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Abstract— In this text, we present the principles that allow
the tractable implementation of exact inference processes con-
cerning a group of widespread classes of Bayesian generative
models, which have until recently been deemed as intractable
whenever formulated using high-dimensional joint distribu-
tions. We will demonstrate the usefulness of such a principled
approach with an example of real-time OpenCL implementation
using GPUs of a full-fledged, computer vision-based model to
estimate gaze direction in human-robot interaction (HRI).

I. INTRODUCTION

Bayesian inference has by now found its way into all
branches of science, including natural sciences, humanities
and social sciences, and also applied sciences, such as
medicine. In most cases, Bayesian inference has been used as
an alternative to the more “traditional” frequentist inference
methods for statistical analysis of data. The application of
Bayesian inference to model cognition and reasoning, either
to study the animal brain, such as in neuroscience, or to
synthesise artificial brains, such as in artificial intelligence
(AI) or robotics, has become very popular in the past
couple of decades. In AI, numerous recent examples of the
popularity of the so-called Bayesian approach can be found;
robotics, as a consequence, follows suit, as can be seen in
[1], [2], [3], [4]. However, the most important restriction
to the use of the Bayesian approach has been the issue of
implementation of Bayesian inference, especially in what
concerns the development of artificial cognitive systems,
which require real-time performance.

In general, Bayesian models involve many random vari-
ables, dependent on each other in arbitrarily complex fashion.
Let us consider the case of a generative model for which all
variables are discrete. This is not an unreasonable scenario,
since inference computations will invariably be performed
by computers, which imply some sort of discretisation of
continuous signals. For example, modern digital computer-
controlled systems, such as robots, use analog-to-digital and
digital-to-analog converters, which discretise readings pro-
viding input from sensors and control commands providing
output to actuators.

In this case, we arrive to a general expression of exact
inference given by
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P (S | o) =
∑

F P (S ∧ F )P (o | S ∧ F )
P (o)

, (1)

where S denotes a random variable representing the con-
junction of all searched variables (i.e. variables for which
one intends to infer the probability of any given value), o
denotes the instantiation of a random variable representing
the conjunction of all observed variables (i.e. variables of
which the current joint value o is known or observed), and F
denotes a random variable representing the conjunction of all
free variables (i.e. although their relation to all other variables
in the model is known, variables of which the current value
is not only unknown but also not searched for, and hence
the influence of which one wants to factor out through
marginalisation). Note that P (o) =

∑
F

∑
S P (S ∧F )P (o |

S ∧ F ) is, in fact, a normalising scalar, depending only on
the observed data o.

In fact, obtaining this general expression for exact infer-
ence is only feasible if all variables are discrete, with the
possible exception of o (e.g. as in hidden Markov models,
or HMMs) [1]. Unfortunately, even if this prerequisite is met,
obtaining the actual expression is known to be, in general,
an NP-hard problem. In the last few decades, however, many
automatic algorithms have been devised to make this problem
more tractable [5], [2].

Other solutions to help remove some of the burden from
the automatic algorithms is to model “intelligently” during
the conceptual phase, taking advantage of conditional in-
dependence between variables and using hierarchical meth-
ods to decompose the model into submodels, such as data
fusion, probabilistic subroutines, mixture models and other
constructs, or by resorting to the Markov property to allow
for recursive/iterative Bayesian updates – please refer to [1]
for more information. Fortunately, most models found in arti-
ficial cognitive system development and research are already
relatively simple in form (HMMs and their derivatives, for
example, are ubiquitous), or hierarchical in nature – many
examples of typical models can be found in [1], [2].

But, even if an expression of the form (1) is obtainable,
the dimensionality of the model – in particular the cardinality
of the involved random variables – in most cases makes
computations using ordinary processing units impossible to
perform in a satisfactory amount of time, and consequently
researchers have turned to approximate inference methods
instead [5], [2].

In this text, we will present a generalisable method to
make inference tractable for a considerable amount of high-
dimensional Bayesian models commonly used in robotics



applications, by resorting to the “single-instruction, multiple-
data” paradigm (SIMD) in order to exploit the inherent data-
level parallelism of Bayesian inference. A survey on related
work is presented in a sister publication [5], also submitted
to this workshop.

