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Abstract  

Designing for learning is a complex task and considered one of the most fundamental 

activities of teaching practitioners. A well-balanced teaching system ensures that all aspects 

of teaching, from the intended learning outcomes, the teaching and learning activities used, 

and the assessment tasks are all associated and aligned to each other (Biggs, 1996). This 

guarantees appropriate and therefore effective student engagement. The design and 

promotion of constructively aligned teaching practices has been supported to some degree by 

the development of software tools that attempt to support teaching practitioners in the design 

process and assist them in the development of more informed design decisions. Despite the 

potential of the existing tools, these tools have several limitations in respect of the support 

and guidance provided and cannot be adapted according to how the design pattern works in 

practice. Therefore; there is a real need to incorporate an intelligent metric system that 

enables intelligent design decisions to be made not only theoretically according to 

pedagogical theories but also practically based on good design practices according to high 

levels of satisfaction scores. 

To overcome the limitations of existing design tools, this research explores machine learning 

techniques; in particular artificial neural networks as an innovative approach for building an 

Educational Intelligence Design Tool EDIT that supports teaching practitioners to measure, 

align, and edit their teaching designs based on good design practices and on the pedagogic 

theory of constructive alignment. Student satisfaction scores are utilized as indicators of good 

design practice to identify meaningful alignment ranges for the main components of Tepper’s 

metric (2006). It is suggested that modules designed within those ranges will be well-formed 

and constructively aligned and potentially yield higher student satisfaction. On this basis, the 

research had developed a substantial module design database with 519 design patterns 

spanning 476 modules from the STEM discipline. This is considered the first substantial 

database compared to the state-of-the-art Learning Design Support Environment (LDSE) 

(Laurillard, 2011), which includes 122 design patterns available.  

In order to have a neural-based framework for EDIT, a neural auto-encoder was incorporated 

to act as an auto-associative memory that learns on the basis of exposure to sets of ‘good’ 

design patterns. 519 generated design patterns were coded as input criteria and introduced to 

the designed neural network with feed-forward multilayer perceptron architecture using the 
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hyperbolic tangent function and back-propagation training algorithm for learning the desired 

task. After successful training (88%), the testing phase was followed by presenting 102 new 

patterns (associated with low student satisfaction) to the network where higher pattern errors 

were generated suggesting substantial design changes to input patterns had been generated by 

the network. 

The findings of the research are significant in showing the degree of changes for the test 

patterns (before) and (after) and evaluating the relationships between the core features of 

module designs and overall student satisfaction. T-test analysis results show statistically 

significant differences in the test set (before) and (after) in case of the alignment score 

between learning outcomes and learning objectives (V1) and the alignment score between 

learning objectives and teaching activities (V2), whereas no statistically significant difference 

is seen in the alignment score between learning outcomes and assessment tasks (V3). The 

network gives an average improvement of 0.9, 1.5, and 0.5 in the alignment scores of V1, V2, 

and V3, respectively. This resulted in increasing the average of satisfaction scores from 3.3 to 

3.8. Accordingly, positive correlation with different degrees between student satisfaction and 

the alignment scores were suggested as a result of applying the network proposal changes.  

EDIT, with its data‐orientated and adaptive approach to design, reveals orthodox practices 

whilst revealing some unexpected incongruity between alignment theory and design practice. 

For example, as expected, increasing the amount of questioning, interaction and group‐based 

activity effects higher levels of student satisfaction even though misalignment may be 

present. However, the model is relatively ambivalent towards the alignment of learning 

outcomes and learning objectives suggesting there is some confusion between practitioners as 

to how these are related. Also, this confusion appears to persist when defining session 

learning objectives for different types of teaching, learning and assessment tasks in that the 

activities themselves appear to be at a higher cognitive level according to Bloom’s Taxonomy 

than the respective learning objectives (resulting in positive misalignment).
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CHAPTER 1: Introduction 

 

1.1 Research Statements  

The concept of constructive alignment is considered to be one of the most influential ideas in 

higher education that promotes deep engagement with the learning material in such a way 

that learners can demonstrate that they have achieved the stated outcomes (Biggs, 1996). It is 

therefore surprising that there is not a widespread proliferation of supporting models, 

frameworks, and toolkits that support practitioners to objectively measure how constructively 

aligned their educational designs are.  

Existing learning design tools in addition to the current state-of-the-art learning design 

systems, such as the Learning Design Support Environment (LDSE) (Laurillard, 2011) 

inherently lack objective metric systems that are able to measure the degree to which an 

educational design is well-formed according to design theories such as constructive 

alignment. Such a metric system would enable teaching staff to make more informed design 

decisions such as which profile of activities/assessments to use for a particular learning 

outcome or need of a cohort. So there is a real need to incorporate a metric system that 

enables intelligent design decisions to be made based on good design principles. This raises 

the following research challenges:  

• How do we measure the quality of an educational design? i.e. For each learning 

outcome, how well aligned are the associated learning objectives, teaching and 

learning activities and the assessment tasks?   

• How can such a design metric be used to influence good design decisions?  

• How can a system adapt overtime to base its measure of quality not just on theory but 

also on effective practice? That is, as the system encounters more examples of 

effective practice it adjusts its internal representations of alignment and its subsequent 

recommendations for enhancement. 

• What correlation can be found between student satisfaction and the alignment metric 

i.e. between theory and practice? What particular changes in module design elicit high 

level student satisfaction?  
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Tepper (2006) proposed a computational model of constructive alignment that combines the 

principles of constructive alignment with those of generative grammar and linear algebra to 

compute alignment. Tepper’s metric adopts a systematic and structural view of educational 

design and uses Bloom’s Taxonomy as means of quantifying alignment of the four main 

components of an educational design. Basic classical set theory and linear algebra 

computations are applied to the generative model to provide numerical measures of alignment 

for both holistic and individual aspects of the educational design. Although the metric is 

useful in allowing the quality of educational designs to be measured and thus producing 

constructively aligned instructional designs, it bases both module structure and the 

categorisations of the different components on pedagogic theory alone (i.e. outcomes-based 

approach to module design, components are organised according to Bloom’s taxonomy and 

related according to the principles of constructive alignment). The issue here is that such 

theoretical principles may not sufficiently reflect effective design practice and therefore it is 

important for the alignment system to be cognisant of this in order to offer pragmatic and 

realistic design solutions. In this context, a design decision system is an intelligent agent that 

recommends alternative design decisions to practitioners to help shape and enhance their 

teaching (Vialardi, Bravo, Shafti, and Ortigosa, 2009). Developing decision making systems 

with support of artificial intelligence were documented since the past with the traditional 

approaches as in (Dufournet, 1987) and more novel approaches as in (Sani, and Aris, 2014). 

In existing learning design tools, the implementation of such recommending systems or 

decision making systems is hardly rare or it follows the traditional rule-based approaches 

based on some educational theories only in offering the recommendation and design 

decisions. Therefore, these tools are static in nature and cannot allow such a system to adapt 

to changing practices and be tolerant of variations which may actually be successful in 

practice. Thus this research investigates a novel approach to incorporate theory and practice 

together to underpin an intelligent tool that can base its measure of quality not just on theory 

but also on effective practice. So it adjusts its internal representations of alignment and its 

subsequent recommendations for enhancement. 
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1.2 Aims, Objectives, and Methodologies 

1.2.1 Aims 

The overall aim of this research is to provide more intelligent mechanisms that can aid in the 

formation of more effective learning designs by developing an intelligent alignment tool that 

is underpinned with good design principles according to constructive alignment theory and 

good design practices according to high student satisfaction scores.    

1.2.2 Objectives 

1. Review and analyse existing learning design systems and identify their current 

limitations; 

2. Evaluate and implement the constructive alignment metric developed by Tepper 

(2006) to compute alignment between the educational components of a module design 

– this will form the metric engine; 

3. Establish a clear design methodology for integrating the metric engine with the 

current state-of-the-art learning design tools such as the Learning Design Support 

Environment (LDSE);   

4. Design and implement a prototype of the metric engine to read, analyse, and modify 

design patterns produced by LDSE; 

5. Extend the alignment metric to incorporate good design practices based on high 

student satisfaction scores; 

6. Generate appropriate data sets of realistic learning design patterns from good 

practices associated with high levels of student satisfaction; 

7. Identify acceptable and allowable alignment threshold values based on effective 

practice (good module designs with high satisfaction scores); 

8. Incorporate an adaptive engine into the alignment metric; 

9. Investigate the use of auto-encoder neural networks trained with back-propagation 

(and variants thereof) to learn features of good design patterns to form a knowledge-

based system that can be used for pattern association; 

10. Develop and produce an education design intelligent tool EDIT that can measure 

alignment between core elements of educational design and recommend changes to 

enhance designs;   

11. Investigate such relationships between theory and practice.  
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1.2.3 Methodologies 

This research investigates the synergy of machine learning techniques and constructivist 

learning and teaching theory to formulate an intelligent metric tool for constructive 

alignment. Throughout this research several methods are used to collect appropriate data sets 

for the machine learning task. These methods consist of analysis of the literature and the use 

of students’ conceptions to identify good and effective design practices through the use of 

their satisfaction scores. Module design desk-based research study, checklist, and in-depth 

observation are used to collect design pattern data according to differing levels of student 

satisfaction for the purpose to learn from learning designs of differing quality. Subsequently, 

the methodology for utilizing machine learning techniques involved the training of various 

feedforward multi-layer perceptron networks as auto-encoders. Neural auto‐encoders also 

known as auto-associative networks (Bengio, 2009) and they attempt to reconstruct the input 

data at the output layer. In other words, these networks are trained to remember and associate 

a number of input patterns forming a perfect memory of training patterns. Thus, when a noisy 

pattern is presented, the networks associate it with the nearest one in their trained memory. 

This is useful for restoring or correcting noisy patterns making them well suited for the 

research problem. For this, different types of auto-encoder architectures were used and 

discussed in Chapter 5.  

1.3 Research Contributions  

The major contribution of this research is that it is the first in investigating the usefulness of 

such an alignment metric that can measure numerically how well aligned the components of 

an educational design are. This is achieved by producing a meaningful alignment system 

where acceptable ranges are based on good teaching practices, which are based on high level 

of student satisfaction, rather than theory alone. The research also investigated a novel 

approach that utilizes a machine learning approach in the form of artificial neural networks 

and in particular auto-encoder networks that extended the alignment system to be informed 

based on the theoretical framework of constructive alignment and also to be informed by 

good practice examples. This is highly innovative and to date, no other learning design 

system, including the LDSE, is able to do this. The results of this research identified core 

design principles inferred from the neural network to form educational designs that can 

attract higher level of student satisfaction and thus high student engagement. For example, 

good practice was found to be around the use of high-level activities such as the use of 
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collaborative-based learning and active learning. In addition, positive correlation was found 

between module designs and student satisfaction when one or more of the higher level 

activities are associated with learning objectives of different Bloom’s levels as it seems better 

suited in practice and student satisfaction.  

In addition to the above contributions, the research also developed a substantial module 

design database with more than 500 design patterns for the science and technology sector, 

which have been generated from real and effective module designs that have been evaluated 

with high students' satisfaction rates. This work is the first to develop such a large design 

pattern database in which these design patterns are provided in a structured way – so that 

relations between design components are easily understood and can thus be utilized by other 

researchers to evaluate their educational design tools and patterns.    

1.4 Research Structure 

Chapter 2 of this thesis presents a literature review of the existing learning design systems 

along with their theoretical foundations, functionalities and limitations. The conceptual model 

of the alignment metric is also presented in this chapter. Chapter 3 identifies the functional 

requirements of the metric engine and details the process for integrating it with the LDSE to 

form a software system that is able to compute and display alignment. In chapter 4, the data 

and research methodology is given. Chapter 5 investigates the different types of neural 

network methods applied to learn the task of auto-associative. Chapter 6 reports on the 

outcome of the best network including results generated from the system and subsequent 

analysis and evaluation of the model’s performance. The chapter also discusses the network’s 

underlying ‘design preferences’ it has discovered from the data. Chapter 7 concludes the 

presented work and summarises the key contributions made by this research, highlights the 

limitations of the work, and proposes some suggestions for future research. 
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CHAPTER 2: Literature Review 

2.1 Introduction   

Designing for learning is a complex task and considered one of the most fundamental 

activities of a teaching practitioner (Cameron, 2008). Learning materials need to be designed 

effectively in order to achieve a well- balanced learning and teaching system. A well-

balanced teaching system ensures that all aspects of teaching, from the intended learning 

outcomes, the teaching and learning activities used, and the assessment tasks, are all 

associated and aligned to each other (Biggs, 1996).  This guarantees appropriate and therefore 

effective student engagement. Well-balanced (or constructively aligned) teaching practices 

have been proven to foster deep student learning (Marton and Saljo,1976) and thus impact 

highly on student satisfaction as clearly documented by researchers such as (Arbaugh, 2014) 

and (Rienties, Toetenel, and Bryan, 2015). The design and promotion of constructively 

aligned teaching practices has been supported to some degree by the development of software 

tools that attempt to support the teaching practitioner in the design process and assist them in 

the development of conscious and purposeful teaching. With the creation of different toolkits 

in this domain, tools differ significantly in terms of how they are structured and the types of 

pedagogical patterns provided to aid the design process. Some tools are based on particular 

pedagogic models or philosophies; others provide structured patterns to guide the teaching 

practitioners through particular aspects of the design process and to support them in making 

informative design decisions (Conole, 2013). This chapter will review first the concept of 

learning design with respect to learning design patterns, pedagogical patterns and their 

theoretical foundations and how they can assist in the development of effective teaching and 

learning design. Following that, a selection of some existing learning design tools will be 

reviewed and analysed by describing what they are, reviewing their functionalities, the 

guidance and support they provide during the design process, and their limitations. The 

chapter will also review the concept of “constructive alignment” and using it in outcome-

based teaching and learning and how it is possible to objectively measure the degree to which 

a module design is well-balanced and subsequently achieves constructive alignment.  
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2.2 What is a ‘Learning Design’ and Why Learning Design Tools? 
Clarifying the Concept 

The term ‘learning design’, or as some prefer to use other terms, such as ‘educational 

design’, ‘instructional design’ or ‘curriculum/course design’, all the terms tend to focus on 

the importance of ‘design’ and have a variety of definitions and interpretations within the 

literature. James Dalziel (2009) defines learning design as “A process that describes how 

educators make decisions about creating effective teaching and learning experiences”. 

Conole (2007) defines the concept as “a methodology that has emerged in recent years as a 

semi-formal process for supporting the curriculum design process”; Beetham and Sharpe 

(2007) refer to learning design as the range of actions or elements associated with creating 

learning activities that students undertake to achieve a set of intended outcomes. Mor and 

Craft (2012) simply define learning design as a process of planning new practices by 

planning activities, resources, and tools that can help at achieving particular educational aims 

in a given situation. All these definitions revolve around the process of planning, structuring 

and sequencing learning activities to deliver effective learning experience. Conole (2008) 

mentioned that one of the approaches to learning design is to adopt a more general 

interpretation of learning design – one that focuses on pedagogy and the activity of the 

student. This approach advocates a process of ‘design for learning’ by which one arrives at a 

plan, structure or design for a learning situation, where support is realised through tools that 

support the process (e.g. software applications, websites) and resources that represent the 

design (e.g. designs of specific cases, templates).  

2.3 Representing the Learning Design 

Learning design can take place at a number of different levels and can be represented in 

different forms to offer teaching practitioners different insights into their designs. The type of 

insight offered may include modelling the kind of learning experience that their students 

might have; sequencing the teaching and learning activities visually in user-friendly 

interfaces; or representing the learning activities in some notational format so that it can serve 

as a model or template to guide the creation of the learning design. One of the most popular 

approaches to representing learning designs is the application of design patterns and pattern 

languages as derived by Alexander (1977). The concept of design patterns and in particular 

pedagogical patterns has strong similarity/association with learning design tools in assisting 

the development of effective teaching and learning designs because they capture successful 
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solutions by providing an overall structure in a basic format that describe the core features of 

context, problem, and solution. The design patterns approach identifies the core components 

of the learning design in more generic descriptors as described by Alexander, a design pattern 

is “a problem which occurs over and over again in our environment, and then describes the 

core of the solution to that problem, in such a way that you can use this solution a million 

times over, without ever doing it the same way twice” (Alexander et al. 1977). Pedagogical 

patterns on the other hand are more high-level patterns which seek to find the most effective 

approaches to teaching by capturing the core design property of a teaching-learning activity 

as illustrated in Bergin’s description, a pedagogical pattern is “the intent is to capture the 

essence of the practice in a compact form that can be easily communicated to those who need 

the knowledge. Presenting this information in a coherent and accessible form can mean the 

difference between every new instructor needing to relearn what is known by senior faculty 

and easy transference of knowledge of teaching within the community” (Bergin, 2012). 

Laurillard and Ljubojevic (2011) define the pedagogical pattern as “a teaching-learning 

activity sequence that is designed to lead to a specific learning outcome”. They differentiate 

pedagogical patterns from the generic design patterns in that the fundamental idea of a 

pedagogical pattern is designed to capture, test, and share best practice of teaching. The 

structure of a pattern represents teaching practice in terms of pedagogical properties 

associated with the teaching and learning activities. It combines the general design criteria, 

the pedagogical properties of the teaching and learning activities such as group size, duration, 

etc. and the capabilities of tools, resources, and technologies being used. Thus, the structure 

of the pedagogical pattern is superior to that of a design pattern and enables the learning 

design to be subjected to computational analysis (Tepper 2006, Laurillard, 2012). 

The main elements of a typical pedagogical design pattern are as follows:   

 module/session name; 

 start and end dates; 

 elapsed time; 

 learning time; 

 number of students; 

 topics; 

 aims; 

 learning outcomes; 

http://ioe.academia.edu/DianaLaurillard
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 assessment task; 

 teaching and learning activities.   

 

Several tools have been developed to facilitate the learning design process itself and to help 

the designer/practitioner in planning learning outcomes, activities, assessments and other 

aspects of the learning. The JISC Design Studio (2013) stated that the main purpose of these 

tools is to allow teaching practitioners to plan learning from small-scale activities up to whole 

lessons and modules and to support both design and delivery. All learning design authoring 

tools generally have the common goal of facilitating the process of selecting, structuring, 

sharing, and reflecting on the learning design; however, different tools support different 

learning approaches, use various representations, and operate at different levels of granularity 

from simply capturing the essence of a design to aiding in its semi-automated enactment with 

students (Conole, 2007, 2010; Dalziel, 2009; Cameron, 2011; and Laurillard, 2012). The 

tools attempt to support teaching practitioners in designing their activities by providing step-

by-step guidance and support at different levels (from a simple learning activity, session, 

module to a whole course).   

2.4 Overview of Some Existing Learning Design Tools  

The development of the various learning design tools is to support the learning design process 

itself and to assist teaching practitioners in planning learning outcomes, activities, 

assessments and other aspects of the learning and teaching process. As mentioned previously, 

the wide spread of different learning design authoring tools generally have the common goal 

of facilitating the process of selecting, structuring, sharing, and reflecting the learning design; 

however, they adopt different approaches to learning design and differ significantly in terms 

of how they are structured and the way their pedagogical patterns aid the design process. 

Some tools are based on particular pedagogic models or philosophies such as the LDSE; 

others provide structured patterns to guide the teaching practitioners through particular 

aspects of the design process and to support them in making informative design decisions 

(Conole, 2013). For this purpose, the following sub-sections will review existing notable 

learning design and pedagogical planner tools that have been developed to support the design 

process. It will begin by describing what they are, reviewing their functionalities, their 

learning design representation, the guidance and support offered during the design process 

and their limitations. Table [1] at the end of this section summarises the differences among 
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these tools. The section will focus on a number of specific pedagogical tools in details; 

namely the Learning Activity Management System (LAMS)
1
, Phoebe

2
, the London 

Pedagogical Planner (LPP)
3
, and the Learning Design Support Environment (LDSE)

4
. These 

models were selected for review on the basis that they generally reflect the state-of-the-art in 

educational design tools and are the most highly developed systems of their kind. It is, 

however; worthy to note at this stage, that there are other models of interest that were briefly 

considered, namely: LearningMapR
5
, Learning Designs

6
, RELOAD

7
, and CompendiumLD

8
. 

These models were all developed to help teaching practitioners to create, represent, visualise, 

deliver, and exchange their learning design. However, they are precluded from the detailed 

review here for a number of important reasons. Firstly, the most important issue is that these 

tools are focused on supporting the development of session plans without clear guidance 

based on supporting pedagogic principles. There are no recommendations for enhancement 

suggesting the underlying representation of what good practice is. Secondly, the tools 

typically suffer from poor usability and overly complex user interfaces making it difficult to 

understand the design process to create meaningful and usable design pattern. Finally, the 

uptake, impact, and evaluation of these tools are insignificant and in some cases, non-

existent. 

2.4.1   Learning Activity Management System (LAMS) 

LAMS is one of the earliest examples of a learning design tool for supporting the learning 

design. It is developed by James Dalziel and his team based at Macquarie University, 

Australia as part of the Macquarie E-learning Centre of Excellence (MELCOE, 2009). The 

tool is described as: “A software tool for designing, managing and delivering online 

collaborative learning activities. It provides an easy to use visual authoring environment to 

create sequences of learning activities” (Dalziel, 2003). The tool facilitates the micro-level 

planning and automation of the learning activities by providing a palette of activities which 

teaching practitioners can use to drag and drop activities from the palette to the main design 

area. These activities are then connected together to create a learning activity sequence as 

                                                           
1 LAMS http://www.lamsinternational.com/ 
2 PHOEBE http://www.jisc.org.uk/publications/reports/2008/phoebefinalreport.aspx 
3 LPP http://www.jisc.ac.uk/publications/reports/2008/llpfinal.aspx 
4 LDSE https://sites.google.com/a/lkl.ac.uk/ldse/ 
5 LearningMapR http://www-jime.open.ac.uk/article/2005-17/294 
6 Learning Designs http://www.learningdesigns.uow.edu.au/ 
7 RELOAD http://www.reload.ac.uk/ 
8 CompendiumLD http://compendiumld.open.ac.uk/ 

http://www.lamsinternational.com/
http://www.jisc.org.uk/publications/reports/2008/phoebefinalreport.aspx
http://www.jisc.ac.uk/publications/reports/2008/llpfinal.aspx
https://sites.google.com/a/lkl.ac.uk/ldse/
http://www-jime.open.ac.uk/article/2005-17/294
http://www.learningdesigns.uow.edu.au/
http://www.reload.ac.uk/
http://compendiumld.open.ac.uk/
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shown in Figure [2.1]. The tool also enables the user to create lesson plans in a standardized 

template that can be easily modified and reused. It provides templates based on best practice 

processes that include advice on using and repurposing these templates for different learning 

contexts. The advantages of the tool are: first it provides a high degree of flexibility as it is 

graphically-based with an easy to use interface for both technical and non-technical users 

helping them in creating and delivering learning activities through integrated monitoring 

panels (Britain, 2004; Cameron, 2011 and Dalziel, 2009). Second it provides a fully 

functionally runtime environment that allow real-time monitoring of the performance of 

learners (Britain, 2004; Conole, 2007). However, the tool is limited to session level only and 

sequencing activities within the session. It does not operate at module or course level and 

neither does it consider other important components of an educational design such as learning 

outcomes (Cameron, 2011). Clearly, there is no functionality within LAMS that links the 

activities to the learning outcomes or objectives of an educational design making it of limited 

use to practitioners designing whole modules and courses that require holistic design 

decisions.    
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Figure [2.1]: LAMS’s authoring environment representing the sequences of learning 

activities in workflow-style. (Source: http://www.lamsinternational.com/) 

2.4.2   Phoebe  

Phoebe is a simple decision support tool, developed by Marion Manton, Liz Masterman, and 

David Balch from the Technology-Assisted Lifelong Learning unit (TALL) at Oxford 

University and Oxford University Computing Services (OUCS). The tool attempts to provide 

a comprehensive online resource of tips and hints to support decision-making. The tool 

provides the following key functionality for the user: create or modify designs, view shared 

designs, browse Phoebe’s teaching and technology guidance, and manage a design template. 

Figure [2.2] provides a simple schematic diagram of the functional characteristics of Phoebe 

and how it is used. The tool acts more as a simple authoring environment which allows the 

user to create learning designs from pre-defined templates. As the user works through a 

design they are supported by access to context-specific help, wider guidance and resources. 

The tool includes an extensive wiki of support and guidance on learning design and provides 

information about the different pedagogic approaches and different digital tools to support 

http://www.lamsinternational.com/
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different learning activities. The Phoebe tool brings together the key components of a 

learning design (or lesson plan), prompts teachers' thinking, allows them to record ideas and 

requirements, and makes it easy to cross-reference components as they design the activities 

that make up a learning experience. It offers both flexible and guided paths through the 

planning process, and provides access to a wide range of models, case studies and examples 

of innovative learning designs.  

The key strength of Phoebe is the considerable amount of information that is available to 

guide the user through completing the various steps of the design. The guidance includes 

information on: contextual information associated with the design, learning outcomes, 

assessment, the characteristics of the learners, possible learning activity sequences, 

contingencies to take into account, reflection and other web links. On the other hand; the tool 

suffers from some drawbacks in terms of the non-intuitive user interface, and sequential 

navigational route for the design process Conole (2013). Conole also points out that Phoebe 

is more text-based that would be best suited for teaching practitioners who adopt a systematic 

approach to their design practice rather than other approaches that adopt the feature of visual 

representations of the learning design like some other tools discussed elsewhere in this 

chapter. Although that the tool is holding different templates in different formats, it does not 

provide a measure of alignment or guidance to what good design pattern is.  
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Figure [2.2]: Phoebe’s schematic diagram of what it is and how it is used.  

(Source: http://www.jisc.org.uk/publications/reports/2008/phoebefinalreport.aspx) 

 

2.4.3   London Pedagogical Planner (LPP)  

LPP is a structured modelling tool that supports lecturers in developing, analysing and 

sharing learning designs. It was developed by Diana Laurillard and her team at London 

Knowledge Lab in the Institute of Education. The tool enables teaching practitioners to map 

different teaching methods to five types of cognitive activities, namely attention, inquiry, 

discussion, practice, and production. Users can link between aims, outcomes, teaching 

methods, topics, assessment and then map topics and associated learning outcomes across 

different blocks of study. The tool supports planning at both the module and session level. It 

enables teaching practitioners to first provide general information about their learning design 

and then it supports them by ensuring that all topics and elements are mapped as seen in 

Figure [2.3]. After this point, users can then enter the amount of time needed for each of the 

http://www.jisc.org.uk/publications/reports/2008/phoebefinalreport.aspx
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different types of activities and then map topics to a calendar and allocate the number of 

hours across the types of activities and the topics across the different types of activities. The 

tool then calculates a statistical description of the learning design against the different types 

of activity defined (Laurillard, 2007). The descriptions produced are numerical in terms of 

the likely amount of time is allocated to the selected activity methods with the different 

cognitive activities they elicit and graphical representation of the learning design (Laurillard, 

2007). The tool aims to make the pedagogical design explicit as an output from the process, 

capturing it for testing, redesign, reuse and adaptation by others. One of the drawbacks of this 

planner, as mentioned by Conole (2013), is that the approach of the tool is likely to lead 

teaching practitioners to replicate existing practice rather than change their practice. The 

reason for this is that the statistical information given is merely descriptive and does not 

provide a critical account or a means of adapting the learning design. 

