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Abstract— In this paper, we introduce the main components
comprising the action-perception loop of an overarching frame-
work implementing artificial attention, designed to fulfil the
requirements of social interaction (i.e., reciprocity, and aware-
ness), with strong inspiration on current theories in functional
neuroscience. We demonstrate the potential of our framework,
by showing how it exhibits coherent behaviour without any
inbuilt prior expectations regarding the experimental scenario.
Current research in cognitive systems for social robots has
suggested that automatic attention mechanisms are essential
to social interaction. In fact, we hypothesise that enabling
artificial cognitive systems with middleware implementing these
mechanisms will empower robots to perform adaptively and
with a higher degree of autonomy in complex and social
environments. However, this type of assumption is yet to be
convincingly and systematically put to the test. The ultimate
goal will be to test our working hypothesis and the role of
attention in adaptive, social robotics.

I. INTRODUCTION

In the past decades, robotics has drawn a substantial
deal of inspiration from neuroscience and psychology in the
attempt to properly address the action-perception loop, in
particular with “theory of mind" and evolutionary and de-
velopmental approaches [1], [2], which in turn have brought
attention to the limelight. The underlying rationale is as
follows: by developing attentional systems with some of the
functionalities found in the human brain, robots will not only
be able to exhibit behaviours that resemble those of their
interlocutors, but also gain additional advantages such as
being able to respond adaptively to the environment [3]. This
is important in order to be able to launch the foundations
of processes such as empathy, mirroring and reciprocity,
given that the human interlocutor will most certainly build
his/her own mirrored representation of the robot actions and
intentions [4], [5], [6]. Consequently, recent research lines
have suggested that automatic attentional mechanisms are
a fundamental foundation for implementing robotic intel-
ligence in the development of social robots [3], [6], [5].
As opposed to tailor-made solutions mostly focussed on
solving very specific cognitive tasks, lacking the traits of
adaptive behaviour that would allow robots to function in
open-ended scenarios, we advocate an approach for attention
system design that incorporates as much of what is known
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of attentional processes in the brain as possible to adaptively
deal with uncertain scenarios.

The primary purpose of this paper is to provide a general
unified design of the robotic attentional mechanism by bring-
ing together various elements of previous works in neuropsy-
chology and robotics theories and applications. Furthermore,
we provide details on some of its most important modules,
and discuss overall functionality. Computational modelling
has been tackled by resorting to probabilistic techniques such
as hierarchical Bayesian programming [7] and probabilistic
state machines [8]. The probabilistic framework allows the
robot to deal with the uncertainty inherent to the action-
perception loop, fundamentally relating to recent studies
about how the human brain deals with these processes [9],
additionally providing an implicit methodology for signal
fusion and modulation, and also for adaptive interaction.
Moreover, the proposed framework assumes attention as a
multisensory process - it is currently designed for visuoau-
ditory perception, but is intended to be generalisable to other
important senses, such as touch or olfaction.

The remainder of this paper is structured as follows. Sec-
tion II describes the main motivations of this work, analysing
key theories from neuroscience. Section III presents re-
lated work already available in current robots and artificial
cognitive systems. Section IV proposes an architecture for
attention, provides details of some of its most important
components and their mathematical foundation. Section V
analyse by simulation and experimentation the current im-
plementation of the attentional system. Finally, section VI
discusses the potential benefits of using the proposed design
and possible alternatives and improvements.

II. BIOINSPIRED FOUNDATIONS

When analysing human cognitive impairments or disor-
ders, attention appears to be one of the most important
skills to achieve correct social interaction [10], because it
enables activities such as learning, visual search, non-verbal
and verbal interaction, and is also one of the key processes
underlying intentional inference. Currently, however, cog-
nitive systems in robots have not yet tackled this problem
comprehensively and generally enough [3]. Consequently, in
terms of attention, robots should simultaneously be capable
of:

1) behaving in a socially reciprocal fashion, by attending
to important social cues as a human would when
directly interacting within his/her social space, and
by maintaining sequences of attentional behaviours
regulating basic interaction activities such as joint
attention;
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2) attending to unexpected stimuli that will help maintain
a high degree of adaptability and responsiveness to
changes in the current context that bear behavioural
relevance.

