), a small value is prefer-
able. With these fitness assignments, as shown in Algorithm 3,
the binary directions selection procedure works as follows. For
one parent solution xi and its two child solutions y1 and y2,
based on g1(y|v1, zmin) and g2(y|v2, zmax), two solutions with
the best (smallest) values on each fitness function are selected
(lines 3 and 4 in Algorithm 3). In case that they are identical,
y′2 will be replaced by the solution with the second best value
on either g1 or g2, which is randomly chosen with a proba-
bility 0.5 (lines 5–7 in Algorithm 3). The selected y′1 and y′2
are added into the set S (line 8 in Algorithm 3)

Finally, we analyze the search behaviors of PAEA in
depth by showing contour lines of both g1(y|v1, zmin) and
g2(y|v2, zmax), which are given in Figs. 3 and 4, respectively.
According to (3), the second part gpbi(xi|v1, zmin) is fixed for
different y’s, which is actually equal to the distance between
F(xi) and zmin. Therefore, the contour lines of g1(y|v1, zmin)

is similar to those of gpbi(y|v1, zmin). To be more specific,
as shown in Fig. 3, the contour lines of g1(y|v1, zmin) are
symmetrical about the search direction v1, with the angle
between the two lines larger than, equal to and smaller than
π/2 for θ < 1, θ = 1 and θ > 1, respectively. Since
g1(xi|v1, zmin) = gpbi(xi|v1, zmin) − gpbi(xi|v1, zmin) = 0,
solutions on the contour line have the same g1 value (i.e.,
g1 = 0) as the current solution xi. In Fig. 3(a), solutions
in the region surrounded by the two contour lines of the
same θ and the two axes have g1 value smaller than 0. Thus,
solutions in this region are better than xi. Hence, by using
the function g1, the current population is pulled toward the
ideal point zmin as close as possible. In a similar way, the
contour lines of g2(y|v2, zmax) can be analyzed. As shown in

Algorithm 4 P′ ← elimination(S)

Input: S
Output: The new population P′

1: P′ ← ∅
2: Add m extreme solutions into P′ and remove them from

S
3: while |P′| + |S| > N do
4: Find xr and xt that have the minimum angle to each

other among all the pairs of individuals in S
5: x ← arg max{‖F(xr)‖, ‖F(xt)‖} // Find the worse

individual x in terms of the length of the objective
vectors

6: Remove x from S
7: end while
8: P′ ← P′ ∪ S
9: return P′

Fig. 4, the positive effect of the fitness function g2 is that it
pushes the current population toward the PF so as to make
solutions in the population away from the nadir point zmax as
far as possible.

Moreover, as shown in Fig. 3(a) and (b), if we use only
g1 (or equally zmin), all the solutions are pulled toward the
ideal point, leading to over-crowdedness at middle parts of
the PF in case that the problems have convex PFs [note in
this case, as shown in Fig. 4(a) and (b), the use of g2 (or
equally zmax) would be helpful for finding more solutions in
the boundary]. Similar problem occurs if we use only g2 for a
concave PF [36]. Therefore, the simultaneous use of both g1
and g2 is likely to improve the performance of PAEA when
approximating both convex and concave PFs. The effect of the
binary directions selection will be verified experimentally in
Section VI-A in the supplementary material.

D. Elimination Procedure

Since S contains 2N solutions, an elimination procedure
is needed to prune the population so as to retain exactly
N solutions for the next generation. In PAEA, an angle-
based procedure is used for this purpose, which is shown in
Algorithm 4. The procedure is made up of two main parts:
1) the handling of extreme solutions and 2) the elimination of
nonextreme solutions. Before the procedure starts, the acute
angle (in the objective space) of every two individuals in S is
calculated and stored in a matrix M2N×2N , and this operation
needs O(mN2) multiplications. For every member in S, it has
a unique identity. With the help of the angle matrix M2N×2N

and the identities of individuals, the angle between any two
individuals can be obtained in the time complexity of O(1).