 

 

Figure [2.3]: LPP’s general module information.  

(Source: http://www.jisc.ac.uk/publications/reports/2008/llpfinal.aspx) 

http://www.jisc.ac.uk/publications/reports/2008/llpfinal.aspx
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2.4.4   Learning Design Support Environment (LDSE) 

LDSE is the successor to the two previously mentioned pedagogy planner tools the LPP and 

Phoebe. It was developed by Laurillard and a team of researchers at the London Knowledge 

Lab involving the Institute of Education Birkbeck College, University of Oxford, London 

Metropolitan University, London School of Economics and Political Science, the Royal 

Veterinary College and the Association for Learning Technology (ALT). The LDSE project’s 

primary aim is to design a software tool that helps teaching practitioners to design effective 

technology-enhanced learning (TEL) programmes. It also supports teaching practitioners to 

create, modify, share, reuse learning designs, and build on the work of others at the level of 

module and session design. The tool is based on the following theoretical principles: social 

constructivism, collaboration, constructionist learning and knowledge building (Laurillard 

and Masterman, 2010) and the pedagogic principles underpinning the operation of the LDSE 

have been based on the Conversational Framework developed by Laurillard (2002). The tool 

incorporates a sophisticated knowledge base in the form of an ontological model
9
 that holds 

the core learning design concepts and their relationships which are used to categorise each 

learning design imported, adapted, or created within the LDSE environment. This enables the 

LDSE to enhance the user’s experience by providing guidance and recommending alternative 

suggestions (Laurillard, 2011). This is the key advantage over the other planning tools 

reviewed. The advice and guidance in supporting teachers is manifested in thinking about 

using technology enhanced learning activities and reflecting the potential impact of this on 

their learning designs thus offering a fertile space for reflection. For each of the activities the 

tool provides alternative ideas and activities, enhancing the balance between acquisition, 

inquiry, practice, production and discussion. Figures [2.4 & 2.5] illustrate the advice, 

suggestions, and feedback analysis made by the LDSE.  

 

The LDSE uses a pedagogical pattern and defines a set of core pedagogical properties 

associated with the teaching and learning activities, so that the teaching and learning 

activities in a pedagogical pattern can be mapped to the different types of learning in the 

Conservational Framework (Laurillard, 2012). The structure of the LDSE pedagogical pattern 

                                                           
9 Ontologies: “A formal explicit description of concepts in a specific domain, which provide a machine-readable 
and shared view on conceptualization of domains of interest for a group of systems and human users” 
(Charlton & Magoulas, 2010). In LDSE, the ontological model is a knowledge base, which is underpinned by the 
Conversational Framework (CF, see Laurillard, 2009), that define and hold the core learning design concepts 
and their relationships. It is used to inference the set of concepts to help the users to complete their learning 
design based on their current context.      
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includes the general design descriptors as illustrated below (aims, learning outcomes, 

assessment tasks), and the pedagogical properties of each teaching and learning activity 

includes the size of the group, the duration of the activity, and the type of learning it supports. 

The pattern is then interpreted in terms of the TLAs and the pedagogical properties that 

include representing the learning design in terms of the proportion of time spent learning 

through different cognitive activities. These proportions are calculated from the properties of 

the TLAs designed on the timeline. This approach is based on the conceptual classification of 

types of teaching and learning activities into five categories: Acquisition, Discussion, Inquiry, 

Practice and Production (Laurillard, 2010, 2011).  

 

The design elements in LDSE pedagogical pattern are: 

 module/session name; 

 start and end dates; 

 elapsed time; 

 learning time; 

 number of students; 

 topics; 

 aims; 

 learning outcomes; 

 assessment task; 

 Teaching and learning activities   

 

Teaching practitioners input all the elements in the pattern template except for the teaching 

and learning activities which can be dragged and dropped into a ‘timeline view’ of a session 

enabling them to see the set of scheduled activities. The teaching and learning activities can 

be unpacked further to some logistical and pedagogical properties that can help in analyzing 

the design in terms of the type of learning that occurs in each teaching activity.  

The Conversational Framework 

The Conversational Framework proposed by Diana Laurillard (2002), is a comprehensive 

model that focuses on social learning theories (Piaget, 1970; Kolb and Fry, 1975; Papert and 

Harel, 1991; Roschelle and Teasley, 1995; Shaw and Shaw, 1999) and technologies. The 

framework provides a representation of what it takes to learn based on the main theories of 
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teaching and learning, such as social constructivism, collaboration, constructionist learning 

and knowledge building (Laurillard and Masterman, 2010) to break learning down into the 

essential components needed to create a meaningful learning environment. These theories of 

learning underpin the use of the LDSE and each one is briefly described below: 

 Social constructivism: ‘the members of the community serve as active agents in the 

construction of outcomes and activities that produce a developmental cycle’ (Shaw 

and Shaw, 1999);  

 Collaboration: ‘a coordinated synchronous activity that is the result of a continued 

attempt to construct and maintain a shared conception of a problem’ (Roschelle and 

Teasley, 1995); 

 Constructionist learning: ‘building knowledge structures in a context where the 

learner is consciously engaged in constructing a public entity’ (Papert and Harel, 

1991); 

 Knowledge building: ‘the capacity to create new knowledge and ideas… collaborative 

problem-solving… needs optimal environments for knowledge-building’ 

(Scardamalia, 2010). 

 

The aim of the Conversational Framework is to support, evaluate, and represent learning 

designs in such a way that teachers and learning designers can use it to evaluate their learning 

designs and analyse the overall learning experience and the use of new technologies in 

learning in terms of the five key types of cognitive activity (i.e. acquisition, inquiry, 

discussion, practice, and production) (Laurillard, 2002). The conceptualization of the LDSE 

is expressed in terms of the Conversational Framework, which provides conceptual depth and 

perspective round a number of the pedagogical theories underpinned the LDSE. The 

Framework links a unit of learning into the broader ideas of a constructivist perspective 

which supports the ontological design of the system. This ontological model holds the 

pedagogic principles and core learning design concepts and their relationships which are 

introduced through the nature process of constructing a sequence of teaching and learning 

activities Laurillard (2011).   
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Figure [2.4]: An example of the LDSE suggesting alternative TLAs, to enhance the balance 

between acquisition, inquiry, practice, production and discussion.  

(Source: https://sites.google.com/a/lkl.ac.uk/ldse/) 

 

 

https://sites.google.com/a/lkl.ac.uk/ldse/
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Figure [2.5]: The analytical representation of the learning design in LDSE in the form of 

automatically-generated summary statistics. (Source: https://sites.google.com/a/lkl.ac.uk/ldse/) 

 

Summary of the core LDSE Features are: 

 Time Modeller to analyse the effects on learning quality, in terms of the impact of 

cost and time resourcing by a particularly design configuration (Laurillard and 

Ljubojevic, 2011);   

     

 Community Knowledge-based built into LDSE system to support the development 

and maintenance of an ontological model of a learning design (Charlton and 

Magoulsa 2010; Laurillard and Ljubojevic, 2011); 

 

 Inference algorithm to search ontological concepts, classes, and properties within its 

knowledge base to make inferences and provide guidance and recommendations for 

optimal ways of combining conventional teaching-learning methods with a variety of 

technology enhanced methods based on the Conversational Framework (Laurillard, 

Magoulas, and Masterman, 2011).

https://sites.google.com/a/lkl.ac.uk/ldse/
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2.5 Limitations of Current Learning Design Tools 

The different learning design tools that have been reviewed (see Table [2.1] for a summary) 

have indicated their potential to support teaching practitioners by producing largely web-

based applications to assist them in creating and structuring their teaching experience. Much 

of the work has emphasized the cost-effectiveness, efficacy of using technology-enhanced 

learning, and the significance of using digital technologies in designing teaching and learning 

(Cameron, 2011; Atkinson, 2011). In addition, Cameron (2011) emphasizes the importance 

of these tools and indicates that these pedagogical planners do provide valuable support for 

reflection and exploration, and help scaffold the design of learning activities. In addition, 

these tools have indicated their potential to advise and guide teaching practitioners 

pedagogically through the design process. This advice and guidance is manifested in several 

ways. For example, LAMS has an associated Activity Planner tool that provides a set of good 

templates which include advice on using, completing, and repurposing these templates for 

different learning contexts (Conole, 2013). Phoebe was praised for the quality of its guidance 

as it incorporates a separate wiki-based online resource of tips, guidance, and digital tools to 

support the decision-making process (Beetham and Sharpe, 2007; San Diego, Laurillard, 

Boyle, and Llubojevic, 2008; and Conole, 2013). The LPP, in contrast, integrates the support 

and guidance during the design process and with the actual decision-making process. It takes 

the user through a series of design decisions using an inspectable and editable model. 

Subsequently, it then provides numerical and graphical representations of the resulting 

learning design which is visualized in terms of Laurillard’s types of activity (Laurillard, 

2002; Laurillard, and Llubojevic, 2010). The LDSE incorporated an ontological model which 

has been informed both by pedagogic theories and their understanding of lecturers’ design 

practice elicited through interviews with learning design practitioners. The tool is able to 

interpret, analyse, and calculate the learning experience in terms of only the TLAs and the 

type of cognitive learning and suggest alternative activities relevant to the chosen activity. 

This guidance and support is based on drawing inferences from comparisons between the 

user’s design decisions and the developed ontological model formed based on educational 

theories. 
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Table [2.1]: Summary of Learning Design Tool 

 LAMS Phoebe LPP LDSE 

Design level Session level-planning and 

automation of the teaching 

and learning activities (i.e. 

sequencing activities within 

a session). 

Module and session 

level.  

Module and session level. Module and session level.  

Theoretical 

framework(s) 

 

Support wide range of 

pedagogies, including 

transmission, instructivist, 

constructivist, PBL, case 

based. 

Not specifically- online 

support to guide good 

practice.   

Strong focus on 

categorising the TLAs 

according to five types of 

cognitive activities 

(attention, inquiry, 

discussion, practice, 

production).  

LDSE based on the Conversational 

Framework that supports the main 

learning and pedagogical theories: 

instructivism, constructionism, 

social constructivism and 

collaborative learning.      

Design pattern 

components   

TLAs that include a range 

of individual tasks, small 

group work and whole class 

activities based on both 

content and collaboration.  

Aims, outcomes, 

teaching methods, 

assessment, learning 

approach, resources. 

Aims, outcomes, teaching 

methods, assessment, 

learning approach, 

resources. 

Aims, outcomes, teaching methods, 

assessments, tools and resources; 

rich pedagogical properties 

attached to TLAs; other TLA 

features such as type, duration and 

cohort size. 
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 LAMS Phoebe LPP LDSE 

Representation of 

design 

Represent the sequences of 

learning activities in 

workflow-style visual 

authoring interface. 

Text-based (text 

template) with a set of 

pre-defined templates 

for user to complete. 

Tap/form-based interface 

allowing user to map 

different TLAs to five 

types of cognitive 

activities. Graphs for 

visualising how learner 

time is shared across 

different TLAs.    

Represent the learning design in 

terms of the TLAs showing 

pedagogical compositions of 

learning types (linked to theoretical 

framework). Graphical statistical 

summaries of sessions with 

duration and learning methods 

used.  

Measures design 

quality? 

N N N N 

Makes 

recommendations? 

N N-Wiki-based reference 

links and resources 

provided.   

N-but users can manually 

map different design 

components together. 

Y-only recommends alternative 

TLAs on the basis of the properties 

of the currently used TLA and 

suggests ways to combine TLAs 

and TEL approaches to promote 

deeper learning. 

Adaptive 

knowledge-base? 

N N N N 
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It can be concluded that the existing tools do provide help and support to teaching 

practitioners in designing their courses and classes as seen by providing different 

representations to offer designers different insights into their designs, including modelling the 

kind of learning experience that their students might have, or sequencing the teaching and 

learning activities visually in user-friendly interface and providing design decisions with 

advice on making those decisions. However, the reviewed tools do not offer judgement on 

how well-balanced or aligned the learning design is with respect to the learning outcomes. 

The reason for this is that these models inherently lack an objective measure of alignment in 

order to make such recommendations or judgements. Subsequently, there is a real need for a 

metric system which is able to measure and compute the degree to which an educational 

design is well-balanced or well-formed according to set guiding theoretical principles such as 

those of constructive alignment. Another key limitation is that none provides an indication as 

to how well the design will work in practice in terms of student satisfaction. The tools are 

currently based on theoretical principles of good design and the rules that govern the tools 

behaviour are hard-wired subsequently cannot be adapted according to how the pattern works 

in practice. Although the LDSE uses AI-based methods and utilises a sophisticated 

knowledge base, its current limitations are as follows:  

 The tool is unable to represent the degree to which an educational design is well-

balanced according to the principles of constructive alignment and how well the 

design works in practice and tailors its recommendations accordingly;  

 The tool focuses on recommending alternative teaching and learning activities but is 

unable to recommend alternative types of learning objectives and assessment tasks 

relative to the learning outcomes;  

 The LDSE knowledge base is based on theoretical principles only and is static such 

that its symbolic rules are hard-wired (design in) and must be updated manually.  

The last point is particularly significant as such a static knowledge base underpinned by 

theory alone does not allow such a system to adapt to changing practices and be tolerant of 

variations which may actually be successful in practice. A system that is unable to adapt its 

knowledge in light of new information will be severely limited in the scope of enhancement 

decisions it can make and inherently unable to offer pragmatic and realistic design solutions 

in light of changing practices. 
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Given the current issues and limitations of the learning design tools reviewed, there is a real 

need to incorporate a metric system that allows the quality of a learning design to be 

quantified and on this basis to enable intelligent design decisions to be made based on good 

design principles and effective practice i.e. as the system encounters more examples of 

effective practice it adjusts its internal representations of alignment and its subsequent 

recommendations for enhancement. 
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2.6 Measuring Constructive Alignment: The Computational 
Framework to Measure Good Design Practices 

Constructive alignment, which is an outcome-based design methodology for optimizing the 

conditions for quality learning, through its integration of instructional design and 

constructivist principles, offers a theoretical and practically proven alignment system that can 

form the basis of a computational system engineered to assist the teacher during curriculum 

design (Biggs, 2000). Before introducing the computational framework of the alignment 

metric, this section will address some of the important concepts related to the principle of 

“constructive alignment”. The computational framework is then presented along with its 

limitations. 

2.6.1   Outcome-Based Learning and the Theory of Constructive Alignment 

The move to Outcome-Based Learning (OBL) approach has been one of the most important 

trends in the nature of higher education (HE) in the United Kingdom (UK). For example, 

Subject Benchmarking, National Framework for HE Qualifications, Personal Development 

Portfolios and activities of the QAA are all strongly underpinned by the OBL approach and 

significantly dependent upon learning outcome statements in some form (Jackson, 2000). 

Higher education institutions and universities have been required to express their courses in 

terms of course level and module level model learning outcomes statements since the 

outcomes of the Dearing Report (NCIHE, 1997) were implemented by the government. 

Fundamentally, the shift to a curriculum framework based on OBL resulted in the need to 

articulate teaching and learning activities and assessment tasks with respect to the learning 

outcomes in a way “that will engage students in the activities most likely to lead to quality 

learning” (Biggs, 1999). The QAA is a national body set up to improve the academic 

standards and quality of HE in the UK, and has become a major champion for the 

incorporation of OBL principle in education design and in particular those principles of 

constructive alignment (Jackson, 2000). The OBL approach is a fundamental feature of the 

concept of constructive alignment which is considered to be one of the most influential ideas 

in higher education today (Cohen 1987; Biggs 1996, 2002; Jackson 2000; Biggs and Tang 

2011). Jackson (2000) mentioned that the OBL approach presumes that the results of learning 

can be expressed in a form that permits their achievement to be demonstrated and measured. 

Many definitions exist to define OBL; one of them is defined by Margery (2003) as “an 

approach to education in which decisions about the curriculum are driven by the exit 
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learning outcomes that the students should display at the end of the course”. The approach 

provides a solid foundation for learning, teaching and assessing because it emphasises that 

the learning outcomes must be clearly defined as should the activities students need to be able 

to do to demonstrate they have met the outcomes. Therefore, it is essential that teaching 

practitioners are able to construct and articulate their programme and module designs within 

an outcomes-based context. Underlying the outcomes approach to defining, designing, 

promoting and assessing students’ learning is a useful theory of learning known as 

constructive alignment (Biggs 1999). The theory connects the abstract idea of a learning 

outcome to the things teachers actually do to help students learn, and the things that students 

do to actually learn. The concept of constructive alignment and its principle in the 

educational design will be discussed in the next section. 
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2.6.2   The Alignment Principle in Educational Design 

Biggs (1996) mentioned that teaching forms a complex system that takes place at class room 

level, department level, or institutional level. Taking the class room level as a system which 

comprises the following components teachers, students, curriculum, teaching and assessment 

tasks where these components must put together working towards an aligned system forming 

constructively aligned teaching and learning. Constructive alignment is defined as an 

outcomes-based approach to curriculum design ensuring that components such as aims, 

topics, learning outcomes, learning objectives, teaching methods, and assessment are all 

integrated and aligned with each other, forming a cohesive and effective learning design. 

Biggs based the alignment components of constructive alignment on Cohen's (1987) idea of 

instructional alignment where the curriculum objectives (outcomes), teaching methods, and 

assessment tasks need to be aligned leading to "massive improvement" (Biggs, 2002; Cohen, 

1987). Biggs illustrated a simple diagram showing an example of an aligned and unaligned 

course in Figure [2.6] and Figure [2.7]. 

Three main steps identified in order to construct an aligned system: 

1- Define clear learning outcomes by determining what students need to know, do, or 

understand after the learning has taken place specifying level of understanding. 

According to Biggs, these learning outcomes can be stated in terms of appropriate verbs 

where the verb says what the relevant learning activities are that the students need to 

undertake in order to attain the intended learning outcome. For this a model of 

understanding, cognition, and quality of learning is needed such as Bloom’s Taxonomy 

(Bloom, 1959) which helps to map levels of understanding that can be built into the 

intended learning outcomes and to create the assessment criteria.  

2- Select appropriate teaching and learning activities that get students to elicit these 

outcomes.  

3- Set appropriate assessment tasks that addresses the intended outcomes. 
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Teaching/learning 
activities 

 

Designed to generate elicit 

desired verbs 

 

May be: 

Teacher-controlled 

Peer-controlled 

Self-controlled 

As best suits context 

Curriculum objectives 

expressed as verbs 

Students have to enact 

---------------------------------------------

A 

The very best understanding that 

could be reasonably expected: 

might contain verbs such as 

hypothesize, apply to ‘far’ domains 

etc. 

B 

Highly satisfactory understanding: 

might contain verbs such as 

explain, solve, analyse, compare 

etc. 

C 

Quite satisfactory learning, with 

understanding at a declarative 

level: verbs such as elaborate, 

classify. 

D 

Understanding at a level that 

would warrant a pass: low level 

verbs, also inadequate but 

salvageable higher level attempts. 

Assessment Tasks 

 

 

Evaluate how well the 

target verbs are deployed 

in context. 

 

The highest level verb to 

be clearly manifested 

becomes the final grade 

(A, B, C etc.) 

 

Teacher’s intention                                     Student’s activity           Teacher’s intention                                      Student’s activity 

                                    Ignored!        

 

 

  

 

      
         Exam’s assessment                                                                                           Exam’s assessment  

 

                     (a) Un-aligned course                               (b) Aligned course  

Figure [2.6]: Example of aligned and unaligned course based on Biggs’ model (Biggs, 2003). 

 

 

 

 

 

Figure [2.7]: Biggs’ model of constructive alignment (Biggs, 2003). 

Carefully 

aligned! 
 

-to analyse & 

-to compare  

-to identify & 

-to memorize   

-to identify & 

-to memorize   

Mismatch! Dealing with test! 

-to analyse & 

-to compare  

-to analyse & 

-to compare   

-to analyse & 

-to compare 
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2.6.3   Bloom’s Taxonomy  

Bloom’s Taxonomy (Bloom, 1959) is a broadly accepted classification model for classifying 

and identifying levels of performance. The model is used as a foundation to support teaching 

practitioners for classifying cognitive process using action verb statements that can be 

observed and measured. Also it ensures and assesses the alignment of teaching activities and 

assessment tasks to learning outcomes. Bloom’s Taxonomy, giving levels from high to low, 

and the corresponding levels of cognitive ability stimulated by a particular action, are shown 

in Table [2.2] 

Table [2.2]: Bloom’s Taxonomy and the corresponding levels of cognitive ability stimulated 

by a particular action (Bloom, 1959). 

Level Cognitive Ability 

Stimulated 

Action Elicited Verbs 

6 Evaluation  Ability to make a judgment of the 

worth of something  

Appraise, Assess, Choose, Compare, Critique, 

Estimate, Evaluate, Judge, Measure, Rate, 

Revise, Score,  

5 Synthesis Ability to combine separate  part 

into a new whole or propose 

alternative solutions  

  

Arrange, Assemble, Collect, Combine , 

Compose, Construct, Create, Design, Devise , 

Develop, Formulate, Modify, Organize, Plan, 

Prepare, Produce 

4 Analysis  Ability to break down objects or 

ideas into simpler parts and find 

evidence to support 

generalizations. 

 

Analyse, Calculate, Categorize, Compare, 

Conclude, Contrast, Correlate, Criticize,, 

Deduce, Debate, Detect, Determine, Develop, 

Diagram, Differentiate, Distinguish 

3 Application  Ability to apply knowledge to 

actual situations. 

 

Apply, Complete , Demonstrate, Dramatize, 

Employ, Generalize, Illustrate, Interpret, 

Operate, Practice, Relate, Schedule, Use, 

Utilize, Initiate 

2 

 

Comprehension  Ability to understand facts and 

rephrase  knowledge  

Describe, Determine, Differentiate, 

Discriminate, Discuss, Explain, Express, 

Give, Identify, Locate, Report, Review, 

Restate, Recognize, Select, Tell, Translate 

1 Knowledge  Ability to remember previously 

learned information 

Arrange, Define, Identify, List, memorise, 

Name, Recall, Recognize, Record, Relate, 

Repeat 

 

 

Lower 

cognitive 

abilities 

Higher 

cognitive 

abilities 
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2.7 The Computational Framework for Measuring Constructive 
Alignment (Tepper, 2006) 

The computational model of constructive alignment developed by Tepper (2006) combines 

the principles of constructive alignment with those of generative grammar and linear algebra 

to compute numerically the alignment and measure how well aligned the educational 

components are when put together. Tepper’s metric adopts a systematic and structural view 

of educational design and uses Bloom’s Taxonomy as means of quantifying alignment of the 

four main components of an educational design. Basic classical set theory and linear algebra 

computations are applied to the generative model to provide numerical measures of alignment 

for both holistic and individual aspects of the educational design. 

The aim of Tepper's alignment model is to act as a framework to assist teaching practitioners 

to consistently and systematically produce constructively aligned curricula. The metric 

developed was inspired by Bloom’s Taxonomy and its variants (Bloom, 1956; Anderson el 

al., 2001) and Bigg’s constructive alignment (Biggs, 1996; Biggs, 1999). It uses Bloom’s 

Taxonomy to verify the correspondence between the core elements defined for a specific 

module or session. It tends to contribute to a more aligned and flexible educational system. 

Thus for effective learning to take place, there is the need for ensuring constructive alignment 

of the curriculum, which aims as mentioned before to create a link between the educational 

design components such that the described intended learning outcomes in the module are 

supported by the learning objectives, learning activities, and assessed using the suitable 

assessment tasks. This will help to achieve effective student engagement and well-aligned 

teaching practice. The main motivation behind the development of the alignment metric 

model was to address questions to whether such a model or a framework can assist teaching 

practitioners to quantitatively measure the level to which their module design is 

constructively aligned; and to develop and design a constructively aligned curriculum that is 

fair to all students and enforces inclusivity.  

 

The core components of the alignment metric are considered to be the same core components 

of any educational design which are: the learning outcomes (LOs), learning objectives 

(LObjs), teaching and learning activities (TLAs) and assessment tasks (ATs). Each 

component is briefly described and Figure [2.8] below shows how these components inter-

relate in a systemic way. 
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Learning outcomes are statements that describe what the students ‘should’ have learnt 

having completed the teaching and learning activities;  

Learning objectives are teacher-orientated and/or student-orientated statements that specify 

what activities the students need to perform to achieve the associated learning outcomes. 

They determine the teaching and learning activities (TLAs) used. When defining learning 

objectives it is essential to consider the existing knowledge and experience of the typical 

student entering the module.  

Teaching and learning activities (TLAs) refer to teaching methods and techniques that are 

chosen to get the students to do what the learning objectives nominate. 

Assessment tasks (AT) Formative assessment tasks refer to those student activities that 

provide an indication (to student and teacher) as to how well the student is developing and 

attract no formal marks. Summative assessment tasks refer to those student activities that 

reveal how well they have met the intended learning outcomes and are used to make official 

judgments about student performance and attract formal marks.   

 

 

Figure [2.8]: Components of a module design and how these components inter-relate in a 

systemic way (Tepper, 2006). 

 

 

Input Process Output

Teaching and Learning 

Activities (TLAs)

Intended Learning 

outcomes
Learning Objectives

Assessment Tasks

Formative Summative

Criteria

Focus is thus on output

and performance!

Input Process Output

Teaching and Learning 

Activities (TLAs)

Teaching and Learning 

Activities (TLAs)

Intended Learning 

outcomes

Intended Learning 

outcomes
Learning Objectives

Assessment Tasks

Formative Summative

Criteria

Focus is thus on output

and performance!



 

 

33 
 

The computational model combines the work of Biggs (2002) on Constructive Alignment by 

adopting a systematic and structural view of educational design, and using Bloom’s 

Taxonomy as a quantifiable measure of the four main components of the educational 

framework (learning outcomes (LOs), learning objectives(LObjs), teaching and learning 

activates (TLAs), and assessment tasks (ATs)). It applies Set Theory to represent the relations 

between components and linear algebra to compute the alignment. It provides a numerical 

measure of alignment for both holistic and individual aspects of an educational design. Figure 

[2.9]: below indicates the framework relation between components of the model generating 

three distinctive sorts of tree structure: 

a- Learning Outcome tree (Lo) 

b- Learning Objective tree (Lb)  

c- Assessment Task tree (AT)  

 

 

Figure [2.9]: Different types of tree structure a) Lo tree showing relationships between 

outcomes and objectives; b) Lb tree showing relationships between objectives and TLAs and 

c) AT tree showing relationships between ATs and objectives (Tepper, 2006). 
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Considering holistically for an entire module or programme, the generative system would 

generate a structural perspective of the tree structure allowing the relationships between all 

the system components for a single learning outcome to be represented and manipulated in 

vectorial form as in Figure [2.10].  

 

Figure [2.10]: Structural perspective of balanced tree structure showing relationships 

between system components for a single LO (Tepper, 2006). 

 

For the purposes of aligning elements between the four sets outlined, the model adapted 

Biggs’ method for utilizing verb-matching plans to figure out the level of cognitive capability 

managed by an assessment task and gives a broad list of suitable assessment tasks for the 

distinctive sorts and levels of studying needed by a learning objective (Biggs, 1999). The 

verb-matching schema was used to assign each textual definition of an outcome, objective, 

TLA and AT to a suitable level in Bloom’s taxonomy. The level is acquired by matching the 

fundamental verb in the result or objective with the comparing section in Bloom's taxonomy 

that holds a matching or synonymous verb. Categorizing the system components and 

identifying the relation between them enable the model to perform the mathematical 

computational required to compute and measure the alignment.  
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The model computes the alignment across the trees structures outlined above in Figure [2.9] 

to yield alignment between individual components for example, alignment between Learning 

outcomes and learning objectives (Lo tree), Learning objectives and TLAs (Lb tree), ATs and 

Learning objectives (AT tree). It calculates the degree for achieving the highest level (ideal 

alignment) and thus an educational design is to be considered constructively aligned when all 

components have reached their equilibrium (Tepper, 2006).  

