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Abstract—Non-singleton fuzzification is used to model uncer-
tain (e.g. noisy) inputs within fuzzy logic systems. In the standard
approach, assuming the fuzzification type is known, the observed
[noisy] input is usually considered to be the core of the input
fuzzy set, usually being the centre of its membership function.
This paper proposes a new fuzzification method (not type), in
which the core of an input fuzzy set is not necessarily located at
the observed input, rather it is dynamically adjusted based on
statistical methods. Using the weighted moving average, a few
past samples are aggregated to roughly estimate where the input
fuzzy set should be located. While the added complexity is not
huge, applying this method to the well-known Mackey-Glass and
Lorenz time-series prediction problems, show significant error
reduction when the input is corrupted by different noise levels.

I. INTRODUCTION

Fuzzy logic systems (FLSs) have been widely used to tackle
time-series prediction problems, particularly under noise and
uncertainty conditions. The applied techniques are ranging
from type-1 to type-2 FLSs, and from singleton to non-
singleton FLS configurations (as shown, for example, in
[1]-[7] ). Non-singleton fuzzification is one of the known
approaches to provide a capacity for noise/uncertainty han-
dling in FLSs used for such purposes. Although the theory
of Non-Singleton Fuzzy Logic Systems (NSFLSs) has been
established for many years (e.g., in [5], [8]), and the capacity
of NSFLSs to deliver superior performance in comparison
to Singleton Fuzzy Logic Systems (SLFSs) has been shown
repeatedly (e.g., in [8]-[10]), the research on NSFLSs is still
in its early stages since their complexity has not helped to
widen their usefulness among the community, compared to
the singleton systems.

Briefly, in the singleton FLSs, the inputs to the system are
singleton fuzzy sets, meaning that the membership grade of the
input fuzzy set is 1 at a single value of input, and O otherwise.
In other word, there is a full certainty about the value of the
given input. In non-singleton systems, the uncertainty of the
given input value is modelled in the fuzzifier, by converting
the crisp input to a non-singleton fuzzy set, with an arbitrary
membership function.

It is widely accepted in NSFLS design, that conceptually,
the non-singleton fuzzifier implies that the given input value
is most likely to be the correct one from all of the values in
its immediate neighborhood... the neighboring points are also
likely to be the correct value, but to a lesser degree. [8], [11],
[12]. This is the basic idea behind the standard approach in

locating the input fuzzy set centred around the observed input.
In reality however, a given observed sample may be corrupted
by noise so it may not be the most likely to be the correct
one. The question is when the original noise-free sample is
not reachable, is there any better estimation for locating the
input fuzzy set?

In this paper, a method is proposed to statistically aggregate
the observed sample with a few previous samples (using
weighted moving average) to have a better estimation of the
most likely value to be the correct input, compared to the
observed input. This can be an improvement to the standard
noise modelling by non-singleton classification, with a poten-
tial to improve the performance of NSFLSs. The proposed
method has been examined in this paper by a couple of chaotic
time-series prediction problems (Mackey-Glass and Lorenz)
under noisy conditions. The results are then compared with
the standard methods found in the literature.

The rest of this paper is organized as follows: in section
2, the backgrounds on non-singleton fuzzification and its im-
provement methods for noisy time series prediction are briefly
explained. Section 3 introduces the new proposed fuzzification
method and in section 4 the time series experiments and their
results are presented. The paper will finally be concluded in
the last section.

II. BACKGROUND AND MOTIVATION

The fuzzification component in a general FLS architecture
(Fig. 1) plays a central role in capturing and modelling the
input uncertainty. Associating a fuzzy set (FS) to each crisp
input value is what the fuzzification does towards modelling
the uncertainty. An input FS around the observed input value
a’ is represented by p(z) in Fig. 1. A wider or narrower input
FS represents a more or less uncertainty level on the observed
input value, respectively.

