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Abstract— This paper describes a method that allows one
to recover both components of a 2-D vector field based on
boundary information only, by solving a system of linear
equations. The analysis is carried out in the digital domain
and takes advantage of the redundancy in the boundary data,
since these may be viewed as weighted sums of the local
vector field’s Cartesian components. Furthermore, a sampling
of lines is used in order to combine the available measurements
along continuous tracing lines with the digitised 2-D space
where the solution is sought. A significant enhancement in the
performance of the proposed algorithm is achieved by using,
apart from real data, also boundary data obtained at virtual
sensors. The potential of the proposed method is demonstrated
by presenting an example of vector field reconstruction.

I. INTRODUCTION

In recent years Hough transform [1] and the related Radon

transform [2] have found widespread use. Theoretical ideas

found in Radon’s early work provide the mathematical basis

for conventional tomographic reconstruction, very common

in medical imaging. Functions that are reconstructed by using

traditional tomography are scalar functions describing e.g.,

absorption or scattering coefficients. However, over the last

few decades there has been a growing demand for similar

techniques that would perform tomographic reconstruction

of a vector field, rather than a scalar one, when having

integral information. The problem of recovering a vector

field from its line integrals has generally been regarded as an

‘underdetermined’ problem. This seems to be clear from the

fact that a scalar function is determined uniquely from its

Radon transform, whereas a vector field requires two (in 2-

D) or three (in 3-D) component functions to be determined.1

II. LITERATURE SURVEY

During the short history of 2-D vector field tomography,

many attempted to solve the reconstruction problem [3],

[4], [5], but the result has always been the same: only one

component of the vector field could be recovered from the

tomographic measurements. The component that could be

recovered was either the curl-free (irrotational) part or the

divergence-free (solenoidal) part, depending on the physical

principle of the measurements, namely the relation between

the obtained set of measurements and the investigated vector
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1This analysis deals only with vector fields that have two components.

field. One possible solution to this problem would be to

collect data using both types of interaction between the

measurements and the examined vector field for every ap-

plication. Indeed, such an amount of information would be

sufficient to allow for a full reconstruction of the vector

field as Braun and Hauck demonstrated in [4]. Unfortunately,

there are only very few specialized applications (mainly in

optics), where it is physically realizable to have all these

measurements available. Moreover, as Norton showed in [3]

we may have a full reconstruction based only on longitu-

dinal measurements, as long as, apart from the longitudinal

measurements, supplementary information about the vector

field, especially boundary conditions and a priori information

about the source distribution, is available as well. However,

all the work accomplished in vector field tomography has

been carried out in the continuous domain and it does not

take into consideration the redundancy in the data used to

reconstruct the field. Although along each line we measure

only one component of the field (along or perpendicular to

the direction of the line), we may use many line orientations

passing through every point and then view their recordings

as weighted sums of the local vector field’s Cartesian com-

ponents. Besides, in the discrete domain, we want to recover

the field only at sampling points. We may exploit then the

redundancy in the data to recover the vector field at all

sampling points of the 2-D domain. We shall discuss this

method next.

III. THE PROPOSED METHODOLOGY

We formulate the vector field reconstruction problem in

terms of Cartesian vector components required at sampling

points of a 2-D domain. We wish to recover all components

of a vector field f̄(x, y) based only on integral data. In

order to achieve the full vector field recovery, we exploit

the redundancy in the integral data, since these data may

be viewed as weighted versions of the local vector field’s

Cartesian components. The whole treatment in this section

is performed in the digital domain. The bounded 2-D domain,

within which we want to recover the vector field, is divided

into tiles of finite size. The values of the components of

the vector field in every such tile are the values of the

components of this field at the centre of the tile, namely

the sampling point. Similarly, the available redundant line-

integral (boundary) data are not in the continuous domain

either. There is only a finite number of pairs of points, that

reside on the boundary of the 2-D domain, where we may

obtain the line-integral data. These points are assumed to

be the locations of ideal point sensors. Consequently, the
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solution to the reconstruction problem will be based only

on these line-integral data. The ultimate objective of this

analysis is to recover both components of the vector field at

every sampling point of the bounded 2-D domain by solving

a system of linear equations. In order to form this system of

linear equations we assume that our sensors integrate only

the component of the field projected on the line. Then, every

line-integral (Ji) that is available gives rise to an equation.

