
1

On the Easiest and Hardest Fitness Functions
Jun He, Member, IEEE, Tianshi Chen and Xin Yao, Fellow, IEEE

Abstract—The hardness of fitness functions is an important
research topic in the field of evolutionary computation. In theory,
the study can help understanding the ability of evolutionary
algorithms. In practice, the study may provide a guideline
to the design of benchmarks. The aim of this paper is to
answer the following research questions: Given a fitness func-
tion class, which functions are the easiest with respect to an
evolutionary algorithm? Which are the hardest? How are these
functions constructed? The paper provides theoretical answers
to these questions. The easiest and hardest fitness functions
are constructed for an elitist (1+1) evolutionary algorithm to
maximise a class of fitness functions with the same optima. It
is demonstrated that the unimodal functions are the easiest and
deceptive functions are the hardest in terms of the time-based
fitness landscape. The paper also reveals that in a fitness function
class, the easiest function to one algorithm may become the
hardest to another algorithm, and vice versa.

Index Terms—Evolutionary algorithm, algorithm analysis,
problem difficulty, fitness landscape, benchmark design.

I. INTRODUCTION

Which fitness functions are easy for an evolutionary algo-
rithm (EA) and which are not? This is an important research
topic in the field of evolutionary computation. In theory, the
study of the hardness of fitness functions can help understand-
ing the ability of EAs. In practice, the study may provide a
guideline to the design of benchmarks. Answers to the above
questions vary as the scope of fitness functions changes from
all possible functions to a single function.

The first scenario is to consider all possible fitness functions.
In this case No Free Lunch theorems [1], [2] have answered
the question. The theorems claim that the performance of any
two EAs are equivalent in terms of average performance.

The second scenario is to consider a class of fitness func-
tions with the same features, such as unimodal functions
versus multi-modal functions, or deceptive functions versus
non-deceptive functions. However a multi-modal function may
be easy to solve [3]. A unimodal function may be difficult for
certain EAs but easy for others [4]. A non-deceptive function
may be difficult to an EA [5], and a deceptive function may
be easy [6]. Few features are available to distinguish whether
a function class is easy or hard for an EA.

Manuscript received June 27, 2013; revised November 21, 2013, February
16, 2014; accepted March 27, 2014.

Jun He is with Department of Computer Science, Aberystwyth University,
Aberystwyth, SY23 3DB, UK (email: jun.he@aber.ac.uk).

Tianshi Chen is with State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China, (email: chentianshi@ict.ac.cn).

Xin Yao is with CERCIA, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, UK (email: x.yao@cs.bham.ac.uk).

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The third scenario is to consider a single fitness function. A
popular approach is to develop a statistic measure to predict
the hardness of a fitness function, such as fitness-distance
correlation [7], fitness variance [8], and epistasis variance [9].
Unfortunately it is intractable to design a measure that can
predict the hardness of a function efficiently [10], [11].

Different from the above three scenarios, an alternative
scenario is considered in the current paper: given an EA and a
class of fitness functions with the same optima, which function
is the hardest within the class? Which is the easiest? And how
to construct them? Here the easiest function is referred to a
function on which the runtime of the EA is the shortest; and
the hardest is a function on which the runtime of the EA is the
longest. Both are compared with other functions in the same
class. These questions have never rigorously been answered
before.

Our research aims at understanding the hardest and easiest
fitness functions within a function class, and helping design
benchmarks. The set of benchmarks usually include several
typical fitness functions, for example, easy, hard and ‘aver-
agely hard’ functions in the class. An EA has the best per-
formance on the easiest function, and the worst performance
on the hardest function. We will focus on these two extreme
cases in this paper.

The paper is organised as follows: Section II describes
related work. Section III defines the easiest and hardest fitness
functions, and establishes criteria of determining whether a
function is the easiest or the hardest. Section IV constructs the
easiest and hardest functions. Section V discusses the mutual
transformation between the easiest and hardest functions.
Section VI concludes the paper.

II. RELATED WORK

The hardness of fitness functions (or called problem diffi-
culty) has been studied over two decades. Normally a fitness
function is said to be easy to an EA if the runtime is poly-
nomial on the function or hard if the runtime is exponential.
How to characterize which fitness functions are easy or hard
was thought to be a major challenge [10].

One approach is to link features of a fitness landscape
to the hardness of fitness functions. Several features have
been investigated, for example, isolation, deception and multi-
modality, ruggedness and neutrality. A fitness landscape with
isolation is hard for EAs, but other characteristics may not be
related too much to the hardness of fitness functions [10]. A
fully non-deceptive function may be difficult for an EA [5]
but some deceptive functions can be solved easily by an EA
[6]. Some multi-modal functions may be easy to solve [3], but
the unimodal function like the ‘long path’ problem [3] could
be difficult for certain EAs [4]. Few features are universally
useful to distinguish between hard and easy fitness functions.

2

Another approach is to predict the hardness of a fitness
function through a statistic measure. Many measures are pro-
posed, for example, fitness-distance correlation [7], correlation
length and operator correlation [12], fitness variance [8], and
epistasis variance [9]. Nevertheless, to compute the exact value
of such measures usually is exponential in the problem size
due to the fact that the search space is exponentially large
[10], [11], [13]. Inherent flaws also exist in the common
hardness measures such as epistasis variance, fitness-distance
correlation and epistasis correlation [14].

An alternative theoretical approach is based on fitness levels.
Hard fitness functions are classified into two types: ‘wide gap’
problems and ‘long path’ problems [15], [16]. For the ‘wide
gap’ type, the EA is trapped at a fitness level, because there
is a wide gap between that fitness level and higher fitness
levels. For the ‘long-path’ type, the EA has to take a long
path to reach an optimum. The behavior of EAs on these two
problems are different [17], [18].

The research in the current paper is totally different from
previous work. The hardest and easiest functions are compared
with other fitness functions within the same function class. The
hardest function are not relevant to exponential runtime and the
easiest fitness functions are not relevant to polynomial runtime.
For some function class, an EA only needs polynomial time
on the hardest function. For some other function class, an EA
may take exponential time on the easiest function.

Our study is also different from No Free Lunch theorems
[1], [2], which state that any two EAs are equivalent when their
performance is averaged across all possible fitness functions.
We don’t intend to investigate the easiest and hardest functions
among all possible fitness functions, instead only within a class
of fitness functions with the same optima.

III. EASIEST AND HARDEST FITNESS FUNCTIONS

In this section we define the easiest and hardest fitness
functions in a function class and establish the criteria to
determine whether a function is the easiest or hardest.

A. Definition of Easiest and Hardest Fitness Functions

Consider the problem of maximizing a class of fitness
functions with the same optima. An instance of the problem
is to maximize a fitness function f(x):

max{f(x);x ∈ S}, (1)

where S is a finite set. The optimal set is denoted by Sopt and
the non-optimal set by Snon. Without loss of generality, the
function f(x) takes L + 1 finite values f0 > f1 > · · · > fL
(called fitness levels). Corresponding to fitness levels, the set
S is decomposed into L+ 1 subsets:

Sl := {x | f(x) = fl}, l = 0, 1, · · · , L.

