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Abstract 

This research experimentally and numerically investigates the possibility of recycling some low cost construction 

and industrial waste landfills materials as potential backfills in horizontal ground heat exchangers (HGHE). The aim 

of this study was to compare the temperature distribution development in different backfill materials with respect to 

time. The tested materials include sand, crushed basalt, broken brick, crushed concrete, and metallic by-products 

including copper slag, aluminium slag, mill-scale and iron ores (fine and pellets). Initial thermal testing on these 

materials in an environmental climatic chamber indicated concrete and crushed brick had similar performance to 

sand, whereas metallic materials had better performance by up to 77% improvement compared to sand. Various 

percentages of the backfill material (20, 40, 60, 80 and 100%) blended with the remaining percentage of sand showed 

that the higher the percentage addition of the waste material, the better the heat storage of the enhanced sand. Particle 

size distribution was also a significant parameter in backfill selection, where medium sized particle sizes (1.18-2 

mm) performed 92% better compared to course and fine gradations of the same material. An experimental set-up of 

a HGHE system was then constructed and filled with the best performing backfill materials to determine the heat 

storage and release processes on the thermal performance of the system. The paper also reports results from a 

transient three-dimensional finite volume model developed in ANSYS Fluent 17.2 computational fluid dynamic 

(CFD) software of a thin section of a HGHE. The experimental and numerical model were used to predict and 

analyse the temperature distribution developing within the surrounding backfill material with respect to charging 

(heating) and discharging (extracting heat) modes of the HGHE. Results obtained from both experimental and 

numerical studies show the temperature range and duration of hot water produced from the system were in line with 

low temperature space  heating guidelines and that mill-scale, copper slag and aluminium slag were the best backfill 

materials, where the thermal capacity of the HGHE system can be doubled using these materials, compared to the 

use of sand alone. Congruence between the numerical simulations and experimental data was found. 
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1.   Introduction 
  

1. 1.1   Background 

 

Growing environmental concerns including climate change, air pollution and depletion of natural fossil resources 

require urgent long term sustainable development actions (Dincer and Rosen, 2004; Ozyurt and Ekinci, 2011; Diaz, 

Sierra and Herrera, 2013). Energy supply, and associated energy prices, are gradually becoming more sustainable 

by introducing renewable energy resources, particularly solar, wind, hydropower and geothermal energy (Bourrelle, 

Andresen and Gustavsen, 2013; Esen and Yuksel, 2013; Lund et al., 2016). Recent developments into incorporating 

these resources to provide heating and cooling demands of buildings is becoming more popular in the developing 

world. Solar photovoltaic and thermal collector technologies have been proven to provide sustainable electricity and 

heat to homes, however, the mismatch between the time the energy is available (sunlight hours) and the time it is 

required (demand period) has led to further developments in thermal energy (heat) storage systems (Ozgener and 
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Hepbasli, 2005; Henning, 2007; Axaopoulos and Fylladitakis, 2013; Esen and Yuksel, 2013; Gao et al., 2013; Emmi 

et al., 2015; Awani et al., 2017).. 

 
For low temperature space heating purposes, the ground can be used as an efficient, clean, cheap, low maintenance and 

sustainable heat storage (Esen and Yuksel, 2013). Ground heat exchangers (GHE) are outstanding heating systems and 

have been used for a number of  years in the USA, Europe, Turkey, and Japan (Florides and Kalogirou, 2007; Tarnawski 

et al., 2009; Esen and Yuksel, 2013; Sarbu and Sebarchievici, 2014; Dehghan B., 2017; Stylianou et al., 2017). Shallow 

horizontal forms of ground heat exchangers (HGHE) offer lower complexity and economic advantages compared to 

vertical designs and, although more land area may be required to meet a given heat exchange requirement, they continue 

to be an appealing technology for residential and smaller non-residential applications with a low temperature 

requirements of 35 to 70℃ (Wong B., Snijders A., 2006; Chiasson, 2010; Garcia Gonzalez et al., 2012; Simms, Haslam 

and Craig, 2014; Go et al., 2015; Kupiec, Larwa and Gwadera, 2015; Yoon, Lee and Go, 2015; Rees, 2016; Wei et al., 

2017). A HTF (heat transfer fluid) is circulated through buried heat exchanging pipes to extract the stored heat from the 

soil storage upon requirement. The buried pipes are surrounded by soil, and hence the performance of the HGHEs is 

highly dependent on ground heat-transfer characteristics (Ball, Fischer and Hodgett, 1983; Esen, 2000; Qoaider, Kiwan 

and Thabit, 2016). 

  

Various studies and reviews have been conducted on the design, testing, optimisation, and simulation of GHEs although 

most researchers focused on monitoring GHEs coupled with ground source heat pumps (GSHP) to maintain steady and 

comfortable indoor temperatures (Ball, Fischer and Hodgett, 1983; Leong, Tarnawski and Aittomäki, 1998; Hepbasli, 

Akdemir and Hancioglu, 2003; İnallı and Esen, 2004; Florides and Kalogirou, 2007; Gan, Riffat and Chong, 2007; Cui, 

Yang and Fang, 2008; Koyun, Demir and Torun, 2009; Esen, Inalli and Esen, 2009; Wu et al., 2010; Garcia Gonzalez 

et al., 2012; Garber, Choudhary and Soga, 2013; Sarbu and Sebarchievici, 2014; Sivasakthivel, Murugesan and Thomas, 

2014; Bertermann, Klug and Morper-busch, 2015; Naylor, Ellett and Gustin, 2015; Esen and Turgut, 2015; Kim et al., 

2016a, 2016b; Luo et al., 2016; Esen, Esen and Ozsolak, 2016; Stylianou et al., 2017; Wei et al., 2017). Although there 

is a need to be able to calculate HGHE performance, there has been less progress in developing validated models, and 

consequently design methods remain relatively simplified with design data tables and charts often being used in practice 

(Rees, 2016). Experimental work on HGHEs has included Esen and Yuksel (2013) investigating heating a greenhouse 

in Turkey’s climate conditions using biogas, solar and ground energy and concluding that the ground can be successfully 

used for greenhouse heating purposes. Inalli and Esen (2004) also experimentally investigated a HGHEs connected to 

a GSHP to confirm the effects of the parameters including the mass flow rate of the HTF, the buried depth of soil, the 

coupled heat exchanger, and sewer water on the performance of the system to be used for space heating applications. 

Kim et al. (2016b) experimentally and numerically investigated the performance of a HGHE simulated steel box filled 

with dried Joomunjin sand, comparing coil and slinky heat exchange pipes performance in HGHEs, and concluded 

slinky-type was better and that GHEs type and soil thermal conductivity are the main factors determining the heat 

exchange rate of a GHE, whereas the pipe diameter did not have any effect on the GHE performance. Wu et al. (2010, 

2011) studied the thermal performance of a HGHEs ground-coupled GSHP in a UK climate both experimentally and 

numerically and concluded that heat extraction from the HGHEs increased with ambient temperature and soil thermal 

conductivity, however it decreased with increasing HTF temperature. Congedo et al. (2012) carried out computer 

simulations on several HGHEs configurations considering soil thermal conductivity, installation depth, and fluid 

velocity and concluded that the optimal soil type to use around the heat exchanging pipes was that with the highest 

thermal conductivity.  