Determining the type of the u() (e.g., Gaussian) is a system
designers’ decision based on an estimate of the kind and
quantity of noise or uncertainty present [3]. The process of
identifying and optimizing the shape of u() is a different
topic from this paper (see for example [13]-[16]). Since the
uncorrupted input is intuitively not known, it is questionable
which = might represent the maximum grade in the input
FS. In the current literature (e.g. [13]), the common method
is to use the observed input (x’) such that its membership
grade p(z’) is maximum (namely, 1). In other words, z’ is
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Fig. 1. The illustration of singleton vs. non-singleton FLS architecture

FLS

considered by default, to be the core ! of the input FS. This
loosely means that x’ has the highest chance to be the real
uncorrupted input 2. However this is not a perfect modelling
of noisy input, as this may be misleading for the rest of the
FLS, depending on how much a particular observed input
has been deviated from its real value. Based on the random
characteristic of noise, the fitness of such a model randomly
varies among the different inputs.

For example, in Fig. 2, sample noisy and noise-free time
series are shown. The input FS based on the observation and
based on the real values are also shown, where a Gaussian
fuzzification is applied. Since there can be random differences
between the observed and real values, the fuzzification based
on the observed values can be largely deviated from the ideal
(but not observable) FS. The motivation of this research is
improving the performance of such NSFLS for noisy time
series prediction, by dynamically tuning the fuzzification set
centre. This can be achieved by analysing the previously
observed samples in addition to the current one.

Looking at the literature, improving the time-series predic-
tion performance of NSFLSs in noisy conditions has been
focused in some research works from different perspectives.
In two previous articles, it is shown that the performance of
such systems can be improved by changing in the inference
engine. While the standard method of non-singleton inference
in Mamdani’s method [18], as described in [13], is the
compositional rule of inference i.e. the sup-star (e.g. max-
min) operation between the input and the antecedent MFs, it
is suggested in [19] to use the centroid operator, and in [20]
to use the MF’s quantified similarities instead of the standard
composition in the inference engine of NSFLSs used for noisy
time-series prediction.

Some other research works have focused on the fuzzifier
component in order to improve the NSFLS performance in
noisy time-series prediction. Particularly there are a few re-
search works on using varieties of moving average method
within the development of predictive models by fuzzy logic

!By definition, the core or the kernel of a fuzzy set is the set of all values
where their membership grade is 1, i.e. the 1-cut of the fuzzy set [17].

2We used the term “loosely” together with the word chance in order to
avoid taking the problem into the probability context. However, the non-
singleton fuzzification of a noisy input is linked anyway to the noise properties
- including its statistical characteristics - which shows that there is an overlap
between the fuzzy set theory and the probability theory when it comes to
non-singleton fuzzification.
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Fig. 2. (a) Noisy time series together with the non-noisy values and an
associated WMA curve. In an extreme case, at time ¢;, a real input x; has
been observed as LB; while the WMA shows :rg’ . (b) By Gaussian fuzzification,
the core of the FS is set to the observed input a:; (right-side FS). An ideal FS
model would be the left-side one in which the core is x; (left-side FS). As
it is shown, in this extreme case, the values more than z; are very unlikely
to be observed while the right-side FS does not reflect this. In contrast, the
values around z; which should have the highest chance to be observed are
graded nearly zero in the right-side FS model. The FS based on WMA is
closer to be realistic.

systems, such as in [3] and [21], where the system parameters
of NSFLS are dynamically trained for better performance
using non-linear autoregressive moving average (NARMA)
through feedback loops. In [22] also, the input noise has
been handled by tuning both non-singleton fuzzifier and type-2
inference engine in order to improve the performance.

In all of the above attempts, the observed input has been
used to determine the core of the input fuzzy set. To the best
of our knowledge, no analytical method is used to dynamically
determine the core of the non-singleton fuzzification.