 

Tepper (2006) in his computational model utilizes two important terms during the alignment 

computation ‘positive misalignment’ and this refers to the situation where one or more of the 

dominated learning objectives, TLAs, or/and ATs elicit cognitive abilities exceeds the level 

of the associated learning outcome. Conversely, the term ‘negative misalignment’ refers to 

the situation where the educational components elicit lower cognitive abilities than the level 

of the associated learning outcome. It is negative because although that the learning 

objectives, TLAs, and ATs may be achievable, the learning outcome itself is still 

unobtainable.       

 

The strength of the model lies in that the alignment metric is based on the verb where the four 

components are categorized using Bloom's taxonomy by matching the main verb with the 

corresponding entry in Bloom's taxonomy. This verb-matching scheme was used as a basis to 

cluster the different system components according to the cognitive skill elicited. This utilizes 

such principles to enforce the selection restrictions based on learning elicited. The strength of 

the model also lies in facilitating and supporting teaching practitioners to adapt their practice 

to better align their modules by making them aware of alignments and misalignments within 

their educational designs. Thus it has been established that the level of constructive alignment 

can be measured using vectorial representations and computations to provide numerical 

measures of alignment between individual system components and for an entire module or 

session.  
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2.7.1   Limitation of the Alignment Model 

As discussed in the previous section, the alignment metric provides a quantitative measure of 

alignment between individual system components and of full constructive alignment for an 

entire module based on theory of constructive alignment and Bloom’s taxonomy. This 

facilitates teaching practitioners to adapt their practice to better align their modules by 

making them aware of alignments and misalignments within their educational designs. 

Crucially, the computation of the alignment metrics is dependent upon three important 

factors: 1) the ability to accurately cluster outcomes, objectives, ATs and TLAs according to 

the level of cognitive ability they elicit; 2) a priori definitions of acceptable prototypes of 

perfect or ‘desired’ alignment values from which to ‘benchmark’ against; and 3) defining 

realistic alignment threshold values, which are currently theoretically based i.e. based on 

theory of constructive alignment and Bloom’s taxonomy. However, the metric still lacks true 

value of alignment and it needs to identify allowable and acceptable values for the alignment 

thresholds to base its measure on not only theory but also good and effective design practices 

thus bridging between theory and practice. Extending the alignment metric to be also 

informed by good practice examples, may help teaching practitioners to better align their 

module designs theoretically and practically thus to promote deep student learning.  

2.8 Eliciting Student's Feedback of Good Learning Design 

The approach of eliciting practitioners’ conceptions of learning design was utilized by 

Laurillard and her team (Laurillard et al., 2011). Semi-structured interviews were made with 

ten ‘informant practitioners’ in order to elicit their conceptions of good learning design, 

“desirable” teaching behaviours, and to investigate further the critical characteristics of good 

pedagogy. This approach is more likely a theory-informed way of measuring the quality of 

good learning design and does not consider the students’ conceptions or their opinions of a 

good practice, which may be more effective than the conceptions of the practitioners 

themselves. Many recent studies have revealed that the use of student feedback by measuring 

the extent of their satisfaction may contribute to enhance the learning experience (Rienties, 

Li, and Marsh, 2016), as well as it can reveal in the most important aspects of good design 

that promote deep student learning. Student satisfaction is one of the important indicators of 

the quality of good teaching practices as indicated by many researchers such as Moore and 

Kearsley (1996) and Yukselturk and Yildirim (2008). Since the first evaluation conducted at 

Harvard University in the early 1920s (Remmers, 1926) and other American universities 
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(Marsh, 1987), the opinions and feedback of students attending university courses have 

represented the core of the evaluation of the quality of teaching (Solinas, 2012). Various 

recent studies also have tried to investigate the students’ satisfaction as an indicator measure 

for the quality of teaching system for instance, Arbaugh (2014) and Rienties, Toetenel, and 

Bryan (2015) have found around 40+ modules where the learning design as well as the 

teaching support in particular has influenced the satisfaction level of the students. Luigi and 

Mostafa (2012) collected student feedback after redesigning a power engineering course 

considering the implementation of constructive alignment, students’ level of satisfaction was 

higher as they found a benefit for their learning within the new course design. In addition, the 

Student Satisfaction Survey Report (2011) found that the students of the institution under the 

survey found the ‘learning environment’ and ‘registration’ as well as ‘recruitment’ and 

‘admission’ satisfactory. This gives the opportunity, thus, to make an improvement and set 

the new teaching objectives. Eliciting students’ opinions throughout a course collected from 

students sheds light on their own perceptions of learning and of the effectiveness of the 

learning environment created by the instructor, and they are also helpful for ongoing course 

improvement (Lo, Celia C., 2010). This refers to the fact that the higher the level of 

satisfaction of students, the higher will be the effectiveness of teaching system showing that 

students are better satisfied with the teaching methods of the teaching system (Henrad, 2010). 

For this, a wide range of standardised student evaluation instruments have been developed, 

such as Course Experience Questionnaire, National Student Surveys, Student’s Evaluations 

of Educational Quality Questionnaire, or Evaluation Surveys Systems (EvaSys). All these 

methods are designed for the purpose of capturing students’ feedback on any issues or areas 

of best practice regarding different aspects such as the teaching styles, module organisation, 

module’s outcomes clarity, learning resources available, and the overall learning satisfaction 

(Course Experience Questionnaire (CEQ) Report, 2009) (Student Evaluation Surveys 

(EvaSys) Nottingham Trent University, 2014). Studies revealed the potential use of these 

evaluation methods and found that the student satisfaction feedbacks from the evaluation help 

point out the desirable and preferable teaching methods. For example, class discussion 

activities which are within the classroom environment or outside, use of case students and 

multimedia in the classroom have attracted students’ satisfaction and provided the 

enhancement to their learning (Chalmers, 2008). Other results of the evaluation show that 

students’ academic success relies on certain features of learning environments, notably on 

small-group work and problem-solving exercises (Militaru et al., 2015). Also the integration 

of new concepts and ideas by teachers or lectures rather than just relying on the given one 
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source of information like lectures has resulted in improving the overall experience of the 

students and their level of satisfaction as they mentioned in the given evaluation. Another 

evaluation found that blended learning with well-designed content and orientations has 

proven to be a good solution for improving student satisfaction with interaction in virtual 

environments (Chang, 2013). 

 

It is established that academic institutions prefer to construct well-aligned study modules to 

enhance Student Satisfaction. These modules include one or the other of the afore-mentioned 

learning activities. But how do the students judge the well aligned study modules? A 

questionnaire conducted by the “National Student Survey”, University of Birmingham 

(2012), which focused on many questions describing what students liked about the module 

and why. The response of the students ranged from ‘excellent’ to ‘good’. It gives an insight 

into the students’ perspective of the well-aligned modules. Therefore, with data on student 

satisfaction, we can investigate and identify what attracts student satisfaction in good 

teaching practices thus it can be considered as health indicators to validate our alignment 

system.   

2.9 Summary  

The chapter reviewed existing learning design tools and concludes with their limitation in the 

absence of a metric system that measures the quality of good designs and enables intelligent 

design decisions to be made not only theoretically according to pedagogical theories but also 

practically based on good design principles. The computational framework of Tepper’s 

alignment metric (2006) was reviewed and has shown that the level of constructive alignment 

can be measured numerically using vectorial representations and computations. The next 

chapter will initially present the first software implementation of measuring the degree of 

alignment. It is developed as a proof-of-concept prototype of Tepper’s alignment metric 

where it is integrated with the LDSE in order to measure and visualise the degree to which an 

educational design is constructively aligned. 
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CHAPTER 3: Alignment Metric Engine: Design and 
Implementation 

3.1 Overview  

To address the measurement problem presented in the previous chapter a theory-aware 

alignment metric tool has been developed based on the simple mathematical model by Tepper 

(2006). The tool aims to measure how well aligned the module’s components are when linked 

together and facilitate teaching practitioners to systematically and consistently produce 

constructively aligned modules of teaching and learning based on the design principle of 

constructive alignment (Biggs 2000). For each educational design, the metric tool is able to 

generate three different types of tree structure, measure the alignment at individual tree and 

across tree levels, and recommend/suggest more appropriate objectives, TLAs, and ATs to 

improve alignment. To do so, the metric tool takes as input an XML design pattern and maps 

the design components to their associated level in Bloom’s Taxonomy. The Bloom levels of 

the components are then fed into the alignment metric engine to compute and measure how 

constructively aligned the components are and therefore aid the designer in making 

alternative, better-suited, selections. The computational method uses set theory and simple 

linear algebra operations to express, represent and compute alignment (Tepper 2006). The 

MySQL database system has been utilized to implement and manage the data model of the 

educational design (i.e. the learning outcome and objective verbs, TLAs, ATs, and their 

respective levels in the Bloom taxonomy. Queries to input or retrieve information from the 

database are expressed in the industry standard database language, Structured Query 

Language (SQL)10. The database design and implementation activities of the project considers 

aspects relating to the design of the user interface and output reports and the integration with 

the overall structure of the metric tool, and the computation of the alignment metric. Finally, 

the existing learning and design tools reviewed in chapter two informed the selection and 

design of the functionalities of the metric tool. 

 

 

                                                           
10

 http://www.sqlcourse.com/intro.html 
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3.2 Conceptual Schema of the Metric Engine 

The computational framework behind the metric engine was given in detail in Chapter 2. In 

order to develop the data model, the data structure from the LDSE XML files was 

analytically reviewed. Subsequently, the conceptual schema illustrated in Figure [3.1] was 

developed to provide a high level representation of the underlying normalised data model and 

thus database tables and columns.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure [3.1]: The conceptual model of the alignment metric engine 
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3.3 Database Development 

The chosen database management system to store and analyse the educational components 

was SQLite Manager due to it being a free open source database management system, 

compatible with many programming languages, and easy to implement which makes it 

suitable for applications such as the model prototype being developed for this research 

project. It also provides a Graphical User Interface (GUI) that is easy and efficient to use. 

Multiple tables were therefore created to store the different components or attributes about 

the module designs. For each component, the respective levels from Bloom’s Taxonomy 

were then stored in the database across the four tables; the six categories, their level and 

definition were stored in the Bloom’s_Taxonomy Table and then the verbs and their 

associated category were stored in the Verbs_Taxonomy table, the TLA types and their 

associated category were stored in the TLA_Taxonomy table, and lastly the assessment types 

and their associated category in the AT_Taxonomy table. Referencing between these tables 

occurred with the use of primary and foreign keys. The use of the database tables allowed for 

given information to be broken down, stored separately and then analysed through the 

construction of the associated Bloom’s level. It is worth noting at this point that the verbs, 

TLAs, and ATs stored in the database are not an exhaustive list but ones which are based on 

LDSE and cannot use verbs, TLAs, or ATs beyond those recognised by the LDSE as we want 

it to be compatible with the LDSE and therefore extend its functionality based on theory.  

Due to reason that there are no openly available data models for the LDSE, therefore; there is 

a need to deduce the data structure analytically from the exported LDSE XML files. The 

following analysis was performed: 

 Identified key learning and teaching concepts represented from the exported XML file 

to produce appropriate fields of data for the database tables.  

 Identified relationships between concepts and how these were structured. The 

structure of the design pattern data of the LDSE is outlined in Table [3.1] below. (The 

full xml structure is illustrated in Appendix [A]). 

 Transformed data into third normal form (Normalisation
11

) 

 Implemented the set of normalised tables using MySQL database system. 

                                                           
11

 Normalisation is process that prepares a data model for implementation as a simple, non-redundant, flexible 

and adaptable database. http://www.1keydata.com/database-normalization/third-normal-form-3nf.php  
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 Adopted a reverse engineering approach to generate an Entity-Relationship Diagram 

(ERD) from the implemented MySQL tables. 

 Expanded the resulting ERD to include additional entities holding the necessary data 

and information to be ready for alignment processes. 

 

Table [3.1]: XML Structure of LDSE Design Pattern 

Module 

details  

<module elapsedTime="0" name="New unit 1" noOfStudents="0" staffTimeAllocated="0"> 

 

Module’s 

assessment  

<summativeAssessment/> 

Session 

details  

<session elapsedTime="0" learningLevel="1" learningTime="180" name="Teacher Supported 

Class F E" noOfStudents="15" scheduleEnd="1262314800000" 

scheduleStart="1262304000000" topic="" typeID=" TeacherSupportedClassFE "> 

<id>1380245462698</id> 

Session’s 

outcomes 

<outcomes>  

<outcome verb=" "><![CDATA]]></outcome> 

 

Session’s 

activities  

<activity description="" duration="30" groupsize="5" name="Group Practical Activity" 

notes="" start="1262304000000"> 

<teachingmethod group=" TeacherSupportedClassFE " id="DefaultGroupPracticalActivity" 

name="Group Practical Activity"/> 

</activity> 
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3.4 Mapping LOs, LObjs, TLAs, and ATs to Bloom’s Taxonomy  

The different verbs, TLAs and ATs collected from LDSE were stored and assigned to their 

appropriate cognitive process dimension according to Bloom’s Taxonomy as it is a familiar 

tool to most teaching practitioners. The action verb is the key element in stating the learning 

outcomes and learning objectives that defines student learning according to Bloom’s 

classification. The level of the each learning outcome and objective is therefore linked to an 

associated level in Bloom’s taxonomy based on the main active verb by matching the main 

verb with the corresponding entry in Bloom’s taxonomy that contains the matching or 

synonymous verb. The level of Bloom’s assigned for each TLA and AT is based on the type 

of learning they elicit or assess as provided in Biggs (1999) and (2003). This is not a precise 

grouping however; Tepper (2006) has adapted this approach to link TLAs and ATs with 

particular levels in Bloom’s Taxonomy to help clarify the alignment computation process. 

The alignment tables are provided in Appendix [B]. Matters became more complicated when 

verbs, TLAs, and ATs were found in more than one level or category of the taxonomy. This 

was resolved by referring to multiple tables and taxonomies defined by educational institutes 

Anderson (2001); Almerico and Baker (2004); Biggs (2003); Biggs and Tang (2007) to 

determine which one it was best suited. For the purpose of this research and in order to 

simplify the classification and aid in the analysis process, each verb, TLA, and AT was 

classified into only one of the six Bloom’s categories where index to the highest level in 

Bloom’s Taxonomy is taken. 

 

3.5 Functional Requirements   

The conceptual model as seen is represented by the knowledge base, which simply requires 

that the system components can be categorised according to the cognitive ability they elicit 

and on this basis make dependency relations across component groups to form structure. The 

metric tool has been designed to augment the LDSE with new information based on the 

principle of constructive alignment. Thus, some high level functional requirements of the 

metric tool have been identified below and graphically illustrated in Figure [3.2]. 

 

 

 



 

 

44 
 

1. Import an XML design pattern that is exported from the LDSE to be read and 

analysed regarding the four main learning components; LOs, LObjs, TLAs, and ATs.  

2. Store data of the XML design pattern into database tables. This function will be used 

to store data and to assign Bloom’s level to each component. Data are retrieved when 

the alignment computation is performed. 

3. Generate the alignment trees:     

a. Generate Outcome/Objectives perspective tree. This function is presented to 

the user to enable the user to link or associate the learning outcomes identified 

in his/her module or session with the learning objectives, generating a 

perspective tree that clarifies each outcome and its dominated objectives along 

with the cognitive skills each component elicits.              

b. Generate Objective/TLAs perspective tree.  

c. Generate AT/LO perspective tree.  

4. Calculate alignment between components: 

a. Calculate alignment between outcome and objectives. This function will 

perform mathematical operations based on the alignment metric.   

b. Calculate alignment between objective and teaching activities  

c. Calculate alignment between outcome and assessment tasks 

5. Generate an alignment Report. After analyzing the components and calculating the 

misalignment error value, the user will be able to generate an alignment report 

showing whether the relation between components is aligned or misaligned. 

6. Modify misaligned components to produce a more aligned design by suggesting more 

appropriate verbs, activities, or assessment tasks for the user to consider.     

7. Calculate the overall module or the design pattern alignment. This will calculate the 

alignment between the generated trees (design components) in order to represent the 

overall alignment to the user or the designer. 

8. Export the design pattern.          

These functional requirements of the alignment metric tool are designed to aid teaching 

practitioners in identifying and relating the core design components symbolically through a 

graphical user interface whilst abstracting them away from the actual alignment computations 

used to determine the alignment measures. The requirements were modelled using the 

concept of use case diagrams, which was initially introduced by Ivar Jacobson in 1987, to 

describe the sequences of actions and illustrate the user’s interaction with the system. Their 
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benefits lay in showing the relationship between the user and the different use cases in which 

the user is involved. They also serve as an easily-understood communication mechanism and 

provide a concise summary of what the system will do at an abstract level. 

 

 

 

Figure [3.2]: Use case diagram illustrating the functional requirements of the Alignment Tool 
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3.6 Implementation of the Alignment Metric Tool for Measuring 
Design Quality 

The implementation of the alignment metric engine and user interfaces is achieved in C# with 

Microsoft Visual Studio 2010, which aimed to show the high level functionalities of the 

metric engine, performance and facilities. The C# programming language is simple, 

powerful, type-safe, and object-oriented that is designed for building a variety of applications 

that run on the .NET Framework. The .NET Framework includes an extensive library of 

classes organized into namespaces that provide a wide variety of useful functionality. In 

addition, it gives powerful tools for creating, loading, and saving XML files.  

Figure [3.3] provides an illustration of the main components of the alignment tool. The 

conceptual model is represented by the learning design database and includes the 

relationships between core module components and the cognitive ability they elicit that 

support the design principle of constructive alignment. The database also serves the data layer 

and provides a couple of operations to work with XML files. The alignment engine at this 

stage is supported by executable rules based on the principles of constructive alignment. On 

this basis, it makes dependency relations across component groups to form the tree structures. 

The user interface is how the user interacts with the alignment tool. It is made up of several 

window forms to interact with. Figure [3.4] shows the main interface window that contains 

the main tool’s functionalities. Each window relates to a key aspect of functionality which 

will be described in more detail with some screenshots.  

 

 

 

 

 

Figure [3.3]: Overview of the alignment tool architecture 
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Figure [3.4]: The Alignment metric tool’s main functionalities 
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Step 1- Import LDSE learning design pattern  

 

 

Figure [3.5]: The ‘Import learning design’ window 

 

In the first step the user needs to click the import button in order to import his/her learning 

design pattern.  Clicking the button will open a dialog file to select the design pattern. The 

model reads all the required data from the design pattern (XML file) and displays the 

following components: learning outcomes, learning objectives, TLAs, and ATs of the module 

with the associated Bloom’s level for each component. The Bloom levels are coming from 

the knowledge stored in the database.       

 

 

 

 

 

 

 

The learning design 

pattern is read from the 

xml file. It is displaying the 

module information, the 

module’s outcomes (which 

are the sum of the 

sessions’ outcomes), 

session information, 

objectives, TLAs, and ATs 

with their Blooms level 
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Step 2- Generate LO perspective tree 

 

Figure [3.6]: Checkbox dialog window to generate the learning outcome perspective tree  

 

 

Figure [3.7]: Generating LOs/Lobjs tree structure showing relationships between outcomes 
and objectives   
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The user here needs to generate a LO/Lobj tree to calculate the balance between these two 

components. A dialog box will be displayed when the button “Generate LO tree” is clicked. 

The dialog box will display all the learning outcomes and the learning objectives identified in 

the module and enable the user to link the learning outcomes with the associated learning 

objectives. One or more learning objectives can be associated with the learning outcome as in 

Figure [3.6]. When the user links the components together and presses the button ‘submit’, 

the generated tree is displayed showing each learning outcome and the dominated learning 

objectives. An Empty node is added to the tree to balance the number of dominated elements 

per outcome. The empty node takes value set to the level in Bloom’s indexed by the 

associated outcome as seen in Figure [3.7] above.      

 

Step 3- Calculate the alignment between Lo/Lobjs 

 

Figure [3.8]: The ‘Alignment calculation’ window form to calculate the alignment between 

the learning outcome and its dominated learning objectives  
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The screenshot illustrates the Alignment calculation according to Tepper (2006). Once the 

LO tree is generated as in Figure [3.7] the user can computes the alignment between the 

learning outcomes and learning objectives. The calculation is performed by calculating the 

following: 1-actual alignment values using the inner dot product between each learning 

outcome and its corresponding set of actual learning objectives stored in matrix X. 2-desired 

alignment values using the inner dot product between each learning outcome and its 

corresponding set of desired learning objectives. The crude assumption made to obtain the 

desired elements is that given a learning outcome the set of associated learning objectives 

should elicit the same Bloom’s level as the learning outcome. 3-misalignment error values 

between the desired alignment values and the actual alignment values for each learning 

outcome. Then for each learning outcome the tool compares the misalignment error values to 

the threshold value that been set using the illustrated piece of structured English and thus 

generates an alignment report as seen in Figure [3.9]. 

  

For each learning outcome i 

Do 

If |e1i|<=τ 

Then If one or more x’ji = wi’ (for each j) 

Then the learning objectives are aligned with learning outcome i 

Else 

Learning objectives are not fully aligned with learning outcome i 

Else If |e1i|>τ AND e1i >0 

Then If one or more x’ji = wi’ (for each j) 

Then the learning objectives are positively misaligned with learning outcome i 

Else 

The learning objectives are not fully aligned with learning outcome i 

Else  

The learning objectives are negatively misaligned with learning outcome i 
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Figure [3.9]: Generating the Alignment report  

 

The alignment report illustrates the aligned and misaligned elements based on the alignment 

metric calculations. As shown from the report some learning objectives are negatively 

misaligned with the associated learning outcome because the user has defined learning 

objectives that elicit lower Bloom’s level than that defined in the associated learning 

outcomes’ Bloom level. This means even if the learners achieve all the learning objectives 

the learning outcome is still not achieved. In this case the user has the option to carry on and 

calculate the equilibrium or to modify the misalignment in the design pattern. If the button 

‘Modify Objectives’ is selected, then the next step is presented to the user.  
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Step 4- Modify the misalignment  

 

 

Figure [3.10]: The ‘Modify misalignment’ window form 

 

The model allows the user to modify the misalignment components by displaying a change 

window form that contains two tree view controls. The misalignment tree is cloned inside 

both tree controls, one has the original tree and the other one has the modified tree to allow 

the user to track the changes. The model enquires the database for verbs that have Bloom 

levels within or greater than the original Bloom level of the parent’s node (i.e. outcomes) and 

displays these suggestions in a drop down box to select from. The user’s changes will be 

saved, reloaded, and recalculated again. The model will be notified that some changes have 

been made to the tree and thus re-balance the tree and re-calculate the alignment between 

components. It gives the user the opportunity to reconsider the choices and make more 

aligned decisions.  
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Step 5- Calculate the equilibrium  

 

Figure [3.11]: An overall Alignment score between components 

 

This screenshot shows an alignment report again after modifying the misalignment and re-

calculating the alignment. The five steps are applied again for the other components (the 

learning objectives and activities and the assessment tasks and the learning outcomes). Then 

the overall alignment consolidating all components and representing the overall constructive 

alignment by adding the equilibrium output from each tree performing the equation: 

 

LOTree.equilibrium + ObjTree.equilibrium + ATTree.equilibrium 

       3 
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3.7 Adequacy of the Alignment Metric Tool for Measuring the 
Design Quality  

The developed alignment tool can measure the degree of alignment between individual 

system components and of full constructive alignment for an entire module using victorial 

representations and mathematical computations. It has been augmented with the LDSE 

learning design system to analyse a number of module design patterns. This has resulted in a 

novel and much needed enhancement to the LDSE in that the alignment tool enables LDSE 

design patterns to be objectively measured by computing the degree to which a module is 

constructively aligned. It enables users to measure their design quality, to visualize 

alignment, and to modify the design patterns to further improve alignment scores of their 

designs. The tool is not intended to replace existing learning design tools; however, its aim to 

offer quantitative measure of alignment through an easy and accessible system that can aid 

both specialists and non-specialists. Conole mentions that, “the development of toolkits 

provides a way for non-specialists to engage with such theories in a manner which supports 

careful design and prompts productive reflection and engagement” (Conole, 2004). 

The developed alignment tool has been evaluated on a number of module design patterns to 

measure the degree of alignment and to constructively align the misalignment components. 

Figure [3.11] presents an example of four selected module designs with different learning 

outcomes and the other associated components. The examples are selected randomly and for 

the purpose of demonstration. The alignment is computed between the different components 

and the overall module alignment is then given under each module to show the degree of 

alignment or misalignment each module presents. It is noticeable that there is no balance 

between the components leading to degrees of negative misalignment in some modules like 2, 

3, and 4. These negative misalignments are indicators of poor design due to first, learning 

outcomes are not linked with an appropriate Bloom’s level of learning objectives. Second the 

TLAs used in these modules are not designed to generate or elicit the desire verb of the 

associated learning objectives. Finally, it can be seen that there is little association matching 

taking place between the learning outcomes and the assessment tasks. The tool attempts to 

represent the alignment/misalignment numerically with a brief description of the relationship 

between the components. Alternative LObjs, TLAs, and ATs are recommended during the 

design process to elicit the same or higher cognitive level than the associated parent node in 

order to maximize the alignment as shown in Figure [3.13].  
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Figure [3.12]: Example of misaligned module designs  
 

 

 

 

 

 

 

 

Figure [3.13]: Example of modified modules  
 

The evaluation also found that there is a high proportion of misalignment taking place in 

particular between the learning outcome and the assessment tasks. Following that with 33% 

of misalignment usually occurs between the learning outcome and learning objectives as 

illustrated by Figure [3.14]. This is likely because most teaching practitioners find the 

distinction between learning outcomes and learning objectives somehow nebulous, therefore 

find it difficult to relate the two. D’Andrea’s (1999) makes it clear that one is the output 

(learning outcomes) and the other is the input (learning objectives) to the TLA process. The 

learning outcomes determine the list of learning objectives that the students are required to 
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achieve in order to attain the outcomes. The objectives subsequently determine the teaching 

and learning activities that teaching practitioners need to apply to engage students.   

The impact of the alignment tool will help teaching practitioners to maximize alignment by 

enabling them to adapt their practice to better align their modules and making them aware of 

misalignments within their educational designs. Thus allowing them to infer and make the 

appropriate associations between the core educational components, which will positively 

enhance the students learning and satisfaction. 

     

 

Figure [3.14]: Misalignment proportion percentage  

 

 

3.8 Limitation of the Alignment Metric Engine and Possible 
Solutions 

The developed alignment metric bases both module structure and the categorisations of the 

different components on pedagogic theory alone (i.e. outcomes-based approach to module 

design, components are organised according to Bloom’s taxonomy and related according to 

the principles of constructive alignment). This is a top down theoretical approach to 

educational design and there is no clear consensus as to what the appropriate alignment 

values should be. It is important for the alignment system to be cognisant of this in order to 

offer pragmatic and realistic design solutions. Therefore, the alignment metric engine needs 

to be extended to incorporate and use good design practices, as judged by student satisfaction 
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scores, to calibrate the alignment measures and thus determine acceptable alignment ranges 

based on effective practice. Examples of effective practice, as judged by student satisfactions 

rather than theory in and of itself will be used to identify allowable and acceptable values for 

the alignment threshold, thus integrating both theory and practice into its decision making. 