For simplicity of analysis, we only investigate strictly eli-
tist (1+1) EAs. Using strictly elitist selection, the parent is
replaced by the child only when the child is fitter. Therefore
the best found solution is always preserved. In the EAs,
mutation is independent of the fitness function. Both mutation

and selection operators are time invariant (i.e., static). The
procedure of such an elitist (1+1) EA is described as follows.

1: input: fitness function f(x);
2: generate a solution at random and denote it by φ0;
3: generation counter t← 0;
4: while the maximum value of f(x) is not found do
5: child φt.m ← is mutated from parent φt;
6: if f(φt.m) > f(φt) then
7: next generation parent φt+1 ← φt.m;
8: else
9: next generation parent φt+1 ← φt;

10: end if
11: t← t+ 1;
12: end while
13: output: the maximal value of f(x).

Let G(x) denote the expected number of generations for an
EA to find an optimal solution for the first time when starting
at x (called expected hitting time). In (1+1) EAs, G(x) also
represents the expected number of fitness evaluations (called
expected runtime). In this paper, we restrict our discussion to
those EAs whose expected runtime is finite (convergent).

Definition 1: Given an EA for maximising a class of fitness
functions with the same optima, a function f(x) in the class
is said to be the easiest to the EA if starting from any initial
point, the runtime of the EA for maximising f(x) is no more
than the runtime for maximising any fitness function g(x) in
the class when starting from the same initial point. A function
f(x) in the class is said to be the hardiest to the EA if starting
from any initial point, the runtime of the EA for maximising
f(x) is no less than the runtime for maximising any fitness
function g(x) in the class when starting from the same initial
point.

The definition of the easiest and hardest functions is based
on a point-by-point comparison of the runtime of the EA
on two fitness functions. It is irrelevant to polynomial or
exponential runtime. The easiest and hardest functions are not
unique. This will be demonstrated in Subsection IV-C.

B. Criterion for Determining Easiest Function
Before we establish the criterion, we apply drift analysis

to the random sequence {φt, t = 0, 1, · · · } and draw several
preliminary results. Notice that each generation of the (1+1)
EA consists of two steps: mutation and selection,

φt
mutation−→ φt.m with φt

selection−→ φt+1.

The mutation operator is a transition from φt to φt.m, whose
transition probabilities are represented by

P [m](x, y) := P (φt.m = y | φt = x), x, y ∈ S. (2)

Here φ is a random variable and x its value.
The selection operator is another transition from φt and φt.m

to φt+1, whose transition probabilities are represented by

P [s](x, y; z) := P (φt+1 = z | φt = x, φt.m = y), x, y, z ∈ S.

The tth generation is a transition from φt to φt+1, whose
transition probabilities are represented by

P (x, z) := P (φt+1 = z | φt = x). (3)

3

In drift analysis, a function d(x) is called a drift function if
it is non-negative at any point and equals to 0 at any optimum.
Given a drift function d(x), drift represents the progress rate
of moving towards the optima per generation. Drift at point x
is defined by

∆(x) :=
∑
y∈S

P (x, y)(d(x)− d(y)).

Define positive drift ∆+(x) and negative drift ∆−(x) as
follows

∆+(x) =
∑

y:d(x)>d(y)

P (x, y)(d(x)− d(y)),

∆−(x) =
∑

y:d(x)<d(y)

P (x, y)(d(x)− d(y)).

Then the drift ∆(x) = ∆+(x) + ∆−(x).
Using drift analysis [19], we obtain the following prelimi-

nary results.
Lemma 1: [19, Lemma 1] If the drift satisfies that ∆(x) ≥ 1

for any non-optimal point x, then the expected runtime satisfies
that G(x) ≤ d(x) for any point x.

Lemma 2: [19, Lemma 2] If the drift satisfies that ∆(x) ≤ 1
for any non-optimal point x, then the expected runtime satisfies
that G(x) ≥ d(x) for any point x.

Lemma 3: [19, Lemma 3] Let the drift function d(x) =
G(x), then the drift satisfies ∆(x) = 1 for any non-optimal
point x.

Furthermore, the runtime of an elitist (1+1) EA can be
explicitly expressed in transition probabilities.

Lemma 4: [16, Theorem 4] For any elitist (1+1) EA, its
expected runtime is given by

G(x) =

0, x = S0.
1+
∑l−1

k=0

∑
y∈Sk

P (x,y)G(y)∑l−1

k=0

∑
y∈Sk

P (x,y)
, x ∈ Sl, l > 0.

Using the above lemmas, we establish a criterion of deter-
mining whether a fitness function is the easiest to an elitist
(1+1) EA.

Theorem 1: Given an elitist (1+1) EA, and a class of
fitness functions with the same optima, let Gf (x) denote the
runtime of the (1+1) EA for maximising f(x). If the following
monotonically decreasing condition holds:
• for any two points x and y such that Gf (x) < Gf (y), it

has f(x) > f(y),
then f(x) is the easiest in the fitness function class.

Proof: Let g(x) be a fitness function in the function class.
{φt, t = 1, 2, · · · } denotes the sequence for maximising f(x),
and {ψt, t = 1, 2, · · · } the sequence for maximising g(x). Let
Gg(x) denote the runtime of the (1+1) EA for maximising
g(x).

Since our objective is to show the expected runtime on f(x)
is no more than the runtime on any other function, we take
the runtime on f(x) as the drift function: d(x) = Gf (x). This
plays a crucial role in our analysis.

For the sequence {φt}, denote the drift at point x by ∆φ(x).
For the sequence {ψt}, denote the drift at point x by ∆ψ(x).

The subscripts φ and ψ are used to distinguish between the
two sequences {φt} and {ψt}.

Notice that d(x) = Gf (x), then we apply Lemma 3 and get
that for any non-optimal point x, drift

∆φ(x) = 1. (4)

The rest of proof is based on the idea: first, we prove the
drift ∆ψ(x) ≤ 1 for the sequence {ψt}, and then draw the
derived conclusion using Lemma 2.

(1) First we compare the negative drift of the two sequences.
In the case of negative drift, we consider two points x and y
such that d(x) < d(y) (i.e., Gf (x) < Gf (y)). According to
the monotonically decreasing condition, f(x) > f(y).

For the sequence {φt}, y is never accepted due to elitist
section, which leads to Pφ(x, y) = 0. Thus for the sequence
{φt}, there is no negative drift.

∆−φ (x) = 0.

For the sequence {ψt}, there exist two cases: (i) g(x) <
g(y); (ii) g(x) ≥ g(y). In the case of g(x) < g(y), y will
be accepted, which implies Pψ(x, y) ≥ 0. Thus there exists
negative drift for the sequence {ψt}.

∆−ψ (x) ≤ 0.

Comparing the negative drift of these two sequences, we
get

∆−ψ (x) ≤ ∆−φ (x). (5)

(2) Secondly we compare the positive drift of the two
sequences. In the case of positive drift, we consider two points
x and y such that d(x) > d(y). If y is not an optimum,
then according to the monotonically decreasing condition,
f(x) < f(y). If y is an optimum, then naturally f(x) < f(y).

