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Abstract

Many complex systems in the real world evolve with time. These dynamic systems are often modeled by
ordinary differential equations in mathematics. The inverse problem of ordinary differential equations is to
convert the observed data of a physical system into a mathematical model in terms of ordinary differential
equations. Then the model may be used to predict the future behavior of the physical system being modeled.
Genetic programming has been taken as a solver of this inverse problem. Similar to genetic programming,
gene expression programming could do the same job since it has a similar ability of establishing the model of
ordinary differential systems. Nevertheless, such research is seldom studied before. This paper is one of the
first attempts to apply gene expression programming for solving the inverse problem of ordinary differential
equations. Based on a statistic observation of traditional gene expression programming, an improvement is
made in our algorithm, that is, genetic operators should act more often on the dominant part of genes than
on the recessive part. This may help maintain population diversity and also speed up the convergence of the
algorithm. Experiments show that this improved algorithm performs much better than genetic programming
and traditional gene expression programming in terms of running time and prediction precision.

Keywords: gene expression programming, system of ordinary differential equations, inverse problem,
Runge-Kutta algorithm

1. Introduction

There are many complex systems or non-linear phenomena varying with the time in the real world. Such
systems are called dynamic systems, including weather change, population increase, disease diffusion and so
on. In order to predict the development trend of such dynamic systems, it is often required to establish their
mathematical models, that is, to establish the functional relationship or changing trend among variables of
the systems. It is difficult to find the functional relations among variables in complicated changing processes,
but it is still possible to find out the change rate or differential coefficients of some variables, and then to
model them by ordinary differential equations (ODEs). If there are more than one unknown functions, we
need to establish a group of ordinary differential equations (ODEs). Through the ODEs model of a physical
system, it is possible to learn the development trend of the system and apply the prediction in the real
world.

The problem of converting observed data of a physical system into a mathematical model in terms
of differential equations is known as the inverse problem [1, 2] of differential equations [3, 4, 5, 6]. For
instance, if we have previous data of a stock market, we may create an ODEs model for the stock market
using previous data and then predict the development trend of the stock market. The inverse problem of
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differential equations plays an important role in many areas from scientific experiments to stock markets.
However, given observed data, it is not an easy task to create models of ODEs for complex dynamical
systems, because these problems are very complicated and usually belong to non-linear systems, so it is
difficult to determine the structure of ODEs and parameters in ODEs in order to create a correct model.

In this paper, an improved Gene Expression Programming (GEP) is put forward to solve the inverse
problems of ordinary differential equations. GEP is a kind of evolutionary algorithms based on genome
and phenomena and referred to the gene expression rule in the genetics [7, 8]. It intends to combine the
advantages of both GP and GA [9]. Unlike GP where an individual is expressed in the form of a tree, an
individual in GEP is represented by the Isometric linear symbols. GEP [10] has been successfully applied in
problem solving [7], combinatorial optimization [11], real parameter optimization [12], evolving and modeling
the functional parameters [13], classification [14, 15], event selection in high energy physics [16].

Choosing GEP is based on several reasons. First, an GEP algorithm adopts a multi-gene structure, where
each gene stands for an ODE and each chromosome for a group of differential equations. This is different
from traditional algorithms in which an individual cannot be used to represent a group of ODEs directly.
Secondly, previous experiments show that GEP algorithms have a better prediction effect in the shorter
time and its time cost is so stable that it is seldom influenced by the complexity of dynamical systems.
In addition, an improvement is made in our GEP algorithm. It is more suitable for studying the inverse
problems of ordinary ODEs than the traditional ones because more genetic operations are centered at the
dominant segment of the gene and fewer genetic operations are centered at the recessive segment[17].

The remainder of this paper is organized as follows: Section 2 introduces inverse problems of ODEs.
Section 3 presents an improved GEP algorithm for solving the inverse problems of ODEs. Section 4 gives
computer experiment results. Section 5 concludes the whole paper.

2. Inverse Problems for Ordinary Differential Equations

A dynamic system is represented by n correlated functions: x1(t), x2(t), · · · , xn(t) where t denotes time.
The system has a series of observed data collected at times tj = t0 + j ×∆t, (j = 0, 1, · · · ,m − 1), where
t0 represents the starting time, ∆t the time increment, and xi(tj) the observed value of xi at the time tj .
Write the observation data in a matrix form:

Xm :=


x1(t0), x2(t0), · · · , xn(t0)
x1(t1), x2(t1), · · · , xn(t1)
· · · , · · · , · · · , · · ·

x1(tm−1), x2(t0), · · · , xn(t0)

 . (1)

Denote

x(t) := [x1(t), x2(t), . . . , xn(t)]T , (2)

f(x, t) := [f1(x, t), f2(x, t), . . . , fn(x, t)]T (3)

where fj(x, t) = fj(x1(t), x2(t), . . . , xn(t), t) (j = 1, 2, . . . , n) is a composite function of several elementary
functions involving of xi(i = 1, · · · , n) and t. Let F denote the set of all possible composite functions.