Reviewing good teaching practices that generate high levels of student satisfaction may help 

to provide useful insight into the value of theoretical alignment values, particularly if there 

appears to be a strong correlation between the two i.e. alignment scores and levels of student 

satisfaction. An advantage of this approach will be to help teaching practitioners to better 

align their module designs in a way that is both theoretically and practically relevant and 

based on those actually experiencing the impact of the educational design. This is a new 

research itself as no such metric system exists to date that investigates the linking between 

theory and effective design practice. Moreover, in order to introduce an adaptive knowledge 

base for the alignment metric that can learn alignment information directly from the good 

module design patterns, the use of artificial neural networks will be used as a novel approach 

for adaptively supporting the educational design process in a way that marries constructive 

alignment with good design practice and therefore incorporate both theoretical and practice-

based models of design practice. Figure [3.15] illustrates an overview of the proposed 

modular architecture. 

 

 

 

 

 

 

 

 

Figure [3.15]: Modular architecture 
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3.9 Artificial Neural Network: A Possible Solution 

Neural networks are adaptive systems that have learning properties enabling them to adapt 

their internal parameters in order to satisfy constraints imposed by a training algorithm and 

by the input and output training data. Instead of following a set of rules specified by a human 

expert, neural networks are universal function approximations that can learn any function and 

learn the underlying rules and input-output relation from collection of representative 

examples. They have the ability to learn and remember portability, to distinguish objects, and 

to make intelligent decisions (Jain et al., 1996). Neural networks, with their incredible ability 

to derive meaning from complicated or imprecise data, can be used to extract patterns and 

detect trends that are too complex to be noticed by either humans or other computer 

techniques. They have the advantage of adaptive learning to learn how to perform tasks based 

on the data given for learning. Also they have been described as self-organisation as they can 

generate their own representation of the information received during learning time (Christos, 

and Dimitrios (2015). Their usage has become very widely used in many applications such as 

classification, pattern recognition, feature extraction, image matching, forecasting, and data 

compression, data clustering, optimization, pattern completion, and associative memories.  

Pattern completion is the ability to recall a stored representation when presented with a partial 

or corrupted observation of the stimulus. In referring back to Hanson and Kegl (1987), they 

have used neural networks and in particular, auto-associative neural networks (AANN), to 

perform sentence completion on sentence fragments, prefer syntactically correct sentences, 

and to recognize novel sentence patterns absent from the presented corpus. Their work is 

quite similar to this research approach in applying the same principles, however; the approach 

will be applied on module design patterns. In so doing, the network will memorise module 

designs that yield high-levels of student satisfaction (and related alignment metrics) to the 

required degree of accuracy by forming a compressed set of hidden unit representations 

(features). After successful learning, the AANN will be presented with novel test patterns 

where the expectation will be that the AAN will attempt to match any novel or new input 

patterns to those it had learnt during training. These test patterns consist of input patterns 

from those modules with low student satisfaction scores. When presented with such test 

patterns, the AANN will effectively treat these as noisy versions of patterns within the 

training set and therefore attempt to produce a pattern on the output layer that resembles one 

or more (i.e. an aggregation) of the ‘good’ module designs found within the training set 
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which is closest to the current input pattern – effectively using the features of ‘good’ module 

designs to identify changes to those module designs which have much lower student 

satisfaction. The advantage of using AANN for this task will help to extract regularities or 

discover some patterns within the data that are useful in predicting the output stimuli. Another 

advantage is as the networks learn by changing their behaviour; this makes them perform 

better in the future by introducing self-sustaining and adaptivity by accepting both new 

patterns as input (which have high student satisfaction scores) and input patterns which it has 

generated on the output to extract new module designs. The next subsections will explain 

generally some of the theory parts of artificial neural network describing the different types 

of auto-encoder architectures.  

3.9.1   Artificial Neural Network Overview 

An Artificial Neural Network (ANN) is a computational model that is inspired by the way 

biological nervous systems, such as the brain, process information. A boarder definition of 

neural network is captured by Samarasinghe as "a collection of interconnected neurons that 

incrementally learn from their environment (data) to capture essential linear and nonlinear 

trends in complex data, so that it provides reliable predictions for new situation containing 

even noisy and partial information”( Samarasinghe, 2007). 

 

 Architecture of Neural Networks 

Neural networks can be categorised into two main categories: 

1) Feed-Forward Networks in which no loops are formed  

2) Feedback Networks in which loops occur because of the feedback connection.  

Feed-forward networks are one of the most common used network architecture that allow 

signals only travel one way from input to output and no loops are formed by the networks. 

Learning in Feed-forward ANNs uses a supervised learning algorithm, in which both input 

and output patterns are known and presented to the network so that the network ‘learns’ the 

relation between the input and the output (Samarasinghe, 2007). The most commonly used 

family of feed-forward networks are the multilayer perceptron (MLPs) networks in which 

neurons are organized into layers with connections strictly in one direction from one layer to 

another (Jain et al., 1996). Neural networks can be defined based on three main 

characteristics as mentioned in (Swain et al., 2012) these are:  
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1- The architecture including the number of layers and number of nodes.  

2- Algorithm mechanism applied for updating the weight of the connection. 

3- The activation function. 

 

 Network Layers  

Neural networks generally consist of three types of layers: input layer, output layer, and one 

or more hidden layer. The input layer accepts the input information from the outside 

environment and sends them to the hidden layer. The activity of the hidden layer(s) is to 

calculate the weighted sum of the inputs which is then passed through linear/non-linear 

activation function to produce the outputs in the output layer which is heavily depends on the 

activity of the hidden units and the weights between the hidden and output units.  

3.9.2   Auto-associative Neural Networks (AANN) 

AANNs are feed-forward networks whose input and output vectors are identical. The process 

of training is called storing the vectors, which can be retrieved from distorted or corrupted 

input, if the input is sufficiently similar to it. AANNs are typically used for tasks involving 

pattern completion as stated earlier. The performance of the network is derived from its 

ability to reproduce a stored pattern from a corrupted input (Metcalfe, 1991; Weber and 

Murdock, 1989). The association in the network is achieved through the interaction of a set of 

simple processing elements, which are connected through weighted connections that can be 

adjusted in order to change the input/output behaviour. AANNs form a suitable approach for 

association rule mining as they store associations among the patterns. Thus output rules are 

extracted from a trained knowledge apposite to other approaches such as Apriori algorithm, 

which is array-based storage structure (Duch, Adamczak and Grabczewski, 2010; Setiono, 

2011).   

3.9.3   Multi-Layer Perceptron 

A Multi-Layer Perceptron (MLP) is a feed-forward artificial neural network that consists of 

an input layer, one or more hidden layers and an output layer as shown in Figure [3.16]. The 

figure illustrates a simple MLP with one hidden layer as it has been proven mathematically 

and theoretically that MLP network with one hidden layer is capable of approximating any 

non-linear function to arbitrary levels of precision (Hornik, 1991), Kaastra and Boyd (1996), 

Bishop (1995). In order for the MLP to perform as an auto-association task, the input and 
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output layer must have the same number of units or neurons where the number of hidden 

neurons in the hidden layer is less than the number of input neurons. The network is then 

trained to reconstruct its inputs, which forces the hidden layer to try to learn good 

representations of the inputs. The activation function f(x) for this task is a key component 

therefore; hidden neurons with non-linear activation functions are likely to be used to detect 

complex non-linear features. Typical choices for the activation function include the 

hyperbolic tangent sigmoid, with tanh(x) as in equation 1, which has been used in this 

research, or the logistic sigmoid function, with sigmoid(x) as in equation 2.     

 

f(x) = 
      

      
 ………….………………………………(1) 

f(x) = 
 

     
      ………….……………………….……..(2) 
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Figure [3.16]: Graph of a multi-layer perceptron with one hidden layer. 

(Source: http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html) 

 

Training a MLP is typically performed with a backpropagation learning algorithm, which is a 

common method of training artificial neural networks, used in conjunction with an 

optimization method such as gradient descent. The algorithm used to calculate the gradient of 

a cost function and bias values with respect to all weights in the network. The gradient is then 

used to find change in each weight and update it. 

3.9.4   Auto-encoders  

An auto-encoder, also called auto-associator or diabolo network, is an auto-associative neural 

network derived from the multi-layer perceptron which aims to recall and reconstruct their 

inputs into outputs with the least minimum error reconstruction (Bourlard and Kamp, 1988; 

Hinton and Zemel, 1995; Rumelhart et al., 1986). The aim of an auto-encoder is to learn a 

representation (encoding) for a set of data, typically for the purpose of dimensionality 

reduction. Architecturally, classical auto-encoders are simply FF-MLP with one or more 

hidden layers. Auto-encoders that consist of many hidden layers support deep network 

architectures that allow learning features from the datasets themselves. Figure [3.17] shows 

five layers as input layer, mapping (coding) layer, bottleneck layer, de-mapping (decoding) 

layer, and output layer. It is assumed that such layers—referred to as the bottleneck—

compress the information needed for mapping the neural network input to the neural network 

output, increasing the system robustness to noise and over-fitting. The network trained to 

map its inputs back to the same inputs thus the output layer is identical to its input layer. The 
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mapping (coding), bottleneck, and de-mapping (decoding) layers are the hidden layers. 

Typically auto-encoders are trained using the gradient descent method as in MLP however, it 

has been proposed by Bengio (2007) that gradient-based training of deep MLP networks gets 

stuck in the local minima or plateaus. In addition, it turns out that, although the performance 

function decreases most rapidly along the negative of the gradient, this does not necessarily 

produce the fastest convergence. Thus several other algorithms have been applied to auto-

encoder networks such as the scaled conjugate gradient backpropagation (SCG). In the 

conjugate gradient algorithms a search is performed along the conjugate directions avoiding 

the time-consuming line search at each iteration. This helps to produce generally faster 

convergence than steepest descent directions. The algorithm is based on conjugate directions 

and updates weight and bias values according to the scaled conjugate gradient method then 

backpropagation is used to calculate derivatives of performance with respect to the weight 

and bias variables. Detailed explanation of the algorithm can be found in (Moller, 1993). The 

memory requirements for this algorithm are relatively small in comparison to the other 

algorithms, so it is often a good choice for networks with a large number of weights. 

Moreover, it convergences faster than other algorithms and seems to perform well over a 

wide variety of problems including, approximation problems and pattern recognition 

problems Moller (1993) therefore; it was considered as the training function in the deep NN 

used in this research. 
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Figure [3.17]: Graph of a typical Auto-encoder neural network using encoder/decoder 

hidden layers. (Source: https://www.willamette.edu/~gorr/classes/cs449/nonsup.html) 

 

3.9.5   Deep Belief Networks 

Deep Belief Networks (DBN) have been introduced by Hinton and Salakhutdinov (2006) as 

stacked restricted Boltzmann machines (RBMs) that can be stacked and trained in a greedy 

manner to form so-called Deep Belief Networks (DBN) (Hinton,2006). DBNs are graphical 

models which learn to extract a deep hierarchical representation of the training data. The 

principle behind DBN is that good weight initialization plays an important role on the results 

therefore, Hinton (2006) and Bengio (2007) introduced a greedy layer-wise pre-training 

procedure, which is way of initializing better the parameters of DBN and after that can be 

applied to DBNs with RBMs as building blocks for each layer. Training of a DBN consists of 

two stages that allow learning feature hierarchies, as described by Hinton and Salakhutdinov 

(2006). In the first stage, generative unsupervised learning is performed layer-wise on RBMs. 

First, a RBM is trained on the data. Second, its hidden units are used as input to another 

RBM, which is trained on them. This process can be continued for multiple RBMs, as 

visualized in Figure [3.18]. In the second stage, fine-tuning using backpropagation is 

performed on the entire DBN to update the weights. Because of the pre-training, the weights 

have a good initialization, which allows backpropagation to quickly optimize the weights as 

described in Hinton and Salakhutdinov (2006) and (Sutskever et al., 2013). 
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 Figure [3.18]: Graph of DBNs  

Layer-wise training of a DBN, composed by stacked RBMs. From the bottom, x is the input 

and hk are hidden layers. (1) The first layer is trained. (2) The second layer is trained using 

the first hidden layer as visible units. (3) The third layer is trained using the second hidden 

layer as visible units. The process can be continued for multiple RBMs then the resultant 

DBN is ready for the fine-tuning.  

(Source: http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepBeliefNetworks) 

3.9.6   Relation between Models  

As can be seen all described models tend to learn the feature representation of the data by 

compressing. The structure of MLPs compared to DBNs differs in the output layer and the 

direction of the connections between layers. In MLP networks the information flows from the 

input layer, through the hidden layer, up to the output layer. In a DBN the information flows 

both ways between the visible (input/output) layer and the hidden layer. The training process 

is also different in MLPs compared to DBNs. In MLP the training is based on generating 

randomly initialization weights where training in each DBN layer is trained independently 

and greedily first, and then fine-tuning using backpropagation is performed on the entire 

DBN. Because of the pre-training, the weights have a good initialization, which allows 

backpropagation to quickly optimize the weights. MLP with a single hidden layer form a 

shallow network that is able to approximate and model any function as proven in many 

literatures (Hornik (1991); Simon (1998); Samarasinghe (2006). However, multiple hidden 

layers form a deeper network architecture that can help to learn complex and complicated 

1 2 3 
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functions that can represent high-level abstractions and more effect representations Hinton 

(2006); and Bengio (2007). The deep network architecture has the potential to both improve 

the network generalization and to learn hierarchical representations of the input data and thus 

can better generalize to unseen data. Therefore, three different models will be explored as 

presented in chapter five to evaluate different neural network methods for learning the 

empirical task of memorizing the good design patterns and to investigate whether the use of 

Deep Belief Networks (DBN) adds any substantial gain over MLPs.    

3.10 Summary  

The chapter has presented the first successful software implementation of Tepper’s 

‘Alignment Metric Engine’. In addition, the engine was augmented with the current state-of-

the-art application for educational designs, the LDSE (Laurillard et al., 2011) tool to facilitate 

teaching practitioners to produce learning design patterns and objectively measure the degree 

and quality of those patterns. A schematic and a step-by-step illustration of the processes 

required to augment the alignment metric engine with the LDSE was presented. The 

limitation of the alignment metric engine was discussed in being theoretically based. 

Subsequently, this will be addressed by adapting it by incorporating an adaptive agent that is 

able to learn directly from ‘good’ design pattern examples to calibrate its system parameters 

and therefore enable it to make design decisions based not just on theory, but also those 

patterns that appear to ‘work’ in practice. 
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CHAPTER 4: Data and Methodology 
 

This chapter introduces the research data methodology used for this research for collecting, 

analysing and integrating ‘real’ module design patterns into the alignment metric engine. The 

chapter starts by briefly describing the overall methodology deployed in collecting the 

required module designs and discussing the structure and format the module design data must 

adopt before it can be used by the system. The subsequent sections describe the methodology 

and the data collection process, which consists of a module design desk-based research study, 

in-depth observations and a checklist. The chapter concludes by explaining the statistical 

procedures used to analyse the collected data. 

4.1 Systems’ Data  

The alignment metric system in the previous chapter developed to measure how well aligned 

the educational components are when put together and guide teaching practitioners to use the 

‘ideal’/aligned combination of learning outcomes and the other components based on the 

principles of constructive alignment. In order for the system to overcome the limitation of 

previous tools and to base its measure on theory and practice, the system needs to be 

extended to incorporate student satisfaction to enable the system to associate alignment value 

ranges with ‘good’ design practices. The system will then be able to adapt its parameters 

accordingly and make design decisions on the basis of theory and practice. Therefore, the 

system being developed needs to learn from learning designs of differing quality. In order to 

collate and pre-process the appropriate design pattern data, it was important to review the 

different learning design tools and their design patterns as seen in Chapter 2. Also it was 

important to identify the core components of the alignment metric and how these components 

inter-relate in a systemic way as seen in Chapter 2 and 3. Thus the system’s data need to 

focus on four components: learning outcomes, learning objectives, teaching and learning 

activities, and assessment tasks and how they correlate to student satisfaction. Specially that 

one of the research problem of this research is to examine the relationships between the main 

components of the teaching system and student satisfaction.   
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4.2 Research Methodology 

For the purpose of this research, a desk-based research methodology was used for the data 

collection, which involves primary data research that seeks to obtain data directly from its 

original source. The design pattern data was extracted from a University Virtual Learning 

Environment (VLE). In-depth desk based observations covering 567 modules from the 

University’s School of Science and Technology (spanning departments of Physics, Biology, 

Maths, Computing, and Chemistry) were conducted to collect the core educational design 

components (i.e. LOs, LObjs, TLAs and ATs) in structural design pattern format. The student 

satisfaction scores associated with the module design patterns were also captured. This 

approach was justified for the following reasons: firstly, there was a very limited amount of 

compatible LDSE design patterns publicly available (i.e. between 2013 and 2016 only a total 

of 122 design patterns became progressively available for research); secondly, the lack of 

interoperability or compatibility between design pattern structure of the different learning 

design tools available in the public domain. For example, LAMS design patterns were mainly 

focusing on sequencing the teaching activities (activity patterns) and therefore, not 

constructed in such a way that they captured other important components of the educational 

design such as learning outcomes and learning objectives. Finally, and most importantly, 

none of the current learning design tools are able to discriminate module design patterns 

based on their effectiveness in practice. Therefore, this research centres on the types of data 

available in the institution where courses and module design practices are underpinned by 

constructive alignment and therefore the module designs are generally structured in an 

outcomes-based way (although as will be explained, there is significant variation across 

modules requiring further review and development). The notion of ‘well-designed’ modules 

will be determined by good practice using student overall satisfaction scores as indicators. 

The level of overall student satisfaction according to the definition of overall student 

satisfaction used by the National Student Survey states that ‘The National Student Survey 

(NSS) is a national survey, which has been conducted by Ipsos MORI annually since 2005. It 

gathers opinions from mostly final year undergraduates on the quality of their courses. Aimed 

at current students, the survey asks undergraduates to provide honest feedback on what it has 

been like to study their course at their institution’ (NSS, 2013). Students rate their overall 

satisfaction based on level of agreement to a given question using a five-point Likert scale 

indicating the strength of their agreement with the statement (5 - Strongly Agree; 4 - Agree; 3 

- Neither Agree nor Disagree; 2 - Disagree; 1 – Strongly Disagree). The institution applies a 



 

 

70 
 

similar schema at module level for all modules within University by using the evaluation 

surveys system (EvaSys, 2013), which consists of 23 questions in six assessment categories 

including: Feedback on group-based teaching, Feedback on module teaching, Module 

organisation and resources, Overall satisfaction, School specific questions, and Student 

engagement. Appendix [C] contains an example of the student evaluation survey. The 

average score of each aspect is used to find the average satisfaction scores given to the 

evaluated module.    

Reviewing and revising module designs according to measures of student satisfaction and 

constructive alignment may help module leaders to improve their module designs in a way 

that has tangible improvement in the student learning experience. The modules learning 

rooms were selected based on the 2012/13 and 2013/14 EvaSys scores of the associated 

module so that the data collected will be classified according to differing levels of student 

satisfaction. For this, the researcher chose a desk-based research methodology and designed 

checklist criteria to help to select the valid modules for reviewing and extracting the required 

data from. This approach however is expensive, time consuming and needs well-qualified, 

highly trained experts. Therefore, the researcher was required to have a clear research 

questions before the collecting data process begins to help to identify the scope and collect 

the appropriate data. The scoping process was driven by three underlying questions:  

 What is needed?  

 What is meaningful?  

 What is the core data about the variable quality design patterns? 

Answering these questions was based on mainly the main components of the alignment 

metric system and guided by those design patterns reviewed in Chapter two. Thus, the 

generated learning design patterns captured the module’s key features as will be discussed 

later in this chapter. Having generating the required design patterns, this will form the 

next step where all data need to be pre-proceeded so that they can be transformed into a 

form that can be fed as input into the auto-encoder network. A set of auto-encoders with 

different configurations and hyper-parameters are considered for training the network 

models as detailed in Chapter 5 so that they act as perfect memories of good design 

patterns (those with high degrees of student satisfaction scores). 
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4.3 Ethical Consideration 

For the purpose of the research, the data gathering process involved generating learning 

design patterns from selected module ‘Learning Rooms’ based on the 2012/13 and 2013/14 

EvaSys scores. A successful Ethical Approval application was therefore made before 

embarking on this data collection stage. This ensured all affected Module Leaders within the 

target Schools were informed that their learning room will be accessed and reviewed for the 

data gathering process of this research and that this data will be anonymised during analysis 

and evaluation. All data were therefore anonymised in that module codes and references to 

specific staff were removed and the scope of the research would not involve collecting or 

analysing individual student data. Moreover, project-specific module identifier codes were 

created and assigned to ensure learning room data are anonymous. 

4.4 Data Collection 

Two methods were used during the data collection process. The first method involved using 

the checklist method. This method is known as an organizational method to improve 

effectiveness of a given task. It structures a person’s observation or evaluation of a 

performance and helps to ensure consistency and completeness in carrying out a task. In 

addition to that, it provides a way of assessing that can help to limit the number of valid data 

(McNamara, 2008). A list of module codes and their EvaSys scores data was obtained from 

the school of science and technology. The list contains more than 400 module codes 

associated with their EvaSys scores data. In order to facilitate the process of collecting data 

from the given list, a module selection checklist with simple lists of criteria that can be 

marked as yes or no was created. This was created to help to select modules with clear 

module specification and contents that can be used to observe, investigate, and extract the 

required data from. Table [4.1] lists the checklist criteria. Applying the checklist criteria on 

total of 587 module designs, this excluded 9 modules as no module specifications were 

found, 4 modules as no clear module hand-book was provided, and 7 modules as no further 

information was listed on how assessment tasks are linked to the indented outcomes in the 

modules. This resulted in 567 out of 587 module designs were valid to observe more deeply 

and collect data from. Having identified the modules the next method was performed.   

 

 



 

 

72 
 

Table [4.1]: Module selection Checklist criteria  

Checklist Criteria  Yes  No  

Clear module specification available   

Further information on assessment task available in the specification   

Assessments are linked to the ILOs in the module specifications   

Clear teaching and learning activities available   

Module’s table of contents presented clearly    

Clear and descriptive module hand-out available    

 

The next step was to use the observation method to observe and review the selected modules 

to extract data and generate the design patterns. The Observation method is a way of 

gathering data by watching behaviour, events, or noting physical characteristics in their 

natural setting (Donald, 2005). Simply it can be described as the action or process of closely 

observing or monitoring something or someone. The desired data can be collected either 

directly by observing the event and taking notes or recording the event with electronic tools. 

This data collection method is most commonly used with qualitative data as described by 

many researchers (Beesey, Davie, and Savin, 1991; Saunders, Lewis and Thornhill, 2003; 

Mack and Woodsong, 2011). Patrick (2008) provides simple and sound common-sense 

advice on carrying out observations that was applied. After checking and identifying the 

modules using the checklist criteria, the observation method was conducted. This data 

collection method was used to observe the following: module specification, module hand-

book, and the lectures, seminars, and labs in the module to extract and record (note down) the 

core qualitative data needed from learning outcomes, learning objectives, teaching and 

learning activities, as well as summative assessment tasks. The observation was conducted 

with the use of a Microsoft Excel spreadsheet to record and store the extracted data. The type 

and source of data collected is explained in Table [4.2] while simple flowchart diagrams are 

given in Figure [4.1] and Figure [4.2] clarifying the data collection procedure. The 

observation method has the advantage of producing a large amount of qualitative data and 

does not rely on people’s willingness or ability to provide information as in other data 

collection methods such as interviews and questionnaires. However; it is expensive, time 
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consuming, and challengeable process thus some design considerations were made to 

facilitate the process and this is discussed in the next section. 

Table [4.2]: Type of data collected during the observing and the place from where each data 

were extracted 

Data to collect: From where to collect 

Module features  Module features are straightforward to collect 

from the module specification provided 

 

Subject area  

Level 

Credit point 

Module’s EvaSys scores EvaSys scores of S1, S2, S3, and S4 are collected 

from the EvaSys excel spreadsheet provided  

 

S1 EvaSys score of group-based teaching 

S2 EvaSys score of class-based teaching 

S3 EvaSys score of module organisation 

S4 EvaSys score of student satisfaction 

Module’s core teaching and learning 

features 

Some features are straightforward to collect from 

the main module specifications and module hand-

out provided while others are challengeable and 

request deep investigation into module’s content. 

The challenges encountered and the decisions 

made were addressed in Table [4.3]. 

Learning outcomes (verbs) 

Learning objectives (verbs) 

Teaching activities (TLA name) 

Assessment task  (AT name) 
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Figure [4.1]: Flowchart of the procedure of collecting the data 
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Figure [4.2]: Flowchart of the procedure of observing and investigating a module design to 

extract module features 
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4.5 Design Considerations 

Data collection can be a technical, complex and expensive process, depending on the size, 

resources and needs. Yin (1994) mentioned that adopting research strategies for solution 

contribute to facilitate the process of the data collection and overcome the potential 

challenges. The data that needed to be collected from the module designs to generate the 

design patterns of the required structure was quite a challengeable task. Table [4.3] below 

summarises these challenges and strategies for solution to facilitate the data collection 

process.  

 

Table [4.3]: Challenges in data collection and strategies for solution 

Challenge/issue Strategies for Solution 

Learning objectives are 

missing, or not obvious like 

other components  

 

 Investigate sessions 

 Search for TLAs within the sessions  

 Observe activities/statements of what teacher set 

during the session. 

  

  

 

TLA and AT Terminology 

In SST and LDSE  

 Map between the TLAs and ATs in SST and LDSE  

 

 

Verbs, TLAs, and ATs 

sometime appear in more than 

one Bloom’s level of the 

taxonomy.  

 

 Index to the highest level in Bloom’s’s Taxonomy 

(Biggs, 2003; Tepper, 2006). (This is not a precise 

grouping and as Biggs noted, research into such 

groupings is so far incomplete and much work still 

needs to be done. However; it was used for the 

purpose of computing the alignment).      

Number of learning outcomes, 

learning objectives, teaching 

and learning activates, and 

assessment tasks 

 Take the minimum recommendation of LO by many 

literatures. 

 Collect five learning outcomes 

 Collect active, measurable, and assessable LO verb 

(Bingham, 1999; Fry et al., 2000; Biggs and Tang, 

2007).  

 Avoid general and ambiguous verb such 

“understand”, “know”, “appreciate”, etc. (Bingham, 
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1999; Fry et al., 2000; Biggs and Tang, 2007);  

 Observe and collect two learning objectives for 

single learning outcome 

 Observe and collect two TLAs for single learning 

objective 

 Collect two ATs for a single learning outcome.  

 

As seen from the table one challenge was that the different module designs available from 

NOW were of varying quality, ranging from those containing a complete set of data (for each 

desired component) to others that were missing the learning objectives data or perceiving 

learning objectives and learning outcomes as the same. This causes confusion and 

substantially increase the processing time of the data generation process. The learning 

objectives are defined as teacher-orientated and/or student-orientated statements that specify 

what activities the students need to perform to achieve the associated learning outcomes. 