For the sequence {φt}, if such a y has been mutated from
x, then y is always accepted due to elitist selection. Thus

Pφ(x, y) = P [m](x, y).

For the sequence {ψt}, there exist two cases: (i) g(x) <
g(y); (ii) or g(x) ≥ g(y). In the case of g(x) < g(y),
according to elitist section, y is always accepted. Thus

Pψ(x, y) = P [m](x, y).

In the case of g(x) ≥ g(y), according to elitist section, y
will not be accepted. The transition probability Pψ(x, y) = 0.

Then we get that Pφ(x, y) ≥ Pψ(x, y). Hence∑
y:d(x)>d(y)

Pψ(x, y)(d(x)− d(y))

≤
∑

y:d(x)>d(y)

Pφ(x, y)(d(x)− d(y)).

So the positive drift of the two sequences satisfies

∆+
ψ (x) ≤ ∆+

φ (x). (6)

Merging (5) and (6) and using (4), we know that the total
drift of the two sequences satisfies

∆ψ(x) ≤ ∆φ(x) = 1.

4

Applying Lemma 2, we see the expected runtime on g(x)
satisfies

Gg(x) ≥ d(x) = Gf (x),

then we finish the proof.
Now we give an intuitive explanation of the above theorem.

The monotonically decreasing condition means the function
is unimodal in terms of the time-based fitness landscape and
Theorem 1 asserts that a unimodal function is always the
easiest. In the following we explain this in detail.

In a time-based fitness landscape, runtime G(x) is regarded
as the distance d(x) between a point x and the optimum. It
is completely different from a neighbourhood-based distance
such as the Hamming distance. Time is seldom used as a
distance measure in evolutionary computation but popular in
our real life. Taking runtime as the distance, we visualise the
monotonically decreasing condition
• for any two points x and y such that d(x) < d(y), it has
f(x) > f(y),

using a time-based fitness landscape (see Fig. 1), where the x
axis is the runtime and the y axis is the fitness, and the origin
represents the set of optima with d(x) = 0.

d(x)

f(x)

Fig. 1. A unimodal time-based fitness landscape. The x axis is the runtime:
d(x) = G(x). The y axis is the fitness function. The origin represents the
optimum.

The landscape is unimodal: the function f(x) has exactly
one optimum. In contrast, any unimodal function defined in
the 2-D time-based fitness landscape will satisfy the monotoni-
cally decreasing condition. The unimodal property implies that
no negative drift exists in an elitist EA. Thus the EA always
moves towards the optimum. This makes the unimodal time-
based fitness landscapes the easiest to the EA.

The theorem only states that a unimodal time-based fitness
landscape is the easiest. Nevertheless this assertion could not
be established if using a neighbourhood-based distance such
as the Hamming distance. A unimodal function in the context
of a neighbourhood-based fitness landscape is not always the
easiest.

C. Criterion of Determining Hardest Function

In a similar way, we establish a criterion of determining
whether a fitness function is the hardest to an elitist (1+1)
EA. It is similar to Theorem 1. The monotonically decreasing

condition is replaced by the monotonically increasing condi-
tion.

Theorem 2: Given an elitist (1+1) EA, and a class of fitness
functions with the same optima, let Gf (x) denote the expected
runtime for maximising f(x). If the following monotonically
increasing condition holds:
• for any two non-optimal points x and y such that
Gf (x) < Gf (y), it has f(x) < f(y),

then f(x) is the hardest in the class.
Proof: The proof is similar to that of Theorem 1 but with

several changes.
Let g(x) be a fitness function in the function class. {φt, t =

1, 2, · · · } denotes the sequence for maximising f(x), and
{ψt, t = 1, 2, · · · } the sequence for maximising g(x). Gg(x)
denotes the runtime of the (1+1) EA for maximising g(x). We
take the runtime on f(x) as the drift function: d(x) = Gf (x).

For the sequence {φt}, notice that d(x) = Gf (x), then we
apply Lemma 3 and get for any non-optimal point x

∆φ(x) = 1. (7)

(1) First we compare the negative drift of the two sequences.
We consider two non-optimal points x and y such that d(x) <
d(y) (i.e., Gf (x) < Gf (y)). According to the monotonically
increasing condition, f(x) < f(y).

For the sequence {φt}, if such a y has been mutated from
x, then y is always accepted due to elitist selection. Thus

Pφ(x, y) = P [m](x, y).

For the sequence {ψt}, there exist two cases: (i) g(x) <
g(y); (ii) or g(x) ≥ g(y). In the case of g(x) < g(y), if such
a y has been mutated from x, then y is always accepted due
to elitist selection. Thus

Pψ(x, y) = P [m](x, y).

In the case of g(x) ≥ g(y), according to elitist section, y
will not be accepted. The probability Pψ(x, y) equals to

Pψ(x, y) = 0.

Then we get that Pφ(x, y) ≥ Pψ(x, y). Hence∑
y:d(x)<d(y)

Pψ(x, y)(d(x)− d(y))

≥
∑

y:d(x)<d(y)

Pφ(x, y)(d(x)− d(y)). (8)

Equivalently the negative drift of the two sequences satisfies

∆−ψ (x) ≥ ∆−φ (x). (9)

(2) Secondly we compare the positive drift of the two
sequences. We consider two points x and y such that d(x) >
d(y), where y could be either an optimum or not.

First consider y an optimum. For the sequence {φt}, if such
a y has been mutated from x, then y is always accepted due
to elitist selection. Thus

Pφ(x, y) = P [m](x, y).

5

Similarly for the sequence {ψt}, y is always accepted due
to elitist selection. Thus

Pψ(x, y) = P [m](x, y).

Then we get

Pψ(x, y) = Pφ(x, y). (10)

Then consider y not an optimum. According to the mono-
tonically increasing condition, f(x) > f(y) if y is not an
optimum.

For the sequence {φt}, y is never accepted due to elitist
section, which leads to

Pφ(x, y) = 0.

For the sequence {ψt}, even if f(x) > f(y), it is still
possible that g(x) < g(y). So y may be accepted. This means

Pψ(x, y) ≥ 0.

Thus we have

Pψ(x, y) ≥ Pφ(x, y). (11)

Combining (10) and (11), we have for any y,

Pψ(x, y) ≥ Pφ(x, y).

Then ∑
y:d(x)>d(y)

Pψ(x, y)(d(x)− d(y))

≥
∑

y:d(x)>d(y)

Pφ(x, y)(d(x)− d(y)). (12)

Equivalently the positive drift of the two sequences satisfies

∆+
ψ (x) ≥ ∆+

φ (x). (13)

Merging (9) and (13) and using (7), we draw that the total
drift of the two sequences satisfies

∆ψ(x) ≥ ∆φ(x) = 1.

It follows from Lemma 1 that for any non-optimal point x

Gg(x) ≤ d(x) = Gf (x),

then we finish the proof.
An intuitive explanation of the above theorem is that the

monotonically increasing condition means the function is
deceptive and Theorem 2 states a deceptive function is always
the hardest. Let’s demonstrate this using the time-based fitness
landscape. Still taking runtime G(x) as the distance d(x) to the
optima, we visualise the monotonically increasing condition
• for any two non-optimal points x and y such that d(x) <
d(y), it has f(x) < f(y),

using a time-based fitness landscape (see Fig. 2). The land-
scape is deceptive: the closer a point is to the origin, the lower
its fitness is. The deceptive time-based fitness landscape is the
hardest.