A system of ordinary differential equations (ODEs) in the form of

dxi(t)

dt
= fi(x1, · · · , xn, t), i = 1, · · · , n (4)

can be written in the vector form
dx(t)

dt
= f(x, t). (5)

The goal of the inverse problem of ODEs is to find a mathematical model which is represented by a
system of ODEs

dx∗(t)

dt
= f(x∗, t) (6)
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such that
min{‖X∗m −Xm‖; f ∈ F} (7)

where the matrix norm

‖X∗m −Xm‖ :=

√√√√m−1∑
j=0

n∑
i=1

(x∗i (tj)− xi(tj))2 (8)

The above the matrix norm represents the difference between the observed data and the corresponding
values derived from the ODEs model.

Then we may use the obtained ODEs (6) to predicate the future trend of the system. The above problem
is called the inverse problem of ODEs.

Different approaches have applied to solving the inverse problem of ODEs. Linear modeling, such as Au-
toregressive model, Moving Average model, Auto-
regressive Moving Average model, are simple and popular [18, 19, 20]. However, there exist several restric-
tions for linear models. Firstly, they are linear models so that they can not represent non-linear dynamical
systems. Secondly, identification and estimation of linear models requires strong mathematical knowledge
and expertise, which often lacks in practice. Finally, once a model is established, it is not easy to constantly
adjust the structure and parameters of the model based on updated observation data.

Another simple modeling approach is to take a form of differential equations which are pre-selected by
experience, and then a numerical method is used to determine the variables [21]. However, how to pre-select
the right differential equation model is a difficult task, especially for the differential equations whose number
of variables increases.

Evolutionary modeling [22, 23, 24, 25] has been successfully used in studying the inverse problems of
ordinary differential equations. Current evolutionary modeling are mainly based on Genetic Programming
[22, 25, 26], [27] where an equation is represented in the form of tree. A hybrid evolutionary methods
are proposed for evolving ODEs, for example, to predict small-time scale traffic measurements data in
[28], which uses tree model to evolve but its speed is also slow. ECSID [29] found good models for linear
pendulum, non-linear pendulum with friction, coupled mass-spring, and linear circuit. But the difference
between model found by ECSID and original model becomes large when the model becomes complex. GEP-
SWPM is proposed in [30], and the prediction is based on several generations of data before, so it is seriously
affected by the noise. A new methods of GEP was proposed in [13, 31], which is very effective for identifying
parameter functions. But it is based on the assumed model and doesn’t provide a common solution and it
can’t be extended to most situations.

In this paper, we proposed an improved GEP algorithm for solving the inverse problem of ODEs.

3. Improved GEP for the Inverse Problem of ODEs

3.1. Gene Representation in GEP Algorithm

The genetic codes of GEP is the isometric linear symbols (GEP chromosome). Each chromosome can be
composed of several genes. GEP gene consists of a head and a tail, where the former may contain both the
functional symbols and termination symbols, while the latter only has the terminal symbols. For example,
*+-aQ*+aababb baab is a legal gene, of which, * stands for the multiplication operation, Q the square root
operation, the segment without underline belongs to the head, while the underlined segment is the tail.
Figure 1 shows the expression of the gene in the form of a tree.

For each problem, the length of the tail t is a function of the length of the head h and the number of
arguments of the function with the most arguments n, determined using the following formula [32].

t = h(n− 1) + 1 (9)

3.2. The Flowchart of GEP Algorithm for Soling the Inverse Problem of ODEs

GEP used to solve the inverse problem, is shown in Algorithm1. The details of procedures are described.
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Figure 1: Expression tree 1

Algorithm 1 Improved GEP algorithm for inverse problem of ODEs

1: Determine the termination symbol set, operator set and control parameters;
2: Initialize a population;
3: while the termination requirement is not met do
4: Convert the chromosome into the expression tree (this step might be replaced by the GRCM algorithm

introduced later);
5: Calculate the fitness;
6: Apply genetic operation;
7: Obtain a new population;
8: end while
9: Output the optimal solution;

3.3. Initialization

The first task in the initialization is to set control parameters, including the length of a gene’s head and
tail, the number of genes, a termination symbol set and a functional set.