II. FROM COMPUTABILITY TO TRACTABILITY

To illustrate the problem created by the “curse of dimen-
sionality”, let us assume that we have obtained a computable
form for expression (1) and examine its computational im-
plications.

Assuming M = 〈F 〉, the set of probability values of the
posterior P (S | o) may be represented in compact form as a
probability vector of size equal to the cardinality N = 〈S〉.
This posterior would therefore result from independent com-
putations performed on the corresponding pairs of elements
of the M pairs of probability vectors of size N ,

P (S ∧ [F = j]) =
[
Ps1 ([F = j]) Ps2 ([F = j]) · · ·

]
1×N

P (o | S ∧ [F = j]) =
[
f(s1, [F = j]) f(s2, [F = j]) · · ·

]
1×N

normalised by the scalar P (o). The direct application of the
non-optimised (i.e. “brute force”) expression of equation 1
would imply N ×M sums of products per vector element
(M of which are shared by both the numerator and the
denominator), which means a grand total of N × ((N ×
M)− 1) sums and N × (N ×M) + 1 products1.

To begin the path from computability to tractability, gen-
eral optimisations may be applied to the inference equation
so as to reduce the amount of computations needed. Consider
a concept popularly used to optimise inference for occupancy
grids, which rely on a binary searched variable, the odds ratio
[1], defined as

odds(S) =
P ([S = 1])

P ([S = 0])
. (2)

One can adapt and generalise it to define the probability
ratio for discrete random variables, defining it as

ratio(S = i) ≡ P ([S = i])

P ([S = 0])
, (3)

considering, with no loss of generality, the support of the
searched random variable as non-negative integers instanti-
ated as i ranging from 0 to N − 1. If explicitly considering
the dependence on a specific value for the free variable F ,
this expression further generalises to

ratio(S = i, F = j) ≡ P ([S = i] ∧ [F = j])

P ([S = 0] ∧ [F = 0])
. (4)

analogously considering, again with no loss of generality, the
support of the free random variable as non-negative integers
instantiated as j ranging from 0 to M − 1.

1Including the division by P (o), represented as a product of an inverse
of the scalar.

As with odds, the most important benefit reaped from
using this representation is that inference now corresponds
to computing, for each of the N elements of the posterior
ratio vector, the following expression [6],

yi ≡
∑

j ai,j
x

i,j∑
j a0,j

x
0,j

=

∑
j ai,j

x
i,j

z
, (5)

where

• yi = ratio(S = i | o) is the ith element of posterior
ratio vector y (conditional on the instantiation o, with
y0 = 1);

• ai,j = ratio(S = i, F = j) is the ith element of the jth

prior ratio vector aj ;
• xi,j = P (o | [S = i] ∧ [F = j]) is the ith element of

the jth likelihood vector xj ; and,
• z =

∑
j a0,j

x
0,j

is a scalar (constant), dependent on
observed data o and on vector elements 0 for each vector
j, but independent of which vector element i is being
computed.

This implies that we have reduced the computations
needed to compute the posterior (ratio) to the grand total
of N × (M − 1) sums and N ×M + 1 products (i.e. by a
factor of N ), while retaining the capability of, for example,
computing a maximum a posteriori (MAP) point estimate
directly as the maximum of the posterior ratio vector.

Regardless of the reductions in operations needed to
perform inference, more ambitious modelling using high-
dimensional variables will soon render computational times
impractical, whatever the processing speed available, if com-
putations are performed sequentially. In the last few decades,
however, massively parallel computing-capable devices such
as GPUs have flourished as generic APIs2 have become avail-
able, such as CUDA [7], developed specifically for NVIDIA
graphics cards, or the OpenCL framework [8], developed to
execute across heterogeneous platforms consisting of central
processing units (CPUs), graphics processing units (GPUs),
digital signal processors (DSPs), field-programmable gate
arrays (FPGAs) and other processors. This provides the
opportunity of applying the “single-instruction, multiple-
data” (SIMD) paradigm to make exact Bayesian inference
tractable, since expression (5) is already adequately vec-
torised for this effect.

In a nutshell, this enables the development “inference
modules”, such as idealised in Figs. 1 and 2. To implement
inference, these modules use as basic building blocks the
elementary SIMD operations defined next.