For each objective k, we define a unit vector ek =
(0, . . . , 1, . . . , 0), where the kth element is 1 and all the other
ones are 0’s. For this vector, in the objective space, find the
solution xk to which ek has the minimum angle. The xk is
called an extreme solution. The inclusion of extreme solu-
tions may be good for the diversity promotion. However, some
extreme solutions may be far away from the true PF. This will
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have a side effect on the convergence of the whole population
if these poorly converged solutions are directly included.

To handle the above problem, the following strategy is used
in the proposed algorithm (refer to line 2 in Algorithm 4). First,
find out the individuals xk and xh that have the minimum and
the second minimum angle to ek. Second, a choice between
xk and xh is made according to the length of their objective
vectors. The ‖F(xk)‖ is the distance from F(xk) to zmin, which
can reflect the convergence of the individual xk. The selection
logic is as follows: if ‖F(xk)‖−‖F(xh)‖ ≤ α‖F(xh)‖, then xk

is added into P′, and is also removed from S. Otherwise, xh

is selected. Note that a parameter α > 0 is used in the selec-
tion condition. According to this selection strategy, if F(xk)

is extremely far away from the true PF, then it would not
be included in the new population. Hence, the diversity and
convergence can be balanced when adding extreme solutions.

For the remaining individuals in S, we first find out a pair
of solutions, denoted by xr and xt, which have the minimum
angle among all the pairs of individuals (line 4 in Algorithm 4).
Then, we identify the worse one (denoted by x) in terms of
the length of the objective vectors (line 5 in Algorithm 4). In
case that a “tie” occurs, it will be broken randomly. Next, x is
removed from S (line 6 in Algorithm 4). The above procedure
is repeated if |P′| + |S| > N, where | · | is the cardinal number
of a set. Finally, Algorithm 4 returns the union of P′ and S.

It should be noted that He and Yen [53] have recently
proposed a similar procedure to eliminate solutions one by
one, which introduces a parameter t whose value should be
set carefully according to characteristics of the problems at
hand [53]. Our procedure, however, ignores the use of this
parameter. In addition, we here present a fast implementa-
tion of the above elimination procedures. Naively, the time
complexity of lines 3–7 in Algorithm 4 is O(N3). In each
of the N loops, we need to find a pair of solutions with the
minimum angle to each other from all the O(N2) pairs of solu-
tions. Actually, lines 3–7 in Algorithm 4 can be speeded up
by the following routine. First, we have the following pre-
processing: sorting angle values of all pairs of solutions in
an ascending order by using Quicksort [54]. Since there are(2N−m

2

)
1 = ([(2N − m)(2N − m − 1)]/2) = O(N2) pairs of

solutions, this requires O(N2 log N2) = O(N2 log N) compar-
isons by using Quicksort. After sorting, the minimum angle
can be found in the first place of the angle array. We delete
one of the two solutions associated with this angle accord-
ing to lines 5 and 6 in Algorithm 4. Subsequently, the angles
related to the deleted solution should be removed from the
array. From a programmatic perspective, this can be done by
setting these angles to a large number (e.g., M). Note that, for
each solution, the array indexes of angles related to this solu-
tion can be recorded during the quick sort process. Therefore,
the marking of these angles needs only O(N) operations. Then,
the procedure continues scanning the array and the first angle
that is not equal to M is the second minimum angle. Similarly,
an associated solution is removed, so do angles related to this
solution. The above procedures are repeated until N solutions

1Since m extreme solutions are removed from S according to line 2 of
Algorithm 4, there are exactly 2N − m remaining solutions in S.

are removed. Therefore, the routine needs O(N2) deletions of
angles (by marking them with M), and O(N2) scans of the
angle array. As O(N2 log N) is larger than O(N2), the worst
time complexity of the above routine is O(N2 log N), which is
lower than O(N3).

The overall worst-case time complexity of PAEA at one gen-
eration is max{O(N2 log N), O(mN2)}. For detailed analyses
and comparisons, we direct readers to Section V in the sup-
plementary materials. Moreover, we give some discussions on
the differences/relations between PAEA and related algorithms
in Section I in the supplementary materials.