When using a neighbourhood-based distance, it is impossi-
ble to establish a similar result under a similar condition. A

d(x)

f(x)

Fig. 2. A deceptive time-based fitness landscape. The x axis is the runtime:
d(x) = G(x). The y axis is the fitness function. Th origin represents the
optimum.

deceptive function in the context of the neighbourhood-based
fitness landscape is not always the hardest.

Note: the above unimodal and deceptive time-based fitness
landscapes are different from the easy and hard fitness land-
scapes described in [20], which are classified by polynomial
or exponential hitting time.

D. Case Study: 0-1 Knapsack Problem

We give two simple examples to show the application of the
above theorems. The examples come from the 0-1 knapsack
problem. We will not consider all instances of the 0-1 knapsack
problem. Instead we focus on an instance class.

Example 1: Consider an instance class of the 0-1 knapsack
problem described as follows:

maximize f(x) =
∑n
i=1 vixi,

subject to
∑n
i=1 wixi ≤ C,

where vi > 0 is the value of item i, wi > 0 its weight, and
C the knapsack capacity. The value of items satisfies v1 >
v2+· · ·+vn, and the weight of items satisfies w1 > w2+· · ·+
wn, the knapsack capacity C = w1. A solution is represented
by a binary string x = (x1 · · ·xn). The unique optimum is
(10 · · · 0), denoted by x∗.

An elitist (1+1) EA using bitwise mutation is applied to the
problem.
• EA(1

n). Flip each bit independently with flipping proba-
bility 1

n .
For simplicity of analysis, we adopt the simplest approach
to handle the constraint: reject any infeasible solution during
selection.

Let’s investigate a special instance in the class: v1 = n
and v2 = · · · = vn = 1; w1 = n and w2 = · · · = wn =
1. Notice that the global optimum is x∗ := (10 · · · 0) and
the local optimum is (01 · · · 1). It is a deceptive function. We
can prove the monotonically increasing condition holds. We
give an outline of the proof but omit its detailed calculation.
Corresponding to fitness level fl, the subset

S0 = {x∗}, and f0 = n,

Sl = {x | h(x, x∗) = n− l}, and fl = n− l, for l > 0,

6

where h(x, y) is the Hamming distance between x and y.
According to Lemma 4, the expected runtime of EA(1

n)
is given by the following recurrence relation: G(x) = 0 for
x ∈ S0 and

G(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P (x, y)G(y)∑l−1
k=0

∑
y∈Sk

P (x, y)
, x ∈ Sl,

where

P (x, y) = P [m](x, y) =

(
1− 1

n

)n−h(x,y)(
1

n

)h(x,y)

.

Then the monotonically increasing condition holds.

G(x) < G(y) =⇒ f(x) < f(y), x, y ∈ Snon.

Applying Theorem 2, we know the fitness function related
to this instance is the hardiest in the class.

Example 2: Consider an instance class of the 0-1 knapsack
problem. The knapsack capacity C is enough large such that
C ≥ w1 + · · · + wn. The unique optimum is (1 · · · 1). This
function class is equivalent to linear functions. We apply
EA(1

n) to the problem.
Let’s investigate a special instance in the class: v1 = · · · =

vn = 1. Its fitness function is equivalent to the OneMax
function, so that it is easy. We prove the OneMax function
is the easiest through verifying the monotonically decreasing
condition. We give an outline of the proof. Corresponding to
fitness level fl where l = 0, · · · , n, the subset

Sl = {x | h(x,~1) = l}, and fl = n− l,

where h(x, y) is the Hamming distance between x and y.
According to Lemma 4, the expected runtime of EA(1

n)
is given by the following recurrence relation: G(x) = 0 for
x ∈ S0 and for l > 0

G(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P (x, y)G(y)∑l−1
k=0

∑
y∈Sk

P (x, y)
, x ∈ Sl,

where

P (x, y) = P [m](x, y) =

(
1− 1

n

)n−h(x,y)(
1

n

)h(x,y)

.

Then the monotonically decreasing condition holds.

G(x) < G(y) =⇒ f(x) > f(y), x, y ∈ S.

Applying Theorem 1, we get the OneMax function is the
easiest among all linear functions.

Note: The monotonically increasing condition is a sufficient
condition for a fitness function being the hardest, but not
necessary. The same is true to the monotonically decreas-
ing condition of the easiest functions. The reason is trivial:
Consider a function class only includes one function, then
the function will be both the easiest and hardest in the
class, regardless of the monotonically increasing or decreasing
condition.

IV. CONSTRUCTION OF EASIEST AND HARDEST FITNESS
FUNCTIONS TO AN EA

In this section we construct unimodal functions (the easiest)
and deceptive functions (the hardest), respectively, to any given
elitist (1+1) EA.

A. Construction of Easiest Fitness Functions

Given a class consisting of all fitness functions with the
same optima on a finite set S, consider an elitist (1+1) EA for
maximising a fitness function in the class. We construct the
easiest function f(x) to the EA as follows.

1) Let S0 = Sopt. For any x ∈ S0, define G′(x) = 0.
2) Suppose that the subsets S0, · · · , Sl−1 are given and

G′(x) has been defined on these subsets. Let Sl be the
set consisting of all points such that

arg min
x∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑
y∈Sk

P [m](x, y)G′(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
.

For any x ∈ Sl, define

G′(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P [m](x, y)G′(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
. (14)

The value of G′(x) is the same for any point x in the
same subset.

3) Repeat the above step until any point is covered by a
subset. Then there exists some integer L > 0 and S =
∪Lk=0Sk.

4) Choose L+ 1 numbers f0, · · · , fL such that f0 > · · · >
fL. Set a fitness function f(x) as follows: f(x) = fk,
for x ∈ Sk.

The following theorem shows that the fitness function
constructed above is the easiest to the EA. The proof is a
direct application of the monotonically decreasing condition.

Theorem 3: f(x) is the easiest function in the function class
with respect to the EA.

Proof: (1) We show that G′(x) equals to the expected
runtime G(x).

According to Lemma 4, the expected runtime G(x) = 0 for
x ∈ S0 and for l > 0

G(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P (x, y)G(y)∑l−1
k=0

∑
y∈Sk

P (x, y)
, x ∈ Sl. (15)

For any x ∈ Sk and y ∈ Sl where k > l, since f(x) =
fk < f(y) = fl and the EA adopts elitist selection, y is
always accepted if it has been generated via mutation. Thus
the transition probability P (x, y) equals to P [m](x, y). (15)
equals to

G(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P [m](x, y)G(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
, x ∈ Sl. (16)

Comparing it with (14), G(x) and G′(x) are identical.
(2) We prove the monotonically decreasing condition.
First we prove an inequality:

G(x) > G(y), x ∈ Sl+1, y ∈ Sl. (17)

7

We prove it by induction. For any x ∈ S1, y ∈ S0, it is
trivial that G(x) > G(y) = 0. Suppose that for any x ∈ Sl,
y ∈ Sl−1, it holds G(x) > G(y). We prove that for any
x ∈ Sl+1, y ∈ Sl, it holds G(x) > G(y).