Adopting the perspective of D’Andrea (1999); Tepper (2006); and Biggs and Tang (2007) 

that learning objectives are typically different from learning outcomes as objectives are more 

likely to be the input to the TLAs or the expressions of teachers’ intentions to the TLAs as 

they determine the TLAs used, this helped to articulate the concept of learning objectives as 

more related to session activities. Thus the approach taken to overcome this issue was to 

investigate the sessions (lectures, seminars, labs) within the module to extract the learning 

objectives from, which are verb statements of the specific things which the teachers of the 

module intend to achieve during the given session. 

Another challenge encountered was the TLAs and ATs terminology used in the School of 

Science and Technology (SST) at Nottingham Trent University and other module designs 

such as LDSE. Some TLAs and ATs in SST are more specific and diversified than the LDSE 

which are more general and packed under some categories. This involved initial mappings 

among the TLAs and ATs in SST and those in the LDSE to facilitate the collection and 

comparison of the learning activities and to be able to link in with the current implemented 

system. This is illustrated in Appendix [D]. 

A substantial challenge was to determine the number of learning outcomes, learning 

objectives, teaching and learning activities, and assessment tasks, and to keep the structure of 

the design patterns simple and consistent to allow for robust use and comparison. Dealing 

with module level data, as opposed to session level, means that there are many learning 
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outcomes, learning objectives, and range of teaching, learning and assessment activities to 

collect. For the purpose of this research, we are seeking to generate pattern examples from 

the available module data to compute the alignment between the individual components and 

for the entire module. This requires the various tree structures to be generated which can then 

be mapped to vectors and matrices for competition. A subsequent requirement is therefore 

that these trees need to contain parent nodes that dominate a fixed number of child nodes i.e. 

need to be balanced via fixing the number of daughters (i.e. the valence) for each tree type. 

For this purposes, and to keep the structure of the pattern simple and consistent, and to 

facilitate the process of generating the pattern data, the number of learning outcomes, 

learning objectives, teaching and learning activates, and assessment tasks was empirically 

established based on the recommendations of some universities’ quality handbook 

supplement for example, Nottingham Trent University, Leicester University, University of 

London. The quality handbooks recommend 12 – 16 learning outcomes for course design and 

between 5 – 8 learning outcomes for an optimal module design. Biggs and Tang (2007) also 

recommended that 5 intended learning outcomes are suitable for module/session design and 

the more intended learning outcomes; the more difficult it becomes to align teaching and 

learning activities and assessment tasks to each. For each module, a maximum of five 

learning outcomes was selected together with their associated elements of assessment task. It 

was noticeable that all SST modules used maximum of two elements of assessment with the 

possibility of breaking down each assessment element further into two components (e.g. a 

portfolio element may consist of a presentation and report). However; a single learning 

outcome in the module specifications was found to be assessed by a maximum of two 

components. There is no literature specifying the number of learning objectives or teaching 

activities within a session as this depends on the approaches of teaching and learning. On this 

basis, the restrictions of the data gathering process for each module are: 

 Each learning outcome will dominate at most two learning objectives; 

 Each learning objective will dominate at most two teaching and learning 

activities;  

 Each learning outcome will be assessed by at least two assessment tasks.  

Thus the extracted features are captured and stored in a simple structured design pattern in 

Microsoft Excel spreadsheet as shown in Figure [4.3]. This approach enabled a consistent 

focus to be applied to each module and one that would allow for useful design structures to 

be extracted. Each generated design pattern has the structure shown in Table [4.4]. For the 
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purpose of clarification, an example of design pattern data generated from one of the learning 

design modules is illustrated in Appendix [E]. All the extracted data were transferred then 

from Excel spreadsheet into the metric’s database to store the component and compute the 

alignment therefore, the developed data model form Chapter 3 was extended to included 

father entity related to the student satisfaction information as shown in Figure [4.4].    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure [4.3]: Structure of Design Pattern Data in Excel 
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Table [4.4]: Design pattern data 

Design pattern data  

Module subject area  

Module level 

Module credit point 

Score of S1 

Score of S2 

Score of S3 

Score of S4 

V1 

V2 

V3 

OverallAlignment 

Lo1- Learning outcome 

Session Type  

Lobj1- Learning objective  

TLA1- Teaching and learning activity        

TLA2- Teaching and learning activity   

Lobj2- Learning objective 

TLA1- Teaching and learning activity        

TLA2- Teaching and learning activity  

AT1- Assessment task          

AT2- Assessment task        

Lo2- Learning outcome 

Session Type  

Lobj1- Learning objective  

TLA1- Teaching and learning activity        

TLA2- Teaching and learning activity   

Lobj2- Learning objective 

TLA1- Teaching and learning activity        

TLA2- Teaching and learning activity  

AT1- Assessment task          

AT2- Assessment task 

Likewise for LO3, LO4, and LO5 
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Figure [4.4]: Extended Context Schema of the Design Pattern Data  
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4.6 Understanding the Module Design Patterns Collected  

As the module design pattern data has been collected, it is now necessary to understand the 

statistical nature of those data and divide it into two subsets, the first subset containing so 

called ‘well-formed’ module designs and the other, ‘poorly-formed’ module designs. The 

reason for this is that alignment metric engine will be augmented with a learning agent (in the 

form of an artificial neural network) to enable it to learn from ‘well-formed’ designs in a way 

that enables it to identify appropriate modifications to the ‘poorly-formed’ modules. 

Subsequently, for each module, the alignment scores were calculated between the design 

pattern components and then stored together with the student satisfaction scores.  A total of 

621 module design patterns were produced. To segment the data set into training and test 

samples, the design patterns were rank ordered according to the module’s EvaSys score 

(where 5 refers to ‘definitely agree’ and thus excellent satisfaction and 1 to ‘definitely 

disagree’ and thus poor satisfaction). An EvaSys threshold score of 4 was selected and 

therefore the top 84% of the module designs were designated as training data and the 

remaining 16% as test data, as indicated below:  

 Training dataset: 519 (84%) design patterns, all of which had student satisfaction 

scores of four or above and will be used to train the neural network about ‘well-

formed’ module designs; 

 Test set: 102 (16%) module design patterns, all of which had student satisfaction 

scores of 3.7 and below and used to evaluate/test the performance of the trained 

neural network. Note to understand the performance of the neural network and the 

design decisions it has made, the response of the network to each test pattern will be 

stored as the network is expected to produce a new pattern on the output layer in 

response to each test pattern. We will call the raw test set the ‘TestSet (before)’ 

sample and the new patterns formed by the neural network in response to the raw test 

set as the ‘TestSet (after)’ sample.  

The remainder of this chapter discusses the statistical analysis and transformation performed 

on the module designs to aid learning. Data transformation of all patterns is based on the 

statistical properties of the training set. A frequency analysis was also performed to identify 

the most common parent-child relationships natural occurring within the module design 

patterns. More generally, the statistical properties of the Test Set (before) are computed so 

that they can be compared with those found in the resulting data set generated by the neural 
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network (TestSet (after)) to understand the importance of the design decisions made by the 

system (as discussed in Chapter 6 and 7). Finally, it is important to state that we used the 

alignment tables presented in Appendix [B] to assign each TLA, AT to a Bloom’s level 

based on Biggs (1999, 2003). Also we grouped similar verbs, activities and assessments that 

having the same Bloom’s level together. For example, all TLAs that were assigned to 

Bloom’s level 2 ,according to the TLA alignment table, such as ‘lecture’, ‘tutorial’, ‘online 

presentation’ will be grouped under TLA(2), activities such as ‘seminars’ and ‘class 

discussion’, which were assigned to Bloom’s level 3, will be grouped together under the 

TLA(3). The same procedure was applied for the other activities and assessment tasks and the 

full list is provided in Appendix [F]. The following are variables that form the core part of 

the study of the raw data.  

 V1: the learning outcome alignment score 

 V2: the teaching and learning activities alignment score 

 V3: the assessment tasks alignment score  

 V: the overall module alignment score. This is obtained by taking the average of V1, 

V2 and V3. 

 S: the overall student satisfaction score   

 

4.6.1 Statistical Analysis of the Training Set  

The training data set consists of 519 module design patterns where each pattern has a student 

satisfaction scores of four or above. The data were analysed in terms of the V1, V2, V3, V 

and S scores and the statistical descriptive analysis of the data is given in Table [4.8] which is 

illustrated at the end of this section. The design patterns data were also subject to frequency 

analysis to identify and describe the module characteristics that has significant impact on 

overall student satisfaction. The following graph illustrates the overall frequency of Bloom’s 

level for each of LOs, LObjs, TLAs, and ATs found in the training dataset.   
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Figure [4.5]: Frequency graph showing the most frequent Bloom’s learning level covered in 

the training dataset 

A frequency table of each parent-child relationships for each of V1, V2, and V3 tree was 

constructed as shown in the tables below. Table [4.5] shows the most common learning 

outcome/learning objective parent-child relationships found in the training dataset (i.e. in the 

well-formed module designs according to student satisfaction). For each learning outcome 

found in the module designs, the most frequent corresponding learning objectives are 

indicated.  

Table [4.5]: V1 Frequency Relationships Table (Training dataset) 

Lo/Lobjs Lo(1) Lo(2) Lo(3) Lo(4) Lo(5) Lo(6) 

Lobj(1) 12 (8.9%) 29 (7.3%) 34 (3.6%) 11 (3.0%) 22 (5.5%) 0 (0%) 

Lobj(2) 53 (52.4%) 175 (44.2%) 131(13.8%) 44 (12.3%) 18 (4.5%) 3 (3.0%) 

Lobj(3) 14 (13.8%) 79 (19.9%) 359 (38.0%) 

 

80 (22.5%) 110 (27.9%) 9 (9.2%) 

Lobj(4) 20 (19.8%) 84 (21.4%) 169 (17.9%) 74 (20.6%) 100 (25.3%) 34 (35.0%) 

Lobj(5) 4 (3.9%) 13 (3.2%) 219 (23.1%) 

 

98 (27.5%) 123 (31.2%) 16 (16.4%) 

Lobj(6) 1 (0.9%) 16 (4.0%) 32 (3.3%) 49 (13.7%) 21 (5.3%) 35 (36.0%) 
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For each of the learning objective in the module designs, the frequent teaching activities are 

the following: 

Table [4.6]: V2 Frequency Relationships Table (Training dataset) 

Lobj/TLAs Lobj(1) Lobj(2) Lobj(3) Lobj(4) Lobj(5) Lobj(6) 

TLA(1) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

TLA(2) 204(52.3%) 

 

572 (38.1%) 150 (5.1%) 216 (10.2%) 238(10.2%) 73 (10.6%) 

TLA(3) 97 (24.8%) 

 

380 (25.3%) 370 (12.5%) 108 (5.1%) 32 (1.6%) 305(44.3%) 

TLA(4) 67 (17.1%) 301 (20.0%) 840(28.5%) 

 

767 (36.2%) 895(36.6%) 7 (1.0%) 

TLA(5) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

TLA(6) 22 (5.6%) 247 (16.4%) 1578(53.7%) 

 

1023(48.3%) 1157(49.6%) 303(44.0%) 

 

For each of the learning outcome in the module designs, the frequent assessment tasks are the 

following: 

Table [4.7]: V3 Frequency Relationships Table (Training dataset) 

Lo/ATs Lo(1) Lo(2) Lo(3) Lo(4) Lo(5) Lo(6) 

AT(1) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

AT(2) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

AT(3) 0 (0%) 44 (6.0%) 80 (3.7%) 0 (0%) 35 (3.6%) 46 (20.0%) 

AT(4) 39(22.1%) 

 

178(24.5%) 

 

865(41.0%) 

 

244(32.1%) 

 

436(45.8%) 41 (17.8%) 

AT(5) 37(21.1%) 44(6.0%) 628(29.7%) 

 

236(31.0%) 44(4.6%) 

 

39 (16.9%) 

AT(6) 100(56.8%) 460(63.3%) 535(25.3%) 279(36.7%) 

 

436 (45.8%) 104(45.2%) 
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Resultantly, the mean and standard deviation (SD) are evaluated for V1, V2, V3, and S. in 

addition, the range which is the difference between the minimum and maximum value, is also 

calculated for these variables as summarised in Table [4.8] below. The mean and SD are 

given correct to 2 decimal places while the minimum and maximum values and the range are 

estimated correct to 1 decimal place.  

Table [4.8]: Training Dataset Statistical Summary 

 V1 V2 V3 V S 

Mean 7.91 9.26 10.45 9.21 4.52 

SD 3.21 2.39 2.74 1.62 0.28 

Min 4.8 4.3 4.3 4.7 4.0 

Max 19.8 16.3 17.6 13.5 5.0 

Range 15.0 12.0 13.3 8.8 1.0 

 

The frequency of usage of each LOs, LObjs, TLAs, and ATs as seen from the graph in Figure 

[4.5] allows making the conclusions about their importance and significance (occurrence) in 

the design patterns. It can be seen that the most considered Bloom’s cognitive in formulating 

learning outcomes is Apply with more than 450 design patterns (41%) occurring with verbs 

under Bloom’s level 3. This is followed by Create with 17.4% of the outcomes were in 

Bloom’s level 5 and 16.9% were in Bloom’s level 2 (i.e. Understand), while design patterns 

with learning outcomes in the Analysis level were occurring with 15.5%. On the other hand, 

design patterns with learning outcomes associated with Bloom’s level 1 and 6 were less 

frequent as there were no more than 4.5% of design patterns with verbs in learning outcomes 

of Knowledge and Evaluation. This means that for the majority of learning outcomes of these 

modules, emphasis was more on the intermediate cognitive level in formulating the learning 

outcomes as the highest proportion of frequency was at Bloom’s level 3. Following that it can 

be seen that the most frequency of Bloom’s levels for formulating the learning objectives in 

general were between level 2, 3, 4, and 5 with the first learning objective was usually 

utilizing the same Bloom’s level of the most frequent learning outcome (38.9%) while 

Bloom’s levels in the second learning objective have been mixed with more frequency for 
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higher cognitive skills between 32% for Bloom’s level 5 (Create) and 26% for Bloom’s level 

4 (Analyse) that is students being expected to create and analyse the artefacts.  

In terms of the teaching and learning process, it can be seen that there are wide range of 

activities assigned to different level of Bloom’s with a great emphasis (i.e. more than 38%) 

on more high level activities associated with level 6, which contains all forms of group-based 

activities. Also it was found that active-based learning and collaborative learning were the 

most type of learning constructed during the given lectures. Finally, the most frequent 

assessment tasks used were the assessment types which assigned to Bloom’s level 4 and 6 

and frequently taking the form of individual practical assessment and reports, marked 

assignments, group projects, and 2 hours unseen examinations. 

The frequency table of each parent-child relationships constructed to determine the most 

frequent or common parent-child relationships found in the training set, shows that in V1 

relationships generally there is a good balance between each of the learning outcomes and 

learning objectives. It shows that learning outcomes formulated with more emphasis on the 

ability of students to remember knowledge and understand (Bloom’s level 1 and level 2) are 

associated with the verbs used in formulating the learning objectives by containing one or 

more of the verbs under “Understand and Analyse” (level 2 and level 4). This shows that the 

associated learning objectives utilizing the same or higher levels than the learning outcomes. 

On the other side, learning outcomes constructed on the ability of students to apply, analyse, 

and create (level 3, level 4, and level 5 respectively) are commonly associated with learning 

objectives contain one or more of the verbs under “Apply and Create” (level 3 and level 5). 

And finally, learning outcomes with the highest cognitive abilities (Bloom’s level 6) seems to 

be more associated with learning objectives contain one or more of the verbs under “Analyse 

and Evaluate” (level 4 and level 6). 

The V2 relationship, which illustrate the relation between the learning objectives (LObjs) and 

the dominated teaching and learning activities (TLAs) used, shows that the most common 

types of TLAs used when the verb of the learning objective being in Bloom’s level 1 are 

lectures, which assigned to Bloom’s level 2, and variety of seminars and class discussions 

(Bloom’s level 3). A similar trend was observed for the verbs of the learning objective being 

in Bloom’s level 2. This is considered appropriate because verbs related to these levels refer 

to declarative knowledge that helps students to learn and know about certain topics or facts 

and so, the appropriate activities to facilitate achieving this are teaching activities like 
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lectures, seminars, and discussion as mention in (Biggs and Tang, 2007). In learning 

objectives being formulated at higher level skills like Bloom’s level 3, 4, 5, and 6, the most 

frequent TLAs found are those which assigned to higher levels in Bloom’s including more 

peer-controlled and a combination of individual and group work activities during the teaching 

session with high percentages associated with group-based activities (TLA (6)) as they were 

the most frequent activities. This is achieving the principle of collaborative learning that 

helps students to work together to achieve high form of learning. It is well documented in 

many literatures that collaborative learning is one of the most attracted and valued 

approaches in learning as it combines social learning with experiential learning or inquiry-

based learning in the sense that students work together in pairs or small groups to construct 

common meaning and knowledge and to produce and demonstrate the outcome of their 

learning (Bandura, 1985; Vygotsky, 1978; Roschelle, 1992; Brett, 2005; Machemer and 

Crawford, 2007; Cavanagh, 2011, and others). Therefore, it is understandable that module 

designs containing high proportions of collaborative methodologies hold high student 

satisfaction as they help better understand the learning which leads to a positive effect. In 

addition, Vygotsky (1978) had mentioned the capability of students to achieve higher 

intellectual levels when asked to work collaboratively than individually.  

Finally, the relationship between the learning outcomes and assessment is one of the most 

important factors in achieving well aligned module design. Biggs and other education 

scholars emphasised the importance of designing assessments and ensuring that they match 

the learning outcomes of the module so that student can be assessed using the right level. 

Table [4.5] illustrates the most frequent assessment tasks used for each level of the learning 

outcomes in the training dataset. In general it can be seen that the most frequent Bloom’s 

levels used to assess the learning outcomes were Bloom’s level 4 and 6. Assessment tasks 

assigned to Bloom’s level 4 are types such as in-class tests, practicals, and reports. And 

assessment tasks assigned to Bloom’s level 6 are types such as exams, essays, and projects. In 

analysing the assessment types used for each learning outcomes, the table shows that the 

most frequent type of assessments in assessing learning outcomes related to the knowledge 

and understanding (Bloom’s level 1 and 2) are exams (Bloom’s 6), with 560 learning 

outcomes found to be on this pattern. In addition to exams, these learning outcomes were 

assessed with short answer exams which were taken as in-class tests (Bloom’s 4). For 

learning outcomes being at the application level, where the emphasis is more on the ability of 

the student to apply the learnt knowledge to solve problems, 41% of the outcomes were 
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assessed mostly by individual practical activities and reports while 29% of the outcomes of 

the same level were also assessed by more individual depth assignments. On the other hand, 

the most frequent combination of assessment tasks in assessing the learning outcomes in the 

analyses and synthesis levels were Bloom’s level 6 in the form of group assignments and/or 

projects and Bloom’s level 4 in the form of individual practical reports. Finally, for learning 

outcomes at the evaluate level, the most frequent assessment strategy involved was 

examination as 45% of the learning outcomes being in this level were assessed by unseen 

examination. In addition to that, there were other assessment types used beside the 

examinations to assess the outcomes such as presentations, individual reports, and project 

reports with the frequency proportion of these types given as 20%, 17%, and 16% 

respectively.  

4.6.2 Statistical Analysis of the Test Set (Before)  

The same analysis principles were applied for the testing dataset which consist of 102 data 

patterns that were generated from the ‘poorly-formed’ module designs. The data were 

analysed in terms of the alignment scores and satisfaction scores. The statistical descriptive 

analysis of the data is given in Table [4.12] where the overall frequency analysis of LOs, 

LObjs, TLAs, and ATs is given in Figure [4.6]. 

 

 

 

 

 

 

 

 

 

Figure [4.6]: Frequency graph showing the most frequent Bloom’s learning level covered in 

the testing dataset 
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Again once the overall modules taxonomy was analysed for the testing dataset, a frequency 

table of each parent-child relationships in each of V1, V2, and V3 tree is constructed. This to 

determine what the overall pattern or the most common parent-child relationships found in 

the testing dataset. For each of the learning outcome in the module designs, the frequent 

learning objectives are the following: 

Table [4.9]: V1 Frequency Relationships Table (Test before) 

Lo/Lobjs Lo(1) Lo(2) Lo(3) Lo(4) Lo(5) Lo(6) 

Lobj(1) 2 (3.1%) 18 (13.0%) 23 (5.2%) 7 (4.2%) 6 (4.1%) 0 (0%) 

Lobj(2) 33(51.5%) 

 

57 (41.3%) 

 

72 (16.5%) 33 (19.8%) 12 (8.3%) 6 (8.3%) 

Lobj(3) 16 (25.4%) 24 (17.3%) 173(39.8%) 39 (23.4%) 

 

58 (40.5%) 20 (27.7%) 

Lobj(4) 13 (20%) 31 (22.4%) 

 

72 (16.5%) 47 (28.3%) 

 

34 (23.7%) 28 (38.8%) 

Lobj(5) 0 (0%) 5 (3.6%) 80 (18.4%) 

 

25 (15.0%) 32 (22.3%) 12 (16.6%) 

Lobj(6) 0 (0%) 3 (2.1%) 41 (3.2%) 15 (9.0%) 1 (0.6%) 6 (8.3%) 

 

For each of the learning objective in the module designs, the frequent teaching activities are 

the following: 

Table [4.10]: V2 Frequency Relationships Table (Test before) 

Lobj/TLAs Lobj(1) Lobj(2) Lobj(3) Lobj(4) Lobj(5) Lobj(6) 

TLA(1) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

TLA(2) 52(45.6%) 

 

155(36.3%) 353(53.0%) 240(53.6%) 

 

27(8.7%) 4(5.1%) 

TLA(3) 28(24.5%) 

 

81 (19.0%) 108(16.2%) 60(13.4%) 60(19.3%) 

 

0(0%) 

TLA(4) 26(22.8%) 128(30.0%) 

 

152(22.8%) 113(25.28%) 

 

169(54.5) 

 

41(52.5%) 

TLA(5) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

TLA(6) 8(7.0%) 62(14.5%) 53(7.9%) 34(7.6%) 54(17.4%) 33(42.3%) 
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For each of the learning outcome in the module designs, the frequent assessment tasks are the 

following: 

Table [4.11]: V3 Frequency Relationships Table (Test before) 

Lo/ATs Lo(1) Lo(2) Lo(3) Lo(4) Lo(5) Lo(6) 

AT(1) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

AT(2) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

AT(3) 3 (4.5%) 9 (6.5%) 37 (8.4%) 8 (4.8%) 8 (5.6%) 3 (4.1%) 

AT(4) 28(42.4%) 

 

40 (28.9%) 

 

183 (41.7%) 

 

53 (31.9%) 

 

55 (38.7%) 

 

14 (19.4) 

AT(5) 10(15.1%) 29 (21.0%) 88 (20.9%) 44 (26.5%) 34 (23.9%) 18 (25%) 

AT(6) 25(37.8%) 

 

60 (43.4%) 

 

130 (29.6%) 61 (36.7) 

 

45 (31.6%) 

 

37 (51.3%) 

 

The statistical figures for each of the V1, V2, and V3 scores and student satisfaction scores in 

the testing dataset are given as follows again the mean and SD are given correct to 2 decimal 

places while the minimum and maximum values and the range are estimated correct to 1 

decimal place. 

Table [4.12]: Test Dataset Statistical Summary 

 V1 V2 V3 V S 

Mean 9.60 7.81 10.15 9.19 3.36 

SD 5.24 2.39 3.14 2.75 0.31 

Min 3.0 3.7 4.0 4.4 1.8 

Max 21.2 16.4 16.7 14.3 3.7 

Range 18.2 12.7 12.7 9.8 1.9 

   

The frequency of usage of each LOs, LObjs, TLAs, and ATs as seen from Figure [4.6] 

illustrates that again the most considered Bloom’s cognitive in formulating learning outcomes 

is Apply with 41% of the outcomes contain different verbs under the Bloom’s level 3. This is 

followed by Analyse, Create, and Understand with very close percentages of 16.5%, 15.2%, 

and 13.7% respectively. Again design patterns with learning outcomes associated with 
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Bloom’s level 1 and 6 were less frequent, however; the percentage of learning outcomes at 

Bloom’s 6 in this set is slightly more than what found in the training set. The majority of the 

learning objectives were constructed around the Understand, Application, and Analysis levels 

of Bloom’s taxonomy. In terms of the teaching and learning process, again the teaching was 

mainly designed through lecture sessions, seminars, and practical sessions where the most 

frequent type of teaching activities beside lectures were those TLAs assigned to Bloom’s 

level 4 with high proportions of frequencies for using the individual-based activities as main 

TLAs. It is clear from the graph that TLAs with Bloom’s level 6, which consist of group-

based activities, were less frequent with an average occurrence of only 20% of the overall 

TLAs used. This explains that modules’ leaders of these modules were focusing on individual 

activities whether it is practical or resource-based more than engaging the student to work 

together. Last but not least, the most frequent assessment tasks in this dataset seems to be 

slightly the same as the training dataset in utilizing Bloom’s level 4, 5, and 6 in assessing the 

learning outcomes and taking the form of individual/group assignments, practicals, and 

unseen examinations.   

In terms of the frequency table of each parent-child relationships for V1, V2, and V3, this 

shows that there is some mismatch tacking place. For example, in V1 relationship (Table 

[4.9]), the learning outcomes which assess students ability to create, and evaluate were 

frequently associated with learning objectives in the lower Bloom’s cognitive abilities than 

that defined in the learning outcomes. According to principles of constructive alignment this 

can limit the achievement of the outcome because low level cognitive learning objectives will 

not dominates the right type of TLAs that can help students to create and evaluate even if 

they achieved the defined objectives. The reason for this may be due to the confusion in the 

understanding of the concept of the relationship between learning outcomes and learning 

objectives as it was explained before in that most teaching practitioners do not differentiate 

between the two with only a number of researchers such as D’Andera’s (1999) making it 

clear that learning objectives are the input to the TLA process which requires the teaching 

practitioners to make more sensible choices and design wide range of activities to get 

students to do what the learning outcomes nominate. However, considering wide range of 

activities is not enough, the types of TLAs also play an important role in education. For 

example, the frequency table of V2 relationship shows that the most frequent type of TLAs 

associated with learning objectives related to Bloom’s level 1(Knowledge) were lectures and 

discussions, Bloom’s level 2 (Understanding) were lectures and 30% individual activities, 
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Bloom’s level 3 and 4 (Application and Analysis) were also mainly lectures (53%) and more 

than 20% individual activities, and finally Bloom’s level 5 and 6 (Synthesis and Evaluate) 

were also associated with high propositions of individual activities and other small 

percentages distributed among lectures, seminars, and little of group activities. in this dataset, 

lectures were the most frequent TLA, which is strong in achieving lower-cognitive objectives 

but not suitable for the higher objectives.     

The frequency table of V3 relationship revealed that the most frequent assessment tasks in 

this dataset seems to be similar to the training data. It can be seen that one of the reasons that 

these modules are associated with low student satisfaction may be the lack of social and 

collaborative activity as seen in the V2 table with less frequencies for the group activities, 

which is opposite to the training set that comprises more lager proportions on the group 

activities than on the individual ones. Many of scientists and pedagogical educators have 

asserted that both individual and group activities play an important role in the learning, 

however; social and collaborative activities remain the most influential.    