IV. EXPERIMENTAL STUDY

In this section, the proposed PAEA is compared with
MOEA/DD [9], NSGA-III [8], MOEA/D [21], 1by1EA [55],
GWASF-GA [42], MOEA/D-AWA [39], and MOEA/D-
TPN [43] on a large number of test problems. These state-
of-the-art algorithms were demonstrated to be effective when
handling MaOPs. All the algorithms, except for 1by1EA, are
reference point/weight vector based approaches. Similar to
PAEA, the 1by1EA does not require any predefined weight
vector. Since PAEA uses both ideal and nadir points, we
include 1by1EA, GWASF-GA, and MOEA/D-TPN as peer
algorithms as they also use the two reference points in different
ways.

A. Test Problems

In the empirical study, we consider 32 test prob-
lems that are selected from two test suites. One
is the DTLZ test suite consisting of 14 problems:
DTLZ1−DTLZ7 [56], ConvexDTLZ2 [8], ScaledDTLZ1-
2 [8], and DTLZ1−1−DTLZ4−1 [24]. The other is the WFG
test suite containing 18 test problems: WFG1−WFG9 [57]
and WFG1−1−WFG9−1 [24]. All the test problems can be
scaled to any number of objectives. In this paper, m = 5, 8, 10,
and 15 are considered.

In all the experiments, the number of decision variables for
DTLZ test problems is set to n = m+ k− 1, where k = 5 for
DTLZ1 and ScaledDTLZ1, k = 20 for DTLZ7 and k = 10
for other DTLZ test problems [56]. According to suggestions
in [57], the number of decision variables in WFG test prob-
lems is set to n = 2×(m−1)+l, where l is the distance-related
variable that is set to 20. Recently, Ishibuchi et al. [24] have
proposed the DTLZ−1 and WFG−1 test problems which are
minus versions of DTLZ and WFG, respectively. The minus
problems are created by multiplying all objectives in the orig-
inal DTLZ and WFG by (−1). In this paper, the settings of
decision variables and objectives are the same as in the original
DTLZ and WFG test problems.

B. Performance Metrics

In this paper, the inverted generational distance
(IGD) [58], [59], the generational distance (GD) [60] and the
pure diversity (PD) [30] are chosen as performance metrics.
The IGD can provide combined information on convergence
and diversity of the obtained solutions, therefore it is widely
used in the evaluation of approximated solution sets for both
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TABLE I
POPULATION SIZE N FOR DIFFERENT NUMBERS OF OBJECTIVES

MOPs [58], [61], [62] and MaOPs [8]–[10], [23], [49], [63].
The GD assesses only the convergence while PD gives a pure
measurement on the diversity.

When calculating both IGD and GD, a reference point set
is needed. In this paper, the same method as in [64] is used
to sample points on the true PF. For more details, please refer
to Section II-A in the supplementary material. For both IGD
and GD, small values are preferable. The PD is a recently
proposed diversity assessment in many-objective optimization.
Details of the calculation of PD can be found in [30]. It is
worth mentioning that an approximate set that is far away
from the true PF may also present a satisfactory PD result
if solutions are distributed properly. However, this PD value
may be meaningless and may lead to misleading results. To
avoid this situation, PD values in this paper are calculated only
among those solutions whose objective values are within the
regions of the true PF. Thus, worse converged solutions in any
objective contribute zero to the PD value. In this way, the PD
metric can also measure the convergence to some extent. For
PD metric, a large value is desirable. In the study, this metric
is implemented by the code2 provided in [30].

C. General Experimental Settings

The experimental settings in this paper are listed below
unless otherwise mentioned.

1) Population Size N: According to [8], the popula-
tion size in NSGA-III is set to the smallest multiple
of four larger than the number of weight vectors
(denoted by H), which are created by the Das and
Dennis’s systematic approach [50] when m = 5 and
by the two-layer weight/reference vectors generation
method [8], [9] when m > 5. In PAEA and 1by1EA,
the population size keeps the same as in NSGA-III.
While in MOEA/DD, MOEA/D, MOEA/D-AWA, and
MOEA/D-TPN, the population size is set to H directly.
For GWASF-GA, N is set to H when m = 5 and 8,
and H − 1 when m = 10 and 15. Since a binary tour-
nament selection is used in GWASF-GA, it requires the
population size to be even. In case that the number of
generated weight vectors is odd, a random one will be
removed as done in [42]. The values of N for different
numbers of objectives are summarized in Table I.