 

Recent research into solar assisted HGHE systems has mostly been devoted to optimising and improving the 

performance of systems by the addition of GSHP’s, with much less focus on the backfill media used for storage and the 

air temperature fluctuations caused by the proximity of HGHEs to the ground surface (Hepbasli, Akdemir and 

Hancioglu, 2003; Li et al., 2006; Hu et al., 2013; Shang, Dong and Li, 2014). Careful attention has to be paid to the use 

of backfilling materials and installation procedures to ensure there is good contact between the pipe and the ground in 

the finished heat exchanger (Rees, 2016). There is an increased awareness that landfills are overfilling and that recycling 

waste is important (Lund, 2010; Esen and Yuksel, 2013). The UK waste statistics regulation published data showing 

that 148 million tonnes of waste was produced in 2014 from combined commercial & industrial (C&I) and construction, 

demolition and excavation (CD&E) sectors (DEFRA, 2017). CD&E landfills receive construction and demolition 

debris, which consists of road material including crushed concrete and brick, some metals, excavated material, 

demolition waste, construction/renovation waste and, site clearance waste (Deloitte, 2015). C&I landfills receive 

industrial and commercial solid wastes, or generator wastes (Deloitte, 2015). Reducing and recycling these materials 

conserves landfill space, reduces the environmental impact of producing new materials, creates jobs, and can reduce 

overall project expenses through avoided purchase/disposal costs (WRAP, 2010).  

 

Formatted: Normal



3nd International Conference on Smart Energy Systems and 4th Generation District Heating, September 2017 

Special Issue of the Energy International Journal, 2017 

 

3 

 

 

 

 

 

1.2    Study Objectives  

The temperature propagation and distributions in HGHE systems are important when designing storage equipment to 

simulate working capacity and thermal performance. The aim of this research was to experimentally and numerically 

investigate the temperature distributions of an insulated HGHE system using various low costlow-cost CD&E and C&I 

recycled waste materials as potential backfill materials to form a comparison study. The tested materials include sand, 

crushed basalt, broken brick, crushed concrete, and metallic by-products including copper slag, aluminium slag, mill-

scale and iron ores (fine and pellets). After initial material thermal testing, an experimental set-up of a small scale HGHE 

was tested in the laboratory and a 3D computational fluid dynamic (CFD) numerical model was developed in ANSYS 

Fluent 17.2 to assess the heat transfer in each of the backfill materials for charging (heating) and discharging (extracting 

heat). Testing and comparing various backfill materials under the same working conditions (including the same solar 

radiation, ambient air temperature, collector materials, insulating materials and HGHE dimensions) means a 

comparative analysis can be made between experimental and numerical results to validate them. These points will assist 

designers in designing HGHEs. 

 

2 Materials and Methods  

 

2.1 Experimental Set-up  

 

An experimental system was previously designed and built at Nottingham Trent University to investigate and evaluate 

the thermal performance of a small scale underground horizontal ground heat exchanger system in heating mode 

(charging) and extracting mode (discharging) designed for a 1 kW heating load at design conditions. A schematic 

diagram of the system is shown in Fig. 1Figure 1. Table 1Table 1 summarises the main technical information on the 

different soil backfill media as well as varying outlet mass flowrate were studied from the storage as mentioned in Al-

Ameen et al. (2017).  

 
Fig. 2Figure 2 shows a schematic diagram of the experimental storage box set-up used in the HGHE system, the same 

geometry is used in the developed numerical model. The outer dimensions of the model were 1.15 m x 0.65 m x 0.125 

m, this provided insulation and containment to the backfill material used within the storage; the internal dimensions of 

the backfill material volume were 1 m x 0.5 m x 0.125 m. A network of 10 mm diameter copper pipes with a wall 

thickness of 1.5 mm, run in a curved configuration as illustrated in Fig. 2. The total length of buried pipe in the HGHE 

was 5 m and contains the heat transfer fluid (water). The height of the buried pipe is 62.5mm from the top and bottom 

of the storage pit (middle centreline) and has horizontal spacing distances between the straight sections of 85 mm. The 

heating cables were used to heat the surrounding backfill material in the HGHE to reach temperatures of 65℃ ±5℃, 

simulating temperatures achieved from solar thermal collectors, and then cold water was circulated in the system to 

extract the thermal energy stored in the backfill material.  These pipes were connected to a cold-water storage tank and 

the system relied on gravity, rather a ground source heat pump to operate it. A schematic of the complete system is 

illustrated in Fig. 1Figure 1. The thermo-physical properties of materials utilized within HGHE storage are illustrated 

Reference source not found.Table 2. . 

 

2.2      Measurements  

 

Temperature and flowrate measurements were monitored and recorded during the testing phase. These are discussed 

in the subsequent sections.  

 

2.2.1 Temperature  

 

To measure the temperature of the backfill material and the circulating HTF in the experimental HGHEs, a series of K-

type thermocouples were installed. Several considerations were considered when selecting the K-type thermocouples 

in terms of influencing measured results. K-type thermocouple sensors provide the widest operating temperature range 

and generally work in most applications because they are nickel based and have good corrosion resistance. However, 

they are prone to stress, strain making them brittle and corrode, particularly as they age. K-type thermocouples are stable 

for short periods at certain temperatures, after which they tend to drift in a positive direction. The size of the drift is 

dependent on the temperature and usually occurs at temperatures above 760 °C. Also, prolonged exposure to high 

temperatures (above 427 °C) makes the thermocouples age faster and in reduced oxygen environments "green rot" 
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occurs which oxidizes the thermocouple. The k-type thermocouples were used in the experiment to take measurements 

between 10-75 °C and therefore were not prone or exposed to affects from aging, stress/strain at high temperatures and 

drifts in temperature readings. Therefore, the results from thermocouples can be made accurately. For the exposed K-

type thermocouples, the tolerance is given as ± 1.5K between -40 and 375 °C. The total uncertainties of the temperature’s 

measured at various location are listed in Table 5. 

 Forty thermocouples were used to measure the temperature of backfill material, these were placed at ten locations in 

plan view as illustrated in Fig. 2Figure 2 and repeated on four layers: at the centre layer (0 m) and at distances 0.02 m, 

0.04 m and 0.06 m from the centre layer. Two further thermocouples were used to measure the temperature of the HTF 

at the inlet and outlet of the HGHE. The average inlet temperature of the HTF was 15-18℃. The density, thermal 

conductivity, specific heat and kinematic viscosity of the HTF used in the numerical model were determined according 

to this temperature range. The ambient and room temperatures were also measured using thermocouples and 

thermometers.  

 

2.2.2     Flowrate  

 

The heat transfer between the backfill material and the HTF was affected by the operating flowrate of the system. The 

flowrate of the circulating HTF in the closed loop HGHE was measured using a flowrate meter and controlled using 

mechanical valves fitted at various locations in the system as illustrated in Fig. 1Figure 1. The average HTF volume 

flowrate ranged between 0.1 to 0.7 L/min (or mass flowrate 𝑚̇𝐻𝑇𝐹 is between 0.0017 to 0.012 kg/s) and the 

corresponding velocities were calculated using Eq. 1 equation 1 to be between 0.04 to 0.30 m/s. These calculated values 

were utilised in the numerical study and were dependant on experimental results. The Reynolds number was calculated 

to be between 280 to 2100 using Eq. 2 equation 2 for the range of flows used during testing, indicating the flow was 

laminar in all cases. The convection heat transfer coefficient (hc) was taken as the upper limit between the free and 

forced convection coefficients and was calculated using Eq. 3-6 equations 3-6 to be between 13 to 35 W/m2K for the hc 

in the bottom and top of the HGHE section layer. 