The results of the analysis on the cognitive levels associated with learning outcome, learning 

objectives, teaching activities, and assessment tasks, show that there are sufficiently many 

examples of good practices in aligning the components to required level based on the 

principle of constructive alignment as seen in the training sets. However, there is also a 

number of design patterns that suffer from weakness in the teaching methods which need to 

consider other teaching methods in order to attract student satisfaction. The next section will 

highlight the distinct differences between the two sets where the following section examines 

and discusses the relationships between each of the V relationship and student satisfaction in 

design patterns generated from module designs with high student satisfaction scores. Each 

relation is examined separately where the Pearson correlation coefficient and R-squared are 

calculated.       

4.6.3 Brief Comparison between the Training and Test Sets 

The aim of conducting the above frequency analysis was to identify the design features in the 

dataset and highlight the most distinct differences between them. As demonstrated by the 

above frequency graphs and tables, there was a nice colour variation in how the learning 

outcomes are formulated with more focus on the application level in both sets. However, 

there was a difference in associating the other components together in relation to the learning 

outcomes. Table [4.13] below briefly highlights these distinct differences between the 
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training and test dataset which resulted from the frequency analyses conducted for the V1-

LO/Lobj, V2-Lobj/TLA, and V3-LO/AT relationships. 

 

Table [4.13]: Comparison table between the Training and Test Sets 

 Training Set   Test Set  

LO/Lobj Objectives levels are more distributed 

among intermediate to high abilities: 

The level of learning associated with 

analysis (4) and synthesis (5) are most 

frequently associated with objectives 

at application (3), Analysis (4) and 

synthesis (5). 

 

The level of learning associated with 

evaluation (6) are most frequently 

associated with objectives at analysis 

(4) and evaluation (6).   

Objectives levels are more distributed 

among low to intermediate abilities: 

The level of learning associated with 

analysis (4) and synthesis (5) are most 

frequently associated with objectives at 

application (3) and analysis (4).  

 

The level of learning associated with 

evaluation (6) are most frequently 

associated with objectives at 

application (3) and analysis (4).   

Lobj/TLA TLAs in the form of group–based 

activities are always used in relation to 

the application, analysis, synthesis, 

and evaluation. 

TLAs in the form of individual–based 

activities are frequently used in 

relation the application, analysis, and 

synthesis. 

LO/AT Assessment tasks assigned to Bloom’s 

level 3 and 6 are frequently used in 

relation to learning outcome at level 6. 

 

Presentation and examinations mostly 

used to assess learning outcomes 

associated with the evaluation level. 

Assessment tasks assigned to Bloom’s 

level 5 and 6 are frequently used in 

relation to learning outcome at level 6.  

 

Individual/group assignments and 

examinations mostly used to assess 

learning outcomes associated with the 

evaluation level. 

 

Before testing the relationship between the module alignment and student satisfaction, a two-

sample t-test is performed for comparing the means of V1, V2, and V3 of the training dataset 

and testing dataset. This is done to determine whether there is a statistically significant 

deference between the means in the two groups or not thus the hypothesis of interest can be 

expressed as: 
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H0: There is no significant difference between the means found in the training dataset and 

testing dataset 

In order to test the above hypothesis, the two-sample t-test used and the calculation results are 

obtained in Table [4.14] where figures are given correct to 3 decimal places. The results show 

that for V1 the t-statistic is equal to 3.142 and the p-value is very low, therefore, we reject the 

null hypothesis for V1 and conclude that there is strong evidence of a mean difference 

between the two sets. For V2, the t-statistic is equal to 5.553 and the p-value again is very 

low. Since the p-value is very low, we reject the null hypothesis for V2 as well and conclude 

that there is strong evidence of a mean difference between the two sets. However, for V3 the 

null hypothesis cannot be rejected because the p-value seems to be greater than the significant 

level 0.05 which shows no significant evidence of a mean difference between the two sets in 

the case of V3.  

Table [4.14]: t-Test: two-sample assuming unequal variances 

   V1 V2 V3 

V_Mean_1 7.914 9.262 10.454 

V_Mean_2 9.606 7.814 10.154 

t-Stat 3.142 5.553 0.895 

Sig. < 0.000 < 0.000 > 0.371 

Df 117 145 134 
* Significant at the p < 0.05 level. 

V_Mean_1 the V mean of training dataset (i.e. module design with high student satisfaction)  

V_Mean_2 the V mean of testing dataset (i.e. module design with low student satisfaction)  

 

4.6.4 Relationship between Module Alignment and Student Satisfaction 

The next analysis is conducted to look for the correlation between the different alignment 

scores and student satisfaction scores in the module designs to investigate how well the 

scores are related, thus the hypothesis for this can be stated as:  

H0: There is no correlation between the module alignment scores and student satisfaction 

scores in the module designs.  

In order to investigate this hypothesis, first a scatter plot of the overall module alignment 

scores and student satisfaction scores was given in Figure [4.7] to visualize the underlying 

trend in the relationship. We can perceive from the scatter plot that there is an underlying 

assumption of a relationship between the overall module alignment and student satisfaction. 
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After that the different relationships were examined separately using the Pearson correlation 

coefficient. The correlation results in Table [4.15] suggest the existence of correlation 

between the different variable V1, V2, and V3 and satisfaction with different degrees. As can 

be seen that student satisfaction scores with V2 alignment scores (r = 0.575) is relatively 

highly correlated in comparison with V1 and V3 alignment scores. The table also supports 

the above assumption with a value of (r = 0.743), which suggests that an increase in the 

overall module alignment results in a corresponding increase in the satisfaction and vice 

versa. Therefore, we reject the above hypothesis and conclude that there is a positive 

correlation between alignment and satisfaction.    

 

 

 

 

 

 

 

 

 

Figure [4.7]: Correlation plot between overall module alignment and student satisfaction  

 

Table [4.15]: Correlation analysis between V1, V2, and V3 alignment scores and student 

satisfaction scores  

  Pearson Correlation P-value R-squared 

V1 and S 0.403 < 0.05 0.162 

V2 and S 0.575 < 0.05 0.331 

V3 and S  0.325 < 0.05 0.105 

AVG_V and S 0.743 < 0.05 0.553 
* Correlation is significant at the 0.05 level. 
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4.6.5 Determining Acceptable and Meaningful Range of Alignment Scores  

The current alignment metric (Tepper, 2006) provides a quantitative measure of alignment 

between the individual components V1, V2, and V3 and for the entire module, which is 

theoretically based measure. In order to investigate the usefulness of the metric and to 

identify more realistic values for V1, V2, and V3, we use other indicators such as good 

design practices based on high student satisfaction to bridge between theory and practice and 

enable the metric to base its measure not only on theory but also on good and effective design 

practices. Therefore, the collected module data were arranged by their average EvaSys scores 

with the top 75% module designs being used for producing a meaningful alignment system 

where acceptable ranges are based on high level of student satisfaction, rather than theory 

alone. The 519 design patterns generated from the top 84% module designs were fed into the 

Alignment Metric where the relationships between the main components (i.e. LOs, LObjs, 

TLAs, and ATs) and Bloom’s taxonomy were established and the alignment was computed. 

The statistical properties of alignment for V1, V2, and V3 have been calculated as shown in 

Table [4.8] in the previous section. The z-scores values are used to determine the range of the 

acceptable alignment scores that are subsequently used to evaluate the test data set before and 

after. The z-score for a given datum x is calculated using equation (3) below and the 

preliminary acceptable raw alignment values were identified as tabulated in Table [4.16]. It 

was determined to set the acceptable ranges for the alignment figures for V1, V2, and V3 

respectively to be within the average of plus or minus one z-score range (69% training data) 

as more than 30% of the test patterns in each V1, V2, and V3 found to be outside this range.  

  
      

   
………….……………………………… (3) 

Table [4.16]: Acceptable Ranges of Alignment for V1, V2, V3, and AVG_V   

  Number (X) % (X) Min (X) Max (X) Range (X) Z-scores  

V1 434 83.6 4.8 11.1 6.3 -0.96 – 0.99 

V2 420 80.1 6.9 11.5 4.6 -0.98 – 0.93 

V3 431 83.0 7.8 13.1 5.3 -0.96 – 0.96 

AVG_V 432 83.2 7.6 10.7 3.1 -0.99 – 0.94 
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4.7 Summary 

The purpose of this chapter was to describe the data research methodology of this research, 

explain the module design data selection, describe the procedure used in designing the tool 

and collecting the data, and provide an explanation of the statistical procedures used to 

analyse the collated data. Moreover, the training dataset, which represents the good and 

effective module design practices, was used to identify meaningful alignment value ranges 

for the three main relations (V1, V2, and V3) for Tepper’s metric (Tepper, 2006). Applying 

the metric to the module design patterns in the training set resulted in the alignment value 

ranges shown in Table [4.16]. Therefore it is expected that if module designs stay within 

these ranges then the modules will be well-formed and constructively aligned in a way that 

will potentially yield positive student satisfaction. The next chapter presents the neural 

network data pre-processing along with the neural network training experiments for learning 

the features of good design patterns. 
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CHAPTER 5: EDIT an Educational Design Intelligence 
Tool for Supporting Design Decisions 

 

5.1 Data Pre-Processing  

In order to prepare the collected data for the artificial neural network, the data need to be pre-

processed so that the original raw data is transformed into numerical input vector or feature 

vectors ready to be fed as input into the network. The block diagram of the data pre-

processing process is shown in Figure [5.1]. Two procedures are conducted these are coding 

the non-numerical values and normalizing the data and each one is described below. 

 

 

 

 

 

 

 

Figure [5.1]: Block diagram of data pre-processing 

 

5.1.1   Mapping Symbolic Input to Real-valued Vectors  

Information processing within ANN is numerical by nature; that is they only accept 

numerical input vectors and generate numerical output vectors (or a scalar). Symbolic 

(nominal or categorical) input variables therefore need to be transformed into a corresponding 

real-valued vector. There are a number of different approaches used to convert categorical 

into numerical feature representation; supervised lexicalized natural language processing 

approaches use the standard word representation which take a word and convert it to a 
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symbolic ID. This is then transformed into a feature vector using a one-hot
12

 representation 

features (Turian, Ratinov, and Bengio, 2010). However, the one-hot representation approach 

can suffer from high dimensionality if there are many values for a given categorical variable. 

In addition, no assumption about word similarity is given. Other approaches such the Brown 

Corpus (Francis and Kucera, 1979) involves that each word is associated with a tag which 

represents its syntactic category. Tags are assigned to bit pattern codes by frequency of 

occurrence in the corpus. This approach can help the training process by reflecting known 

similarities between symbols into their coding. The approach also uses the binary bit pattern 

representation which is used in previous related auto-encoder models such as PARSNIP auto-

associator (Hanson and Kegl, 1987), and recursive auto-associative memory (Pollack, 1990; 

Voegtlin and Dominey, 2005). On closer inspection, the categorical features are found to be 

of ordered values, with Bloom’s taxonomy behind the categories, therefore the same 

approach was followed by grouping the same categorical feature together representing a 

group of symbols of the same type or category. Each symbol is then represented as a binary 

vector using the Gray bit pattern coding where the hamming distance between two symbols in 

the category is only one bit (Black, 2004). The number of bits for each symbol is the 

minimum required to represent all symbols in the corresponding category. Because there are 

no more than 32 symbols in each group, each symbol within a group is represented by ‘six 

bits’. This representation is used to represent each of the learning outcomes, learning 

objectives, teaching activities, and assessment tasks while the categorical features under the 

‘Subject area’ were represented by 8-bits long activating one bit for each feature. However, it 

could be represented by three-bits to reduce the feature dimensionality. All other numerical 

features were represented by one single bit as real values. With each module design pattern 

having five different LOs, ten LObjs, twenty TLAs, and ten ATs; this adds up to a total of 

288 bits used to encode all possible input symbols for the MLP neural networks as shown in 

Figure [5.2].    

 

 

 

 

                                                           
12 One-hot encoding is a form of binary coding where each bit, or input node, represents a symbol or 
categorical value and only one can be active at any one time to represent a particular input value 
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Figure [5.2]: Symbolic Input Representation (1) 

 

Another input representation was used for the deep auto-encoder networks and DBN where 

the purpose was to reduce the input dimensionality and to make the input representation 

shorter and more effective. This was achieved by following the same approach above, 

however; categorical features were represented only with single bit. More clearly, each LO 

verb, LObj verb, TLA, and AT is given a Bloom’s level number then weights are added to the 

Bloom’s level number for each type and numerically tagged in the given context. This 

resulted in a total of 56 bits of dimensional vector as shown in Figure [5.3]. This can help in 

that each input will have some significance and thus cause a weight change resulting in 

learning for all weights.    

 

 

 

 

Figure [5.3]: Input representation (2) 

 

Clearly, a post-processing approach is then needed to map the resulting vectors generated by 

the ANN back into the original symbolic representations for it to be read back into the metric 

engine and for interpretations to be made. In order to do this, each aspect of a module design 

has a binary code and a simple threshold function applied to the continuous activations to 

produce a series of binary activations that can then be symbolically interpreted. The function 

applies a threshold of 0.5 with any value greater than or equal to 0.5 converted to 1, and those 
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below to 0. It then interprets the resulting binary strings by matching binary sub-strings with 

the different symbol representations from the symbol database by calculating the Euclidean 

distance to identify the appropriate learning outcome, teaching learning activity, or 

assessment task i.e. the symbol with the smallest Euclidean distance is the chosen symbol. 

The same process is applied in case of the second representation but instead of converting 

into binary strings, the outputs are rounded and compared to their near existing number 

presented in the database table. 

5.1.2   Normalizing the Data 

After encoding all the nominal values and that all data have been converted to numeric 

values, all data need to be normalised to be within a specific range in order to help to improve 

the performance of the network by getting good initial weights (Kevin and Keller,2005). 

While in theory, some studies say that it is not necessary to perform this step, however; 

practice has shown that data with different scales often lead to the instability of neural 

networks but when data are normalized, neural network training is often more efficient, 

which leads to a better predictor and convergence. The normalisation procedure typically 

consists in transforming the inputs into values in the range between 0 and 1 using the Min-

Max normalization or standardizing the data between -1 and 1 using the Gaussian 

normalization. The function “Gaussian normalization” is used to standardize the entire data in 

order to yield zero mean and unity standard deviation. This is achieved using the following 

equation: 

X standardize = 
        

                  
 

 

5.2 The Training and Testing Sample 

After the pre-processing procedure, the data is divided into training and testing samples. The 

training sample consists of 519 patterns generated from those modules with high student 

satisfaction scores as described in Chapter 4. This will be used to train the network by 

computing the error gradients and updating the network weights. The objective of the training 

is to achieve optimal memorization performance by producing the minimum training error. 

However, during the training of neural networks, over-fitting can occur which is an indication 

of poor generalisation (Samarasinghe, 2007). This occurs is when the training error is driven 
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[SA_101 L_2 CP_20 S1_4.1 S2_4.3 S3_4.1 S4_4.4 V1_5.5 V2_12.3 V3_10.6 AVG_V_12.2 [LO1_102 

[LOBJ1_401 [TLA1_404 TLA2_401] LOBJ2_101 [TLA1_401 TLA2_602] [AT1_601 AT2_601]]] [LO2_501 

[LOBJ1_.. [TLA1_..TLA2_..] LOBJ2_.. [TLA1_..TLA2_..] [AT1_..AT2_..]]] [LO3_.. [LOBJ1_.. [TLA1_..TLA2_..] 

LOBJ2_.. [TLA1_..TLA2_..] [AT1_..AT2_..]]] [LO4_.. [LOBJ1_.. [TLA1_..TLA2_..] LOBJ2_.. [TLA1_..TLA2_..] 

[AT1_..AT2_..]]] [LO5_.. [LOBJ1_.. [TLA1_..TLA2_..] LOBJ2_.. [TLA1_..TLA2_..] [AT1_..AT2_..]]]] 

to a very small value, but when testing the network the error is large. To avoid this issue, 

cross-validation can be used during the training process. The idea of cross validation is to 

split the training set into two sets: a set of training examples to train with, and a validation set 

that used to measure the model’s prediction. On the other hand, under-fitting is the problem 

when the network cannot capture the underlying structure of the data. 

The testing sample consists of 102 testing patterns that are used to test the trained network. It 

is essential that none of the test patterns are presented in the training sample and that the set 

of unseen data must be exposed to the trained network in order to test its performance. As 

explained before the test patterns consist of input patterns from those modules with low 

student satisfaction scores, and when presented, the network will effectively treat these as 

noisy versions of patterns within the training set and therefore attempt to produce a pattern on 

the output layer that resembles one or more of the ‘good’ module designs found within the 

training set which is closest to the current input pattern. Because the neural networks will be 

trained to perform the auto-association task i.e. to reproduce a set of input patterns, the input 

patterns are also used as desired (or output) patterns. Figure [5.4] gives an example of this 

input/output pattern used for training and testing the neural network. The explanation of the 

design input pattern can be referenced back to Figure [4.3].      

Figure [5.4]: Example of Input and Output Pattern used for Training and Testing the Networks 
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5.3 Neural Network Experiments  

A quick remainder from Chapter 3 that auto-associative networks, or as can be known as 

auto-encoders, are simple learning networks that aim to capture associations between input 

and output patterns by recalling the inputs into the outputs with the minimum reconstruction 

error using back-propagation or similar learning procedures. The desire is that the output 

needs to be as close to the input as possible, which is represented by a distance between the 

input and the output. The most common types of distance are the mean squared error (MSE) 

and the root means square error (RMSE) and will be used to measure the training 

performance in the conducted experiments. In following sections different neural network 

models utilizing multi-layer perceptron neural networks are trained to act as both shallow and 

deep networks for learning the process of forming associations between related patterns. In so 

doing the networks are trained for memorizing the features of good design patterns, where 

good design patterns were determined by both high degrees of student satisfaction ranging 

from 4 and higher and allowable range of alignment for V1, V2, and V3 identified from the 

good design patterns. A low MSE/RMSE is a desire for the training patterns, however for the 

test patterns it is not because the networks will attempt to reproduce the same poor patterns. 

In effect, the higher the individual pattern error, the greater the changes to those pattern and 

therefore the greater the information content. Therefore, the purpose here is to ascertain 

whether the well-trained network subsequently processes tests patterns as noisy versions of 

the training set and therefore seeks to modify the test pattern so that it is nudged more closely 

towards the training set and therefore good design patterns. In addition, to discover whether 

the network prefers certain types of design patterns and identifies certain changes in module 

design that did not appear in the training and elicits a high level student satisfaction.  

Feed-forward Multi-layered Perceptron (FFMLP) with single hidden layer, deep auto-encoder 

networks (AEN), and deep belief networks (DBN) have been developed for this purpose. The 

different network models were developed due to their ability to define complex relationships 

between variables and discover interesting structures about the data as they tend to learn the 

feature representation of the data by compressing and reducing data dimensionality 

(Samarasinghe, 2007; Bengio, 2009). All models are constructed and trained with training set 

inputs and construct a predictive model that reconstructs it input in the output layer returning 

the least minimum reconstruction error. The training dataset is divided into a training set to 

train the networks and a validation set to evaluate the networks training performance and 
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monitor over-fitting the networks. All network models will have an input layer and output 

layer of equal size. However, different network architectures will be considered for each NN 

model to obtain the best network model. The different network architectures would require 

different configurations of the number of hidden layers and neurons per layer, the type of the 

transfer function in the hidden layer and output layer, and other hyper–parameters. As different 

experiments will be investigated for the given problem, MSE/RMSE is used to measure the 

training performance of the models hence select the winning model for training set. Before 

discussing the various auto-associative networks, the next section briefly explains the 

technical work undertaken to perform the experiments.  

5.4 Programming the Neural Network Models 

The implementation of the neural networks models have been performed using C++ and 

MATALB. The C++ was the implementation of the feed-forward multi-layered perceptron 

(FF-MLP) trained with the backpropagation learning algorithm as defined by Rumelhart, 

Hinton, and Williams (1986). The implementation only supports one hidden layer and 

includes the Auto-association function to train the net as an Auto-encoder i.e. non-linear 

PCA. The code takes a batch file in the form a text file and contains the configuration 

filenames that need to be run. The function of the auto-association is called by the given 

configuration file that contains set of parameters that need to be initialised and activated. 

Training and testing sets are text files provided separately with input patterns. After 

completion of the training process, the code generates five output results appear in the results 

file showing the training condition. Once the training is satisfied, the mode of operation is 

switched to test phase and the testing configuration file is provided with the testing set file. 

The implementation of the deep auto-encoder (DAE) and deep belief networks (DBN) were 

performed using MATLAB (R2013b) to write script files for developing the networks and 

performance functions for calculating the model performance error statistics such as   , 

MSE, and RMSE. The neural network toolbox in MATLAB helps create the networks by 

using some built-in functions that can easily help the user to specify and configure the 

network parameters such as the net.trainFcn; which, can be set to the name of the any 

training function used to train the network. The toolbox supports a variety of training 

algorithms, including several gradient descent methods (GD), scaled conjugate gradient 

methods (SCG), the Levenberg-Marquardt algorithm (LM), and the resilient backpropagation 

algorithm (Rprop). The developed networks in MATLAB are trained using the “trainFcn” 
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and “trainParam” train functions. The trained networks are then saved by calling the 

functions: save (net'). When the training is complete, the network performance should be 

checked. Therefore, unseen data (testing) will be exposed to the network. The testing 

simulation process is called with the following function: sim (net, testn); % simulate network 

where testn is the testing set.  

The performance function is then called to calculate and store the performance error statistics. 

This process is followed by using a MATLAB script where its function is to calculate the 

statistical results and output the degree of the coefficient of determination and the average 

learning the networks have achieved. The last step concludes with writing the input pattern 

and its predicated output pattern results along with corresponding statistical data to an Excel 

sheet where it can be read back into the alignment metric.    

5.6 Feed-Forward Multi-Layered Perceptron (FFMLP) Trained as 
Shallow Auto-Encoder 

Shallow auto-encoder network has simple architecture that consists of an input layer and 

output layer of the same size of neurons and a single hidden layer with less hidden neurons 

than the input/output layers. By limiting the number of hidden neurons in the hidden layer, 

the hidden layer will be responsible for transforming and squeezing the input into an 

encoding with fewer dimensions than the original one. This compression forces the auto-

encoder to learn a good representation of the data and can learn some useful features of the 

data (i.e. features of the good design patterns) for example, if some of the input features are 

correlated, then the algorithm will be able to discover some of this correlations. Each module 

design pattern is represented as a real-valued vector of 288 dimensions where each dimension 

represents an input/output variable (a component of a module design) as given in Figure 

[5.2]. Hence, the network has an input layer and output layer of 288 neurons for all the auto-

encoder networks that have been examined in this section. The created networks use the non-

linear activation function and work for the case that the data lay on a non- linear surface. The 

module design data was fed into the designed networks and the networks were trained to 

recall the inputs. Thus the structure is as in Figure [5.5] 
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Figure [5.5]: Structure of MLP configured as shallow auto-encoder Neural Network 

 

5.6.1 Network configurations 

Different configurations of the number of hidden neurons in the hidden layer, activation 

functions, random initial weights, and other hyper-parameters were experimented. All literature 

showed that there is no standard formula for selecting the number of hidden neurons. If the 

number of the hidden neurons is too big, the network may suffer from over-fitting and cannot 

produce correct outputs when presented with unseen data. On the other hand, small numbers 

of hidden neurons will not help the network to converge to a solution. Different techniques 

and assumptions were elaborated in the literature for calculating and determining the number 

of neurons in the hidden layer. Researchers attempt to hit-and-trail until the best results and 

performance is guaranteed. Baily and Thompson (1990) suggest that the number of hidden 

neurons in MLP can be 75% of the number of the input neurons. Katz (1992) indicates that a 

typical number of hidden neurons can be found between half to three times the number of 

input neurons. Others proposed that the best number of hidden neurons involve hit-and trail 

experimentations. The experimental study begin with the number of hidden neurons in the 

hidden layer set to half the number of input and output neurons as proposed by Katz (1992). 

Then the network performance is examined and the number of hidden neurons 

increased/decreased based on the performance. Different numbers of hidden neurons of 140, 

160, and 180 were explored with the non-linear activation function namely the hyperbolic 

tangent (tanh) function being used in the hidden layer and linear function in the output layer. 

Using a non-linear activation function in the hidden layer allows the networks to solve 

problems, which are out of reach of linear networks. Therefore, this can introduce a non-

linearity system into the network. It was found that using the sigmoid function in the hidden 
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layer resulted in very slow change in the error function after some iterations. In addition to 

that the RMSE was fluctuating and did not reach its goal. On the other hand, using the tanh 

function in the hidden layer, yielded great change in the network performance and good 

training result, therefore the hyperbolic tangent function was a good choice for the hidden 

layer for 0-1 encoded binary representations. In order to prevent the output to be bounded 

between [-1, 1], the purelin function was used in the output layer. The experiments were 

expanded using different learning rate types, initial learning rate, momentum term, and 

different range of random weights initialization to help to improve the performance of back-

propagation learning and to optimize the network generalization by selecting the optimal 

combination. Two learning rate types were considered – fixed learning rate and the search-

and-converge learning rate. Different momentum constants were used 0.9 and 0.95 as many 

literatures suggest that a typical value of choosing the momentum is 0.9. With each 

momentum constant, training sessions were carried out with learning rate fixed at 0.001 this 

is because the identify function being used in the output layer and this can allow the network 

input to blow up in some cases (causing -1.#IND) thus in order to avoid this issue the 

learning rate kept low. After that, for each momentum constant, training sessions were carried 

out again using the search-and-converge learning rate with the same initial learning rate. The 

purpose of the learning rate is to control the size of weight and bias changes in learning of the 

training algorithm. If the learning rate is very small, the network will learn very slowly; if the 

learning rate is too large, the model will diverge. Additionally, the momentum is used to 

prevent the system from converging to a local minimum or saddle point. A high momentum 

parameter can also help to increase the speed of convergence of the system. However, setting 

the momentum parameter too high can create a risk of overshooting the minimum, which can 

cause the system to become unstable. A momentum coefficient that is too low cannot reliably 

avoid local minima, and can also slow down the training of the system. Initializing the 

weights is important. Although the ideal initial values for weights cannot be determined 

theoretically, it is preferable to assign small randomly-generated positive and negative 

quantities as the initial weight values (Samarasinghe, 2007). The most common weight and 

bias initialization function is the standard normal distribution, which generates values 

between -1 and 1. The reason for using random initial weights is to break symmetry, while 

the reason for using small initial weights is to avoid immediate saturation of the activation 

function (Samarasinghe, 2007). In these experiments, different ranges were applied to set the 

initial weights within a range of +/-0 and +/-0.1.     
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5.6.2 Training  

Training was performed using the popular and effective gradient descent method, the back-

propagation learning algorithm. Training sessions were first carried out using +/-0 as initial 

starting weights and fixed learning type with initial learning rate value set to 0.001 to avoid 

the network input blowing up. Following that, the range of the starting weights changed to +/-

0.1 while the learning rate type kept. Each experiment was repeated 10 times and the average 

RMSE was compared. It was noticed that both ranges of weights present improvement if 

accompanied with the appropriate number of hidden neurons. Both produced almost the same 

training performance averaging over 83%. Following that, training sessions with the search-

and-converge learning rate type were carried out and the range of random weights +/-0 and 

+/-0.1 were applied as well. The training results showed that learning was improved about 

4% from last session when using the search-and-converge learning rate type. Therefore, the 

search and converge learning rate was useful in improving the learning task.  