Attention is the process whereby an agent allocates percep-
tual resources to analyse a subset of the surrounding world in
detriment of others [3]. It is, therefore, a strategic and rather
complex data-handling process that allows the processing
of an unmanageable amount of information (sensory and
otherwise) to become tractable. Several key theories from
neuroscience, in favour of which a considerable amount
of evidence has been amassed, have served as the main
motivations for the proposed framework:

• Neurophysiologists have identified two highly intercon-
nected attentional processes in the human brain: (1)
a top-down (i.e., goal-oriented) modulation of bottom-
up (i.e., stimulus-driven - e.g., saliency) attentional
capture by targets versus distractors that is believed to
be implemented by what has been called the dorsal
attention system. [11], [12], [13]; and (2) a coordinated
attentional process consisting of bottom-up attentional
capture by behaviourally relevant distractors (e.g., un-
expected stimuli) that is believed to be implemented by
the ventral attention system of the human brain, and
is filtered by behavioural valences to reorient attention
by resetting the current attentional set accordingly [12],
[13].

• Graziano et al. [14], [15] have proposed the “awareness
theory", in which the brain is suggested to possess func-
tional sites devoted to building a simplified, schematic
model of the current state of the complex data-handling
process of attention, which would serve as a model
of awareness. Awareness would therefore allow the
brain to understand attention, its dynamics, and its
consequences. Moreover, they posit that more than a
single schematic model of this sort, which they named
the “attention schema", may be built using the same
“machinery", namely for attributing an attentional state
to oneself or to others. These simplified representations
can be used to infer and predict intention and goals
for both the self and others, serving as a support to
cognitive processes such as those described by theories
such as the “theory of mind". The “attention schema
machinery" would build its simplified representation of
an attentional state of an agent by using (accessed or
inferred) knowledge of cues such as gaze direction,
facial expression, body language, prior knowledge on
the agent, location of salient objects, etc.

• Joint attention (JA) is a primal non-verbal interactive
and cyclic process established between humans [3],
which we believe is an integral part of the attentional
process as a whole, by attributing to it its social trait.
The JA interaction can be described, using an example,
as follows: while playing with his father, a child stares
at his parent when shown a toy (“initiate joint attention”
– IJA – by the father), then will gaze a toy (“respond

to joint attention” – RJA – by the child) and then again
to his father in order to acknowledge that the other has
understood that both are “talking about the same object"
(“acknowledge joint attention” – AJA);

• Spivey, Richardson and Fitneva [16] stated that eye
fixations serve as cognitive links, in the form of lists
of deictic pointers bonded to spatial indices, between
internal and external objects and events, suggesting that
attention is used for organising relatively high-level
cognitive processes. We propose that these lists could
take an integral part in organising the set salient objects
processed by the “attention schema" of Graziano et al.

III. RELATED WORK IN ROBOTICS

Automatic attention hides multiple challenges that have
been approached from different points of view. The most
common approach is to basically model only the stimulus-
driven, bottom-up aspect of attention using a saliency map
that codifies the relevance of each location or entity based
on the local contrast of low-level features [17], [5], [18], and
then making this model compete with other goal-directed
behaviours modelled separately [3]. Another approach, still
focussing on bottom-up attention, is information theoretic
modelling, where entropic or surprise measures provide the
most probable locations [19], [20]. However, as mentioned
in section II, attention is also known to be modulated by
goal-directed signals, which has spurred new research efforts
attempting to tackle this issue [21], [22], [23]. Attentional
goals are also known to be informed by the environmental
context, leading to research such as [24], and also by the
object of interest for a specific task, leading to solutions that
include modulation of attention via feedback through object
segmentation and tracking [22], thereby closing the action-
perception loop. Additionally, overt attention (i.e. active
perception) is still a challenging task in terms of design
and quantitative evaluation, due to its scene-dependent nature
[25], [26].