The termination set used for the inverse problem of ODEs is {t, 1, 2, 3, · · · } where i stands for xi. The
functional set is

{+,−, ∗,÷, s, c,Q, e, ln},

where s = sin, c = cos, Q =
√

, e = exp. These sets are determined specifically for the inverse problem.
The settings of the length of a gene’s head and tail, and the number of the gene rely on the problem.

In our experiments, the head length is set to 8. Since the maximal number of the operators is 2, the tail
length is set 9 according to (9).

The second task in the initialization is to create an initial population. A gene is generated at random
using the termination set and functional set, subject to the constraints on the head and tail lengths of
genes. A chromosome has k genes where k is fixed. For example, *+-1Q*+3201321023 is a gene, and the
chromosome consists of 3 genes: *+-1Q*+3201321023 *-*1+*+*2023 12032 *+*1Q*+3210301323. Then
a number of chromosomes or individuals are generated, where the number of chromosomes is called the
population size.

3.4. Fitness Evaluation and Chromosomes Ranking

The fitness evaluation of an individual is rather complex in the inverse problem of ODEs [33]. Firstly, we
produce a system of ODEs or an ODEs model from each individual. Secondly, the model is used to produce
prediction data using Runge-Kutta’s method. Finally, the fitness is calculated by comparing prediction data
and actual data. The detail is described as follows.

• Calculate genes

The traditional GEP method is to convert a chromosome into an expression tree, and then solve it via
stacks. This is a complicated process. In this paper, we adopt an alternative method, called Gene Read
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& Compute Machine (GRCM) algorithm [34] for calculating genes. The solutions of a chromosome can be
achieved directly without converting the chromosome into an expression tree. GRCM algorithm is described
in Algorithm2.

Algorithm 2 GRCM algorithm

1: Calculate the valid length of genes and determine the valid genetic sequence;
2: Read the valid genetic length forward one by one from the last operator until the first operator is

achieved; record its position P)
3: while the valid length of the gene is 1 do
4: if P targets to the unary operator then
5: Read the genetic sequence in valid length from the last character and find out a terminal symbol,

which is used as a parameter for operation, substitute the above operator with the operation results
and convert the former operator into a terminal symbol;

6: When the valid length of gene is subtracted by 1;
7: The position of P moves forward by 1;
8: else if P targets to the binary operator then
9: Read the genetic sequence in valid length from the last character and find out two terminal symbols,

which is used as a parameter for operation, substitute the above operator with the operation results
and convert the former operator into a terminal symbol;

10: When the valid length of gene is subtracted by 2;
11: The position of P moves forward by 1;
12: else
13: No operation is conducted;
14: Position P moves forward by 1;
15: end if
16: end while
17: return the value of the terminal symbol

Comparing with the traditional methods, GRCM is easy for understanding and convenient for operation,
what’s more, the operation can be conducted at high speed. The more complicated the chromosome is, the
greater advantages the algorithm has.

• Generate training and prediction data

The Runge-Kutta [35] is adopted in this paper to accomplish the prediction data. The Runge-Kutta is
a iteration method for simulating the ODE solutions. At present, the commonly used Runge-Kutta is RK4,
which is used in the condition that the differential coefficient of equation and the original value are known
and omits the complicated process of solving the differential equation via the computer simulation. The
Runge-Kutta can be used to achieve the precise solution especially for the complicated non-linear differential
equation group and the non-linear ordinary differential equation group that is too complicate to obtain the
precise solution.

For the ordinary differential equation with one variable x(t)

dx(t)

dt
= f(x(t), t), (10)
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the RK4 formula is shown in (11).

x(t0) is the original value

K1 = f(x(tj), tj)

K2 = f(x(tj) + 1
2K1∆t, tj + 1

2∆t)

K3 = f(x(tj) + 1
2K2∆t, tj + 1

2∆t)

K4 = f(x(tj) + K3∆t, tj + ∆t)

x(tj+1) = x(tj) + 1
6 (K1 + 2K2 + 2K3 + K4)∆t

(11)

where ∆t = tj+1 − tj .
For the ordinary differential equation with n variables x1(t), · · · , xn(t),

dxi(t)

dt
= fi(x1(t), · · · , xn(t), t), i = 1, · · · , n (12)

the RK4 formula is shown in (13).