Each training experiment was repeated 10 times (with the same architecture but different 

training configuration as discussed previously) to explore and account for sensitivity to the 

initial state determined by the randomly generated starting weights thus ensuring a network 

of a good accuracy. In all training experiments, the algorithm needs certain conditions upon 

which it can terminate, therefore all training experiments are terminated when any of these 

conditions occurs first: reaching the maximum number of 1000 epochs, or the RMSE training 

performance is minimized to the goal of 0.01.     

5.6.3 Experimental  results      

Various network models were investigated in order to determine the optimal MLP network 

(i.e. the highest learning average and low RMSE). All networks were trained with the back-

propagation algorithm, however; different numbers of neurons in the hidden layer were 

investigated. In addition, different initial starting weights and learning rate types were also 

investigated. Table [5.1] presents together the different network experiments and the results 

of these conducted experiments by displaying the average training error (AVG training 

RMSE) and the average generalization error (AVG test RMSE) for each model that was 

trained. As can be seen from the table results the success of training raises as the size of the 

hidden layer increases. It was found that no error improvement was gained more than 1000 

epochs therefore; the training epoch was set to 1000 for all the experiments. Among all 

investigated MLP models, it can be seen the model 6 has produced the best training results. 
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The optimal number of hidden neurons appears to be 180 neurons with a momentum term of 

0.95 and random weights initialization set to +/- 0.1. The search and converge learning rate 

used in the training process was found to aid and improve the learning task. Increasing the 

number of hidden neurons more than 180 gaining no further or significant improvement as 

can be seen from the table results.     

 

Table [5.1]: FFMLP Training Results 

Network 

model 

Hidden 

nodes 

Transfer 

function 

in 

Hidden 

layer 

Transfer 

function 

in 

Output 

layer 

Initial 

starting 

weights 

Learning 

rate type 

learning 

rate 

Momentum Epochs AVG 

Training 

RMSE 

% 

Patterns 

learnt 

1 140 Tanh Linear +/-0.0 Fixed 0.001 0.9 1000 0.0379 30 % 

2 160 Tanh Linear +/-0.0 Fixed 0.001 0.9 1000 0.0352 78 % 

4 180 Tanh Linear +/-0.0 Fixed 0.001 0.9 1000 0.0258 83 % 

5 180 Tanh Linear  +/-0.0 Search-

and-

converge 

0.001 0.95 1000 0.0247 

  

86 % 

  

6 180 Tanh  Linear 

  

+/-0.1 Search-

and-

converge 

0.001 0.95 1000 0.0248 

  

87 % 

  

7 200 Tanh  Linear +/-0.1 Search-

and-

converge 

0.001 0.95 1000 0.0248 87 % 
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5.7 FFMLPs Extended to Deep Auto-encoder Neural Networks  

It is proven by many studies (Bishop, 1995; Hinton, 1992) that MLPs with one hidden layer 

with a sufficient number of hidden neurons can approximate and model any function. 

However, because of the limited capacity of that layer, the extracted features from the layer 

can be seen as low-level features. Thus MLP with more hidden layers can learn complex and 

complicated functions that can represent high-level abstractions and more effect 

representations as suggested by many theoretical studies most notably in (Salakhutdinov et 

al., 2009), (Hinton, 2006; Bengio, 2009). MLPs composed of many hidden layers are indeed 

an example of network models with a deep architecture as classified by (Bengio, 2007; 

Glorot and Bengio, 2007, 2009, 2010; Hiton 2008). This deep architecture has the potential to 

both improve the network generalization and to learn hierarchical representations of the input 

data and thus can better generalize to unseen data as well. It learns hierarchies of 

dependencies and features and combines them successively using several hidden layers. 

Based on that, deep auto-encoder structure (with three hidden layers) was investigated. The 

structure of all deep auto-encoders in the following experiments is as shown in Figure [5.6]. 

The network architecture is using bottleneck architecture and has the following layers: the 

mapping, bottleneck, and the de-mapping layer as hidden layers. As the task is to perform an 

auto-association function, both input and output layers of the networks have the same number 

of neurons. The mapping, bottleneck, de-mapping combinations enable the network to 

develop a compact representation of the training data that better model the underlying system 

parameters by performing non-linear principle components analysis as explained by Kramer 

(1992), and therefore the neurons in the hidden layers must utilize non-linear activation 

functions to ensure proper functioning in the network and to produce a nonlinear decision 

boundary via non-linear combinations of the weight and inputs (Kramer, 1992; Kerschen, 

2004). In all the auto-encoder experiments performed in this subsection, the non-linear 

activation function of the three hidden layers utilized to be the tanh activation function and 

simple linear activation function (i.e. purlin activation function) being used to handle the 

continuous outputs in the output layer. 
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Figure [5.6]: Structure of Deep Auto-encoder Neural Network  

(Source: https://metacademy.org/roadmaps/rgrosse/deep_learning/version/22) 

 

5.7.1 Network configurations 

With the number of neurons in the input layer and output layer fixed by the second method 

representation technique used as indicated earlier in this chapter, the network size depends on 

the number of neurons in its hidden layers. This makes the hidden layer neurons responsible 

for properties of the network such as the ability to learn and to generalise. Three hidden 

layers were utilized with different numbers of hidden neurons were investigated in the 

mapping/de-mapping layers and the bottleneck layer. The mapping and de-mapping layers 

can be seen as a combination of two different networks: compression and de-compression 

networks as described in (Kramer, 1992; Kerschen, 2004). Both of these networks meet at the 

bottleneck layer, which is used to perform nonlinear principle components analysis and thus 

forced to try to produce the output by only using small set of neurons. The method for 

determining the optimal number of neurons in the hidden layers is followed through the 

proposed example by Kramer (1991), which proposes to use greater number of neurons in the 

mapping and de-mapping layer than the number of neurons in the input/output layers and 

smaller number of neurons in the bottleneck layer than the other layers so that the ending 

network can have something like 3-5-2-5-3. In the conducted experiments, the input/output 

layers contain 56 neurons as discussed previously. The bottleneck layer constitutes of 50 

neurons as starting, whereas the mapping and de-mapping layers constitutes of 58 neurons 
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layers with sigmoid activation function (tangent sigmoid, tansig) being used in the layers. 

The numbers of hidden neurons were gradually increased until the network of minimum 

RMSE was attained. It was found that the optimal number of neurons in the hidden layers 

were 65 - 55 for the mapping/de-mapping and bottleneck respectively because they produced 

the lowest root mean square errors during training. Further increases in the hidden neurons 

produced higher errors. The reason of employing three hidden layer here is that no significant 

difference was observed in the training performance by increasing the number of hidden 

layers to more than three. 

5.7.2 Training  

The auto-encoder networks were trained using an optimised form of the popular back-

propagation learning algorithm, called the scaled conjugate gradient descent (SCG) algorithm, 

which enables deep networks to be effectively trained (Hinton and Salakhutdinov, 2006). The 

algorithm updates the weight and bias values based on conjugate directions, which is scaled 

to avoid the line-search per learning iteration (Moller, 1993). It performs well over a wide 

variety of problems such as pattern recognition and pattern association as its memory 

requirements are relatively small, and yet it is much faster than standard gradient descent 

algorithms. In addition, the SCG training algorithm incorporates an adaptive learning rate and 

momentum parameters thus the performance of SCG is benchmarked against the performance 

of the other back-propagation algorithms (BP) (Rumelhart et al., 1986), which usually depend 

of the user dependent parameters learning rate and momentum constant as the values of these 

parameters are often important for the success of the algorithm. 

The architecture of 56-65-55-65-56 was appropriate as we get a desired RMSE of 1.844 

compared to the other architectures investigated that produced higher training errors. The 

training process for this architecture run using the Nguyen-Widrow layer initialization 

algorithm in MATLAB called INITNW, which is a layer-by-layer initialization function that 

initializes each layer according to the respective transfer function. The algorithm creates 

initial weights and bias values in order to distribute the active regions of the layers neurons 

evenly across the input space (Demuth and Beale, 1998; Samarasinghe, 2007). 
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5.7.3 Experimental results      

Table [5.2] summarizes the conducted experiments where the best solution is highlighted in 

the table. As can be seen from the table results the success of training raises as the size of the 

hidden layer increases. Model 4 was further investigated by increasing the number of hidden 

nodes and epochs but no further learning improvement was obtained.  

Table [5.2]: DAE training results 

Network 

Model 

Hidden neurons  Weights 

initialization 

Epochs  Training 

RMSE 

AVG 

Learning 

1 58-50 INITNW 1000 0.2322 86% 

2 61-55 INITNW 1000 0.2283 86% 

3 65-50 INITNW 1000 0.2005 87% 

4 65-55 INITNW 1000 0.1844 88% 

5 65-55 INITNW 3000 0.1844 88% 

 

5.8 Deep Belief Networks with deep learning 

Deep Belief Networks based on Restricted Boltzmann Machines (RBMs) were investigated 

to form a deep multi-layer architecture with deep training. This approach is based on the 

observation that random initialization is a bad idea, and that pre-training each layer with an 

unsupervised learning algorithm can allow for better initial weights thus better training 

results. DBNs developed in this experiments share two additional key properties over the 

previous networks: the generative nature of the model, which typically requires adding an 

additional top layer to perform discriminative tasks, and an unsupervised pre-training step 

where each lower layer’s outputs are fed to its immediate higher layer as the input. 
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5.8.1 Network configurations  

The current DBN architecture has three layers of RBMs, which is the depth of our model as 

graphed in Figure [5.7]. Each RBM has its own set of weights that is initialized randomly and 

trained independently of each other. Subsequently, the RBMs are merged together in the NN 

and the NN gets trained with pre-initialized weights. The RBMs layers all utilized the non-

linearity tanh sigmoid function and linked such that they form a deep architecture and construct 

each RBM in a way they share the weight matrix and the hidden bias with its corresponding 

sigmoid layer. The networks are limited to a visual layer and a hidden layer, there is a 

connection between the layers, but there is no connection between the layers of the layer. 

Hidden layer units are trained to capture the correlation of higher order data in the visual 

layer. For setting the number of hidden neurons of the RBMs, Hinton (2010) provides a way 

for choosing that by estimating the typical negative      probability of a data-vector and then 

multiplying that estimation by the number of training cases, which then gives the number of 

neurons that is about an order of magnitude smaller of that product. This recipe is however 

unclear and no further details or explanation were provided, therefore it was not followed. 

However, most studies recommend using less neurons in the hidden layer than the input. 

Therefore, in these experiments, a set of RBMs were trained, each containing a different 

number of hidden neurons less than the input neurons. At the start of the training run, the 

number of hidden neurons in the first layer was half the input’s neurons + 2, and so decreased 

slowly until the last layer. The RBMs are trained using the SGC and the parameters are set 

according to the algorithm’s default parameters as a starting point. It was found that using the 

same size of hidden neurons for all hidden layers worked generally better. Increasing the 

number of hidden neurons larger than the input neurons does not enable the training to be 

performed accurately. Similarly, increasing the number of RBM layers does not provide any 

significantly higher accuracy. This may be data-dependent and also may be due to the 

parameters used which need more optimization.   

5.8.2 Training 

The DBNs were trained using the greedy layer-wise training approach, which is a way of 

initializing better the parameters of DBN by training a layer by layer, each layer is initialized as 

an RBM. RBM pre-training is used to obtain a faster convergence for training a deep auto-

encoder and to find and produce a good initialization of the weights. The learning in DBN is 

performed by adjusting the interactions between variables to make the network more likely to 
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generate the observed data. This is done through two main stages, pre-training each RBM 

followed by fine-tuning with back-propagation algorithm on the entire DBN to update the 

weights (Hinton and Salakhutdinov, 2006). The first stage involves pre-training the three 

layers of the RBMs independently. The first layer is trained as RBM that models the raw 

input data as its visible layer. Then each layer takes as input the representation learned at the 

previous layer and learns a new representation. After that fine-tuning is performed via 

supervised back-propagation algorithms on the whole DBN with the stopping criteria the 

same as that of deep auto-encoder networks in the previous section. As DBNs are considered 

nondeterministic algorithms (Hinton, 2006; Bengio, 2009), each DBN in these experiments 

was repeated 10 times and the average estimates have been taken to evaluate the performance 

of the model.              

5.8.3 Experimental results 

The training results show that model 3 with the given parameter values as illustrated in the 

Table [5.3] gives better performance in terms of the reconstruction error compared to the 

other architectures.  

Table [5.3]: DBN training results 

Network 

model  

Model  

Architecture 

Hidden 

neurons  

Weights 

initialization 

Epochs Training 

RMSE 

AVG 

Learning 

1 2 RBMs  30-15 Pre-

initialization 

of weights   

500 0.6469 57% 

2 2 RBMs  15-15 1000 0.6118 59% 

3 2 RBMs 30-30 1000 0.3951 74% 

4 3 RBMs 30-30-15 1000 0.6912 55% 

       

5.9 Model Selection  

Different experiments were conducted as seen and the root mean square error (RMSE) was 

used to measure the training performance of the models. The training results of the different 

NN models obtained is illustrated in Table [5.4], the table presents only the best results 

obtained from each network method. In order to measure the performance of the network 
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models, the average learning and RMSE are used for evaluating the performance of the 

models. As can be seen from the table below, the model with the highest average learning 

accuracy of 88% is the deep auto-encoder neural network model that consists of three hidden 

layers with 65 neurons in the mapping and de-mapping layers and 55 neurons in the 

bottleneck layer. The SCG training algorithm with tansig and pureline activation function 

was used to train this model and the weights of each layer were randomly initialized 

according to the perspective activation function. It is also noticeable that model 6 is the best 

among all investigated MLP models as it yields the lowest RMSE with an average learning of 

87%. The model consists of a single hidden layer comprising 180 hidden neurones and 

trained with the gradient descent back-propagation learning algorithm with a momentum term 

of 0.95 and random weights initialization set to +/- 0.1. The search and converge learning rate 

was used as it was found to aid and improve learning. On the other hand, it can be seen from 

the table that the AVG learning obtained from DBN models are lower than the AVG learning 

results obtained from the MLP and DAE neural network models. Although the DBNs were 

pre-trained using the greedy layer-wise fashion for getting the weights and initialization of 

DBN parameters, the lower RMSR of the training process achieved was 0.3951 with an 

average learning percent of 74%. This is considered quite a high RMSE compared to the 

other models which indicate that the network did not learn the problem sufficiently. The best 

prediction models were found to be a 288-180-288 and 56-65-55-65-56 based on back 

propagation algorithm with RMSE of 0.0248 and 0.1844 respectively. In order to compare 

the performance between the two models as different input representations being used, the 

RMSE for the testing set was considered. The comparison between the two models is also 

made by considering the statistical output measures using a paired t-test to indicate any 

subsequence differences due to different input representation used. 
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Table [5.4]: Training results of the best NN models 

Network Model Network Structure Training RMSE AVG 

Learning 

Testing 

RMSE 

MLP model 6 288-180-288  0.0248 87%  0.2947 

DAE  model 4 56-65-55-65-56 0.1844 88%  0.5316 

DBN model 3 30-30 0.3951 74%  0.5974 

 

 

As seen both networks (i.e. model 6 and model 4) indicated a successful training with an 

average learning above 85 % however, model 4 was slightly better compared to model 6. In 

terms of the generalization results, it shows that Model 6 produced a RMSE figure of 0.2974 

for the test set while model 4 produced a RMSE figure of 0.5316 as shown in Table [5.4]. In 

effect, the higher the overall generalization error, the greater the changes to those modules in 

the lower 25% of student satisfaction ratings and therefore; the greater the information 

content. For this, further comparison of the generalization ability of both model in terms 

alignment and satisfaction scores was reported in Table [5.5] and presented graphically in 

Figure [5.8]. The table summarizes the mean values and showing the mean absolute error 

(MAE) for the alignment scores for the V1, V2, and V3 with the p-values. None of the p-

values is smaller than the specified significance level 0.05 therefore; there is no statistically 

significant difference in performance among these two auto-encoder networks due the 

different input representation used. Thus the higher performance of the DAE trained 

networks was selected for testing. 
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Table [5.5]: Comparison of alignment scores between the MLP and DAE 

 MLP DAE MAE p-value 

V1_mean 8.38 6.31 2.07 0.659 

V2_mean 9.82 9.73 0.09 0.731 

V3_mean 9.51 9.75 0.24 0.472 

AVG_V  9.23 8.60 0.63 0.621 

*p-value at the significant level 0.05 

 

 

 

 

 

 

 

 

 

Figure [5.8]: Comparison of performance between the MLP and DAE 

 

5.10 Summary 

The underlying goal of the conduced neural network experiments is to improve the training 

error of the neural network model (MLP) through changes in some of the parameters, 

architectures, and learning of the neural network. The input layer and output layer consists of 

288 neurons for all the MLP networks that have been examined while in DAE and DBN 

networks the input layer and output layer consists of 56 neurons due to different data input 

representation being used. It was shown that no significant difference was found in the 
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predictive and generalization ability of MLP and DAE, although, the convergence speeds of 

DAE was higher than that of MLP.  The following parameters were fixed for all the neural 

networks trained:  

The error criterion which, used to measure the reconstruction performance of the neural 

network prediction to its target: “RMSE” and “MSE”. 

The activation function of the hidden layers: “Tansig”.  

The activation function of the output layer: “purelin”. 

The training algorithm in shallow networks: “gradient descent”. 

The training algorithm in deep networks: “SCG” scaled conjugate gradient descent 

Other parameters that were investigated in the models as listed in Table [5.6] at the end of the 

chapter.  

Hinton (2006, 2012); Bengio (2009, 2012) and others have reported that deep learning has 

advantages due to their learning methodology by combining unsupervised pre-training and 

supervised fine-tuning, which usually gives better generalization than pure supervised 

learning from a purely random initialization. In this study, no significant improvement in the 

network learning was found when using deep learning. It was found also based on the 

conducted experiments that training with the scaled conjugate-gradient method with random 

weight initialization is much faster than the standard backpropagation algorithm. Using the 

scaled conjugate-gradient method also avoids the need to search for proper settings of 

parameters such as the learning rate and momentum. However, the appropriate number of 

hidden neurons was needed to be determined. It should be noted that DBNs have proven their 

usefulness and ability as a modelling sequences as in Busseti et al. (2012); Boulanger-

Lewandowski (2014); however, It is inefficient and unproductive within our problem’s 

region. The reason for this inability could possibility be that DBNs need more optimization 

and further generalization improvement, which can be seen as future works. By summarising 

the different network experiments and selecting the best model, the next chapter will analyse 

and evaluate the output results obtained from the selected winning model for training set and 

extract the underlying design principles identified for transforming a poor designed module 

into a good module design.             
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Table [5.6]: Network parameters used and their values 

Parameters  Values  

MLP  

Number of neurons in the hidden layer 140, 160, 180 , 200 

Learning rate type  Fixed, Search-and-converge  

Momentum 0.9, 0.95 

Activation function of the hidden layer Sigmoid, Tanh  

Ranges of weights initialization  +/-0.0, +/-0.1 

DAE  

Number of neurons in the hidden layer 58-50, 61-55, 65-50, 65-55, 65-55 

DBN  

Number of neurons in the hidden layers with 

2RBMs layers 

30-15, 15-15, 30-30 

Number of neurons in the hidden layers with 

3RBMs layers 

30-30-15 
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CHAPTER 6: Results and Discussion 

 

6.1 Analysing the Results of the Selected NN Model  

This section presents the testing results and the numerical analysis conducted to analyse the 

output generalization results produced form the best neural network obtained (i.e. model 4 

denoted as 56-65-55-65-56). The network produced a training error of 0.1844 and higher 

learning accuracy of 88% which, indicates that its performance outperform over the other 

networks as presented in chapter five. Hence, the network was selected and used for testing 

the unseen dataset associated with low student satisfaction scores to perform a key auto-

association task. The network was shown 102 new design patterns which were distinct from 

the 519 design patterns the network learned. The generalization (test) performance for this 

network is shown in Table [6.1]. The network recognised a total of 5 patterns within the 0.03 

error threshold i.e. indicating input patterns were identical to the output patterns and therefore 

matched a module within the training set. The remaining 97 test patterns generated higher 

pattern errors suggesting that substantial changes to the input pattern had been generated on 

the output layer. These differences can be interpreted as changes to a test pattern (a module 

with low student satisfaction scores) that have been informed by a knowledge base of good 

module designs (as found in the training set) and therefore if such changes were made would 

likely result in increased student satisfaction and hopefully alignment.   

 

Table [6.1]: Auto-encoder network (model 4) test performance 

RMSE Number of patterns 
within error limit 

Number of patterns 
outside error limit 

% Pattern Generalisation 

0.5316 5 97 3.921% 

 

Since the substantial interest focuses on the effect of students satisfactions on predicting good 

alignment scores, it is natural to study the effect of the overall student satisfaction scores with 

respect to each of the alignment scores V1, V2, V3 and overall module alignment and vice 

versa. Various statistical analyses were carried as it has been done in Chapter 4. Descriptive 
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analyses were conducted to present the state of the testing set before and after changes 

applied by the neural network and to illustrate the average score of predictor variables V1, 

V2, V3 and student satisfaction. Correlational analysis was performed to identify the 

relationship found between the three variables of V1, V2, and V3 and student satisfaction. 

The coefficient of determination and R-squares were also performed to investigate whether 

the three predictor variables significantly predict student satisfaction. And finally self-

organizing map was used to visualize an overview of the changes made to test patterns before 

and after. 

 

6.1.1 Descriptive Analysis  

Two tables are illustrated below. Table [6.2] compares and summaries the average scores of 

V1, V2, and V3 and student satisfaction scores for the test set before and after the changes 

that have been applied by the network and Table [6.3] compares the average scores for test 

set before and after with respect to the training dataset. It appears from the table that the 

averages of the V1 and V3 alignment scores have been decreased whereas the average of the 

V2 alignment scores has been increased from 7.59 to 9.47, which means that there is an 

increase in the alignment scores of 24.8 %. This increase in the mean of V2 alignment scores 

can be interpreted as strong changes the network made for raising the alignment values by 

suggesting higher level of Bloom’s for the given TLAs. On the other hand, the decreases in 

the V1 and V3 alignment scores indicate some changes that result in moving down the level 

of Bloom’s for the given learning outcomes (LOs) and the assessment task (ATs). In general 

these changes have led to change in student satisfaction average as shown in the table rising 

from 3.3 to 3.8. Analyses of variance indicate that there are indeed significant differences in 

the student satisfaction means since the resulted p-value given was less than the 0.05 

significance level. This implies that student satisfaction scores were noteworthy affected with 

such changes generated in the design patterns in a way that has raised the satisfaction level.  
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Table [6.2]: Average scores of V1, V2, V3 and S for Test set BEFORE and AFTER 

Test Set BEFORE 

Variable  Mean  SD 

V1 9.60 5.24 

V2 7.81 2.39 

V3 10.15 3.14 

AVG_V 9.19 2.75 

Student Satisfaction 3.3 0.31 

Test Set AFTER 

V1 6.31 2.82 

V2 9.73 1.99 

V3 9.75 2.98 

AVG_V 8.60 1.51 

Student Satisfaction 3.8 0.71 
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Table [6.3]: Differences between averages of V values of the training set and test set 

BEFORE applying auto-encoder network and AFTER applying the network 

Training set  

Variable  Mean  SD Min - Max  Range 

V1 7.91 3.21 4.8 – 19.8 15.0 

V2 9.26 2.39 4.3 – 16.3 12.0 

V3 10.45 2.74 4.3 – 17.6 13.3 

AVG_V 9.21 1.62 4.7 – 13.5  8.8 

Student Satisfaction 4.52 0.28 4.0 – 5.0 1.0 

Test set Before 

Variable  Mean  SD Min - Max  Range 

V1 9.60 5.24 3.0 – 21.2 18.2 

V2 7.81 2.39 3.7 – 16.4 12.7 

V3 10.15 3.14 4.0 – 16.7 12.7 

AVG_V 9.19 2.75 4.4 – 14.3 9.9 

Student Satisfaction 3.36 0.31 1.8 – 3.7  1.9 

Test set After 

V1 6.31 2.82 1.8 – 14.8 13.0 

V2 9.73 1.99 5.36 – 16.1 10.7 

V3 9.75 2.98 3.8 – 16.6  12.8 

AVG_V 8.60 1.51 5.73 – 13.3 7.6 

Student Satisfaction 3.82 0.17 3.5 – 4.1 0.6 

 

The acceptable range values obtained from the training data set, as presented in chapter 4 in 

Table [4.15], were applied separately to V1, V2, V3 and V of TestSet (before) and TestSet 

(after). Table [6.4] below shows the number of items data that fall within the acceptable 

range and their respective percentages for both TestSet (before) and TestSet (after). In 

general, there are more data within the acceptable range after the network than before with a 
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total of 197 (before) and 266 (after) – an increase of 69 data points moving closer to the mean 

(central) value after the network. This increase occurs mainly in V1 and V2 with an extra of 

23 data moving into plus or minus one SD in the case of V2. This is noted by 78% data 

within       for TestSet (after) as against 55 % for TestSet (before).  

 

Table [6.4]: Number of data within        

  

Before After 

Number (X) % (X) Number (X) % (X) 

V1 37 36% 58 56% 

V2 57 55% 80 78% 

V3 63 61% 61 59% 

AVG_V 40 39% 68 66% 

 

In order to identify whether or not there are significant differences between the average 

values of V1, V2, and V3 alignment before and after applying the auto-encoder, a two-tailed 

t-test was applied for the average alignment scores using the training set and test set (before) 

and, thereafter, using the training set and test set (after), and this is given in Table [6.5]. It 

was noticed previously from Table [4.13] in Chapter 4 that there was a statistically 

significance difference between the mean of V1 (before) compared to the mean of V1 of the 

training set since the p-value was small at the significance level of 0.05. Although that the 

changes applied by the network to V1 alignment scores have moved more than 20 data points 

from V1 (before) into plus or minus one SD i.e. within the acceptable range of V1, the p-

value in the t-test table below suggests that there is still a statistically significant difference 

between V1 (after) and V1 of the training set. This explains that the network generalization 

on associating learning outcomes and learning objectives was different from what was 

shown. The t-test table below also shows that there was a statically significant difference 

between the mean of V2 (before) and the mean of V2 of the training set where the p-value < 

0.05, however; after applying the network changes to 23 data point in V2, the t-test results 

indicate no significant difference between the mean of V2 of the test set (after) compared to 

the mean of V2 of the training set. This shows that the network had succeeded in bringing the 

mean of the alignment values close to the mean of the training set than it was before. In other 

words, the network attempted to edit either the Bloom level of the objective or the type of the 

associated TLA in the design patterns to bring the V2 alignment values close to the allowable 
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ranges. In case of the V3 alignment scores the t-test results applied between the mean of V3 

(before) and the mean of the V3 of the training set showed that there is no statistically 

significant difference between the means since the calculated p-value was greater than the 

significance level of 0.05. The case was the same after applying the auto-encoder changes to 

the V3 alignment scores, which illustrates that there is also no statistically significant 

difference between the means as shown in the t-test table. This can be explained as hardly 

such changes were taking place in V3 which may be due to no significant difference were 

initially found between the training patterns and the test patterns. However, the drop in the 

mean of V3 alignment scores is likely to be because of the changes applied to the learning 

outcomes in V1. Furthermore, the differences between the test set (before) and the test set 

(after) were further analysed using the pried t-test which shows that the t-stat is significantly 

higher than the t-critical in all cases except V3. As a result, it can be noted that there is a 

significant difference in the two paired groups in each of the V1 and V2 but not V3. The t-

test for this can be found in Appendix [G]. 