III. DYNAMIC FUZZIFICATION BASED ON WMA

The described standard fuzzification approach assumes the
observed noisy input to be the core of the input fuzzy set,
however, this may not be the only option. Having the FS
type already identified (e.g. Gaussian), NSFLSs’ performance
can be tuned by adjusting the core of the input FS (e.g.
its mean), such that the FS can model the input uncertainty
as close as possible. The proposed approach is to use a
nominated statistical method to estimate the expected value of
z' according to a set of past inputs. Moving Average (MA) is a
simple solution, of which Weighted Moving Average (WMA)
provides a more flexible formulation.

WMA has many applications particularly in financial and
engineering domains, when it is needed to smooth the curve
of a variable change and get a better trend identification.
We prefer WMA over simple MA (SMA) for the purpose of
this paper, because we would like to assign a higher weight
to the last observed input than the past ones. Moreover, we
would like to reduce the lag that naturally occurs between



the samples and its moving average curve if SMA is used.
Other MA methods e.g. Cumulative MA (CMA), Smoothed
MA (SSMA), or more advanced estimation techniques such
as Auto-Regression MA (ARMA) and its non-linear version
(NARMA) are also possible options, however in this paper
we focus on a simple approach (WMA). Notably, the more
advanced estimation method is used, the more computational
complexity overload is to be considered.
For the ¢th sample z;, WMA is defined here as:
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where d is the depth of WMA, w is an array of weights, and N
is the number of samples. For ¢ < d, WMA is not calculated.

In the same example of Fig. 2(a), the WMA is calculated
according to the current and two past input values (here the
weight array values are arbitrarily set to 3 for the z}, 2 for
ai_, and 1 for x/_,). For the special case of observed x at
time ¢;, as seen in Fig. 2(b), the WMA-based FS is closer to
the ideal FS than the observation-based FS, leading to a more
realistic modelling. Also in general case, Fig. 2(a) shows that
the WMA is more closely following the real input over time.
This means that the fuzzification based on dynamic WMA
values are likely to provide more accurate information about
the input uncertainty, than the fuzzification based on the static
observations.

The proposed method will be examined in the next section.

=d.N; (1)

IV. EXPERIMENTS AND RESULTS

In this section we will replace the standard NSFLS fuzzi-
fication with a simple WMA-based fuzzification and will test
it by two known prediction problems, namely Mackey-Glass
(M-G) and Lorenz time series under noisy conditions. The
results will be compared with the standard NSFLS. Besides
the mathematics of the two time series, the rest of the two
experiments will follow a same method described below.

A. Methodology

The method described in [5], uses standard NSFLSs for
the prediction of M-G time series in noisy conditions and
compares the results to SFLSs. We follow a similar approach
but will compare the results between the two types of NSFLSs.
The noise is considered to be Gaussian noise in two signal-to-
noise ratios (SNRs) of 10dB and 5dB. Regarding the rule-base
generation, we follow the method given in [23], an established
approach to learning rules from existing input-output pairs.

Using (5), x(t) is calculated for 2000 consecutive time
points, i.e.: t = —999 to ¢ = 1000. The first 1000 points
are for the initial transients to die out, then using points ¢ = 1
to ¢ = 700 the system is trained to develop its rule-base.
This means that the rule-base training stage is conducted in
the same noisy condition as the testing. The last 300 points
from ¢ = 701 to ¢ = 1000 are used for testing the system
(see Fig. 3). Rules are trained according to the one-pass
method described in [23]. Nine past points in the time series
are employed as inputs to generate a predicted value. Seven

equally-distributed triangular MFs are also used to model the
input domains.