 

 

𝑉𝐻𝑇𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =

𝑚̇𝐻𝑇𝐹

𝜌𝐻𝑇𝐹 𝐴𝑝𝑖𝑝𝑒
   (1) 

 

 

𝑅𝑒𝑥 =
 𝜌𝐻𝑇𝐹 𝑉𝐻𝑇𝐹 𝐷𝐻

𝜇
    (2) 

 

𝑃𝑟 =
 𝜇𝐶𝑝𝐻𝑇𝐹

𝑘𝐻𝑇𝐹
    (3)  

 

Nu = 0.664 Rex
1/2  Pr1/3   (4) 

 

Pe = Rex
 Pr   (5) 

 

 

ℎ𝑐 =
Nu 𝑘𝐻𝑇𝐹

 𝐷𝐻
     (6)  

     
 

Where:  𝑉𝐻𝑇𝐹 is the mean velocity of the HTF (m/s),  𝑚̇𝐻𝑇𝐹 is the mass flowrate of the HTF (kg/s), 𝜌𝐻𝑇𝐹 is the density 

of the HTF (kg/m3), 𝐴𝑝𝑖𝑝𝑒  is the cross-sectional area of the pipe (m2), Re is the calculated Reynolds number for the flow 

in the pipe, Q is the volumetric flowrate (m3/s), 𝐷𝐻  is the hydraulic diameter of the pipe (m), hc is the convection heat 

transfer coefficient (W/m2K), Nu is the Nusselt number, 𝑘𝑎𝑖𝑟 is the thermal conductivity of air (W/mK), L is the distance 

from the pipe to the location of the top/bottom surface plane (m), Pr is the Prandtl number, 𝑈𝑥  is the free stream velocity 

(m/s), 𝑣 is the kinematic viscosity of the HTF (m2/s), 𝜇 is the dynamic viscosity of the HTF (Ns/m2), 𝐶𝑝𝐻𝑇𝐹
 is the 

specific heat of the HTF (J/kgK) and 𝑘𝐻𝑇𝐹  is the thermal conductivity of the HTF (W/mK). 

 

2.32 Materials  

 

Twelve materials were utilised as backfill media’s in the HGHE for both experimental testing and the developed 

numerical model. These were Leighton buzzard sand (LB), two types of crushed brick (TBW, TBR), Iron (pellets IP 

and two filling types IFN, IFO), Aluminium slag (AOO), Copper slag (CS), Mill-scale (MS), Basalt rock (crushed fine 

BAF and course BAC) and crushed concrete (CON) as illustrated in Fig. 3Figure 3. From a designer’s point of view, 
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these selected materials are widely available and are waste produced from construction and industrial processes 

(Deloitte, 2015). Waste material would typically go to landfill, increasing the burden on landfill loading and operation, 

and subject to landfill tax in the UK. In the UK, waste management plans (WMP) have been developed by each of the 

government bodies within England, Wales, Scotland and Northern Ireland that are responsible for waste management 

strategies and waste prevention plans (Deloitte, 2015). Government programmes have encouraged the setting of targets 

for recycled content for construction products, which in turn led to demand for high-recycled content (Deloitte, 2015). 

The waste materials that are still usable are donated to non-profit organizations to be recycled and reused in different 

applications (WRAP, 2010; Deloitte, 2015). This keeps the material out of the landfill and means the material is being 

sustainably taken advantage of at a low cost (WRAP, 2010).  
 

Each of the materials were prepared for use prior to testing. The materials were placed in an oven at 105 º C to remove 

moisture. All the material were then sieved to remove fine particles passing a 0.16 mm sieve. In this study, the material’s 

thermophysical properties determine their heat storage capacity. Error! Reference source not found.Table 2 

material’s properties including particle size, gradation classification, bulk and particle density, , porosity, thermal 

conductivity and specific heat capacity. Material testing was conducted according to British Standard testing procedures 

for granular materials (BS 5930:1981, BS 1377, BS 7591-2:1992, BS EN 12667:2001). Most of the waste materials 

have a higher density and better thermal properties than sand alone, which can improve the overall thermal capacity of 

a HGHE system and improve the heat exchange efficiency between the backfill medium and the tube containing the 

HTF. Additional preparation was conducted on some of the materials whereby the materials were further sieved into 

individual sizes of between <0.6 mm, 0.6-1.18 mm, 1.18-2 mm to investigate the influence of grain size on heat storage.  

 

 

 

3 Thermal testing of materials 

 

The proposed backfill materials were tested in an environmental climatic chamber (Model: FDM C-SERIES). This 

was achieved by filling 10 litre containers with each of the backfill materials and placing RS Pro K-type thermocouples 

(chromel-alumel) to measure temperature at various locations in the containers. The environmental chamber was set 

for heating (up to 70 ℃) and cooling cycle to simulate heat storage. Once the material in the containers had reached a 

homogenous temperature of 70±2 ℃, they were left to cool to ambient room temperature (≈ 20 ℃).  Thermocouple 

sensors were attached to a central data logger to monitor temperature. Temperature readings were recorded at 5-minute 

intervals internally for the environmental chamber (𝑇𝐸𝐶), externally for the room temperature (𝑇𝑟𝑜𝑜𝑚) and at five 

locations in the container as illustrated in Fig.4 to measure the temperature of the material at different positions in 

response to the heating and cooling pattern. The Tmidd was plotted against time for the different proposed backfill 

materials as illustrated in Fig. 7 – 9. Temperature readings were recorded at 5-minute intervals internally for the 

environmental chamber (𝑇𝐸𝐶), externally for the room temperature (𝑇𝑟𝑜𝑜𝑚) and at three locations in the container. 

Tests were also conducted with a sand (LB) filled control container and repeated three times, for comparison. The 

results are discussed in section 6-1.  

 

 

 

4 Modelling approach  

 
It is important to understand how to improve the thermal performance of the insulated HGHE using different backfill 

materials. Therefore, a reliable mathematical model of the HGHE model is essential in completing the task. Testing 

and validation of the experimental model is essential to ensure the accuracy and validity of the HGHEs simulation. 

This study is concerned with validation of a thin section of HGHE storage model using different backfill materials to 

compare the temperature distributions. The temperature distributions in the HGHE sections were conducted using a 

computational fluid dynamic software (CFD). CFD analysis obtains qualitative and quantative information about fluid 

flow and heat transfer performance of systems. The HGHE system can be modelled as a three-dimensional transient 

heat conduction temperature field problem. The model was set-up with: (a) internal heat generation in the HTF to 

simulate storing thermal energy to the backfill medium (HGHE charging) and; (b) internal heat generation in the 

backfill medium to extract stored thermal energy from the backfill material (HGHE discharging). The assumptions in 

this model are that the heat transfer occurs by conduction and that convection and radiation effects are insignificant.t. 