Since y ∈ Sl, from the construction, we know that

G(y) = min
w∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑
z∈Sk

P [m](w, z)G(z)∑l−1
k=0

∑
z∈Sk

P [m](w, z)
.

Let w = x, then we get

G(y) ≤
1 +

∑l−1
k=0

∑
x∈Sk

P [m](x, z)G(z)∑l−1
k=0

∑
z∈Sk

P [m](x, z)
.

Equivalently

G(y)

l−1∑
k=0

∑
z∈Sk

P [m](x, z) ≤ 1 +

l−1∑
k=0

∑
z∈Sk

P [m](x, z)G(z).

We add the term
∑
z∈Sl

P [m](x, z)G(z) to both sides.
Notice that G(z) = G(y) for z ∈ Sl. As to the left-hand
side, we replace the factor G(z) by G(y) and move it outside
of the summation. Then we get

G(y)

l∑
k=0

∑
z∈Sk

P [m](x, z) ≤ 1 +

l∑
k=0

∑
z∈Sk

P [m](x, z)G(z).

Equivalently

G(y) ≤
1 +

∑l
k=0

∑
z∈Sk

P [m](x, z)G(z)∑l
k=0

∑
z∈Sk

P [m](x, z)
.

Since x ∈ Sl+1, it follows from (16)

G(x) =
1 +

∑l
k=0

∑
z∈Sk

P [m](x, z)G(z)∑l
k=0

∑
z∈Sk

P [m](x, z)
.

So we get G(y) ≤ G(x). The inequality is strict since x
and y are in different subsets. Thus we prove (17).

Secondly using (17), we can infer the monotonically de-
creasing condition easily. From (17), we draw that

G(x) > G(y), if x ∈ Sl, y ∈ Sk with l > k. (18)

For any two points x and y such that G(x) > G(y), let
x ∈ Sk, y ∈ Sl. Then k and l must satisfy k < l. Then we
have f(x) = fk < f(y) = fl. This proves the monotonically
decreasing condition.

(3) The conclusion is drawn from Theorem 1.
The above theorem provides an approach to designing the

easiest fitness functions in the function class. The idea behind
the construction procedure is simple: we construct a function
which is unimodal in the time-based fitness landscape and then
it is the easiest. Notice that the number of the easiest functions
is infinite since the potential values of each fl are infinite.

B. Construction of Hardest Fitness Functions

We consider an elitist (1+1) EA and a class of fitness
functions with the same optima. The hardest fitness function
f(x) in this class is constructed as follows.

1) Let S0 = Sopt. For any x ∈ S0, let G′(x) = 0.
2) Suppose that the subsets S0, · · · , Sl−1 have been pro-

duced and G(x) have been defined on these subsets.
Then define Sl to be the set of all points such that

arg max
x∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑
y∈Sk

P [m](x, y)G′(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
.

For any x ∈ Sl, set

G′(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P [m](x, y)G′(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
. (19)

3) Repeat the above step until any point is covered by a
subset. Then there exists an integer L > 0 such that
S = ∪Lk=0Sk.

4) Choose L+ 1 number f0, · · · , fL such that f0 > · · · >
fL > 0. Set the fitness function to be f(x) = fk, x ∈
Sk.

Now we prove that f(x) is the hardest fitness function in
the class using the monotonically increasing condition.

Theorem 4: f(x) is the hardest function in the function class
to the EA.

Proof: (1) We prove that the mean runtime G(x) =
G′(x). The proof is similar to the first step in the proof of
Theorem 3.

(2) We prove the monotonically increasing condition. The
proof is similar to the second step in the proof of Theorem 3.

(3) The conclusion is drawn from Theorem 2.
The above theorem provides an approach to designing the

hardest fitness functions in the class. We construct a function
which is deceptive in the time-based fitness landscape and then
it is the hardest.

In the construction of the easiest and hardest functions, we
don’t restrict the representation of fitness functions. However,
the current approach is not suitable for the fitness function
class with a specific requirement, for example, all fitness
functions in the class must be linear or quadratic. This research
issue is left for future studies.

C. Case Study: Benchmarks in Pseudo-Boolean Optimisation

So far we have introduced a general approach to con-
structing the easiest and hardest fitness functions. Now we
illustrate an application in pseudo-Boolean optimisation: to
design benchmarks within a fitness function class. According
to No Free Lunch theorems, the performance of two EAs are
equivalent if averaged over all possible Boolean-valued fitness
functions. Therefore we only consider a fitness class.

Example 3: Consider the class of all pseudo-Boolean func-
tions with the same optima at ~0 := (0 · · · 0) and ~1 := (1 · · · 1).

max{f(x);x ∈ {0, 1}n}. (20)

We compare the performance of two (1+1) elitist EAs on
this problem using different mutation rates.

8

1) EA(1
n). Flip each bit independently with flipping prob-

ability 1
n . The mutation probability from x to y is

P [m](x, y) =

(
1− 1

n

)n−h(x,y)(
1

n

)h(x,y)

, (21)

where h(x, y) denote the Hamming distance between x
and y.

2) EA(1
2). Flip each bit independently with flipping prob-

ability 1
2 . The mutation probability from x to y is

P [m](x, y) =

(
1

2

)n
. (22)

As to benchmark functions, their optima must be known
in advance and the number of benchmarks is often between
5 to 30. Since a function class normally includes a large
amount of functions, a question is which functions should be
chosen as benchmarks? Naturally we prefer typical functions
in the class: easy, hard and ‘averagely hard’ functions. Here
we only consider how to design the easiest and hardest fitness
functions.

The easiest fitness function to EA(1
n) is constructed as

follows.
1) Let S0 = {~0,~1}. For any x ∈ S0, define G(x) = 0.
2) Suppose that the subsets S0, · · · , Sl−1 are given and

G(x) has been defined on these subsets. Let Sl be the
set consisting of all points such that

arg min
x∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑
y∈Sk

P [m](x, y)G(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
.

(23)

Using the mutation probability

P [m](x, y) =

(
1− 1

n

)n−h(x,y)(
1

n

)h(x,y)

,

we get

Sl = {x | min{h(x,~0), h(x,~1)} = l}.

For any x ∈ Sl, define

G(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P [m](x, y)G(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
. (24)

3) Repeat the above step until any point is covered by a
subset. The last subset is SL where L := n/2. Without
loss of generality, assume n is even.

4) Choose L+ 1 numbers f0, · · · , fL such that f0 > · · · >
fL. Set the fitness function f(x) = fl, for x ∈ Sl. Then
f(x) is the easiest function in the function class.