x1(t0), x2(t0), · · · , xn(t0) are orignal values,

Ki,1 = fi(x1(tj), x2(tj), · · · , xn(tj), tj),

Ki,2 = fi(x1(tj) + 1
2K1,1∆t, x2(tj) + 1

2K2,1∆t,

· · · , xn(tj) + 1
2Kn,1∆t, tj + 1

2∆t)

Ki,3 = fi(x1(tj) + 1
2K1,2∆t, x2(tj) + 1

2K2,2∆t,

· · · , xn(tj) + 1
2Kn,2∆t, tj + 1

2∆t)

Ki,4 = fi(x1(tj) + K1,3∆t, x2(tj) + K2,3∆t,

· · · , xn(tj) + Kn,3∆t, tj + ∆t)

xi(tj+1) = xi(tj) + 1
6 (Ki,1 + 2Ki,2 + 2Ki,3 + Ki,4)∆t

i = 1, 2, · · · , n

(13)

The calculation is as follows: first, achieve the matrix X from the observed data:

X =


x1(t0) x2(t0) · · · xn(t0)
x1(t1) x2(t1) · · · xn(t1)
· · · · · · · · · · · ·

x1(tm−1) x2(tm−1) · · · xn(tm−1)

 (14)

Then, select the data at first line of the matrix X as the original values of RK4, and calculate the
prediction data X∗ from the achieved model via the RK4 method as per the (14) by adopting the increment
same with that of matrix X, see (15).

X∗ =


x1(t0) x2(t0) · · · xn(t0)
x∗1(t1) x∗2(t1) · · · x∗n(t1)
· · · · · · · · · · · ·

x∗1(tm−1) x∗2(tm−1) · · · x∗n(tm−1)

 (15)

The first row of matrix X∗ are the original values of RK4 and they are same as the data at first line of
matrix X. The remaining data of matrix X’ are generated using (13).

• Construction of fitness function

Construction of fitness function is to ensure the algorithm to evolve in the required direction; it is the
major drive for the evolvement of GEP groups. Different fitness function has different influences on the
evolvement quality. The better the fitness function is, the individual is more adaptable to the environment
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and the greater probability that the individual evolves to the next generation [36]. The fitness function in
this paper is constructed by the difference between matrix X and X ′, i.e. ∆ = ‖X −X ′‖.

∆ is the difference of the two matrixes, and the smaller it is, the better it is. Therefore, the greater the
fitness is, the better it is after the conversion as per (16).

fitness =
1

∆ + 1
(16)

3.5. Genetic Operators

• Selection

The Roulette selection is adopted in the paper. The better the fitness, the greater probability an
individual is reproduced to the next generation. The reproduction times will be determined as per the
Roulette principle in the process and meanwhile the population size is unchanged.

• Mutation operator design

The mutation operation can be performed at any position of the chromosome and, according to relevant
stipulations, the operator at the head can be mutated into any function or terminal symbol, but that at
the tail can only be mutated into the terminal symbol, such mutation can ensure the newly generated
chromosome is in the valid structure. In accordance with relevant requirements, the mutation probabilities
set in this paper are 0.044, which is used for performing the mutation operation for the chromosome.

• Transposition operator design

The transposition operation are performed as per the set transposition probability and length, there are
three kinds of transposition operations in this paper. In addition, the transposition probability is set as 0.1
and length is 5 as per the relevant experience.

Insertion Sequence Transposition: The conversion segment is selected randomly from the chromosome
and the segment can be inserted at any position of the head except for the original position.

Root Insertion Sequence Transposition: It is similar to the IS transposition, but its conversion segment
can only be inserted at the original position of the gene.

Gene Transposition: The complete gene is selected as the conversion segment and inserted at the original
position of the chromosome; however, the selected gene will be deleted in the new chromosome [32, 37].

• Restructuring operator design

There are also three kinds of restructuring operators in this paper. They are single-point restructuring,
double-point restructuring and gene restructuring. Single-point restructuring operator: This is similar to the
single point mutation in GA, in this paper, we randomly selected an exchange point for two chromosomes,
and then exchanged the chromosome segment behind the point. Double-point restructuring operator: This is
similar to the double-point mutation in GA, we randomly selected two exchange points for two chromosomes,
and then exchange the two strings between the exchange points. Gene restructuring operator: This operator
only acts on chromosomes of multiple genes. We randomly selected a gene for two polygene chromosomes,
and then exchanged the two chromosome of the corresponding genes. This is similar to the double-point
restructuring operator, except that the swap substring must be a complete gene. Select randomly the
restructuring segment or gene from the parent chromosome as per the specific restructuring operator, and
then exchange the selected segments or genes. Care shall be taken that the gene restructuring operator
cannot generate the new gene: the newly-generated individual is the array or combination of the existing
gene. The probabilities for single-point restructuring, double-point restructuring and gene restructuring set
in this paper are 0.3, 0.3 and 0.1 respectively.
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3.6. Termination conditions

The algorithm will stop once any of the following requirements is met.