Heat conduction is the dominant type of heat transfer in soils and granular materials. Heat convection occurs in 

granular material depending on the moisture content within the material. The materials used in this research were all 

used on a dry basis and therefore, it is reasonable to assume that due to no moisture, heat transfer affects from 

convection are negligible. Furthermore, radiation usually makes a negligible contribution to heat transfer at normal 

atmospheric temperature. The total contribution of radiation to the heat transfer process is estimated to be less than 
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1% in sands and much less in finer-grained soils (Farouki, 1986; Rees et al., 2000; Deru, 2003). Additional subsequent 

assumptions in the analysis have been made including:  

 

(1) A closed system is in operation 

(2) The thermophysical properties of the backfill material are uniform (Error! Reference source not found.Table 

considered as a single volume 

(3) The heat transfer in the backfill material is considered to be symmetrical 

(4) The backfill material is assumed to have no moisture content  

(5) The copper tube wall thickness (1.5 mm) was very small and therefore pipe conduction resistance is neglected 

(6) The top and bottom wall surfaces of the HGHE were considered to be 293 K at the start of each simulation 

(7) The starting temperature of the inlet HTF was also assumed to be 293 K 

4.1 Developed model 

 

CFD simulations were performed within ANSYS FLUENT, version 17.2. Meshing, set-up and the solution were 

conducted in workbench.  The geometry was constructed in solid works and imported as STEP format into the design 

modeller part of ANSYS. The five parts of the geometry, velocity inlet, pressure outlet and external shell wall were 

specified as illustrated in Fig. 5. ANSYS workbench automatically generated a mesh for the model. However, a finer 

mesh was incorporated around the HTF and surrounding copper tube (element size 0.0005m), where the temperature 

gradient is the steepest and a course mesh was incorporated for the soil, insulation and cover layers (element size of 

0.01 m). These values were obtained from undertaking a grid independence study on the mesh to report accurate CFD 

simulation results. The mesh grid independence evaluation was conducted by starting with a default mesh and 

assessing the results, the element size was then gradually reduced, and the error was quantified. This process was 

repeated until the error was within an acceptable tolerance level. Fig. 6 shows results from the mesh independence 

evaluation as a graph of number of elements (millions) against the average temperature at the outlet for a run on the 

charging of the LB backfilled storage (at 8 hours). Fig. 6 indicated that a solution value was reached with 8 million 

elements (6 million nodes) that is independent of the mesh resolution which can be used for further analysis. In terms 

of the numerical model used in this study, the 3D mesh consisted of mixed tetrahedron and hexahedron elements as 

illustrated in Fig. 7. This mesh was utilized to give results within the acceptable error tolerance level as illustrated 

from the accuracy of output temperature shown in Fig. 7. The mesh was then exported to the fluent software where 

the governing equations were set, and the material properties and cell zone conditions where defined. 

 

The boundary conditions were then placed. The finite volume mathematical model (FVM) relies on the laws of 

thermodynamics for heat transfer and conservation of mass and energy,  and utilizes continuity partial differential 

equations. A laminar model flowrate was used in the heat exchanger pipe. A velocity inlet of 0.3 m/s, obtained from 

previous experimental testing, was set. A pressure outlet with a zero backflow and convection was placed at the wall 

boundaries. Thermal conditions are also satisfied for heating and cooling modes of the storage. The boundary conditions 

conditions specified in both the charging and discharging models are summarised in Table 2. Thermophysical 

properties of materials used in this study 
 

Material and Abbreviation 

 

Particle 
Size 

(mm) 

 

Thickness (m)/ 
Gradation 

Classification 

𝜌𝑏 

(kg/m3) 

𝜌𝑠 

(kg/m3) 

𝜙 

(%) 

k 

(W/mK) 

 

𝐶𝑝 

(J/kg K) 

 

HGHE construction materials: 
Cover (MDF) - 0.025m 700 - - 0.15 1700 

Insulation (XEPS) - 0.05m 33 - - 0.03 1131 
Copper Pipe - 0.003m 8950 - - 401 385 

Water liquid (HTF) -  1000 - - 0.60 4200 

Air (external environment) -  1.23 - - 0.02 1006 

 

HGHE backfill materials: 

Leighton Buzzard Sand (LB) 0.16 – 1.18 UG 1562.49 2620.80 40.40 0.38 805.87 

Crushed Brick ‘W type’ (TBW) 0.06 – 5.00 WG 1142.46 2631.37 56.60 0.65 860.02 

Crushed Brick ‘R type’ (TBR) 0.16 – 5.00 WG 974.45 2275.70 57.20 0.62 834.45 

Concrete (CON) 0.16 – 14.00 WG 1204.07 2280.30 47.20 1.28 645.33 

Basalt rock ‘fine’ (BAF) 0.16 – 5.00 GG 1496.53 2681.00 44.20 2.04 884.35 

Basalt rock ‘course’ (BAC) 6.30 – 10.00 UG 2389.61 2704.45 49.32 1. 24 907.21 

Iron ore pellets (IP) 10.00 – 14.00 CG 2080.42 3954.37 47.40 0.56 616.50 

Iron Fillings ‘N type’ (IFN) 0.16 – 3.35 WG 2596.82 3728.91 30.38 0.60 580.07 

Iron Filings ‘O type’ (IFO) 0.16 – 3.35 WG 3250.51 3668.17 11.40 0.55 546.14 
Millscale (MS) 0.16 – 6.30 UG 2544.48 3133.00 18.80 0.42 652.39 

Copper slag (CS) 0.43 – 2.00 UG 1992.03 3399.32 41.40 0.78 557.21 
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Table 3Table 3. It is assumed that the top and bottom side of the HGHE are open and the HTF flow runs from the inlet 

to the outlet through the copper heat exchange pipe. A transient model was assumed, with a time step of 0.001 s. 
 

The results and discussion of the numerical model are given in section 6-2 and 6-3.  

 

5. Thermodynamic analysis and uncertainty 

 
A thermodynamic analysis and uncertainty study was conducted to ensure verification and accuracy of data obtained 

during this study. The thermal performance of the HGHE system was determined by the temperature change in the 

HTF liquid (difference between inlet and outlet temperatures). According to the first law of thermodynamics, the rate 

of heat energy transfer into the HGHE equals the rate of heat energy transfer out by the HTF. Eq. 7 Equation 7 was 

used to calculate the energy required (Qin) to raise the temperature of the backfill in the HGHEs from an initial starting 

temperature of 293 K to 343 K based on the thermal properties of each of the backfill materials. Table 4. Table 4Table 

4 summarises the results obtained for Qin with each of the different tested materials. The heat extracted (Qext) from the 

HGHE was also calculated from Eq. 8, using different backfill materials. Cold HTF enters the system at the inlet and 

passes through the system in the outlet direction to extract the heat stored in the backfill material. The range of Qext 

for each material was based on the hot water produced from a low and high flowrate. A high flowrate (HF) of 0.01 

kg/s and low flowrate (LF) of 0.0016 kg/s were considered. The Qext ranged between 5102 kJ (LF) and 1693 kJ (HF) 

for the backfilled HGHE. Considering the time taken to extract the heated HTF for each flowrate case, the total heat 

extracted was calculated to be 0.05 kW (LF) and 0.31 kW (HF). The heat exchange rate per pipe length is calculated 

to be 10 W/m and 62 W/m for LF and HF respectively. This is because at higher flow rates, the HTF passes through 

the system quickly extracting more heat at a shorter time period. However, due to the faster flow of cold HTF entering 

the system, the surrounding back-fill cools down at a quicker rate. The system continues to cool down until all the 

heat is extracted from the HGHEs through the HTF (i.e. back-fill media temperature reduces until it reaches 

equilibrium with the HTF temperature). In contrast, for lower flow rates, although the HTF flows slowly through the 

system meaning there is sufficient time for the heat exchange to occur between the backfill and the HTF; the heat is 

extracted from the system at extremely low rates (in terms of time) for it to be beneficial for hot water heating purposes 

on the long run.  