We will start by defining an operation that receives two
probability ratio vectors, or a probability ratio vector and a
likelihood vector, both of size N , and performs a Hadamard

2Application Programming Interfaces.
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Fig. 1. Conceptual execution diagram for SIMD inference module, with
respective data flow, of the general case of inference following equation
(5). Note that this module requires that prior probability ratios for each
value of the conjunction [S ∧ F ], denoted here as a(S, F ), are available.
The definition of the elementary SIMD operations used in the modules
represented as blocks labelled α, γ and η can be found in the main text.

product3,

α : RN
≥0 × RN

≥0 7→ RN
≥0

(a,x) 7→ a� x.
(6)

Another operation allows performing linear combinations
between probability ratio vectors,

γ : RN
≥0 × RN

≥0 × R≥0 7→ RN
≥0

(a,x, z) 7→ a+ zx.
(7)

Next, the normalisation operation divides all the elements
of a probability ratio vector by a scalar,

η : RN
≥0 × R≥0 7→ RN

≥0

(a, z) 7→ a

z
.

(8)

Finally, the maximum operation allows determining the
largest element of a probability ratio vector and its respective
index, which is the equivalent to determining the MAP point
estimate of the corresponding probability distribution,

Max : RN
≥0 7→ R≥0 × N≥0

a 7→ (maxa, argmax
i

a).
(9)

3An element-by-element multiplication between two vectors or matrices,
denoted here as � so as to prevent ambiguities, especially concerning
function composition.
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Fig. 2. Conceptual execution diagram for SIMD inference module, with
respective data flow, assuming independent priors for S and F . Note
that this module avoids the need for prior probability ratios for each
value of the conjunction [S ∧ F ] (denoted as a(S, F ) in Fig. 1), making
Bayesian updates straightforward. This can in turn be used to implement
hierarchical processes, such as data fusion, temporal filters or probabilistic
subroutines by resorting to the Markov property [1]. In all cases, the “Max”
operation block, which computes the maximum a posteriori (MAP) point
estimate given the output posterior ratio vector a(S) (see main text for an
explanation) is optional, and will be only used, for example, if the module
is standalone, or if it is the last in a chain of modules. The definition of
the elementary SIMD operations used in the modules represented as blocks
labelled α, γ and η can be found in the main text.

Considering these operations, if we want to apply the
SIMD paradigm to exact Bayesian inference, we should
be prepared to reserve memory for at least 2 × N vector
elements and a scalar at any given moment during execution
to perform a fully parallel computation of the type an+1 =
f(an,x, z). Note that we are already counting on reusing
data structure a, which makes sense given the Bayesian
update notion. Fortunately, due to the complete independence
of the computations involved in computing f , inference
may be decomposed into several SIMD implementations,
resulting in a mixed parallel-sequential computation solution.

The operations defined above are universal for any infer-
ence process performed in this fashion. However, in Figs. 1
and 2 there are additional computational blocks, each of
which referred to as a “likelihood builder”. These blocks
are model-specific, and may be implemented in one of two
ways:

1) the block computes the likelihood vector (using the
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Fig. 3. Overview of the gaze estimation case-study framework.

SIMD paradigm) at runtime as a function of o and F ;
2) the block reads a predefined likelihood vector from

data storage (be it from a buffer in memory, or from
disk) as a subset indexed by (o, [F = j]) of all possible
vectors given all possible values for the observed data
and free variables.

The former has the advantage of needing only memory
space to hold the final likelihood vector of N elements, but
it assumes that the likelihoods are computable as a function
of o and F , which might not always be true (for example,
if the likelihoods result from learnt probability tables, and
not from parametric distributions), and also that the SIMD
execution time of such a computation is tractable.

The latter, on the other hand, is more general in the
sense that it allows using learnt probability tables as well
as (pre-)computed likelihood values, and implies only the
time needed for a (access-)read-write operation. However,
it requires a countable set of K different possible observed
data (i.e. in this case, random variable O must be discrete)
and a resulting storage space sufficient to store N ×M ×K
elements, which might be unmanageable. Of course, a hybrid
solution – for example, storing K values function of o, but
allowing for manipulation of these values as a function of F
and S – may be implemented, to achieve a balance between
the pros and cons of both approaches.