An example of the easiest function to EA(1
n) is the Two

Max function, given by

f(x) = n−min{h(x,~0), h(x,~1)}. (25)

The runtime is calculated as follows. Let x ∈ Sl, without loss
of generality, suppose it has l 0-valued bits and n− l 1-valued
bits (with l ≤ n− l). The event of going from the fitness level
fl to a higher fitness level will happen if one of 0-valued bits

is flipped and other bits are kept unchanged. The probability
of this event is at least(

l

1

)
1

n

(
1− 1

n

)n−1

≥ l

ne
,

where e is Euler’s constant. Thus the runtime of going from
the fitness level fl to a higher fitness level is no more than
en
l . Since the number of fitness levels is L, therefore the total

runtime to reach the global optima is at most

L∑
l=1

en

l
= O(n lnn).

There are infinite easiest fitness functions, including linear,
quadratic and other non-linear functions, for example,

f(x) =
(
n−min{h(x,~0), h(x,~1)}

)k
, k = 1, 2, · · · (26)

The runtime of the EA on all easiest fitness functions is the
same no matter whether they are linear or not.

It is worth noting that the Two Max function is unimodal
in the time-based fitness landscape. But using the Hamming
distance, the function is two-modal due to two optima at ~0
and ~1.

The hardest fitness function to EA(1
n) is constructed as

follows.
1) Let S0 = {~0,~1}. For any x ∈ S0, let G(x) = 0.
2) Suppose that the subsets S0, · · · , Sl−1 have been pro-

duced and G(x) have been defined on these subsets.
Then define Sl to be the set of all points such that

arg max
x∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑
y∈Sk

P [m](x, y)G(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
.

Using the mutation probability

P [m](x, y) =

(
1− 1

n

)n−h(x,y)(
1

n

)h(x,y)

,

we get (let L := n/2 and assume n/2 is an integer)

Sl = {x | min{h(x,~0), h(x,~1)} = L− l − 1}.

For any x ∈ Sl, set

G(x) =
1 +

∑l−1
k=0

∑
y∈Sk

P [m](x, y)G(y)∑l−1
k=0

∑
y∈Sk

P [m](x, y)
. (27)

3) Repeat the above step until any point is covered by a
subset. The last subset is SL.

4) Choose L+ 1 numbers f0, · · · , fL such that f0 > · · · >
fL. Set the fitness function f(x) = fl, for x ∈ Sl.

An example of the hardest function to EA(1
n) is a Fully

Deceptive function

f(x) =

{
n+ 1, if x = ~0,~1;

min{h(x,~0), h(x,~1)}, otherwise.
(28)

Consider a point x ∈ S1 where x consists of exact n/2
zero-valued bits and x is the farthest from ~0 and ~1. Now
we calculate the runtime G(x). Since the Hamming distance

9

between x and the optima ~0 and ~1 is n/2, so the transition
probability of going from x to the two optima is between(

1− 1

n

)n/2(
1

n

)n/2
and 2

(
1− 1

n

)n/2(
1

n

)n/2
,

and the runtime is Θ(nn/2).
There are infinite hardest fitness functions, for example, for

k = 1, 2, · · ·

f(x) =

{
(n+ 1)k, if x = ~0,~1;(

min{h(x,~0), h(x,~1)}
)k
, otherwise.

(29)

We can construct the easiest and hardest fitness functions to
EA(1

2) in the same way. The easiest fitness function to EA(1
2)

is constructed as follows.
1) Let S0 be the set of optima ~0 and ~1.
2) Let S1 be the set consisting of all points such that

arg min
x∈S\S0

1∑
y∈S0

P [m](x, y)
.

Using the mutation probability

P [m](x, y) = 2−n,

we get S1 = {x | x 6= ~0,~1}.
3) Choose 2 numbers f0, f1 such that f0 > f1. Set the

fitness function f(x) = fl, for x ∈ Sl. Then f(x) is the
easiest function in the function class.

An example of the easiest function to EA(1
2) is the Two

Needles in the Haystack function

f(x) =

{
1, if x = ~0,~1;
0, otherwise.

(30)

We calculate the runtime G(x) for x ∈ S1 as follows. The
transition probability of going from x to the two optima is
between (1

2)n and 2× (1
2)n. Then the runtime is Θ(2n).

The hardest fitness function to EA(1
2) is constructed as

follows.
1) Let S0 = {~0,~1}.
2) Let S1 be the set of all points such that

arg max
x∈S\S0

1∑
y∈S0

P [m](x, y)
.

Using the mutation probability

P [m](x, y) = 2−n,

we get S1 = {x | x 6= ~0,~1}.
3) Choose 2 numbers f0, f1 such that f0 > f1. Set the

fitness function f(x) = fl, for x ∈ Sl. Then the above
function f(x) is the hardest to EA(1

2).
An example of the hardest function to EA(1

2) is the Two
Needles in the Haystack function, the same as the easiest
function. The runtime is Θ(2n). Since the runtime of EA(1

2)
on both the easiest and hardest functions is Θ(2n). Then we
know for any function in the class, its runtime is Θ(2n).

We have constructed three benchmark functions: Two Max,
Fully Deceptive and Two Needles in the Haystack. They
are described in Table I. The three functions represent three

typical fitness landscapes: unimodal, deceptive and isolation.
Using the benchmarks, we can make a fair comparison of the
performance of EA(1

n) and EA(1
2). Table I lists the results.

The runtime of EA(1
n) on the Two Needles in the Haystack

function is calculated as follows. Suppose the initial point x
consists of Θ(n) 0-valued bits and Θ(n) 1-valued bits, then
the event of going from x to the optima happens when either
all 0-valued bits are flipped and other bits unchanged; or
all 1-valued bits are flipped and other bits unchanged. The
probability of the event is (1

n)Θ(n) ×Θ(1). Thus the runtime
is nΘ(n) ×Θ(1).

From the table, we see that EA(1
n) is better than EA(1

2) on
the Two Max function, but worse on the Fully Deceptive Points
and Two Needles in the Haystack functions. The comparison
gives an understanding of the two EAs’ ability in different
fitness landscapes: unimodal, deceptive and isolation. Each EA
has its own advantage. EA(1

n) is more suitable for unimodal
functions, but EA(1

2) performs better on deceptive or isolation
functions.

The runtime of EA(1
n) and EA(1

2) increases exponentially
fast on the Fully Deceptive and Two Needles in the Haystack
functions. Thus it will be difficult to compare the runtime of
the EAs via computer experiments unless n is small.

V. MUTUAL TRANSFORMATION BETWEEN THE EASIEST
AND HARDEST FITNESS FUNCTIONS

In the case study of the previous section, we observe that
the easiest and hardest fitness functions vary as EAs change.
In this section we prove an interesting result: a fitness function
that is the easiest to one elitist (1+1) EA could becomes
hardest to another elitist (1+1) EA and vice versa.

A. Easiest May Become Hardest

Consider a class consisting of all functions with the same
optima. Let f(x) be the easiest to an elitist (1+1) EA (called
the original EA). Denote its fitness levels by f0 > · · · > fL
and define the set Sl = {x; f(x) = fl}. We construct another
elitist (1+1) EA (called the bad EA) and show f(x) is the
hardest to the bad EA.

The mutation operator in the bad EA is constructed as
follows.