Two NSFLSs are designed that use the same input samples
to predict the output. They also use the same fuzzification
type, namely a Gaussian membership function. The standard
deviation of the Gaussian membership function is derived from
the system’s SNR value. If the standard deviation of the signal
and the standard deviation of the noise in a system are o5 and
oy, respectively, the system’s SNR can be written as:

2
SNR = 1010g(Z—;) 2)

Thus the standard deviation of the noise is calculated using:

SNR

= 100/ ®)

Both FLSs use Mamdani’s inference method, centroid de-
fuzzification, and the standard max-min for the composition of
fuzzy relations. The first FLS uses the standard fuzzification,
so that the FLS’s core is located at the value of the observed
input. The second FLS uses the WMA-based fuzzification,
which means that the core of the input FS is located at the
WMA of the past few inputs, depending on the WMA’s depth
and weights. We set the WMA'’s depth to 3 and the WMA’s
weights to (3, 2, 1) for the last three observed inputs. In other
words, the FS’s core for the ¢th input is:
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The above selections of depth and weights are not opti-
mised, rather they are simply set for the proof of concept. A
more advanced analysis is required to optimize them which is
out of the scope of this paper and is considered as a future
direction. Fig. 2 shows a part of the testing sample set together
with the calculated WMA (for the case of SNR=10dB). It is
also noticeable that the NSFLS capable of handling the above
calculation needs a memory for keeping the last two observed
inputs, which may seems to add to the system’s complexity.
However, we might notice that an even larger memory has
been already required for the rule-training stage.

The prediction performance is evaluated based on the MSE
(Mean Square Error) indicating the deviation of the prediction
from the expected value. For calculating the performance error
(MSE), the squared deviation of each predicted value from the
expected value according to (5) is calculated and averaged. The
less the averaged MSE, the closer the prediction.

It has been already shown (e.g. in [5]) that the NSFLS out-
performs its counterpart FLS for noisy time-series prediction.
In this paper, the standard NSFLS has been set as the reference
system. As such, four possible settings for the noisy time series
prediction are examined here: Standard/WMA-based NSFLS,
fed by 5/10dB SNR noisy inputs.

1
Ty

i =701...1000 (4

B. Results of Mackey-Glass Time Series Prediction

Among the different time-series prediction problems, pre-
dicting Mackey-Glass time series [24] has been a benchmark
problem in the literature which has been considered by a num-
ber of researchers, e.g., in [25]-[28]. An advantage of using
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Fig. 3. The illustration of the pre-computed (noise-free) and noisy (Gaussian, SNR=10dB) time series. The system is trained from ¢ = 1 to ¢ = 700 and
tested from ¢ = 701 to ¢ = 1000. The period ¢ = —999 to ¢t = 0 (not shown here) is for the initial transients to die out.

M-G time series is that although the time-series behaviour
seems highly chaotic and unpredictable, the expected value
can be pre-calculated using a closed differential equation, so
that the performance of predicting each sample point can be
accurately computed. M-G time series is characterised by a
differential equation [24] as:

dx(t) 0.2x(t — 1)
dr 14290 —1)
For 7 > 17, (5) demonstrates a chaotic behaviour. We have
selected 7 = 30. dz is also set to 1.
The prediction results in the four settings are illustrated in
Fig. 4. In terms of quantities, table I shows the averaged MSE
in the described four experiment settings.

—0.12(t) (5)

TABLE I
THE PREDICTION PERFORMANCE FACTORS (FOR M-G TIME SERIES)
PRODUCED BY THE TWO NFLSSs.

System SNR (dB) MSE

Standard 10 0.01099

WMA-based 10 0.00818 (25.53% improvement)
Standard 5 0.02846

WMA-based 5 0.02550 (-10.41% improvement)

As shown in Fig. 4, using WMA has helped a closer
prediction in both noise conditions for the M-G time series
experiment. Table I shows that in all the four settings, WMA-
based fuzzification has improved the examined two prediction
performance factors. In the lower noise level (SNR=10dB),
the effect of using WMA-based fuzzification is 25.53% less
prediction error. In the higher noise level (SNR=5dB) also,
the MSE has been still decreased but by a relatively lower
percentage (10.41%).