 

Qin = mBF . Cp,BF . (Te,BF -  Ts,BF)   (eq. 7) 

 

Qext = 𝑚̇HTF . Cp,HTF . (THTF,o -  THTF,i)  (eq. 8) 

 

Where: Qin is the energy required to raise the temperature of the backfill material in the HGHE (kJ); mBF  is the mass 

of backfill material in the HGHEs (kg);  Cp,BF  is the specific heat of the backfill material (kJ/kgK); Te,BF  is the 

temperature of backfill material at the end of the heating process (K) ; Ts,BF is the temperature of backfill material at 

the start of the heating process (K) ; Qext  is the energy extracted from the HGHE using the HTF (kJ); 𝑚̇𝐻𝑇𝐹 is the mass 

flowrate of the HTF (kg/s);  𝐶𝑝𝐻𝑇𝐹  is the specific heat of the HTF (kJ/kgK); THTF,o is the temperature of the HTF at 

the outlet of the HGHE system (K) and THTF,i is the temperature of the HTF entering the HGHE system at the inlet 

(K). 

 

An uncertainty analysis has also been conducted on the experimental parameters obtained in this study utilizing the 

accepted method of Holman (1994). Temperatures and mass flow rates were measured experimentally using 

appropriate instruments as described in section 2.2. The uncertainties of the measured parameters are presented in  

 

Table 5Table 5. 
 

6. Results and discussion 

 

6.1     Thermal testing 

 

This section is divided into three parts. These are as follows:  

 Comparing proposed backfill materials (Section 6.1.1) 

 Percentage addition of backfill materials (Section 6.1.2) 

  

 Particle size effect of backfill materials (Section 6.1.3)   

Aluminium slag (AO) 0.60 – 2.00 UG 1897.96 3641.36 47.90 17.34 476.75 
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6.1.1    Comparing proposed backfill materials  

 

Initial thermal testing results comparing all twelve materials are shown as temperature vs. time graphs in Fig. 86Figure 

6. Details of thermal testing methodology were mentioned previously in section 3. During testing, the internal 

temperature of the environmental climatic chamber (EC) was recorded as TEC and the ambient room temperature was 

recorded as AMB. The point at which the TEC curve starts heating up to 70℃ corresponds to the time the EC was 

switched on and the material filled containers started the heating cycle. Fig. 86Figure 6 illustrates that it generally 

took between approximately 14 to 20 hours for the material filled containers to reach a steady homogenous 

temperature of 70℃ ± 2℃ tolerance. The containers were left in the EC for additional heating until all the temperature 

curves leveled, then the EC was set for a cooling regime starting at 21.5 hours to cool the containers back down to 

20℃. The materials had similar cooling patterns but varied with respect to time. In respect to this work, the time it 

took the samples to cool to 35℃ was considered as the threshold baseline value from the TEC curve. This value was 

selected as the baseline because most HGHE systems operate between 35-70℃. Sand (LB) took 6.5 hours to cool 

down, which was similar to other materials including: TBR, BAC and BAF within ± 0.5 hour. CS and AOO materials 

however performed 77% better compared to sand, cooling down in 11.5 hours. MS, IFO, IFN also had a relative 

improvement compared to LB sand by 46%, cooling down in 9.5 hours. TBW on the other hand performed less well 

and cooled down in 4.5hours, a 30% reduction compared to LB sand. This trend can be explained by the nature of 

each of the materials. The best performing materials (CS, AOO, MS, IFO, and IFN) are sourced from waste industrial 

processes of producing copper, aluminium and iron. Their metallic nature means they are better conductors than non-

metallic materials due to the close packing nature of the metallic ions in the lattice. In addition, metals usually contain 

free (delocalised) electrons, which make it easier to transfer heat energy through their solid particles. The amount of 

energy transferred depends on the mass and specific heat of the materials, where in this case the metallic materials 

had a higher density and mass compared to the other selected materials. It can be concluded that the majority of the 

tested materials performed similar or better than LB sand and can therefore be considered to be utilized as alternative 

to sandy soils in HGHE systems to avoid landfill waste accumulation and encourage recycling of materials.  

 

6.1.2     Percentage additions of backfill materials   

 

CS, AOO and MS were further tested to assess: (I) the effect of blending these materials at different percentages by 

mass (20, 40, 60, 80 and 100%) to LB sand in order to enhance the properties of LB sand and; (II) the effect of particle 

size gradation on the retention of heat within the containers. The trend of results for I and II from the three materials 

(CS, AOO, MS) were similar and therefore only CS was chosen to be presented in the results shown in this paper, for 

clarity and to avoid repetition. Again, the same thermal testing methodology was used to obtain data in Figure  

 & 10. Fig. 79Figure 7 illustrates the results obtained when blending CS at various percentage (by mass) additions 

100%) with the remaining percentage (by mass) of LB sand (i.e. 20 CS indicates 20% CS blended with 80% LB sand). 

A homogenous mixture was achieved by blending the two counterparts using a dry aggregate mixer. Fig. 79Figure 

illustrates that LB sand can be successfully enhanced by blending it with CS. Comparing the LB sand alone to when 

blended with the material shows that there is an increase by 15.4% with 20 CS, 23% with 40 CS, 39% with 60 CS, 

54% with 80 CS and 77% with 100 CS. This indicates that as the percentage of CS increases in the container, the 

thermal contact between the surrounding particles increases and allows more retention of heat. Depending on the 

required performance of the system, a suitable amount of metallic waste material can be blended with the soil to 

achieve an improved performance rather than using sand alone. 

 

 

6.1.3     Particle size effect of backfill materials  

 

As illustrated in Error! Reference source not found.Table 2, the CS material (as supplied) consisted of particles 

between 0.43 to 2 mm in size, which was abbreviated to CSA in subsequent figures. CSA was then sieved and sorted 

into three sizes, these include CSF (<0.6 mm), CSM (0.6-1.18 mm), CSC (1.18-2 mm), the initials after CS denote for 

all, fine, medium and course gradations respectively. Fig. 108Figure 8 shows the thermal testing results from using 

particle gradations of CS material. It was found that separating the CS material into different particle sizes could 

further effectaffect the thermal performance of the material. Fig. 10 i8Figure 8 illustrates that CSA cooled down to 

an increase of 77% compared to LB sand. CSC and CSM had an overlapping performance, were both containers 

cooled down (to 35 ℃) in 12 hours, which is an increase of 5.5hours (or 85%) compared to LB sand. The fine 

gradation, CSF, performed less well compared to CSA, cooling down in 9.5 hours.  Similar trends were found in AO 

and MS materials when tested; where AOM and MSM both achieved an increase of 92% compared to sand alone. 

Therefore, it can be observed that particle size affects and plays an important role in the thermal performance of the 

different materials tested. This is because, the porosity, particle size distribution and density of a material has a strong 

influence on its thermal performance. Porosity is important in granular materials as they make up the void space 
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between the grain particles. These voids create spaces where air can fill up. A film of air around the grains turns the 

material into a better insulator. The correlation between solid density (γs), dry density (γd) and porosity (𝜙) is shown 

in eq. 9. As evident from the results, fine sized particle material cooled down quicker compared to medium and coarse-

grained particles. This is because according to eq. 9, a decrease in the particle size or/and an increase in porosity means 

a decrease in the overall dry density of the material.  