• The maximum number of generations is reached;

• The fitness of the best individual reaches the a predefined value, or it is unchanged for a predefined
number of generations.

3.7. Improvement of GEP algorithm

A GEP gene has coding regions and noncoding regions. For example, consider the gene

Q*+*a*Qaababbaababa ab,

the part without underline is its Head while the underlined segment is the tail. Figure 2 illustrates the
expression tree associated with the gene.

Figure 2: Expression tree 2

From the expression tree in Figure 2, we see that the last 10 characters of the gene are noncoding regions.
This is the reason why GEP is a non-linear segment and its phenotype form and genotype form of the genes
may be different.

Obviously, only when the mutation, transposition and restructuring operators are applied into the dom-
inant segment of the gene which can affect the fitness directly, they increase the diversity of the population
remarkably. If they are applied into the recessive segment which can not affect the fitness directly, they
can only increase the probability for population diversity before performing the mutation operator. For
the four standard genetic operators: mutation, IS transposition, single-point restructuring and double-point
restructuring, all characters have the equal probability to become the position of the operator, therefore, the
right selection of the position of these characters has a great impact on the validity of the genetic operators.

To verify the above statement, we demonstrate the average valid length of GEP genes used in recent
references by Table 1.
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Table 1: The valid length and the average utilization rate of gene

Reference
Head
length

zero-param
function

one-param
function

two-param
function

valid
length
of gene

length
of gene

Average
use ratio
of gene

[38] 8 2 4 4 7.761 17 45.66%
[38] 8 5 0 4 3.827 17 22.51%
[38] 8 4 4 4 5.24 17 30.82%
[39] 10 1 0 4 13.657 21 65.03%
[40] 10 5 3 4 4.475 21 22.60%
[41] 8 5 4 4 4.478 17 26.34%
[42] 8 6 2 8 6.007 17 35.34%
[43] 8 8 14 4 4.195 17 24.68%
[44] 10 14 2 4 1.967 21 9.37%
[44] 10 15 2 4 1.886 21 8.98%
[44] 10 16 2 4 1.817 21 8.65%
[45] 19 1 0 4 24.466 39 62.73%
[45] 19 5 3 4 6.087 39 15.61%

From the utmost right column of Table 1, we see that the average utilization rate of gene is very low,
especially for a function without parameter. The greater proportion of the function without parameter is,
the lower the average utilization rate of gene is. In this case, genetic operators with varying positions may
take place at the recessive segment of the gene with great probability even though the occurrence probability
is met. It will greatly reduce the validity of genetic operators. Therefore, we propose that most of genetic
operators can be centered at the dominant segment. This may help maintain population diversity and
also increase the convergence rate of GEP. The setting of the occurrence probabilities of the dominant and
recessive parts of the gene is determined by the problem. In the paper, this probability is assigned to 0.8,
that is, 80% of genetic operation occurs at the dominant part of the gene and the remaining 20% at the
recessive segment.

4. Computer Experiments

4.1. Settings of Experimental Parameters

The parameters used in the experiments are listed as follows:

• Set of termination symbols: I-II:{1,2,3,0}, III:{1,0}, IV:{1,2,0}

• Set of functional symbols: {+,−, ∗,÷, sin, cos, Q, exp, ln}

• Number of iterations: 10000

• Size of Populations: 50

• Number of gene: 3

• Head length of gene: 8

• Selection algorithm: Roulette

• Probability of gene restructuring: 0.1

• Probability of mutation: 0.044

• Probability of IS transposition: 0.1
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• Length of IS transposition : 5

• Probability of RIS transposition: 0.1

• Length of RIS transposition: 5

• Length of Gene Transposition: 0.1

• Probability of single-point restructuring: 0.3

• Probability of double-point restructuring: 0.3

4.2. Experiment 1

We searched carefully with other state of the art solvers the inverse problem of ordinary differential
equations including based the proposed method. There is only one literature [46] to discuss this inverse
problem of ordinary differential equations. The training data set in experiment 1 is chosen from [46] which
is constructed from the solution (18) to the ODEs (17).

dx1

dt
= x1

dx2

dt
= x1 + x2 + x3

dx3

dt
= 2x1 − x2 + 3x3

(17)


x1 = et

x2 = e2t(t + 1)

x3 = e2t(t + 2)− et
(18)

Let t0 = 0, ∆t = 0.01, then we get data I described in Table 2. The part Xm is used as the observation
data, and the part Xp as the prediction data for evaluate the quality of the model. For the dataset listed
in Table 2, we performed 100 experiments and choose the best ODEs model produced in the experiments.
Then, Runge-Kutta iteration is performed on the ODEs. The results of the best model obtained by using
GEP is listed in Table 3. Em represents the error of the ODE model on the training data and Ep the error
of the ODE model under modelling on the prediction data.