Hence, by using all available line-integrals we obtain the

required system of linear equations, the solution of which

is expected to give all the components of the vector field

at all sampling points of the 2-D domain. It must be noted

that we have two unknowns per sampling point of the 2-D

space, namely the components (fx, fy) of the vector field.

As the number of the available line-integrals (equations) is

determined by the number of boundary points, where we

make the measurements, we may select the value of the latter

so that the number of linear equations is twice the number

of sampling points of the 2-D space. If more equations are

available, the solution will be obtained in the least-square

error sense.

In order to combine the measurements along continuous

tracing lines with the digitisation of the 2-D space where the

solution is sought, we consider regular sampling points along

the tracing lines. The sampling process we use is similar to

the one described in [6]. Let us assume that we have the

digitised square 2-D domain shown in Fig. 1 and we wish to

recover vector field f̄(x, y) at the centre of every tile of this

space. The length of each side of the square domain is taken

to be equal to 2L and the origin of the axes of the coordinate

system is chosen to be at the centre of the domain. The size

of the tiles with which we sample the 2-D domain is P , so

that 2L/P is an integer. Let us consider a line segment AB
crossing this domain as shown in Fig. 1. The coordinates
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Q 

Fig. 1. A line segment between two boundary points, A and B, that
goes through a digital square domain of side length equal to 2L. The angle
between the line segment and the positive direction of the x-axis is w. The
size of the tiles, with which we sample the 2-D space, is P . Point Q is the
foot of the normal of the considered line segment from the origin of the
axes.

of points A and B are (xA, yA) and (xB , yB), respectively.

Therefore, the equation of line AB is

y = λx + β (1)

where

λ ≡
yB − yA

xB − xA

and β ≡ yA −
yB − yA

xB − xA

xA (2)

The unit vector ŝ along the line (and with direction from A
to B) is:

ŝ = cos wx̂ + sin wŷ (3)

where w = arctanλ is the angle between the line and the

positive direction of the x-axis (Fig. 1). The next step is to

perform a sampling of the line segment. The starting point of

this sampling will be the foot of the normal of this line from

the origin of the axes (point Q in Fig. 1). The coordinates of

the starting point Q for the calculations along the line are:

xQ = −
β

(

λ + 1

λ

) , yQ = −
1

λ
xQ (4)

The sampling along the line section will be performed on

either side of Q and we assume that the sampling step is

∆s. The maximum number of sampling intervals that we

can fit in this line section is determined by the intersection

points between the line and the border of the 2-D domain.

The distances between the starting point Q and intersection

points A and B are dA and dB respectively. Consequently,

the numbers lA and lB of ∆s, that we may fit in the line

segment between the foot of the normal, Q, and the boundary

points A and B are, respectively:

lA =

⌊

dA

∆s

⌋

, lB =

⌊

dB

∆s

⌋

(5)

where ⌊·⌋ is the symbol for the floor operator. Therefore, the

sampling points we shall consider along the line segment

will have coordinates

xl = xQ + lxinc, yl = yQ + lyinc for l ∈ [−lA, lB ] (6)

where the increments xinc and yinc of the coordinates

between successive sampling points are given by:

xinc = ∆s cos w, yinc = ∆s sin w (7)

The total number of sampling points along the line seg-

ment is lA + lB +1. After having worked out the coordinates

of the sampling points of the line, we must assign them

values from the vector field. We use nearest neighbour

interpolation for that. Hence, we need to determine for each

sampling point of the line, the tile the centre point of which

is its nearest neighbour. For this purpose, we use the integer

coordinates (i, j) with i, j = 1, . . . , 2L
P

, of each tile of the 2-

D domain.Then, the tile (i, j) that corresponds to a sampling

point (xl, yl) is identified by using the formulae:

i =

⌈

xl + L

P

⌉

, j =

⌈

yl + L

P

⌉

(8)

where ⌈·⌉ is the ceiling operator.