 

γd = γs (1 - 𝜙)              (9) 

 

6.2     Numerical modelling 

 

An unsteady transient state simulation was performed on a HGHE model in ANSYS FLUENT v17.2 to assess the 

transfer of heat for charging and discharging mode and study the thermal performance of the system. The boundary 

conditions were previously listed in Table 4Table 4Table 3. Re number was calculated to be between 475 to 3353 

range of flows used during testing as illustrated in Table 6. The flow was classified to be laminar (Re < 2300) for the 

three lower flow cases and transitional in the higher flow rate case (2300 < Re < 4000). Transitional flow means there 

was a mixture of both laminar and turbulent flow in the HGHE, with some turbulence in the centre of the pipe, and 

laminar flow close to the bends. The Nu number was also theoretically calculated using Eq. 4 and compared to the Nu 

number obtained from the CFD numerical model for different HTF mass flow rates. The results for Nusselt numbers 

are tabulated in Table . 6 to form a comparison of results. The theoretical Nu results of 23 to 62 were slightly higher 

compared to the Nu number obtained from the numerical model of 20 to 59. This shows that results from the numerical 

model are almost identical for Nu number with a maximum 13? % variation with respect to theoretical values. Results 

revealed that Nu numbers almost doubled with respect to flowrate. Also, at low velocities, the Nu numbers indicates 

that the flow is sluggish, and convection is not very active. However, increasing the HTF velocity in the pipe, in turn 

increases the Re in the streamwise direction which had favourable results on the Nu number enhancing the heat 

transfer. The convection heat transfer coefficient (hc) was also calculated using Eq. 6  to be between 2 to 6 kW/m2K 

as illustrated in Table 6. 

 

Several backfill materials were tested and simulated in the HGHE section both numerically and experimentally, 

however, in this paper only the results from CS, which achieved the best performance and LB sand, which is a standard 

soil used for comparison are discussed. The fluent program was initialized using hybrid initialization and run by 

iteration command. The coupled solver was used and a time step size was specified of 0.001s. Temperature 

distributions are shown in Fig.Figures 911-12 14 for charging and discharging of the HGHE after 8 hours (where  

Figure  Fig. Figures 911 &11  

Figure  &13 correspond to CS and  

Figure  Fig.Figures 102 & 12  

Figure 14 correspond to LB sand). Each figure contains three section planes (2D) at heights of 0 m (centre), 0.02 m, 

m and a 3D view at 0.06 m height to show temperature propagation in the HGHE system. The model results were 

compared with the experimental data at 8 hours after the start of charging and start of discharging. Temperatures 

extracted from the temperature distributions experimentally and numerically are summarised in Tables 6  

Table Tables 7 and 87 for charging and discharging respectively.  

 

As evident from Fig. Figures 911-12 

Figure 14, the temperature distributions were uniform. During the charging process, hot HTF enters the system at 343 

and the backfill starts heating up steadily.  

Figure  Fig.Figures 119 and 102 illustrate the temperature distribution in CS and LB backfilled section respectively, 

heating (charging). For LB backfill ( 

Figure Figure Fig. 102), the average surface temperature in the centre was 327 K, and at the top was 302 K, meaning 

heated up by 29 K in the centre and only 4 K at the top during an 8 hour period. Conversely, for the CS filled system 

( 

Figure  Fig. Figure 911), the HGHE was overall hotter compared to LB after an 8 hour charging period. The centre of 

an average surface temperature of 340 K and the top was 334 K. Temperature differences between the middle and top 

for HGHE charging were calculated to be 25 K and 6 K for LB and CS respectively. In the discharging process, cold 

HTF (293 K) is passed through the inlet to the heat exchanging pipe system to extract the stored thermal energy (heat) 

from the backfill to the outlet, cooling down the system. Fig. 113Figures 11 and 12and 14 illustrates the temperature 

hours from the start of discharging in CS and LB backfilled sections respectively.  

Figure Fig. Figure 124 shows the temperature distributions after 8 hours of discharging with LB backfill. The centre 

the coldest at 310 K with the majority showing as blue (cooler) areas and the top layer is the hottest at 340 K, 

illustrating that the LB sand filled system loses the heat quickly. The CS filled system (Fig. 131Figure 11), however, 

during the same time period of 8 hours the centre of the HGHE had higher average surface temperatures of 335 K at 

Field Code Changed

Field Code Changed

Formatted: Font: Not Italic, Complex Script Font: Not

Italic

Formatted: Not Highlight

Formatted: Not Highlight



3nd International Conference on Smart Energy Systems and 4th Generation District Heating, September 2017 

Special Issue of the Energy International Journal, 2017 

 

10 

 

the centre and top of 341 K. Again, similar temperature differences were calculated between the middle and top, of 

30 K and 6 K for LB and CS respectively, for discharging. 

 

6.3     Comparing experimental and numerical results  

 

 Table 7  

 

Table Table 8 summarises numerical and experimental calculated temperature differences between inlet and outlet 

which were ~40 K for CS and ~20 K for LB sand. This means the thermal capacity of the HGHE system can be 

doubled by using CS instead of LB sand. These results indicate that in order to increase the thermal performance of 

the HGHE section and obtain more hot water from the outlet to be used for space heating purposes, CS material would 

be a better material to use in HGHE systems because (1) CS heats up quicker than LB, (2) the heat in CS backfilled 

systems is propagated from the centre to the top quicker compared to LB and (3) the small temperature difference in 

CS for charging and discharging between the centre and top makes it an excellent material to use for HGHEs systems. 

CS being a waste material makes it an attractive choice compared to other materials to use as backfills in HGHEs.    

 

The summary of average surface temperatures obtained numerically from Fig.Figures 911-12  

Figure 14 and from experimental testing are presented in Tables 6 and 7 

Table Tables 7 

 

Table  and 8 for HGHE charging and discharging processes. The difference in numerical and experimental results is 

K where experimental results were slightly higher compared to numerical results, this could be due to systematic 

errors or thermocouple tolerance reading level. This relatively low temperature difference indicates that the results are 

in agreement and validate each other.  

 

7. Conclusions 

 

In this study, an experimental set-up and numerical model were used to analyze the thermal storage capacity of several 

proposed backfills to be used in HGHE system. The aim of this study was to compare the temperature distribution 

development in different backfill materials with respect to time. The selected materials used for backfill were all 

construction and industrial waste landfills materials (CD&E and C&I) including: sand, crushed basalt, broken brick, 

crushed concrete, metallic by-products including copper slag, aluminium slag, mill-scale, iron ores (fine and pellets). 

Utilising these low cost and sustainable waste materials means the waste material is being recycled which reduces the 

requirement for landfilling. Thermal testing, a thermodynamic and uncertainty analysis were also conducted and 

discussed. The main conclusions that can be drawn from the study are listed below: 

 

 Initial thermal testing results showed that metallic materials including CS, AOAO, MS, IFO, IFN had better 

heat storage performance, with up to 77% improvement, compared to sand alone. IP, CON, TBR, BAC, BAF 

materials had similar performance to sand and TBW had lower performance. 

 Particle size distribution (gradation) was also found to be a significant parameter in backfill selection. 

Medium sized particle sizes (1.18-2mm) performed 92% better compared to course and fine gradations of 

the same material. 

 Various percentages of the backfill material (20, 40, 60, 80 and 100%) blended with remaining percentage 

of sand shows that the higher the percentage addition of the waste material the better the heat storage, by up 

to 77%. 

 The data obtained from experimental and numerical analysis were in good agreement with each other. 

 Designing the numerical model was important in determining the thermal operation and performance 

behavior of the HGHE storage and to ensure favorable conditions are satisfied prior to experimental testing. 