On the other hand, defining the cognitive architecture or
the computational model of a robot for general-purpose HRI
is a difficult task, although developmental robotics give us
the methodology to build cognitive abilities incrementally.
Instead of defining specific solutions for each task, current
research has favoured holistic solutions that build on sets
of atomic functionalities [27]. The “theory of mind” applied
to robots [2] opened the window for multiple biologically-
inspired cognitive models. Surveys such as [28], [1] describe
the latest approaches in cognitive developmental robotics.
The role played by attention architectures in these holistic
approaches, however, while having been assumed to be
essential (as seen in the plethora of attention-related research
in robotics summarised above), has yet to be convincingly
and systematically demonstrated as such [3], [6].

IV. ATTENTIONAL ARCHITECTURE

Figure 1 shows the overall framework for the proposed
system. There are four overarching interconnected modules,
which will be detailed in the following subsections: (1) the
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Fig. 1. Attentional system design. The perception module processes sensory signals to build an egocentric representation of the environment (i.e. a spatial
saliency map, and a list of spatially-indexed proto-objects) and maintains it in working memory. The top-down controller generates, according to current
goals, control signals and sets of relative weights that modulate responses to different features (i.e. the attentional set and behavioural valences). The action
module sends commands to actuators according to the attentional map and the gaze shift behaviour informed by the top-down controller. The reorienting
module checks for unexpected and behaviourally relevant stimuli, overriding the current attentional set if necessary.

(a) protoobjects (b) faces (c) dynamics (d) auditory

(e) colour bias (f) intensity (g) final saliency (h) memory

Fig. 2. Perception module. (a) shows proto-object (PO) segmentation. Each PO is represented using its average colour (bounding boxes are also plotted
for better visualisation); (b, c, d, e, f) show different features associated with the POs (colour contrast, which is not shown, is also used). The top-down
modulation will modify the importance of the features as well as the colour bias (i.e., in this case the one used is the pure red); (g) is the final 2D saliency
map and the selected PO (blue circle); finally, (h) shows POs (coloured rectangles) stored in working memory by means of deictic pointers.

perception module, which takes input signals provided by
sensors and constructs an egocentric representation of the
perceived environment that will in turn serve to select the
next focus of attention (FOA) according to relevance encoded
as saliency; (2) the top-down controller, which ensures that
the next selected FOA will be influenced by current goals and
context; (3) the action module, that selects the next fixation
location by deciding based on the input from the perception
module and provides the control signals to the actuators,
according to the current exploration behaviour (i.e. the type
of gaze shift strategy, for example, smooth pursuit or saccade

generation); (4) the behavioural reorienting module, that is in
charge of detecting novel and behaviourally-relevant stimuli
that should result in interrupting and resetting the attentional
process as an action-perception loop.

A. Perception module

This module incorporates working memory that stores
two different types of information: a list of attended proto-
objects, using a solution similar to [22], and a 3D log-
spherical inference map associating saliency to occupied
spatial locations developed in previous work [29], [30], [31].
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𝑘 , 𝐺1

𝑘 , …) 
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Γ𝑘𝜖 {𝐹𝑉, 𝐸𝑁, 𝐺𝐹, 𝐷𝐹} 

intended focus-of-attention 
𝐹𝑂𝐴𝑘𝜖 {𝑖𝑛𝑡𝑒𝑟𝑙𝑜𝑐𝑢𝑡𝑜𝑟, 𝑃𝑂1, … , 𝑃𝑂𝑛} 

behavioral valence 
Ω𝑘 = {𝑤1, … , 𝑤𝑛} 

Simplified egocentric 
representations 

Fig. 3. Top-down controller. The task management module manages
high level information about the process, and includes joint attention state
machine and a contextual information manager. The attention schema,
a simplified model of an underlying attentional process, is in charge
of infering/predicting/deciding on the current/next focus of attention and
abstract goals of the robot and its interlocutors – refer to main text for
more details.