1) Choose L + 1 non-negative numbers m0,m1, · · · ,mL

such that m0 = 0,m1 > m2 > · · · > mL > 0.
2) For any x ∈ S0 and y ∈ S, let the mutation transition

probability P [m](x, y) be any probability.
3) For any x ∈ Sl (where l = 1, · · · , L) and y ∈ S, set the

mutation transition probability P [m](x, y) such that

1 +
∑k−1
j=0

∑
y∈Sj

P [m](x, y)mj∑k−1
j=0

∑
y∈Sj

P [m](x, y)
< mk, for k < l,

and

1 +
∑l−1
j=0

∑
y∈Sj

P [m](x, y)mj∑l−1
j=0

∑
y∈Sj

P [m](x, y)
= ml. (31)

The above mutation operator is determined by the subsets
S1, · · · , Sl rather than fitness levels.

10

TABLE I
THREE BENCHMARKS AND RUNTIME COMPARISON OF TWO EAS.

name function time-based fitness landscape EA(1
n

) EA(1
2

)
Two Max f(x) = n−min{h(x,~0), h(x,~1)} unimodal O(n lnn) Θ(2n)

Fully Deceptive f(x) =

{
n + 1, if x = ~0,~1;

min{h(x,~0), h(x,~1)}, otherwise.
deceptive Θ(nn/2) Θ(2n)

Two Needles in Haystack f(x) =

{
1, if x = ~0,~1;
0, otherwise.

isolation nΘ(n) ×Θ(1) Θ(2n)

The following theorem shows the function f(x) satisfies the
monotonically increasing condition and then it is the hardest
to the bad EA.

Theorem 5: f(x) is the hardest function to the bad EA.
Proof: (1) We prove that the expected runtime of the bad

EA G(x) = ml, for x ∈ Sl, l = 0, · · · , L.
According to Lemma 4, the expected runtime

G(x) =
1 +

∑l−1
j=0

∑
y∈Sj

P (x, y)G(y)∑l−1
j=0

∑
y∈Sj

P (x, y)
.

For any x ∈ Sl and y ∈ Sk where l > k. Since f(x) =
fl < f(y) = fk and the bad EA adopts elitist selection, y is
always accepted if it has been generated via mutation. Thus
the transition probability P (x, y) equals to P [m](x, y).

The expected runtime becomes

G(x) =
1 +

∑l−1
j=0

∑
y∈Sj

P [m](x, y)G(y)∑l−1
j=0

∑
y∈Sj

P [m](x, y)
.

Comparing it with (31), we obtain G(x) and ml are iden-
tical.

(2) We prove the monotonically increasing condition.
Assume that x ∈ Sl, y ∈ Sk for some l and k. If G(x) <

G(y), then it is equivalent to ml < mk. Thus we have k < l
and

f(x) = fl < f(x) = fk.

which gives the monotonically increasing condition.
(3) The conclusion is drawn from Theorem 2.
In the construction of the mutation operator and the proof

of the above theorem, we don’t utilize the assumption of f(x)
being the easiest to the original EA. Thus the theorem can
be understood more generally: for any fitness function f(x),
we can construct an elitist (1+1) EA to which f(x) is the
hardest. From the theoretical viewpoint, the theorem shows
the existence of a bad EA to the easiest fitness function.

B. Hardest May Become Easiest

Let f(x) be the hardest fitness function to the original elitist
(1+1) EA. We construct another elitist (1+1) EA (called the
good EA), and show f(x) becomes the easiest to the good EA.

The mutation operator in the good EA is constructed as
follows.

1) Choose L+ 1 non-negative numbers m0, · · · ,mL such
that m0 = 0 < · · · < mL.

2) For any x ∈ S0 and y ∈ S, let the mutation transition
probability P [m](x, y) be any probability.

3) For any x ∈ Sl (where l = 1, · · · , L) and y ∈ S, set the
mutation transition probability P [m](x, y) such that

1 +
∑k−1
j=0

∑
y∈Sj

P [m](x, y)mj∑k−1
j=0

∑
y∈Sj

P [m](x, y)
> mk, for k < l,

and

1 +
∑l−1
j=0

∑
y∈Sj

P [m](x, y)mj∑l−1
j=0

∑
y∈Sj

P [m](x, y)
= ml. (32)

The following theorem shows f(x) satisfies monotonically
decreasing condition and then it is the easiest to the good EA.

Theorem 6: f(x) is the easiest function to the good EA.
Proof: (1) We prove that the expected runtime of the good

EA G(x) = mk, for x ∈ Sk, k = 0, 1, · · · , L. The proof is
similar to the first step in the proof of Theorem 5.

(2) We prove the monotonically decreasing condition. The
proof is similar to the second step in the proof of Theorem 5.

(3) The conclusion is drawn from Theorem 1.
In the construction of the mutation operator and the proof

of the above theorem, we also don’t utilize the assumption
of f(x) being the hardest to the original EA. The theorem
implies that for any fitness function f(x), we can construct a
good (1+1) EA to which f(x) is the easiest.

The above theorem reveals if a fitness function is the
hardest to one EA, then it is possible to design another
good EA to which the function is the easiest. However, the
above construction method is intractable in practice since the
complexity of construction is exponential. How to design such
a good EA is an ultimate goal in the study of EAs but beyond
the scope of the current paper.

Theorems 5 and 6 can be viewed as a complement to No
Free Lunch theorems. No Free Lunch theorems concern all po-
tential fitness functions. The theorems claim the performance
of any two EAs are equivalent if averaged over all possible
functions. Theorems 5 and 6 concern the hardness of a single
fitness function. The two theorems assert that a fitness function
could be the easiest to one elitist (1+1) EA but the hardest to
another EA. This implies for a single fitness function, a good
EA (but also a bad EA) always exists.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a rigorous analysis devoted to the easiest
and hardest fitness functions with respect to any given elitist
(1+1) EA for maximising a class of fitness functions with the
same optima. Such fitness functions have been constructed step
by step. It is demonstrated that the unimodal functions are the
easiest and deceptive functions are the hardest in terms of the

11

time-based fitness landscape. Furthermore it reveals that the
hardest (and easiest) functions may become the easiest (and
hardest) with respect to another elitist (1+1) EA. From the
theoretical viewpoint, a good EA (but also a bad EA) always
exists for a single fitness function.

A potential application of the theoretical work is the design
of benchmarks. Benchmarks play an essential role in the em-
pirical comparison of EAs. In order to make a fair comparison,
a good practice is to choose typical fitness functions in bench-
marks, for example, several easy, hard and ‘averagely hard’
fitness functions. Our work provides a theoretical guideline
to the design of easy and hard functions: to choose unimodal
(the easiest) and deceptive (the hardest) fitness functions with
respect to EAs under comparison.

Another application is to understand the ability of EAs on
a class of fitness functions with the same optima. Through the
comparison of EAs on the easiest and hardest fitness functions,
our work helps understand the ability of EAs in unimodal and
deceptive time-based fitness landscapes. This has been shown
in the second case study.

Non-elitist EAs, population-based EAs and dynamical EAs
are not investigated in this paper. The extension of our work
to such EAs will be the future research. Another work in the
future is to study how to construct the easiest and hardest
fitness functions such that a special requirement, for example,
all fitness functions must be linear or quadratic.