The next step is to form the equation that corresponds to

the line-integral measurement Ji between points A and B.
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This may be achieved by considering the sampling points of

the line that we obtained as the centres of linear segments

of length ∆s, apart from the sampling points with l = −lA
and l = lB which are special cases. We then convert the

integral into a sum by projecting the value of the field at each

sampling point of the line onto the vector that represents the

corresponding integrating element:

Ji =

lB−1
∑

l=−lA+1

f̄l · ∆s + f̄lA · ŝ∆A + f̄lB · ŝ∆B (9)

where f̄l, f̄lA and f̄lB are the vector field values at sampling

points l, lA and lB respectively, ∆s = ∆sŝ, and

∆A =
∆s

2
+ dlA, ∆B =

∆s

2
+ dlB (10)

where dlA is the distance between the sampling point with

l = −lA and the boundary point A, whereas dlB is the

distance between the sampling point with l = lB and the

boundary point B.

The method described above is based on linear algebra.

This approach formulates the tomographic reconstruction

problem in terms of a system of linear equations. However,

there is a duality between the Radon transform scheme and

this matrix formalism. Hence, the solution of the above

described system of linear equations is equivalent to inverting

the vectorial Radon transform. According to the theory of the

Radon transform [7], the exact image reconstruction requires

projection data as a continuous function of two variables,

normally designated as the radial and angular coordinates.

However, in practice this is never available and projections

are measured with only limited resolution. Moreover, when

using discrete approximations, necessary requirements to

produce results with the accuracy desired in medical imaging

is to have a large number of projections (ie., adequately

dense sampling of the Radon domain parameters) and, also,

substantially uniform distribution of Radon data. In this

paper, in order our discrete approach to satisfy better the

above described criteria and, also, to be closer to the ideal

continuous case, we have increased the number of the bound-

ary data, by adding virtual sensors. The values of the integral

data at these sensors are calculated from the values at the

nearby sensors by using linear interpolation. Experimental

results of this technique are discussed in Section IV.

IV. AN EXAMPLE: ELECTRIC FIELD IMAGING

In this section we consider the case where the vector field

that we want to recover is the electric field created by a static

charge. There are many ways to recover the electric field

from boundary data. However, here we use the electric field

only to demonstrate our method. In order to avoid problems

with singularities, we treat the case where the source of the

vector field that we aim to recover is outside the bounded

2-D area. In a real physical system, we do not expect to

have to deal with real singularities. Again, we stress that

the problem we solve is intentionally kept simple in order

to demonstrate the method. So, instead of using a realistic

version of Coulomb’s law where the source of the field is

finite, we place the source outside the domain of interest

and make it infinitesimally small. For this electric field

recovery, the data we shall rely entirely on are line-integral

data taken at the border of the 2-D area. A fundamental

property regarding the electric field, resulting from the fact

that the electric field created by static charges is irrotational,

is that the voltage difference between any two stated points,

A and B, is given by the integral of the projections of the

electric field onto any curve uniting these two points. By

letting points A and B to range over the boundary of a

domain within which we want to recover the electric field

and, also, by restricting the integration curves to be the line

sections uniting any two such points, we may deduce that

every voltage difference between any two points that reside

on the boundary of a domain may be treated as a line-

integral when trying to recover the electric field within this

domain. We may also say that these voltage differences give

the vectorial Radon transform of the electric field. It must be

noted that the electric field is irrotational, so according to [3],

transversal measurements only would be enough to recover

this field. However, the only realizable measurements for this

application are longitudinal.

To exemplify the theory, two simulations were performed.