Table 2: Dataset I where t0 = 0,∆t = 0.01

Observed data Modeling data
t x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

Xm
t0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
t1 1.010050 1.030403 1.040555 1.010050 1.030455 1.040763
t2 1.020201 1.061627 1.082236 1.020201 1.061731 1.082565
t3 1.030455 1.093692 1.125074 1.030455 1.093851 1.125445
t4 1.040811 1.126619 1.169095 1.040811 1.126832 1.169441
t5 1.051271 1.160429 1.214329 1.051271 1.160698 1.214592
t6 1.061837 1.195147 1.260807 1.061837 1.195469 1.260939

Xp
t7 1.072508 1.230793 1.308559 1.072508 1.231167 1.308526
t8 1.083287 1.267392 1.357616 1.083287 1.267817 1.357398
t9 1.094174 1.304967 1.408010 1.094174 1.305440 1.407599
t10 1.105171 1.343543 1.459775 1.105171 1.344063 1.459179
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Table 3: Result I: Em and Ep represent the error analysis results of comparison between improved GEP and Kang. et al. GP

Improved GEP Kang. et al. GP
t x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

Em
t0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
t1 0.000000 0.000052 0.000208 0.000000 0.000242 0.000011
t2 0.000000 0.000104 0.000329 0.000000 0.000142 0.000008
t3 0.000000 0.000159 0.000371 0.000001 0.000045 0.000006
t4 0.000000 0.000213 0.000346 0.000000 0.000052 0.000001
t5 0.000000 0.000269 0.000263 0.000000 0.000146 0.000010
t6 0.000000 0.000322 0.000132 0.000001 0.000242 0.000020

Ep
t7 0.000000 0.000374 0.000033 0.000001 0.000334 0.000033
t8 0.000000 0.000425 0.000218 0.000000 0.000760 0.000081
t9 0.000000 0.000473 0.000411 0.000001 0.001274 0.000148
t10 0.000000 0.000520 0.000596 0.000000 0.001876 0.000236

Regression standard error 0.000000 0.000405
Prediction standard error 0.001178 0.002432

The experiment results in Table 3 demonstrates that the error of improved GEP has smaller than the
Kang. et al. GP. This indicates the effectiveness of the improved GEP algorithm for solving the inverse
problem of differential equations.

4.3. Experiment 2

In experiment 2, the training data set is still constructed from the solution (18) to the ODEs (17).
Set t0 = 0 and ∆t = 0.05, then we get data II described in Table 4. The part Xm is taken as observation

data, and the part Xp as the prediction data for evaluating the solution quality of the model.

Table 4: experimental data II where t0 = 0,∆t = 0.05

Observed data Modeling data
t x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

Xm
t0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
t1 1.051271 1.160429 1.214329 1.051271 1.159791 1.215778
t2 1.105171 1.343543 1.459775 1.105171 1.342855 1.462808
t3 1.161834 1.552338 1.740362 1.161834 1.552017 1.744937
t4 1.221403 1.790190 2.060611 1.221403 1.790444 2.066580
t5 1.284025 2.060902 2.425597 1.284025 2.061699 2.432779
t6 1.349859 2.368755 2.841015 1.349859 2.369794 2.849278

Xp
t7 1.419068 2.718566 3.313251 1.419068 2.719254 3.322596
t8 1.491825 3.115758 3.849474 1.491825 3.115182 3.860125
t9 1.568312 3.566425 4.457716 1.568312 3.563335 4.470230
t10 1.648721 4.077424 5.146984 1.648721 4.070218 5.162366

For the dataset listed in Table 4, we performed 100 experiments and choose the best ODEs model gener-
ated in the experiments. Table 5 gives the error between the prediction by the best model and the solution
to the original ODEs. Em and Ep represent the error on training data and prediction data respectively.
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Table 5: result II: Em and Ep represent the error analysis results of comparison between improved GEP and Kang. et al. GP

Improved GEP Kang. et al. GP
t x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