The method of standard NSFLS used in this paper is similar
to the few existing similar researches (e.g. [5], [13]) but the
absolute results may not be directly compared, due to the
significant effect of the experiment settings on the results.
However in a similar setting used in [19] and [20], it is
shown that the MSE of the standard NSFLS in 10dB noise has
dropped by 28.15% and 7.71% when two alternative inference

methods are applied (namely Cen-Min and Similarity-based,
respectively). The 10.41% improvement of MSE shown in this
paper is in parallel with (and potentially can be added to)
the above improvements since it does not touch the inference
engine, rather changes the fuzzification method. A future
research will be dedicated to explore the results of applying
the changes to both fuzzification and inference methods.

C. Results of Lorenz Time Series Prediction

In addition to the M-G time series, we also analyse the NS-
FLSs’ performances using another known time series common
in hydrodynamics and meteorology, namely Lorenz time series
[29]. We consider the time series associated to variable x of
the three-dimensional Lorenz differential equations:

t=oy—2); y=rx—y—xz; Z=xzy—>bz (6)

where the dots denote the next values to the three variables
x, 9, z in the time series. In fact, this is a three-dimensional
time series, but just one of the dimensions (z) is used in this
experiment. To demonstrate a chaotic behaviour, the attributes
o, b and r are respectively set to 10, 8/3 and 28, as suggested
in [29].

Similar to the what was observed in the last sub-section,
applying the new fuzzification method for Lorenz time series
shows the outperformance of the new method, as shown in Fig.
5 and Table II. The new method has produced less prediction
error for the both noise levels. It shows 7.24% less error in
SNR=10dB and 13.19% less error in SNR=5dB compared to
the standard method.

TABLE II
THE PREDICTION PERFORMANCE FACTORS (FOR LORENZ TIME SERIES)
PRODUCED BY THE TWO NFLSSs.

System SNR (dB) MSE

Standard 10 11.05557

WMA-based 10 10.25474 (7.24% improvement)
Standard 5 24.55937

WMA-based 5 21.32056 (-13.19% improvement)
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Fig. 5. The prediction results of the two NSFLSs together with the expected values in SNR=10dB for the sample Lorenz time series.



V. CONCLUSIONS AND FUTURE WORK

In this paper, we attempted to improve the NSFLSs’ per-
formance by challenged an idea that states “’the given [noisy]
input value is most likely to be the correct one”. The core
of a fuzzified input (the fuzzy variable where the membership
function is maximum), is not necessarily the observed input in
a given time. Instead, an aggregation of the current input and
a number of past inputs can be chosen as the core, in order to
increase the chance of having a closer estimation of to the real
input. It is intuitively sensible to assign a higher weight to the
observed input, than its immediate neighbours, than the farther
ones. Thus the suggested aggregation method in this paper is,
but not limited to, the weighted moving average (WMA). This
idea is followed by designing a fuzzifier that sets the core of
its fuzzy set dynamically on the calculated WMA, regardless
of the arbitrarily choice of the membership function type.

Two experiments set for applying the new method to a
couple of chaotic and noisy time series prediction problems
Mackey-Glass and Lorenz. The performances of NSFLSs in
predicting the noisy time-series are examined for the standard
fuzzification and the new methods, by measuring the produced
error (MSE). The results in all settings are significantly im-
proved. In general, the both experiments collectively provide
evidences that applying the new method can potentially opti-
mize the NSFLSs’ design. However, not all of the parameters
in both experiments are carefully selected or optimized. Thus
more analysis is necessary to find the exact effect of those
parameters on the final results. Moreover, it will be useful to
know which statistical aggregation (not limited to WMA) may
fit to which SNR or other input parameters/patterns.

There are different directions for the future works. Many of
the methods, settings and parameters are needed to be more
carefully selected. For example, the statistical aggregation can
be chosen from a wide range of available methods. For the
WMA parameters, the depth and weights could be tuned to fit
a specific time series under a specific noise condition. Particu-
larly, the choice of WMA weights in this paper was simplistic,
in order to proof the concept only. More statistical analysis
of the results can also help determining the selection criteria
for those parameters, which consequently help optimizing the
fuzzifier design for a given purpose.
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