The geometry we employed for the digital domain is a

square domain of size 2L×2L where 2L=11 and the tile

size P was taken equal to 1. Hence, the domain consists

of 121 (=11×11) tiles. The location of the source was

taken at (16,18). The electric field reconstruction was based

only on a number of voltage differences obtained between

points that lay on the boundary of this domain. In the first

simulation, we assumed that there are ideal point sensors

(electrodes) regularly placed in known positions of the

border of the domain (these are the middle points of the

boundary edge of all boundary tiles) and data from these

points were used only. Hence, we used 11 sensors in every

side of the boundary of the square domain. In all these

known and predetermined points we acquired the simulated

potentials by using Coulomb’s law. After that, we considered

all possible voltage differences between any pair of these

boundary points and we formed the system of linear equa-

tions according to the description of the previous section.

However, voltage differences between boundary points that

reside in the same side of the square boundary were not

used. Moreover, the sampling step along the line segments,

that unite boundary points, was selected to be equal to 0.0009

of the tile size. The number of equations (available voltage

differences) of the system was 726, whereas the number

of the unknowns (Ex, Ey components for every tile of the

domain) was 242 (=11×11×2). For the second simulation,

we also inserted virtual sensors, one in between every two

real sensors. Then, the vector field reconstruction was also

based on the interpolated voltages at these virtual sensors.

The employment of virtual sensors resulted in having 21

sensors in total in every side of the boundary and, also, the

number of available voltage differences was 2646.

The reconstruction results, namely the solution of the over-

determined system of linear equations for the two simulations

2727



−5 0 5

−5

0

5

c) Magnitude error (%)

5

10

15

−5 0 5

−5

0

5

a) Recovered Field

−5 0 5

−5

0

5

b) Theoretical Field

−5 0 5

−5

0

5

d) Angular error

2

4

6

8

−5 0 5

−5

0

5

5

10

15

−5 0 5

−5

0

5

−5 0 5

−5

0

5

−5 0 5

−5

0

5

2

4

6

8

Fig. 2. Simulation results for the case where the location of the source of the electric field is at (16,18) when (top) only boundary data from the real
sensors are used, and (bottom) data from the virtual sensors are also used: a) The recovered vector field (solution of the system of linear equations), b)
The electric field as computed from Coulomb’s law, c) The relative error in magnitude, d) The absolute angular error (in degrees).

(without and with the use of virtual sensors), are shown in

Fig. 2. For the sake of comparison, Fig. 2 also depicts the

respective electric fields that are obtained by using directly

the theoretical Coulomb’s law. Moreover, in Fig. 2 the

relative differences between the magnitudes of the two vector

fields (i.e., the absolute values of the differences between

the magnitudes of the reconstructed field and the theoretical

field as acquired by Coulomb’s law divided by the theoretical

magnitude) for both simulations can be seen, as well as the

angular differences (in degrees) between the reconstructed

vector field values and the theoretical ones. By inspection

of Fig. 2, we may see that the introduction of the virtual

sensors, resulted in a much better vector field reconstruction.

In particular, it was found that the average squared error of

the magnitude per pixel was reduced by 59% after inserting

the virtual sensors, whereas the average squared angular error

dropped by 68%.

V. SUMMARY AND CONCLUSIONS

In this paper, the vector field tomography problem was dis-

cussed. In previous attempts to map integral measurements

obtained along tracing lines onto a vector field, conventional

(scalar) tomography theory had invariably been applied [3],

[8]: this had led to an under-determined problem. However,

in this paper a new analysis was presented that aimed at

the recovery of all components of a field at the sampling

points of a 2-D digitised bounded domain by solving a

system of linear equations. The reconstruction was based

only on boundary data. We took advantage of the redundancy

in boundary data with a view to recovering the vector

field fully, since these data may be seen as weighted sums

of the local vector field’s Cartesian components. In the

approach we followed, emphasis was placed on the use of

sampling lines with a view to achieving better accuracy in

expressing the integrals, that refer to the redundant available

measurements along continuous tracing lines, in terms of

the finite number of the values of the vector field at the

centres of tiles. In order to enhance further the performance

of the proposed algorithm we used interpolated boundary

data obtained at virtual sensors. This heuristic resulted in

a significant reduction of both the angular and magnitude

recovery error. The reconstruction results we obtained for a

number of simulations demonstrate that we may achieve full

recovery of a vector field through this approach.
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