Em
t0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
t1 0.000000 0.000052 0.000208 0.461439 0.509091 0.007282
t2 0.000000 0.000104 0.000329 0.000000 0.004718 0.005734
t3 0.000000 0.000159 0.000371 0.000000 0.002619 0.003613
t4 0.000000 0.000213 0.000346 0.000000 0.000192 0.000812
t5 0.000000 0.000269 0.000263 0.000001 0.002601 0.002799
t6 0.000000 0.000322 0.000132 0.000006 0.004801 0.007367

Ep
t7 0.000000 0.000374 0.000033 0.000000 0.009453 0.013068
t8 0.000000 0.000425 0.000218 0.000000 0.024130 0.031253
t9 0.000000 0.000473 0.000411 0.000000 0.045175 0.055053
t10 0.000000 0.000520 0.000596 0.000000 0.073926 0.085000

Regression standard error 0.000000 0.000405
Prediction standard error 0.001178 0.002432

Experiment results in Table 5 demonstrates that prediction provided by the model show good agreement
with the original ODEs. It indicates that the improved GEP algorithm is applicable for solving the inverse
problem of ordinary differential equations.

As can be seen from Table 2 to Table 5, most of the results are better than the Kang. et al. GP algorithm,
except for individual modeling results and predictive results. In addition, due to explore the improved GEP
algorithm can transfer complex nonlinear curve into a linear problem, therefore, the use of improved GEP
algorithm for ordinary differential equation have the more advantage of making the convergence faster than
Kang. et al. GP algorithm in terms of computational complexity.

4.4. Experiment 3

The training data III, given in Table 6, come from [47]. The part Xm is taken as observation data, and
the part Xp as the prediction data for evaluating the quality of the model found by the improved GEP
algorithm.

Table 6: experimental data III where t0 = 0,∆t = 0.01

III t x(t) t x(t)

Xm

t0 3.9 t8 38.6
t1 5.3 t9 50.2
t2 7.2 t10 62.9
t3 9.6 t11 76.0
t4 12.9 t12 92.0
t5 17.1 t13 106.5
t6 23.2 t14 123.2
t7 31.4

Xp t15 131.7 t16 150.7

For the dataset listed in Table 6, we performed 100 experiments and choose the best model for prediction.
The results of the best models obtained by using GEP are listed in Table 7.

12



Table 7: result III: Em and Ep represent the error of the ODE model and system under modeling on training data and
prediction data respectively

Model
{

dx
dt = (xx)+((x+t)−t)

t

III t x(t) t x(t)

Em

t0 0.000000 t8 6.617181
t1 0.570360 t9 4.533561
t2 1.492591 t10 2.238262
t3 2.798630 t11 0.764010
t4 4.128972 t12 2.717210
t5 5.511010 t13 3.693929
t6 5.962552 t14 5.865052
t7 5.295318

Ep t15 1.170253 t16 1.287381

Training standard error 9.551644
Prediction standard error 1.739782

The experiment results in Table 7 demonstrates that the dataset can predict the original ordinary
differential equations by using the improved GEP algorithm, which indicates that it is feasible to use the
improved GEP algorithm for the inverse problem of differential equations.

4.5. Experiment 4

The training data IV, given in Table 8, come from [47]. The part Xm is taken as observation data, and
the part Xp as the prediction data for evaluate the quality of the model.

Table 8: experimental data IV where t0 = 0,∆t = 0.01

IV t x1(t) x2(t)

Xm

t0 6.846 1.567
t1 7.642 1.896
t2 8.531 2.180
t3 9.071 2.460
t4 9.963 2.785

Xp t5 11.052 3.121

For the dataset listed in Table 8, we performed 100 experiments obtain the better model. The results of
the best models obtained by using GEP are listed in Table 9.

The experiment results in Table 9 demonstrates that the dataset can predict the original ordinary
differential equations by using the improved GEP algorithm, which indicates that it is feasible to use the
improved GEP algorithm for the inverse problem of differential equations.

4.6. A Comparison of GP, Standard GEP and Improved GEP for the Inverse Problem of ODEs

To verify the advantages, disadvantages and existing problems of applying the GEP algorithm to the
inverse problem of ordinary differential equations, we also conducted a comparative experiment. At present,
state-of-the-art of the inverse problems using ordinary differential equations are solved by mathematical
analysis. Furthermore, the limitations of inverse problems and complex differential equations are difficult
to construct. There are different method of analytic solution in mathematics. The method of artificial
intelligence is applied to the inverse problem of ordinary differential equations in this paper. Therefore, the

13



Table 9: result IV: Em and Ep represent the error of the ODE model and system under modeling on training data and
prediction data respectively.