We therefore propose that the modules introduced in
Figs. 1 and 2 can be used to develop fast, and potentially
real-time, implementations of inference processes for many
popular classes of models found, for example, in a substan-
tial amount of robotic applications. These modules will be
specifically used to implement inference for the case study
example presented in section III to illustrate the usefullness
of this approach.

III. CASE STUDY – A HIERARCHICAL BAYESIAN
FRAMEWORK FOR GAZE ESTIMATION

The problem of gaze estimation consists in establishing
G ≡ {seX , seY , seZ , θ, φ}, a conjunction of five discrete
random variables composing the gaze vector, including the
3D coordinates of its initial point, the anatomical landmark

named sellion (se) corresponding to the midpoint between
the eyes, and pitch and yaw direction angles, denoted as θ
and φ respectively. To solve this problem we have designed
a hierarchical framework comprised of one top integration
level and several submodels, denoted generically as πi, each
of which representing a specific strategy assuming different
levels of incompleteness in the data perceived by the sensors.

As seen in the framework overview shown in Fig. 3, at
each time instant, the hierarchy receives inputs including a
preliminary estimate of the general orientation of the head,
a rough estimate of an origin for a head-centred frame of
reference, and 3D positions of detected facial features relat-
ing to that frame, yielding as a result a posterior distribution
and respective maximum a posteriori (MAP) estimate Ĝ. It
also uses the posterior of the previous time instant as prior
knowledge for a prediction model under a smooth motion
assumption. The fact that the framework uses 3D coordinates
of facial features as inputs makes it flexible enough to be
used with any combination of feature detectors of choice and
image-based 3D sensors (e.g. stereo rigs, RGB-D sensors or
3D cameras).

The final gaze orientation estimate is given by the “con-
secutive” refinement in the top-level integration model of the
output given by the hierarchy’s submodels:

• The rough head pose estimation model, yielding an
approximate measure of head orientation as frontal or
left or right profile, obtainable using the minimum
amount of data sensed at a given instant.

• The feature-based head pose estimation model, that uses
the restrictions imposed by whatever facial features are
detected at a given instant, which should be available
at a reasonable distance to the artificial observer.

• The eye gaze estimation model, that uses the relative
positions of the irises within each eye, which should
be available when the interlocutor is in close proximity
to the artificial observer, allowing a more fine-grained
estimation of a fixation point.

• The prediction model, that uses information from pre-
vious estimation steps.

An example of the result of the inference process in



(a) RGB scene (b) Input data (c) Final estimate

(d) Rough head model (e) Head pose model (f) Eyes gaze model

Fig. 4. Inference process. Facial features are used by the submodels to infer
the best feasible gaze estimation and then the mixture model combines them
to provide the final estimate. Red dots are the extremities of the lips, purple
dot is the nose, black dots are the eyes and cyan dots are the extremities
of the eyes. The overall estimate given by the top-level model is shown
in (c) as a green vector with a blue initial point superimposed on a 3D
reconstruction of the Kinect point cloud.

Fig. 5. Results for different combinations of eye gaze and head pose
directions. In each case, a 3D reconstruction of the subject and the gaze
estimate are shown, using the same convention as in Fig 4c.

a given instant is depicted in Fig. 4. The final overall
estimate yielded by the top-level model is shown in Fig. 4c,
and reflects how the framework outputs a solution that is
consistent with the geometry of the features given as input.
An additional sequence of results that attest to the correctness
of the model is shown in Figure 5, demonstrating the
consistency of the model for a set of very diverse situations,
ranging through many different combinations of head poses
and eye gaze directions. Even when, for a specific situation,
head pose and gaze directions are in blatant contradiction,
the framework still yields a perfectly acceptable result.

IV. RESULTS AND DISCUSSION

The hierarchical Bayesian framework presented in sec-
tion III was nearly wholly implemented using the SIMD
inference module of Fig. 2 to compute partial inference
results for each of its composing models. In fact, each of
these was further decomposed so that each conditionally
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Fig. 6. Simplified diagram showing SIMD implementation of the case-
study framework presented in Fig. 3. All four submodels have similar
implementations, and compose the four vertical processing lanes in the
diagram above the ellipsis marks. Each lane applies consecutive Bayesian
updates using the SIMD inference module Π of Fig. 2, based on observations
o that correspond to facial features or angles composing the underlying
geometries. Note that each lane has a different size of Π-cascades, and
that each module Π has different corresponding incoming observations and
“likelihood builders”, a situation that is simplified in this diagram by abuse
of notation, so as to improve readability. The posterior ratios computed
by the four lanes are then integrated by the top-level model (under ellipsis
marks) – they are transformed into probability distributions and subsequently
linearly combined in SIMD-fashion through a weighted sum, by iteratively
using operation γ of equation (7). Finally, the MAP estimate of gaze
direction vector Ĝ is computed using equation (9).