2) Number of Independent Runs and the Termination
Condition: All algorithms are independently run 30
times in each test instance, and are terminated when the

2The code of PD can be found at http://www.surrey.ac.uk/cs/
people/handing_wang/.

TABLE II
SETTINGS OF THE maxFEs FOR DIFFERENT NUMBERS OF

OBJECTIVES ON EACH TEST PROBLEM

objective function evaluations reach maxFEs. The set-
tings of maxFEs for different numbers of objectives on
each test problem are summarized in Table II.

3) Algorithmic Parameter Settings: In our proposed PAEA,
there are two additional parameters θ and α, which are
set to 10 and 0.5, respectively. The parameter study on
θ and α is available in Section IV in the supplementary
material. For other peer algorithms, the parameter set-
tings are kept the same as in their original studies. More
details can be found in Section II-B in the supplementary
material.

D. Comparison of Computational Results

For performance comparisons, we first record the average
IGD and PD for the DTLZ test suite as shown in Tables II
and III in the supplementary material. As we can see from
these tables, PAEA obtains the best or the second best results
in most of the test instances, showing a great superiority over
other state-of-the-art algorithms. Specifically, among all the
56 DTLZ and DTLZ−1 test instances, the proportion of the
best or the second best results PAEA obtains is 34/56 ≈ 61%
and 52/56 ≈ 93% for IGD and PD, respectively. To make
statistical comparisons, the Wilcoxon’s rank sum test [65] is
applied to determining whether the differences between PAEA
and each peer algorithm in each test instance are significant
or not. The symbol • denotes that PAEA shows a significant
improvement over its competitors with a level of significance
α = 0.05, while ◦ indicates the opposite. If no significant
difference is found, then the symbol ‡ will be used. The test
results on DTLZ test suite are summarized in Table III, where
we can find the proportion of test instances where PAEA is
better than (•), worse than (◦) and equal to (‡) each of the
peer algorithms.

It can be observed from Table III that the proportion of the
DTLZ and DTLZ−1 test instances where PAEA obtains sig-
nificantly better IGD than its competitors is 44/56, 37/56,
48/56, 33/56, 42/56, 39/56, and 48/56 for MOEA/DD,
NSGA-III, MOEA/D, 1by1EA, GWASF-GA, MOEA/D-AWA,
and MOEAD-TPN, respectively. Conversely, the proportion
of test instances where PAEA is inferior to the peer algo-
rithms is 8/56, 15/56, 8/56, 16/56, 13/56, 16/56, and 7/56,
respectively. For the PD metric, as shown in Table III, PAEA
outperforms GWASF-GA in all the 56 test instances, and out-
performs both MOEA/DD and MOEA/D in 55 test instances.
Compared with NSGA-III, 1by1EA, MOEA/D-AWA, and
MOEAD-TPN, PAEA obtains better PD in 51, 44, 49, and
53 out of 56 test instances, respectively.
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TABLE III
PROPORTION OF DTLZ AND DTLZ−1 TEST INSTANCES WHERE PAEA IS BETTER THAN (•), WORSE THAN (◦) AND