Model

{
dx1

dt = ((x2x1) + x1)(x1/x2)− x2(t + x1)
dx2

dt = ((x2x1)− (x2 + x2))/ sin(x2/x1) + x1

IV t x1(t) x2(t)

Em

t0 0.000000 0.000000
t1 0.144472 0.041049
t2 0.310613 0.030504
t3 0.035360 0.003078
t4 0.006544 0.001825

Ep t5 0.004764 0.013692

Training standard error 0.154365
Prediction standard error 0.014497

comparison experiment in this paper only chooses two kinds of algorithms of the same method, and analyzes
the experimental results with this improved algorithm. All algorithms in this study in 100 experiment runs
using the four datasets. The experiment results were compared with the GP, the standard GP and the
improved GEP. The statistical errors listed in Table 10 were obtained.

Table 10: The result of 100 experiment runs using the four datasets for GP, Standard GEP and Improved GEP

Data GP
Standard

GEP
Improved

GEP

Training I 0.000405 0.000000 0.000000
Standard II 0.016548 0.008307 0.005477
Deviation III 3.069454 17.115628 9.551644

IV 0.043305 0.158723 0.154365

Prediction I 0.002432 0.001224 0.001178
Standard II 0.139932 0.027663 0.025618
Deviation III 5.646193 2.424810 1.739782

IV 0.048327 0.024367 0.014497

I 121 23 20
Running II 536 30 28

Time III 1336 23 24
IV 2062 16 16

From Table 10 we can observe that among the average running times (in seconds) of the four datasets,
the standard deviation using standard GEP algorithm are significantly less than those for the GP algorithm.
As the standard deviation when using the standard GEP algorithm are smaller than when using the GP
algorithm, which indicates that it is excellent to apply the standard GEP algorithm to ordinary differential
equations and that its prediction effects and computation efficiency are better than the GP algorithm. In
addition, it can be seen from Table 10 that, in different data sets, GP algorithm’s running time fluctuate a
lot, on the other hand, GEP algorithm’s running time fluctuate a few.

Table 10 shows that for these four datasets, the minimum prediction errors generated by the improved
GEP algorithm were smaller than those generated by the standard GEP algorithm and that the maximum
prediction errors generated by the improved GEP algorithm were also smaller than those generated by the
standard GEP algorithm. Thus, the improvement of the standard GEP algorithm was not only effective
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but also overcame the problems of instability of the standard GEP algorithm. In terms of average running
time (in seconds), there is no significant difference between the improved GEP algorithm and the standard
GEP algorithm. However, the running time is decreased. Therefore, in terms of running efficiencies, the
improved GEP algorithm is better than the GP algorithm.

4.7. Summary of Experiment Results

The described experiment results can be summarized as follows:

• For each dataset, using the GEP algorithm to solve the inverse problem of ordinary differential equa-
tions are efficient, and is able to produce a better model. GEP is effective improvement strategies.

• In terms of running time, there was no significant difference between the improved GEP and the
standard GEP. However, the running time of GEP is significantly less than that of the GP algorithm.

• In terms of the stability, adopting the improved GEP algorithm to solve the inverse problem of ordinary
differential equations is better than using the GP algorithm, particularly for complex problems.

• In terms of prediction accuracy, the improved GEP algorithm are better than standard GEP on the
error of the model, while the GEP algorithm is superior to the GP algorithm on the standard deviation.

• As the constant items increase, the use of GEP algorithm is effective, and the overall effect is still
better than the GP algorithm.

5. Conclusions

In this study, we proposed a GEP based algorithm to solve the inverse problem of ordinary differential
equations, and GEP algorithm’s shortcoming, evolution operation in the recessive segment contributes little
is overcome. In view of the effectiveness of the improved GEP algorithm, this paper mainly discusses its
application to practical problems, although the effect is good, but there is no theoretical issues in-depth
discussion, so many problems need further study. Through experiments, we verified that the algorithm, in
terms of solving the inverse problem of ordinary differential equations, was very effective with respect to
training standard deviation, prediction standard deviation and running time. And improvement strategies
can further enhance the efficiency of the algorithm convergence. The work of this paper is only a start, the
problem of solving despite the engineering background, but the practical application of the project there
is still a great distance. Our study on algorithms provides a powerful tool to automate the process of
knowledge discovery for dynamic data, and we expect the approach to be promoted and applied in actual
problems related to time series and time fields, such as weather forecasting, market prediction and ecological
prediction.
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