A preliminary processing stage segments sensor information
into pre-attentional volatile perceptual units called proto-
objects [3]. Feature contrasts are weighted to form the final
saliency map Sk at instant k by means of the so-called
attentional set [11], represented as Θ. This set is provided
by the top-down controller, thereby modulating what would
be a stimulus-driven process by influence of current goals
and context. The sensors observe the world providing the
signals Z, which are then transformed into spatial conceptual
features F that are filtered by the proto-object set PO and
fused into the saliency map S,

Z →Θ PO →Θ F →Θ S, (1)

representing the relevance of a specific region in space.
Each proto-object (PO) is defined as a subset of similar and
connected pixels, and its saliency for a specific feature f ∈ F
is defined by a bivariate normal density function ∼ N(µ =
POcentre-of-mass,Σ = diag([POheight, POwidth])). This
ensures that fixations will be drawn to the centre of the PO,
as has been proven to generally happen with human attention
[32]. Figure 2 shows a few examples of outputs generated
by the perception module, from PO segmentation (Fig. 2(a))
to deictic pointers to POs in working memory (Fig. 2(h)).

Proto-objects and their respective deictic pointers, POk =
{PO1, · · · , PON} are stored in working memory, since they
have been (and may be in the near future) FOA. These
pointers, besides storing spatial coordinates, associate each
PO to its characteristic properties, namely those related to
saliency features (e.g. colour). According to neurological
studies, humans can keep covert attention (i.e. track without
needing to fixate) on 5 objects simultaneously [16].

Stored proto-object information as well as the esti-
mated gaze direction of potential interlocutors Gk =
{G1, · · · , GM} are provided to the top-down controller with
other useful information to allow inference of the own’s state
and the other’s intention.

WAIT 

IA RA 

SHARE VS 

AJA 

𝛿  
𝑃  

𝑃𝐴: State transitions 

𝛿𝐴: Alphabet transitions 

IJA RJA 

Fig. 4. Joint Attention State Machine. The agent switch between states
driven by its own state transition probabilities (P ), the possible transitions
given the input alphabet (δ) and the current observation of other’s state (O).

B. Top-down controller

The top-down controller is depicted in Figure 3 with two
representative layers: (1) the task-to-goal manager that is the
core of high-level decision making, and (2) the simplified
representation of the attentional state in egocentric represen-
tation called the “attention schema”, as defined in section II.
We consider each interlocutor agent (human/robot) as entities
capable of knowing and predicting their own internal state
and estimating the other’s state. Therefore the task-to-goal
manager is basically in charge of: generating own state
according to current goals and an estimate of the other’s state
by means of a probabilistic state machine, and estimating
the other’s state by using the set of high-level signals that
describe other’s hidden process. The module outputs the
set of parameters that modulates the attentional process
and the behavioural valences that define the importance of
unexpected stimuli, according to current goals and task.

For generating the robot’s own state, we define the Joint
Attention State Machine (JASM) as an extension of the
probabilistic finite state automata1[8], for which the input
sequence of the alphabet is the predicted other’s state. The
JASM is described by (see Fig. 4)

A =< Q,ΣA,ΣΓ, δ, I, P,O,Ω,Γ >, (2)

Notation is as follows:
• Q = {WAIT, IA, SHARE, RA, VS, AJA} - set of states

in the joint attention process. WAIT represents that the
agent is not interacting but is waiting for a signal input
(e.g., a human not engaging but passing through the
social space). IA and SHARE are two states derived
from the IJA process due to differences on their at-
tentional parameters values. The former represents any
type of engaging or initiating the interaction while the
latter corresponds to the action of sharing an object
with the other. RA and VS (Visual Search) are two
substages of the RJA process, the former describe the

1It differs from the standard probabilistic automata because the appear-
ance of the alphabet symbols is an observation process subject to uncertainty
and there are not final probabilities. Besides, as the signals are outputted
when the automata is in a specific state, it can also be considered an
extension of a hidden Markov model [8].
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initial response to other’s IJA and the latter is the action
of searching the object that the other want to share.
Finally, AJA is the last stage of the triadic relation
where the agent communicates that understands that the
sharing is complete (e.g., engaging the other after the
VS or SHARE state). It is important to highlight that
while WAIT and AJA can be overlapped in both agents,
when one of them is in the set (IA, SHARE) the other
should correspond with the set (RA, VS).

• ΣA = {WAIT, IA, SHARE, RA, VS, AJA} - alphabet ac-
cepted by the automata that matches the other’s state.