EQUAL TO (‡) EACH OF THE PEER ALGORITHMS ACCORDING TO THE WILCOXON’S RANK SUM TEST

TABLE IV
PROPORTION OF WFG AND WFG−1 TEST INSTANCES WHERE PAEA IS BETTER THAN (•), WORSE THAN (◦) AND EQUAL

TO (‡) EACH OF THE PEER ALGORITHMS ACCORDING TO THE WILCOXON’S RANK SUM TEST

The raw experimental results on the WFG test suite are
provided in Tables IV and V in the supplementary mate-
rial. To have a preliminary understanding of the comparisons,
main statistics are summarized as follows: among all the 72
WFG and WFG−1 test instances, the proportion of the best
or the second best results PAEA obtains is 50/72 ≈ 69% and
67/72 ≈ 93% for IGD and PD, respectively. To make the
comparisons easier, the Wilcoxon’s rank sum test results are
summarized in Table IV where we can find that the largest
and smallest proportion of WFG and WFG−1 test instances
where PAEA performs better in terms of IGD is 70/72 ≈ 97%
(PAEA versus MOEA/DD) and 44/72 ≈ 61% (PAEA versus
GWASF-GA), respectively. Similarly, the largest proportion
of test instances where PAEA obtains better PD values is
72/72 = 100% (PAEA versus GWASF-GA), and the smallest
proportion is 62/72 ≈ 86% (PAEA versus MOEA/D-AWA).
It is clear from the table that PAEA shows significantly bet-
ter performance than other state-of-the-art algorithms in the
majority of the test instances. Intuitive comparisons of the
distribution of the final solutions are provided in Section III
in the supplementary material. As a summary, it can be found
from these materials that the solutions of PAEA are distributed
more widely than those of its competitors.

V. DISCUSSION

In this section, we explain in depth why the state-of-
the-art algorithms perform as they do. For MOEA/DD and
MOEA/D, they perform competitively on normalized problems
(e.g., DTLZ1-4), but degenerate on problems with differently
scaled objective functions (e.g., ScaledDTLZ1-2, WFG1-9,
and WFG1-9−1). In MOEA/D, a new solution is generated
for a weight vector by selecting parents from the neighbors.
The new solution is compared with all of its neighbors. If the
new solution is better, then the current solution is replaced.
Hence, there is a risk that many neighboring solutions are
replaced by a same good solution. This will do harm to the

diversity of the solutions [24], which is reflected by the parallel
coordinates as shown in Figs. 1(d), 2(d), and 3(d) in the sup-
plementary material. The MOEA/DD performs not well on the
WFG test problems, and this may be due to the lack of an effi-
cient objective normalization mechanism in MOEA/DD [24].
For GWASF-GA, it performs poorly in terms of the diversity
of obtained solutions on the original DTLZ and WFG test
problems. As stated in [42], the final population of GWASF-
GA depends highly on the distribution of the weight vectors
used. In GWASF-GA, the weight vectors are predefined and
are not recalculated as the generations are increased. As a
result, the algorithm cannot dynamically adapt the evolution
of the population to the shapes of the PF.

The NSGA-III is significantly worse than PAEA in terms
of the PD metric. This may be explained as follows. Since
the majority of solutions in a high-dimensional objective
space are nondominated with each other, they fall into the
same layer according to the nondominated sorting procedure
adopted by NSGA-III. When this primary selection criterion
fails to distinguish individuals, the reference line-based diver-
sity preservation strategy is activated. However, it is possible
that some reference lines have multiple solutions, while other
reference lines have no solutions [24]. In addition, the refer-
ence points generated by the two-layer approach in NSGA-III
are mainly distributed on two layers of the hyper-plane [8].
Therefore, solutions found by NSGA-III concentrate mainly
on the boundary or middle parts of the true PF. Hence, worse
PD values are obtained by NSGA-III compared with PAEA.

The 1by1EA is highly competitive with the proposed PAEA
on the DTLZ test suite. The algorithm selects individuals
one-by-one-based on convergence indicators in the environ-
mental selection. Once a solution is selected, its neighbors
are de-emphasized using a niche technique to guarantee the
diversity of the population. Hence, a good balance between
convergence and diversity may be obtained. However, the
performance of 1by1EA is related to the convergence indi-
cators used. The 1by1EA prefers the convergence indicator
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whose contour lines have a similar shape to that of the PF
of a given problem. Unfortunately, the shape of the PF of a
practical optimization problem is usually unknown in advance.
Therefore, the enhancements of 1by1EA may be possible by
adaptively choosing an appropriate convergence indicator or
using an ensemble of multiple convergence indicators during
the evolution of the algorithm [55].