 Both experimental and numerical model results were affected by the thermal-physical properties of the 

materials, including density and thermal conductivity. 

 Results obtained from both experimental and numerical studies show the temperature range and duration of 

hot water produced from the system were in line with low temperature space heating guidelines and that mill-

scale, copper slag and aluminium were the best backfill materials, where the thermal capacity of the HGHE 

system can be doubled using them compared to sand alone. 
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Abbreviations 
 

GHEs  ground heat exchangers 
HGHE horizontal ground heat exchanger  

GSHP  ground source heat pump 

FVM   finite volume method 
CFD  computational fluid dynamic  

XEPS  extruded polystyrene foam insulation 

HTF  heat transfer fluid  
PSD  particle size distribution 

FB   from bottom of HGHE (baseline)  

MDF  modified density fibreboard 
WMP  waste management plans  

C&I   commercial & industrial waste  

CD&E construction, demolition and excavation waste 
EC  environmental climatic chamber  

LB  leighton buzzard sand  

TBR  crushed brick – Type R 
TBW  crushed brick – Type W 

IP  iron ore pellets  

IFN  fine iron ore powder – Type N 
IFO  fine iron ore powder – Type O 

AOAO  aluminum slag  

CS  copper slag   
MS  mill-scale 

BAF  fine crushed basalt  

BAC   course crushed basalt 
CON  crushed concrete  

UG  uniformly graded  

CG  course graded 
WG  well graded 

 

 
 

Nomenclature  
 

 

𝜌  density of material (kg/m3) 

𝜌𝑏  bulk density of material (kg/m3) 

𝜌𝑠  particle density of material (kg/m3) 

𝐶𝑝  specific heat capacity of material (J/kg K) 

𝜙n  porosity of material (%) 
k K  thermal conductivity of material (W/mK) 

γd  dry density of material (kg/m3) 

γs   solid density of material (kg/m3) 

TEC  temperature inside environmental chamber (°C) 

TAMB  ambient room temperature (°C) 

𝑉𝐻𝑇𝐹   mean velocity of the HTF (m/s) 

𝑚̇𝐻𝑇𝐹   mass flowrate of the HTF (kg/s) 
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𝜌𝐻𝑇𝐹   density of the HTF (kg/m3) 

𝐴𝑝𝑖𝑝𝑒   cross-sectional area of the pipe (m2) 

Re   calculated Reynolds number for the flow in the pipe 

Q   volumetric flowrate (m3/s) 

𝐷𝐻    hydraulic diameter of the pipe (m) 
hc   convection heat transfer coefficient (W/m2K) 
Nu   Nusselt number 

𝑘𝑎𝑖𝑟   thermal conductivity of air (W/mK) 
L   distance from the pipe to the location of the top/bottom surface plane (m) 

Pr   Prandtl number 

Pe  Péclet number 

𝑈𝑥   free stream velocity (m/s) 

𝑣  kinematic viscosity of the HTF (m2/s) 

𝜇  dynamic viscosity of the HTF (Ns/m2) 

𝐶𝑝𝐻𝑇𝐹
   specific heat of the HTF (J/kgK)  

𝑘𝐻𝑇𝐹   thermal conductivity of the HTF (W/mK). 
Qin   energy required to raise the temperature of the backfill material in the HGHE (kJ) 

mBF   mass of backfill material in the HGHEs (kg) 
Cp,BF   specific heat of the backfill material (KJ/kgK) 

Te,BF    temperature of backfill material at the end of the heating process (K) 

Ts,BF   temperature of backfill material at the start of the heating process (K)  
Qext   energy extracted from the HGHE using the HTF (kWJ) 

𝑚̇𝐻𝑇𝐹   mass flowrate of the HTF (kg/s) 

𝐶𝑝𝐻𝑇𝐹   specific heat of the HTF (kKJ/kgK) 
THTF,o   temperature of the HTF at the outlet of the HGHE system (K) 

THTF,i   temperature of the HTF entering  the HGHE system at the inlet (K) 
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Table 1.  : Experimental HGHE system technical information 
 

Location: Nottingham, UK (Lat. 52°57'26"N,  Long. 1°9'8"W) 

 
Heating load of design test room 

Dimensions (m) 

Concrete floor/ceiling plan area (m2) 
Volume of room (m3) 

Heating load requirement (kW) 

Comfort room temperature (℃) 
Window area (m2) 
Brick wall area (m2) 

 

Ground heat exchanger information 
Type 

Pipe material 

Total length of pipe (m) 
Each layer length of pipe (m) 

Pipe external diameter (m) 

Pipe internal diameter (m) 
Pipe loop spacing (m) 

Heat transfer fluid type 

Cold water inlet temperature (℃) 

Hot water outlet temperature (℃) 
GSHP used 

Insulation used (See Error! Reference source not 
found.Table 2) 

Containment used (See Error! Reference source 

not found.Table 2) 

 
 

5L x 3W x 3H 

15 
45 

1 

20 
2 

39 
 

 

Horizontal Loop 
Copper 

15 

5 
0.01 

0.007 

0.085 
Water 

20 

70 
None 

Yes 

Yes 

 

Table 2. Thermophysical properties of materials used in this study 

 

Material and Abbreviation 

 

Particle 

Size 
(mm) 

 

Thickness (m)/ 

Gradation 
Classification 

𝜌𝑏 

(kg/m3) 

𝜌𝑠 

(kg/m3) 

𝑛𝜙 

(%) 

k 

(W/mK) 

 

𝐶𝑝 

(J/kg K) 
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Table 3.  : Boundary conditions used in the HGHE numerical model 
 

 

Region  

 

Boundary condition type 

 

Condition  

Thermal Boundary 

(charging mode) 

Temperature 
(K) 

Thermal Boundary 

(discharging mode) 

Temperature 
(K) 

Inlet  

Outlet  
Wall Insulation  

Wall Cover 

Wall Soil  

Velocity Inlet  

Pressure Outlet  
Convection  

Convection 

Convection 

0.3m/s 

0 Pressure  
 

 

 

343.15 

343.15 
293.15 

293.15 

293.15 

293.15 

293.15 
343.15 

343.15 

343.15 
 

 

 

 

 

 

 

 

 

Table 4.  : Summary of Qin calculated for the HGHEs with each of the backfill materials 

 

Material 
used as 

backfill 

 

Qin 

(kJ) 

 

LB 3934.89  

TBW 3070.43 

TBR 2541.03 

CON 2428.19 

BAF 4135.80 

BAC 5425.06 

IP 4008.06 

IFN 4707.30 

IFO 5547.60 

MS 5187.48 

CS 5919.17 

AO 6774.62 

 


 

 

 

 

HGHE construction materials: 

Cover (MDF) - 0.025m 700 - - 0.15 1700 
Insulation (XEPS) - 0.05m 33 - - 0.03 1131 

Copper Pipe - 0.003m 8950 - - 401 385 

Water liquid (HTF) -  1000 - - 0.60 4200 
Air (external environment) -  1.23 - - 0.02 1006 

 

HGHE backfill materials: 
Leighton Buzzard Sand (LB) 0.16 – 1.18 UG 1562.49 2620.80 40.40 0.38 805.87 