ACKNOWLEDGMENT

This work was supported by the EPSRC under Grant Nos.
EP/I009809/1 and EP/I010297/1. Xin Yao was supported by a
Royal Society Wolfson Research Merit Award and also by the
NSFC under Grant No. 61329302. Tianshi Chen was supported
by the NSFC under Grant Nos. 61100163 and 61221062.

REFERENCES

[1] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

[2] ——, “Coevolutionary free lunches,” IEEE Transactions on Evolution-
ary Computation, vol. 9, no. 6, pp. 721–735, 2005.

[3] J. Horn and D. E. Goldberg, “Genetic algorithms difficulty and the
modality of fitness landscapes,” in Proceedings of the 3rd Workshop
on Foundations of Genetic Algorithms, L. D. Whitley and M. D. Vose,
Eds. Morgan Kauffman, 1995, pp. 243–269.

[4] G. Rudolph, “How mutation and selection solve long path problems in
polynomial expected time,” Evolutionary Computation, vol. 4, no. 2, pp.
207–211, 1996.

[5] M. D. Vose and A. H. Wright, “Stability of vertex fixed points and
applications,” in Proceedings of the 3rd Workshop on Foundations of
Genetic Algorithms, L. D. Whitley and M. D. Vose, Eds. Morgan
Kaufmann, 1995, pp. 103–114.

[6] S. W. Wilson, “GA-easy does not imply steepest-ascent optimizable,” in
Proceedings of the 4th International Conference on Genetic Algorithms,
R. K. Belew and L. B. Booker, Eds. Morgan Kaufmann, 1991, pp.
85–89.

[7] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms.” in Proceedings of the 6th
International Conference on Genetic Algorithms, L. J. Eshelman, Ed.
Morgan Kaufmann, 1995, pp. 184–192.

[8] N. J. Radcliffe and P. D. Surry, “Fitness variance of formulae and perfor-
mance prediction,” in Proceedings of the 3rd Workshop on Foundations
of Genetic Algorithms, L. D. Whitley and M. D. Vose, Eds. Morgan
Kaufmann, 1995, pp. 51–72.

[9] Y. Davidor, “Epistasis variance: A viewpoint on GA-hardness,” in
Proceedings of the 1st Workshop on Foundations of Genetic Algorithms.,
G. J. E. Rawlins, Ed. Morgan Kaufmann, 1991, pp. 23–35.

[10] B. Naudts and L. Kallel, “A comparison of predictive measure of prob-
lem difficulty in evolutionary algorithms,” IEEE Trans. on Evolutionary
Computation, vol. 4, no. 1, pp. 1–15, 2000.

[11] J. He, C. Reeves, C. Witt, and X. Yao, “A note on problem difficulty
measures in black-box optimization: Classification, existence and pre-
dictability,” Evolutionary Computation, vol. 15, no. 4, pp. 435–443,
2007.

[12] B. Manderick, M. K. de Weger, and P. Spiessens, “The genetic algo-
rithms and the structure of the fitness landscape,” in Proceedings of the
4th International Conference on Genetic Algorithms, R. K. Belew and
L. B. Booker, Eds. Morgan Kaufman, 1991, pp. 143–150.

[13] T. Jansen, “On classifications of fitness functions,” in Theoretical Aspects
of Evolutionary Computing, L. Kallel, B. Naudts, and A. Rogers, Eds.
Springer, 2001, pp. 371–386.

[14] C. Reeves, “Predictive measures for problem difficulty,” in Proceedings
of 1999 Congress on Evolutionary Computation, vol. 1. IEEE Press,
1999, pp. 736–743.

[15] J. He and X. Yao, “An analysis of evolutionary algorithms for finding
approximation solutions to hard optimisation problems,” in Proceedings
of IEEE 2003 Congress on Evolutionary Computation. IEEE Press,
2003, pp. 2004–2010.

[16] ——, “Towards an analytic framework for analysing the computation
time of evolutionary algorithms,” Artificial Intelligence, vol. 145, no.
1-2, pp. 59–97, 2003.

[17] T. Chen, J. He, G. Sun, G. Chen, and X. Yao, “A new approach for
analyzing average time complexity of population-based evolutionary
algorithms on unimodal problems,” IEEE Transactions on Systems, Man
and Cybernetics, Part B, vol. 39, no. 5, pp. 1092–1106, 2009.

[18] T. Chen, J. He, G. Chen, and X. Yao., “Choosing selection pressure for
wide-gap problems,” Theoretical Computer Science, vol. 411, no. 6, pp.
926–934, 2010.

[19] J. He and X. Yao, “A study of drift analysis for estimating computation
time of evolutionary algorithms,” Natural Computing, vol. 3, no. 1, pp.
21–35, 2004.

[20] J. He, X. Yao, and Q. Zhang, “To understand one-dimensional con-
tinuous fitness landscapes by drift analysis,” in Proceedings of 2004
Congress on Evolutionary Computation. IEEE Press, 2004, pp. 1248–
1253.

Jun He (M06) received the B.S. and M.Sc. degrees
in mathematics and the Ph.D. degree in computer
science all from Wuhan University, Wuhan, China,
in 1989, 1992 and 1995, respectively.

He is currently a Senior Lecturer at Aberyst-
wyth University, UK. His research interests include
evolutionary computation, global optimization and
network security. He has published over 80 papers
in these areas.

12

Tianshi Chen received the B.S. degree in mathe-
matics from the Special Class for the Gifted Young
and the Ph.D. degree in computer science from the
Department of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China, in 2005 and 2010 respectively. He
is currently an Associate Professor with the State
Key Laboratory of Computer Architecture, Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China. His current research in-
terests include evolutionary computation, computer

architecture, and parallel computing.
Dr. Chen was a recipient of the 2011 China Computer Federation Dis-

tinguished Doctoral Dissertation Award and the 2011 Chinese Academy of
Sciences Distinguished Doctoral Dissertation Award for his Ph.D. work on
computational complexity analysis of evolutionary algorithms. His work on
hardware accelerator of artificial neural network won the ASPLOS’14 Best
Paper Award.

Xin Yao is a Chair (Professor) of Computer Science
and the Director of CERCIA (the Centre of Ex-
cellence for Research in Computational Intelligence
and Applications), University of Birmingham, UK.
He is an IEEE Fellow and a Distinguished Lecturer
of IEEE Computational Intelligence Society (CIS).
His work won the 2001 IEEE Donald G. Fink Prize
Paper Award, 2010 IEEE Transactions on Evolution-
ary Computation Outstanding Paper Award, 2010 BT
Gordon Radley Award for Best Author of Innovation
(Finalist), 2011 IEEE Transactions on Neural Net-

works Outstanding Paper Award, and many other best paper awards. He won
the prestigious Royal Society Wolfson Research Merit Award in 2012 and
the IEEE CIS Evolutionary Computation Pioneer Award in 2013. He was
a former Editor-in-Chief (2003-08) of IEEE Transactions on Evolutionary
Computation. His major research interests include evolutionary computation
and ensemble learning. He has more than 400 refereed publications in
international journals and conferences.