The MOEA/D-AWA performs competitively with PAEA
on both DTLZ and WFG test suites with respect to both
IGD and PD metrics. The success of MOEA/D-AWA may
be attributed to the adaptive weight vector adjustment, which
deletes overcrowded weight vectors and adds new ones into
the sparse regions. Hence, the diversity among solutions is pro-
moted. Thanks to this effective diversity maintenance strategy,
MOEA/D-AWA obtains competitive IGD and PD results com-
pared with PAEA. However, since MOEA/D-AWA maintains
an external population and needs to calculate the crowdedness
of solutions, it requires more computational costs. As shown
in Section V in the supplementary material, MOEA/D-AWA
runs slowest among all the peer algorithms.

The MOEA/D-TPN was demonstrated to be promising
when handling 2- and 3-objective MOPs with complex
PFs [43], which is also verified by our experimental results on
test functions F1–F9 [36] as shown in Section III in the sup-
plementary material. However, the performance of MOEA/D-
TPN degenerates on many-objective problems. One possible
reason for the performance deterioration is that MOEA/D-TPN
is sensitive to some key control parameters. Different settings
of these parameters may be required for MaOPs. As another
likely explanation, MOEA/D-TPN uses fixed weight vectors,
being unable to adapt to the shapes of the PFs.

As can be found from the experimental results, the
performance of MOEA/D, MOEA/DD, and NSGA-III
degrades on DTLZ−1 and WFG−1 test problems. As explained
in [24], this performance deterioration is attributed to the
inconsistencies between the shapes of the PFs and those of
the weight vectors used in these algorithms. For our proposed
PAEA, however, it performs well on both DTLZ/DTLZ−1

and WFG/ WFG−1 test problems. First, PAEA uses adaptive
search directions such that it can handle problems with irregu-
lar PFs, such as DTLZ5-6 and WFG3. Second, each solution in
PAEA is simultaneously evaluated on two fitness functions tak-
ing into account different reference points. Therefore, PAEA
can take advantages of the complementary effects of both ideal
and nadir points for either concave or convex PFs. Besides,
the diversity among solutions in the environmental selection
is maintained by an angle-based one-by-one elimination pro-
cedure. Finally, some other techniques, such as the adaptive
normalization of the population and a smart procedure for
including extreme solutions are also factors for the success
of our proposed PAEA. For further discussions on PAEA, we
direct readers to Section VI in the supplementary material.

VI. CONCLUSION

This paper proposes a new decomposition-based many-
objective optimizer, i.e., PAEA, by using two primary con-
cepts: 1) scalar projection and 2) angle. In PAEA, search

directions are defined based on the current solutions and two
reference points. For each solution, binary search directions
are considered. One is the direction from the current individ-
ual to the ideal point, while the other is from the nadir point
to the current solution. The scalar projection motivates us to
develop two fitness functions, which are deduced to be the
differences between two PBI functions and two IPBI func-
tions, respectively. Each individual is then evaluated on the
two fitness functions simultaneously, and solutions with the
best values on each function are emphasized. Finally, the angle
information is adopted to select diversified solutions for the
next generation. The proposed PAEA is compared with seven
state-of-the-art algorithms on a large number of test problems.
As shown in the experimental study, PAEA obtains promising
results on these test problems with up to 15 objectives, regard-
ing both the quality of the final solutions and the efficiency of
the algorithm.

Major advantages of PAEA are that: 1) it uses adaptive
search directions, therefore problems with irregular PFs could
be effectively handled and 2) PAEA uses two fitness func-
tions with different reference points to distinguish individuals,
hence it takes advantages of the complementary effects of both
ideal and nadir points. Consequently, PAEA is able to prop-
erly deal with problems with both concave and convex PFs.
A potential shortcoming of PAEA would be that it currently
considers only the distance to the ideal point as the conver-
gence metric when eliminating solutions one by one as shown
in Algorithm 4. Actually, other convergence metrics [55] could
be used, which will be one of our future studies. As another
meaningful research direction, besides the angle-based clus-
tering method developed in this paper (see Section VI-B in
the supplementary material), it is possible to use ideas from
other related works [66]–[69] to match between parents and
offspring so as to further improve the performance of the
proposed algorithm. In addition, applying PAEA to imbalanced
problems [70], [71] or problems from practice would be also
one of our subsequent research subjects.
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