• ΣΓ = {FV,EN,GF,DF} - alphabet of the emissions pro-
duced in each state defined as the high level action
to be performed. FV means free view of the agent;
EN represents engaging the other; GF describes gaze
following; and DF means deictic fixation of an object.

• O ∈ ΣA - observations by estimating other’s state.
• δ ⊆ Q×ΣA×Q - transitions depending on the alphabet.
• I : Q→ R+ - initial state probabilities.
• P : δ → R+ - transition probabilities given the input

alphabet.
• Ω : O × Q → R+ - set of conditional observation

probabilities.
• Γ : ΣΓ ×Q→ R+ - state emission probability function.

The generative nature of the probabilistic automata is used
as the central core of the top-down controller that will switch
states for itself and depending on the other’s state. Given
the variable AQk

i , the pre-superscript A represents the agent
and k denotes the instant, and the subscript i indexes the
state in the set. In order to model how much time an agent
can remain in one state we include a random variable T that
has an exponential density function P (T k

i |Qk
j ) = exp(−λk),

where λ ∈ [0, 1]. This makes that the probability of being in
a particular state decreases with the time, forcing the agent
to switch between states.

We solve the automata state selection by Maximum A
Posteriori (MAP) estimation over a Bayesian filter. Thus,
in order to select the current own state (AQk) given the
observation of the other state (BQk) we use the following
question:

P (AQk|Ok,BQk,BT k) '

' P (Ok|BQk)P (AT k|AQk)
∑
i∈Q

P (AQk
i |AQk−1

i ) (3)

We model this hidden process given the attentional cues
and the observed other’s goals by a dynamic Bayesian
network (i.e. an adapted hidden Markov model) where the
observations are given by soft evidence. These observations
describe the nature of the other’s attention and taking into
account that transiting from one state to another is affected
by own’s actions, we can estimate the current other’s state by
means of its observed emissions BΓ ∈ {FV,EN,GF,DF},
and the current own’s goals emissions AΓ. Thus, other’s state
estimation is updated by Ok:

P (BQk|BΓk) ' P (Ok|BQk)P (BQk) (4)

The dynamics of the process is captured by means of the
probability of the other’s transiting from one state to another
given the probability of remaining in that state when our own
state is emitting a particular signal Γ:

P (BQk+1|BQk,AΓk) =

=
∑
j∈Q

P (BQk+1|BQk,AΓk)P (BT k|BQk)P (BQk) (5)

Note that we need to estimate or learn the forward model
defined by P (BQk+1|BQk,AΓk) experimentally [33].

Following the awareness model of the human brain (see
section II) we designed a simplified representation atten-
tion, similar to a framework proposed by Gilet et al. for
handwriting analysis and reproduction [34]. The attentional
cues that arrive from the perception module are used to
infer the intended focus of attention and goals of the other
by means of the self goals provided by the task-to-goal
manager in the form of JASM emissions Γk, and also to
predict the consequences of the robot’s next FOA according
to current goals and as such select the next parameter set that
will modulate attention. This simplified model provides the
needed abstraction from the complications of the underlying
attentional processes, in a very tractable yet effective fashion.
The FOA of the self or the other are referred to in this model
in the robot’s egocentric point-of-view, thereby integrating
spatial cues into a common reference. The predictive trait
of this model resembles the efferent copy mechanism of the
human brain enacted by mirror neurons [34], [3].

C. Behavioural Reorienting

This module is in charge of overriding the attentional set
when an unexpected stimulus with behavioural relevance is
sensed, therefore resetting the attentional process. The be-
havioural valence modulates the importance of the different
stimuli in face of current context and goals, as imposed by
the top-down controller. For instance, most auditory onsets
should not distract the robot from attention-demanding tasks
such as engaging with the current interlocutor; however,
a sudden/loud/unexpected noise, especially if coming from
outside of the field of view, should promote breaking the
robot’s concentration so as to enable it to attend to a potential
danger. Novelty can be computed using Bayesian surprise
theory [20] to analyse the importance of changes in the
distributions of the 3D inference map in two consecutive
instants.