independent likelihood function would be taken into con-
sideration separately and then its effect integrated through
consecutive Bayesian updates, therefore trading off memory
usage at the expense of execution time (see Fig. 7). The
SIMD implementation of the hierarchy is shown in Fig. 6.
The only submodel which was not implemented using the
proposed SIMD solution was the top-level integration model:
since it is a mixture model of the posterior distributions of
the underlying low-level models, it is a degenerated model
with no observations and only searched and free variables.
We found that, for this type of models, it is more efficient
to convert all of the posterior distributions from ratios to
probabilities, and then perform the corresponding weighted
sum that the mixture model implies in SIMD fashion, instead
of using the SIMD inference module of Fig. 2. The remaining
models all use the SIMD inference module – all involve
searched, free and known variables, and the eye gaze estima-
tion model additionally involves an additional free variable
concerning distance to fixation, which is not needed for the
final gaze vector estimate.

The performance of the SIMD solution proposed in this
paper was compared against a CPU implementation us-
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Fig. 7. Bayesian model taxonomy and its implications on a mixed parallel-
sequential SIMD-based solution.

Fig. 8. Speedup according to searched variable cardinality N and
corresponding GPU memory usage. All models benefit from a speedup
globally proportional to N – the speedup curves are not smooth throughout,
however, because G is a composite searched variable, and each of its
components influences the “likelihood builders” for each model differently
from one another. This effect is particularly visible for the feature-based
head pose estimation model, which exhibits two local maxima.

ing a professional inference engine, ProBT R© v2.3.0 by
ProBAYES, a generic inference programming tool that facil-
itates the creation of Bayesian models and their reusability
using the Bayesian programming formalism [2]. This library
is a powerful programming tool for low-to-medium complex-
ity models, and also allows for easy design, prototyping and
testing of high complexity models, such as the framework
presented in section III.

The computational resources used in the preliminary per-
formance study presented next consist of a pair of GPUs,
two Asus GTX780 3 GB DirectCU II OC GPU units, used to
execute the proposed SIMD-based solution, and a four-core
CPU, an INTEL Core i7-3770, used to execute its traditional,
fully sequential counterpart. These resources are supported
by 8 GB of RAM memory (Kingston HyperX Blu DDR3-
1600 Mhz), 128 GB of SSD storage via a KINGSTON
SSDNow V200, and a Seagate Barracuda 1 TB hard disk.
Unfortunately, we could not yet use the eye gaze estimation
model in this study due to several debugging issues regarding
the definition of its “likelihood builder”, which we are close
to solving.

In Figs. 8 and 9, results are presented that show the
remarkable speed-ups obtained by using our solution as com-
pared to the baseline ProBT inference engine performance.

Fig. 9. Overall speedup for each model/combination of models.

These results are all the more impressive when considering
the Kullback-Liebler divergence between ProBT and SIMD
posterior probability distributions is in the order of 10−12.
In conclusion, these results clearly show that the execution
times obtained using our solution will allow for estimating
gaze with resolutions that are required by HRI applications
at rates greater than 1 fps, and it is currently being integrated
in a full-fledged system for HRI – see [9].

As suggested by these results, our proposed solution al-
lows in general for the tractable implementation of complex,
high-dimensional models such as the case-study presented
herewith. However, this case-study has been decomposed
in order to comply with computational resource limitations
exclusively “by hand”. Therefore, to be able to use the
concept presented in this text in an even more generalised
and useful way, it would be important to devise an automatic
(or at least semi-automatic) procedure so as to determine
the computational tree for each model one would wish to
implement in a tractable fashion, in order to fully take
advantage of the taxonomy presented in Fig. 7 and therefore
exploit structure-level parallelism [5]. One possible way to
do this would be to adapt state-of-the-art procedures [5], so
as to deal with ratios instead of probabilities.
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