Crushed Brick ‘W type’ (TBW) 0.06 – 5.00 WG 1142.46 2631.37 56.60 0.65 860.02 

Crushed Brick ‘R type’ (TBR) 0.16 – 5.00 WG 974.45 2275.70 57.20 0.62 834.45 

Concrete (CON) 0.16 – 14.00 WG 1204.07 2280.30 47.20 1.28 645.33 

Basalt rock ‘fine’ (BAF) 0.16 – 5.00 GG 1496.53 2681.00 44.20 2.04 884.35 

Basalt rock ‘course’ (BAC) 6.30 – 10.00 UG 2389.61 2704.45 49.32 1. 24 907.21 

Iron ore pellets (IP) 10.00 – 14.00 CG 2080.42 3954.37 47.40 0.56 616.50 

Iron Fillings ‘N type’ (IFN) 0.16 – 3.35 WG 2596.82 3728.91 30.38 0.60 580.07 

Iron Filings ‘O type’ (IFO) 0.16 – 3.35 WG 3250.51 3668.17 11.40 0.55 546.14 

Millscale (MS) 0.16 – 6.30 UG 2544.48 3133.00 18.80 0.42 652.39 
Copper slag (CS) 0.43 – 2.00 UG 1992.03 3399.32 41.40 0.78 557.21 

Aluminium slag (AO) 0.60 – 2.00 UG 1897.96 3641.36 47.90 17.34 476.75 
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Note: The Qin values in Table 4 were calculated using equation 7. The calculations used a temperature difference of 50K where:  

𝑇𝑠𝑡𝑎𝑟𝑡𝐵𝐹  and 𝑇𝑖𝑛𝑤𝑎  are assumed to be 293K and; 𝑇𝑒𝑛𝑑𝐵𝐹 and  𝑇𝑜𝑢𝑡𝑤𝑎  are assumed to be 343K. 
 

 

 

 

Table 5.  : The experimental results and total uncertainties of the measured parameters 
 

Item Average Value Total uncertainty (%) 

HTF temperature at HGHE inlet (THTF,i) 

HTF temperature at HGHE outlet (THTF,O) 

Ambient room temperature (TAMB) 
Average temperature at top and bottom of backfill material 

Mass flowrate of HTF (𝒎̇𝑯𝑻𝑭) 

21 °C 

70 °C 

16 °C 
20 °C 

0.0016 – 0.01 kg/s 

± 1.38 

± 1.38 

± 1.38 
± 1.38 

± 2.89 

 

 

Table 6. Results for Re, Pe, Nu and hc  
 

S. No 
𝑚̇𝐻𝑇𝐹 
(kg/s) 

𝑉𝐻𝑇𝐹
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    
(m/s) 

 

Rex 

 

Pe 

 

Nu 

(theoretical) 

Nu 

(numerical) 

 hc 

(kW/m2K) 

1 0.0017 0.0441 474.96 2044.64 23.54 20.84 2.13 

2 0.0034 0.0883 949.97 4089.28 33.29 30.09 3.01 

3 0.0068 0.1767 1899.94 8178.56 47.08 43.68 4.25 

4 0.0120 0.3118 3352.84 14432.75 62.54 59.41 5.65 

Note: Pr = 4.30 

 

 

Table 67.  : Comparison of experimental and numerical results when charging HGHE model at time = 8 hours 

 (8 hours from start of process) 
 

 

Material 

 

Experimental  or 

Numerical  
(E or N) 

Average surface 

temperature at  

0m from 
 middle  

(K) 

Average surface 

temperature at 

0.04m from 
middle  

(K) 

Average surface 

temperature at 

0.06m from  
middle  

(K) 

Temperature 

difference between 

centre and top 
surface 

(K) 

LB  
LB (Fig. 120) 

CS 

CS (Fig. 119) 

E 
N 

E 

N 

329 
327 

342 

340 

312 
309 

339 

336 

306 
302 

332 

334 

23 
25 

10 

6 

Note: The numbers mentioned in Table 6  

Table Table 7 were recorded at 8 hours after charging where: Backfill start = 293 K, Inlet = 343 K 

 
 

 

 

Table 78.  : Comparison of experimental and numerical results when discharging HGHE model at time = 8 hours  

(8 hours from start of discharging process)  
  

 

Material 

 

Experimental  

or Numerical  
(E or N) 

Average surface 

temperature at  

0m from 
 middle  

(K) 

Average surface 

temperature at 

0.04m from 
middle  

(K) 

Average surface 

temperature at 

0.06m from 
middle  

(K) 

Temperature 

difference between 

centre and top 
surface 

(K) 

Temperature 

difference between 

the inlet (293K) and  
outlet of HTF 

(K) 

CS  

CS (Fig. 

131) 
LB 

LB (Fig. 

142) 

E 

N 
E 

N 

331 

335  
315 

310 

342 

339 
329 

327 

345 

341 
344 

340 

4 

6 
29 

30 

39 

42 
23 

19 

Note: The numbers mentioned in Table 7  

 
Table Table 8 were recorded at 8 hours after discharging where: Backfill start = 343 K, Inlet = 293 K 
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Figure 1.  : Schematic diagram of the HGHE system 

 
Figure 2.  : 3D schematic diagram of the HGHE set-up storage used in the experimental and numerical model 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. : Materials utilised in this study; Rows from left to right: Top: LB, TBR, TBW, IP. 

Middle: IFN, IFO, AOO, CS. Bottom: MS, BAF, BAC, CON. 
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Figure 4. Cross sectional schematic diagram of the containers used for testing (Dimensions in mm) 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45.  : Velocity inlets, pressure outlet and wall specified on the numerical model in ANSYS Fluent 
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Figure 6. Mesh independence study evaluation 

 

 

 

 

 

 

 

 

 
Figure 7. : The meshed HGHE model. Right: 3D mesh with pipe detail. Left: Cross section through centre of HGHE Formatted: Font color: Blue
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Figure 8.  : Temperature vs. time thermal test results using various backfill material’s as heat storage medias                                                 
Note: where TEC is the internal temperature measured in the climatic chamber, AMB is the recorded ambient testing room temperature 

 

 
Figure 9.  : Temperature vs. time thermal test results using different percentages of CS material with LB sand                            
Note: 100CS (100% CS), 80CS (80% CS and 20% LB Sand), 60CS (60% CS and 40% LB Sand), 40CS (40% CS and 60% LB Sand), 20 
CS (20% CS and 80% LB Sand) and LB (100% LB Sand).  
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Figure 10.  : Temperature vs. time thermal test results using different particle size gradations of CS material                                                           
Note: CSA (0.43 - 2mm), CSF (<0.6mm), CSM (0.6-1.18mm), CSC (1.18-2mm) 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

   

 

 

 

 

 

Centre section plane (H = 0m) Section plane (H = 0.02m) Section plane (H = 0.04m) 3D View (H = 0.06m) 

 

Figure 11.  : Temperature distributions of HGHE backfilled with CS material after 8 hours from start of charging 

 

 
 

 

 

 

 

 

 

 

   

 

 

 

 

 

Centre section plane (H = 0m) Section plane (H = 0.02m) Section plane (H = 0.04m) 3D View (H = 0.06m) 

 

Figure 12.  : Temperature distributions of HGHE backfilled with LB sand material after 8 hours from start of charging 
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Centre section plane (H = 0m) Section plane (H = 0.02m) Section plane (H = 0.04m) 3D View (H = 0.06m) 

 

Figure 13.  : Temperature distributions of HGHE backfilled with CS material after 8 hours from start of discharging 
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Centre section plane (H = 0m) Section plane (H = 0.02m) Section plane (H = 0.04m) 3D View (H = 0.06m) 

 

Figure 14.  : Temperature distributions of HGHE backfilled with LB material after 8 hours from start of discharging 
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