D. Action module

This module is in charge of deciding the final FOA and
the best control actions to attend the specified location taking
into account the current agent state. For the orientation
controller we distinguish two different modes of operation:
saccadic behaviour, in which the robot performs a quick gaze
shift to the desired FOA; and smooth pursuit, in which the
robot smoothly tracks the current object of interest, making
it a persistent FOA. As the perceptual representations of the
system are in egocentric coordinates, the orientation module
includes a feedback controller that uses as input the current
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(a) JASM (b) self FOA given goal=GF (c) other’s goal (d) other’s FOA

Fig. 5. Top-down controller simulation. (a) The robot (at the JASM) is switching towards visual search (VS) because the human has transited from IA
to SHARE phase. The estimated distribution of other’s state still reflects the transition. The continuous / discontinuous lines show own state and other’s
estimation respectively. (b,c,d), show the corresponding intentions inferred by the attentional schema.

FOA and as output the control signals for the actuators.
During saccadic behaviour, next FOA selection is performed
through selecting the location with maximum saliency in a
process similar to what is described in [31], while for smooth
pursuit the fixation location for the current FOA is computed
by adding to this process a “sharp” probability distribution
centred on the object of interest, therefore promoting fixa-
tions on regions of high saliency in close proximity to the
tracked object.

V. RESULTS

A robotic attentional system must deal with real-time
processing of sensory signals, as well as the integration and
synchronisation of several state-of-the-art components. In our
case, this means correctly dealing with signal segmentation,
3D egocentric saliency representation [29], gaze inference
(e.g., head pose inference and pupil detection), working
memory management, FOA selection, saccade control, top-
down modulation (own and other’s state estimation), etc. In
this paper, we report on the current implementation of the
perception and action modules through experimental online
validation, and on the top-down controller in simulation.

We are currently working on the definitive and complete
version of the proposed attentional system implementation,
for which the main missing link is currently the gaze
inference module. Preliminary work on robust Bayesian gaze
estimation has just been finished, exhibiting satisfactory and
robust performance, and we are currently concluding a real-
time implementation.

The current implementation, developed using the Robotic
Operating System (ROS), operates at 12 fps for PO seg-
mentation, 8 fps for saliency computation, and from 8 to 20
fps (when tracking a PO) for working memory management.
This means that we can achieve the same performance as the
human saccade-generation system – just under 500 ms on av-
erage between fixations [3]. The top-down controller timing
is non-critical and therefore computational time analysis is
not needed. Additionally, the auditory saliency is computed
by using open source robot audition system HARK [35],
the reorientation module currently only takes into account
auditory signals, and the PO tracker is an adapted version
of [36] for multiple objects. A detailed specification of the
robot head and its sensors can be found in [37].

A. Top-down module

We have tested the JASM by simulating the interlocutor
intentional state, and analysing its outputs. Results show
that the robot is able to behave coherently with the other’s
intentional state (the mirroring response is 67% and the
number of completed joint attention tasks when the human
initiates and completes the behaviour is 78.40%) and even to
spontaneously initiate joint attention (the 47.21% of the total
IAs is performed by the robot for a 10000 transitions simu-
lation) – see Figure 5(a). On the other hand, by simulating
the signals provided by the perception module, we show how
the attentional schema computes the intention probabilities
of own and other’s state (those output distributions feed the
JASM – see Figure 5(b) and 5(c)). In the example depicted in
the figure, the robot is following the interlocutor’s gaze, and
he/she is inferred to most probably be intentionally looking
at an object (i.e. DF state). Therefore, the most probable PO
to fixate is the most salient PO within the interlocutor’s line-
of-sight, in this case PO5, in that moment already stored in
working memory.

B. Perception and action modules

The experimental set-up used to test these modules in
realistic conditions is depicted in Fig. 6(a), where an inter-
locutor is in front of a set of distinct objects over a table.
First we evaluated the overt attention system response in free
view, and then we emulated a simple behaviour of the top-
down controller that would promote the following sequence
of events: (1) the system is in free view until it discovers
the interlocutor; (2) the interlocutor shows an object to the
robot; (3) the robot acknowledges the object and set its colour
as a bias for perception; (4) the robot performs a visual
search until it finds an object with similar characteristics.
It is important to highlight that the system will only use
indirect colour bias modulation and tracking to onset these
events. To perform the statistical evaluation of the interaction
behaviour, we record several individuals interacting with the
robot and then classify the behaviours of both according to
their respective reactions.

Figure 6(b) shows a stitched image of the scene with
a visual attention heatmap of the free view experiment
superimposed. The most attended locations correspond to
the interlocutor’s face and objects with a high red colour
component (i.e. in this way, we model human phylogenetic
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(a) set-up (b) attention heatmap

(c) state 0 (d) state 1 (e) state 2

Fig. 6. Perception experiments. (a) the set-up is compound by a robot provided with an active head in front of a table with a set of objects. (b) attentional
map in free view. Study case experiment sequence: (b) the robot is in free view where it has added an object and later detected the interlocutor; (c)
afterwards, the human shows an interesting object to the robot, that it is acknowledged by the robot. (d) the object colour is used as a bias to initiate the
visual search until it finds one similar object. Correct acknowledgement of the task is demonstrated if the fixated object matches expectations.

bias towards red). Yellow objects also attract robot’s attention
due to proximity to red in colour space and their relatively
high intensity contrast. Figures 6(c), 6(d) and 6(e) show an
experiment using our simple model of “intelligence” to test
the attentional system. The robot performs an interesting and
coherent behaviour despite of the reactive underpinning of
the perception and action modules.

Finally, we evaluated reciprocal human-robot interaction
[38] by analysing the robot’s expected behaviour when faced
with different individuals. For each trial the interlocutor is
asked to pick up a red, yellow or blue object. The evaluation
scenario, which although relatively controlled is already
open-ended and challenging, can be characterised as follows:
(1) the system had no internal prior expectations, neither over
the objects nor the interlocutors; (2) interaction could occur
anywhere within 1 to 4 metres from the robot; (3) apart from
the general task, no other indication or scripting, spatial or
temporal, was given to the interlocutor.

Table I shows the number of times fixation behaviour
occurred as expected given the total of key fixation instants.
Expectations were considered to be met whenever the system
was deemed by visual assessment to be enacting the be-
haviours labelled in the top row of the table, in correct order.
A high percentage of success was found in engagement, vi-
sual search and acknowledgement. Conversely, a low success
rate was found in shifting gaze towards the interlocutor’s
FOA result mainly from the lack of gaze inference and gist
modulation. The low realization in VS at the “red" colour
is due to the similar response of the saliency to yellow (i.e.,
after biasing to “red", sometimes, the next selected object
was yellow).

TABLE I
ANALYSIS OF EXPECTED ROBOT BEHAVIOUR

Trial conditions Engage % Fixate Object % Visual Search % Acknowledge %

Red 76.81 34.30 42.15 65.10
Yellow 79.00 50.15 60.14 76.66
Blue 73.50 22.54 55.88 66.13

Total 76.44 35.66 52.72 69.30

VI. DISCUSSION

We have presented an overarching framework implement-
ing artificial attention, designed to fulfil the requirements of
social interaction (i.e. reciprocity and awareness), with strong
inspiration on current theories in functional neuroscience,
described in section II.

The emergence of an inkling of intelligent behaviour due
to the interconnection of multiple independent elements,
even in its current open-loop operation mode, has shown
the potential of the perception and action modules. The
top-down controller has been shown to operate as expected
under simulation, suggesting that, indeed, system behaviour
will be significantly improved when the perception and
action modules become ready to be modulated by top-down
influences. This will introduce meaningful repeatability, and
consequently the expectation of the interlocutor can be
effectively fulfilled. Moreover, we believe that the JASM and
the attentional schema offer exciting new insights on how
non-deterministic probability states machines that could give
the robot a more conceptual sense of adaptive behaviour and
even free will. Additionally, a great challenge is involved in
correctly learning the actual transition probabilities using hu-
man interaction data. In terms of the action module, although
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the FOA selection using a heuristic function seems to work
as expected, approaches such as decision-making methods
for autonomous agents perception and control [39], could
be interesting in order to maximize the obtained information
during visual search. Finally, we are currently designing an
experimental paradigm to use this system to evaluate the
influence of attention on HRI, the foundation of which is
based on the already published methodologies of [6], [40].
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