 

Table [6.5]: T-test for difference between mean V values of training set and test set BEFORE 

and AFTER applying auto-encoder 

V1, V2, and V3 Alignment  – Training set versus Test set (Before) 

 V1(Trg) V1(B) V2(Trg) V2(B) V3(Trg) V3(B) 

Mean 7.91 7.71 9.26 8.79 10.45 10.28 

Variance 10.32 3.37 5.71 1.59 7.51 2.90 

t Stat 0.583  2.333  0.703  

P-value  0.561 0.021 0.483 

V1, V2, and V3 Alignment  – Training set versus Test set (After) 

 V1(Trg) V1(A) V2(Trg) V2(A) V3(Trg) V3(A) 

Mean  7.91 7.13 9.26 9.50 10.45 10.21 

Variance  10.32 3.49 5.71 1.37 7.51 2.61 

t-Stat 2.739  1.416  0.991  

P-value  0.007 0.158 0.323 

* Significant at the p < 0.05 level. 
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The effect size d was taken into account to further understand the changes, which happened 

in V1, V2, and V3. The effect size is a simple way of quantifying the difference between two 

groups or the changes before and after measure (Cohen, 1988). According to Cohen, this can 

be calculated using the equation below where    and    are the means of the two groups 

(before and after) and    the average of their standard deviations. 

  
|     |

        
 

Table [6.6] shows the effect size summary where an absolute difference of 1 or more is taken 

as a big difference when a trend in the scores is evaluated. According to Cohen’s d in 

interpreting the result of the effect size, it shows that a d = 1.0 means that that the two groups' 

means differ by one standard deviation and the effect size is considered large; a d = 0.5 

indicates that the two groups means differ by half a standard deviation which represents a 

medium effect size; and an effect size of 0.2 or less can be considered a small effect. In 

reference to the result table below it shows that there is about one standard deviation 

difference between the two sets for V1 and one and a half standard deviation difference in V2 

representing a ‘large’ effect size while the effect size is medium for V3 as d = 0.5. Figure 

[6.1] shows plots of Vs comparing the alignment scores before and after for the test set where 

the difference is equal to or more than 1.    

Table [6.6]: Effect Size based on Cohen (1988) Index using Pooled Standard Deviation 

Case Num (X) % (X) Mean SD ABS Diff D Level 

   Before After Before After |MB-MA|   

V1 25 24%  9.38 6.86 3.32 1.80 2.52 0.98 Large 

V2 46 45% 7.13 9.67 2.02 1.09 2.54 1.53 Large 

V3 30 29% 10.88 9.84 2.55 1.42 1.04 0.52 Medium 
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Figure [6.1]: Graphs of Vs alignment scores before and after where the difference is >=1 
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The following table, Table [6.7], summarizes the average results and shows the direction of 

changes in the alignment scores for those test patterns that came within the       after 

applying the changes made by the auto-encoder network.  

Table [6.7]: Direction of changes in the alignment scores for test patterns  

Test set before compared with Test set after 

 Before  After 

V1 9.38  6.86 

V2 7.13  9.67 

V3 10.88  9.84 

S 3.3  3.8 

To better understand the changes applied to V1, V2, and V3, this required to understand what 

happened to the Bloom’s level for the LOs, LObjs, TLAs, and ATs. First, a comparison table 

was conducted to understand the trend in the Bloom’s levels of the outcomes and to compare 

the distribution of the Bloom levels of the learning outcomes in the test set (before) and test 

set (after). As indicated below in Table [6.8], Bloom level 3 (Application) is the most 

frequent level in the test set (after), with 49% of the learning outcomes. This is followed by 

Analysis with 24% and Understanding with ≈ 20%. The table also shows the distribution of 

the Bloom’s levels of the learning outcomes before and after. The table suggests a decrease in 

the knowledge level, an increase in the understanding, application, and analysis level, but a 

decrease again in the Synthesis and evaluation levels of the learning outcomes.     
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Table [6.8]: Comparison of Bloom’s Levels of Learning Outcomes in Test Set (before) and 

(after)  

Bloom’s level Before After  

 N % N %  

Level 1: Knowledge  25 5.4 1 0.2  

Level 2: Understanding   63 13.7 91 19.8  

Level 3: Application  189 41.1 226 49.2  

Level 4: Analysis  76 16.5 112 24.4  

Level 5: Synthesis 70 15.2 29 6.5  

Level 6: Evaluation  36 7.0 0 0.0  

Total 459  459   

 

Second the frequency analysis was run for the test set (after) to identify the most common 

parent-child relationships that have been suggested by the network. This is shown in the 

following tables below where a brief note is given under each table for a quick comparison of 

how was the relationship before. The new formed relationships were highlighted and 

italicized and the full discussion is given at the end of the analysis.    

 

Table [6.9]: V1 (after) Frequency Relationships Table 

Lo/Lobjs Lo(1) Lo(2) Lo(3) Lo(4) Lo(5) Lo(6) 

Lobj(1) 0(0%) 10(6.0%) 0(0%) 1(0.44%) 0(0%) 0(0%) 

Lobj(2) 1(50%) 19(11.4%) 70(15.0%) 28(12.5%) 4(3.0%) 0(0%) 

Lobj(3) 1(50%) 95(57.2%) 183(39.3%) 67(30%) 

 

45(34.0%) 0(0%) 

Lobj(4) 0(0%) 

 

34(20.4%) 136(29.2%) 

 

84(37.5%) 53(40.0%) 0(0%) 

Lobj(5) 0(0%) 8(4.8%) 70(15.1%) 38(16.7%) 29(21.9%) 0(0%) 

Lobj(6) 0(0%) 0(0%) 6(1.2%) 6(2.6%) 1(0.7%) 0(0%) 

For comparison, Table [4.9] shows that the V1 (before) relationship table as: LO(1) associated with 

Lobjs(2),(3), LO(2) associated with Lobjs(2),(4), LO(3) associated with Lobjs(3),(5), LO(4) associated with 

Lobjs(3),(4), LO(5) associated with Lobjs(3),(4), LO(6) associated with Lobjs(3),(4). Thus, V1 (after) has 

higher objectives associated with level 2, lower objectives associated with level 3, 4, and 5.               
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Table [6.10]: V2 (after) Frequency Relationships Table 

Lobj/TLAs Lobj(1) Lobj(2) Lobj(3) Lobj(4) Lobj(5) Lobj(6) 

TLA(1) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

TLA(2) 6(21.4%) 65(16.1%) 39(5.3%) 18(3.5%) 0(0%) 0(0%) 

TLA(3) 7(25.0%) 

 

98(24.3%) 139(18.9%) 79(15.4%) 33(10.1%) 2(4.5%) 

TLA(4) 12(42.8%) 

 

53(13.1%) 157(21.0%) 125(24.4%) 105(32.4%) 26(59.0%) 

TLA(5) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

TLA(6) 3(10.7%) 187(46.4%) 

 

401(54.7%) 290(56.6%) 186(57.4%) 16(36.3%) 

 

For comparison, Table [4.10] shows that the V2 (before) relationship table as: Lobj(1) associated with 

TLAs(2),(3), Lobj(2) associated with TLAs(2),(4), Lobj(3) associated with TLAs(2),(4), Lobj(4) associated 

with TLAs(2),(4), Lobj(5) associated with TLAs(3),(4), Lobj(6) associated with TLAs(4),(6). Thus, V2 (after) 

has higher TLAs associated with level 1, higher TLAs associated with level 2, higher TLAs associated with 

level 3, 4, and 5. 

 

 

Table [6.11]: V3 (after) Frequency Relationships Table 

Lo/ATs Lo(1) Lo(2) Lo(3) Lo(4) Lo(5) Lo(6) 

AT(1) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

AT(2) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

AT(3) 0(0%) 9(5.9%) 29(6.3%) 9(4.0%) 2(1.5%) 0(0%) 

AT(4) 0(0%) 

 

44(28.9%) 184(40.0%) 84(37.5%) 19(14.6%) 0(0%) 

AT(5) 0(0%) 60(39.4%) 133(28.9%) 

 

64(28.5%) 64(49.2%) 0(0%) 

AT(6) 1(100%) 39(25.6%) 113(24.6%) 67(29.9%) 45(34.6%) 0(0%) 

For comparison, Table [4.11] shows that the V3 (before) relationship table as: LO(1) associated with 

ATs(4),(6), LO(2) associated with ATs(4),(6), LO(3) associated with ATs(4),(5), LO(4) associated with 

ATs(4),(6), LO(5) associated with ATs(4),(6), LO(6) associated with ATs(4),(5). Thus, V3 (after) has higher 

assessment type to assess level 1, higher practical assessment types to assess 5.      
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It is worth mentioning here that the network has no access to semantic information and relies 

on deterministic processing and symmetric forward and backward association to learn the 

identity function so that it learns to become a perfect memory of good design patterns. With 

its task to perform the pattern association, the most common relations were generated for 

each V1, V2, and V3. The frequency results from Table [6.9] above suggest that there is a 

prevalent pattern in how the network has associated the learning outcomes in their units with 

learning objectives appearing to be focused on the midline of the table where it attempts to 

use mainly the application and analysis levels in relation to the comprehension, application, 

analysis, and synthesis learning outcomes. For example, the network was given the relation: 

LO(2) Lobj1(2) Lobj2(4), the network edits the relation and corrects the Bloom level of the 

first objective to elicit a higher Bloom level and type and produces: LO(2) Lobj1(3) Lobj2(4) 

to form a correct and compound relation. It can be seen also that the network did not make 

any preferences or associations with ‘evaluation’ learning outcomes. In fact the network 

transformed all learning outcomes with Bloom level 6 into Bloom level 5. This 

transformation has been through lowering the levels of the learning outcomes one level down.        

 

The network demonstrates a common preference for associating higher-level activities with 

the differing learning objectives as seen in Table [6.10]. Initially the network was presented 

with design patterns where the structure of the TLAs appears different from what the network 

actually learnt, this makes the network to perform such a syntactic disambiguation, this when 

a set of design patterns are given having more than one possible structure. In this case, the 

network corrects the design patterns and inserts the correct types of TLAs to produce well-

formed design patterns.  

 

Although the frequency table of V3 relationship illustrated in Table [6.11] looks much similar 

to the frequency table of V3 test set (before) in Chapter 4, a couple of LO/ATs relationships  

were detected after applying the network changes. The major change was in linking higher 

assessment tasks (Bloom’s 6) with the low level learning outcomes (i.e. knowledge level- 

Bloom’s 1). Also linking higher types of assessment tasks (Bloom’s 5) for assessing the 

outcomes in the synthesis levels (Bloom’ 5), for example, higher practical assessment types. 

This behaviour of the network stems from its recognition to what it has seen before and this is 

an expected behaviour from auto-associative networks in which they act much more as a 

pattern store (Hanson and Kegl, 1987).  An analysis of the unchanged patterns in the LO/AT 

relationships showed that the network was typically able to match the closet assessment task 
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resulting in the transformation from Exams (Bloom’s 6) as assessment tool to Essay 

Examinations (Bloom’s 6), which will be discussed later in this section.   

6.1.2 Correlational Analysis  

H0: There is no correlation between V alignment score and S student satisfaction score. 

In order to investigate and identify the relationships that were performed between good 

module designs according to student satisfaction, the data were subjected to correlation 

analysis. The Pearson correlation coefficients r were run to look for relationships between 

student satisfaction and each of that the following variables V1, V2, V3, and AVG_V 

respectively. This is summarized in Table [6.12] which presents an overview of the 

correlations that were found to exist between each of the alignment scores and satisfaction 

score. The table shows that again student satisfaction scores with V2 alignment scores (r = 

0.645, p < 0.05) is relatively highly correlated in comparison with V1 and V3 alignment 

scores (r = 0.504, p < 0.05) (r =0.415, p < 0.05). These findings are more analysed below 

where each V is hypothesised against the above null hypothesised and supported by a 

correlation scatterplot.  

Table [6.12]: Correlation Analysis between the student satisfaction and V1, V2, and V3 

alignment scores 

  Pearson Correlation P-value R-square 

V1 and S 0.504 < 0.05 0.254 

V2 and S 0.645 < 0.05 0.417 

V3 and S  0.415 < 0.05 0.172 

AVG_V and S 0.662 < 0.05 0.438 
*Correlation is significant at the 0.05 level 

 

Student satisfaction with V1 

Table [6.12] shows that a comparison was made using Pearson’s r on the relationship 

between V1 alignment scores and student satisfaction. The result of the comparison shows a 

moderate correlation (r = 0.504, significant at the 0.05 level) thus we can determine that there 

is a correlation between the two variables. However, to determine the significance of this 

relationship, the coefficient of determination, or R-square, was then calculated on this 

correlation by squaring the Pearson’s r coefficient. This gives us a measure of how important 

the correlation is, because even if there is a correlation, if it only explains a small amount of 

the variability then it might not be a very important or strong correlation (Hinton, 1995). The 
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resulting R-square is 0.254, indicating that 25% of the total variation in satisfaction can be 

explained by variation in V1. The scatterplot is shown in Figure [6.2] 

 

 

 

 

 

 

 

Figure [6.2]: Scatterplot for Relationship between Satisfaction and V1 

 

Student satisfaction with V2 

In case of V2, The result of the comparison shows a significant high correlation (r = 0.645, 

significant at the 0.05 level) and the resulting coefficient of determination calculated is 0.417, 

indicating that 42% of the total variation in satisfaction is derived from the V2 that is the 

relation between learning objectives and the type of TLAs used. It seems that when the V2 

alignment score is increased, that is more high level cognitive activities are suggested, the 

level of student satisfaction is likely to increase as well. The scatterplot of this relation is 

shown in Figure [6.3] 

 

 

 

 

 

 

 

 

 

 



 

 

136 
 

 

 

 

 

 

 

 

 

Figure [6.3]: Scatterplot for Relationship between Satisfaction and V2 

 

Student satisfaction with V3    

The result of V3 with respect to satisfaction score shows that there is a correlation formed 

between the two variables with (r = 0.415, significant at the 0.05 level) and the resulting 

coefficient of determination calculated is 0.172, indicating that 17% of the total variation in 

satisfaction is derived from V3. The scatterplot of this relation is shown in Figure [6.4].  

 

 

 

 

 

 

 

 

Figure [6.4]: Scatterplot for Relationship between Satisfaction and V3 
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Student satisfaction with overall alignment    

As can be seen that there were some correlations with different degrees between the different 

alignment scores and satisfaction as a result the relation between the overall alignment and 

satisfaction found to be positively high (r = 0.662, significant at the 0.05 level) and the 

resulting coefficient of determination calculated is 0.438, indicating that 44% of the total 

variation in satisfaction is derived from the overall module alignment. This is well supported 

by the scatterplot which is shown in Figure [6.5].  

 

 

 

 

 

 

 

Figure [6.5]: Scatterplot for Relationship between Satisfaction and Overall Alignment 

To conclude, the correlation analysis that was performed in this section to investigate the 

relation between the three predictor variables V1, V2, and V3 and student satisfaction has 

revealed the degree of association between the module designs and student satisfaction. This 

allows us to reject the null hypothesis and confirm the existence of a relationship between the 

variables. This was supported with multiple scatterplots to demonstrate the relationship 

between satisfaction and module design features (V1, V2, and V3). The result also revealed 

that V2, which measures the degree to which a given learning objective is aligned with the 

dominant TLAs in the module, is the most significant predictor of student satisfaction. 

Approximately 42% of the variance in student satisfactions was derived from the type of 

TLAs being used. Student satisfaction with V1 and the type of learning outcomes and 

learning objectives was the second significant predictor of satisfaction (25%). It was found 

that assessment tasks got the lowest percentage in predicting student satisfaction. It is well 

known that assessment tasks directly link to what students have learned and provide a way 

for involving more about what they are doing and not just what they know, however; it can be 
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interpreted that the kind or type of assessment does not necessarily affect the level of 

satisfaction compared to the types of TLAs used during the educational process or the 

learning outcome verbs introduced to help students better understand what is expected of 

them during the educational process. The impact of TLAs on students constitutes the largest 

proportion as TLAs are considered one of the most important elements of education. There 

are substantial studies related to the link between the student satisfaction and the effective 

teaching methods. The choice of appropriate and effective teaching methods helps to improve 

the learning of the students by creating interest in the subject and the enthusiasm to learn and 

developing the creativity sense in the students within themselves. Highly motivated students 

also tend to be more satisfied with their education (Jones, 2008; Roebkin, 2007) and this is 

achieved by using more teaching methods that engage the students with their learning. 

Previous studies show that students’ academic success and satisfaction relies on certain 

features of learning environments, particularly on high level activities such as group work 

activities and problem-solving exercises (Gokhale, 1995; Chalmers, 2008;). This is quite 

consistent with the correlation result of V2 that suggests that whenever the alignment score is 

increased by using high-level activities, the student satisfaction score will increase as well.         

6.2 Visualizing Data with Self-Organizing Map (SOM)  

The underlying representation or ‘hypothesise’ formed by the network has shown that there 

are significant correlations obtained between the alignment scores and student satisfaction in 

the test pattern after applying the network changes. In order to further analyse this correlation 

and identify what design changes were made for transforming V1, V2, V3 and student 

satisfaction, SOM has been used as a visualization method for identifying patterns and 

clusters in the data. It expresses the data in a way that similarities and differences are more 

perceptible. SOM is an unsupervised learning algorithm developed by Kohonen (1995).  The 

algorithm breaks down high-dimensional data into simplified abstractions producing a low-

dimensional (typically two-dimensional), discretized representation of the input space of the 

training samples, called a map (Kohonen, 1998; Samarasinghe, 2006). The resulting map 

avails itself readily to visualization, and thus the distance relations between different data 

items can be illustrated in a familiar and natural manner which makes SOM a powerful 

visualization tool. The main principle of the SOM is the application of competitive learning 

in which for every input vector, nodes compete with each other to see which one of them is 

the most similar to that particular input vector. The Euclidean distance function is used to 
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measure the level of similarity between an input pattern and each weight vector (and thus 

cluster unit). The node on the SOM whose weight vector is closest to the current input vector 

is deemed to be the ‘winning node’ for that input pattern. The associated weight vector is 

then subject to a simple learning rule to move it towards the winning input pattern. Thus 

similar data items are located close to each other and dissimilar data items are farther a part in 

the map display. This natural groupings help to identify clusters within the datasets and to 

reveal what features the members of a cluster have in common and to visualize the data in 

such a way that both similarities and differences can be distinguished. The following 

subsections will discuss the map initialization and training followed by visualizing the 

comparison of SOM patterns for set A (test pattern after changes made by the auto-encoder 

network) and set B (test patterns before changes made by the auto-encoder network). 

 

Map Initialization and Training 

The SOM implementation was made with the SOM_Toolbox which is function package for 

MATLAB implementing the Self-Organizing Map (SOM) algorithm (Vesanto, 1999). The 

toolbox provides some functions and default setting/parameters for creating, initializing and 

training SOMs using a range of different kinds of topologies. The toolbox is a free software 

and relatively easy to use. The mathematical details of the SOM algorithm can be found in 

Kohonen (1995) Cottrell (1998) and will not be considered here. However, the description for 

applying SOMs will be given below. 

 

By default linear initialization, batch training algorithms, and Gaussian neighbourhood 

functions were applied along with the following function SOM_MAKE that creates and trains 

the SOM with default parameters. The members of the training dataset were presented 

iteratively and randomly to a SOM of 9x9 map size. The map size was generated subject to 

the adaptation process mentioned in the literature (Kohonen, 1996; Bação, 2008). Several 

runs with different map sizes were investigated to ensure that dissimilar patterns were not 

forced to cluster together. The training is done in two phases respectively: topological 

ordering of the weight vectors by training with large (initial) neighborhood radius and large 

(initial) learning rate, then weights are fine-tuned with small radius and learning rate 

(Kohonen, 1996; Bação, 2008). After a total of 10000 iterations, the map shown in Figure 

[6.6] was obtained using the SOM_SHOW function. The map basically is attempting to 

visualize the topology of the SOM. The figure shows the neuron locations in the topology, 

and indicates how many of the training data are associated with each of the neurons (cluster 
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centres). The maximum number of hits associated with any neuron is 18. Thus, there are 18 

input vectors in that cluster. The distribution was clustered in many areas, which indicates a 

degree of separation between the patterns. A sammon map is also shown to graphically 

illustrate the clusters and distances between them as shown in Figure [6.7]. The map 

represents each cluster node with the most representative pattern i.e. the closest pattern, 

which has the smallest Euclidean distance to the cluster node is displayed. It is apparent how 

the set of nodes are displayed with position and colour indicating clusters of data. Design 

patterns having similar design features are arranged close to each other and the distance 

between represents the degree of similarity and dissimilarity. For example, there are some 

data points clustered at the right area with yellow colour nodes showing that these design 

patterns in these regions having relatively similar characteristics according to some attributes 

of the dataset such as all sharing similar types of TLAs. There are also ranges of patterns 

grouped into clusters next to each other at the bottom middle of the map as can be seen, 

which is also a sign of similar patterns with similar characteristics found in these clusters. 

One of the common features found to be in these patterns is the frequent similarity in the 

learning objectives and the containment of similar interactive TLAs like questioning, 

dissuasion, and group activities. To better understand the feature similarities between these 

cluster nodes, Table [6.13] details some examples of design patterns with their most common 

features found. The table includes cluster ids 58, 68, and 69 as an example for the right region 

of the map which is represented in yellow. It also contains cluster ids 11, 19, 28, and 49 as an 

example of some of the group located at the bottom middle of the map witch is represented 

with dark blue colours. 
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Figure [6.6]:  SOM sample hits topology 
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Figure [6.7]: SOM for the training patterns where a cluster node is labelled with the most 

representative design pattern i.e. the closest training pattern, which has the smallest 

Euclidean distance to the best matching unit (BMU) of that cluster node. 
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Table [6.13]: Comparison between some cluster nodes  

 

 

 

Features 

LO LObjs TLAs ATs 

58 243 3 Applying (40%), 

Analysing (20%), 

Synthesis (40%) 

Understanding 

(10%), 

Applying 

(40%), 

Evaluating 

(20%), 

Creating  

(10%) 

Lecturers, Class 

discussion, Individual 

activities, Seminar 

exercises   

Exam, Individual 

practical activity, 

Individual report 

68 21 4 Applying (40%), 

Analysing (40%), 

Synthesis (20%) 

Understanding 

(20%), 

Applying 

(30%),  

Analysing 

(30%), 

Evaluating 

(20%) 

Lecturers, Individual 

activities, Seminar 

exercises   

Exam, Individual 

practical activity, 

Individual report 

69 278 3 Understanding 

(20%),  

Applying (40%), 

Analysing (20%), 

Synthesis (20%) 

Applying 

(40%),  

Analysing 

(20%), 

Evaluating 

(20%) 

Creating 

(20%) 

Lecturers, Class 

discussion, Individual 

activities, Seminar 

exercises   

Exam, Individual 

practical activity, 

Individual report 

11 319 3 Understanding Understanding Lectures, Seminars, 

Questioning, Group 

Exam,  Group 

practical, Practical 
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(20%),  

Applying (40%), 

Creating (40%) 

(20%), 

Applying 

(40%),  

Analysing 

(10%), 

Creating 

(30%) 

discussion, Group 

practical activities, 

report   

19 117 8 Understanding 

(20%),  

Applying (60%), 

Creating (40%) 

Understanding 

(20%), 

Applying 

(30%),  

Analysing 

(30%), 

Creating 

(20%) 

Lectures, Seminars, 

Questioning, Group 

discussion, Group 

practical activities, 

Exam,  Group 

practical, Practical 

report   

49 412 6 Applying (60%), 

Analysing (20%), 

Creating (20%) 

Understanding 

(20%), 

Applying 

(40%),  

Analysing 

(10%), 

Creating 

(30%) 

Lectures, Seminars, 

Questioning, Group 

discussion, Group 

practical activities, 

Exam,  Group 

practical, Practical 

report   
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After training the SOM with the training dataset, the evaluation was carried out on the testing 

dataset before pushing through the auto-encoder network and after using the obtained 9x9 

map size. Figures [6.8] and [6.9] show the sammon’s mapping plots for test patterns before 

and after transformation by the auto-encoder network. In each figure, each SOM node 

represents the BMU of the trained SOM activated by the test pattern. If a test pattern does not 

activate a SOM node that has any training patterns associated with it, it is not visually shown. 

The key difference between figure [6.8] (before test pattern transformation) and figure [6.9] 

(after test pattern transformation), is that more test patterns are associated with BMU of the 

trained SOM after transformation (figure [6.9]) and therefore test patterns have been nudged 

more closely to the good design patterns found in the training set. A common transformation 

that was made from figure [6.8] to figure [6.9] was that some raw test patterns weakly 

activated a BMU associated with a training pattern and after transformation was modified to 

more strongly match an alternative cluster of training patterns and therefore strongly activate 

a different BMU in figure [6.9]. For example, test pattern 19 was initially associated with a 

training BMU with a distance of 9.40 and after transformation, it was moved to a different 

BMU with closer distance of 7.12 as shown in figure [6.9]. In addition, some test patterns did 

not move from the initial BMU identified before pattern transformation, however, the 

transformed test pattern resulted in it being moved closer to the initial BMU assigned to it 

and thus the training patterns it represents. For example, test pattern 10 was initially assigned 

to a training BMU with a distance of 8.17 and after transformation, it was assigned the same 

BMU but with a shorter distance of 6.04 (as indicated in the tracking table [6.14]). The aim of 

this visualization is to track the best matching unite (BMU) locations for the most 

representative patterns displayed on the map and to visualize their movement. Further 

examples, can be seen in Table [6.14]. The table records the visualization trace and 

movement for those patterns with their distance from the cluster BMU, which is giving in 

bold. The table only lists those test patterns, before and after transformation that activated a 

BMU of the SOM that had training patterns associated with it. The other test patterns were 

considered ‘too far’ from a BMU representing one or more training patterns. 
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Figure [6.8]: SOM for the test patterns before applying auto-encoder 
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Figure [6.9]: SOM for the test patterns after applying auto-encode 
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Table [6.14]: Tracking table of most representative test patterns before and after 

transformation by the auto-encoder network with their distance from the BMU of the 

training nodes. The values are given correct to 2 decimal places as appropriate.  

 BEFORE  AFTER 

TestPattern_id Cluster_id BMU TestPattern_id Cluster_id BMU 

5 64 8.32 5 64 5.83 

9 33 8.88 10 55 6.04 

10 55 8.17 11 15 6.28 

11 15 6.95 15 10 5.64 

13 10 6.74 19 8 7.12 

19 9 9.40 21 20 7.07 

21 20 9.13 24 74 6.00 

24 65 8.41 28 76 6.21 

26 74 7.94 31 6 6.81 

28 76 7.97 33 3 6.42 

30 14 9.24 34 81 6.81 

31 6 8.31 41 37 6.78 

33 2 7.36 45 52 7.12 

34 81 9.41 46 67 6.78 

36 44 8.25 47 43 6.74 

44 64 9.62 49 25 5.51 

45 52 10.02 51 44 6.04 

47 43 8.60 54 46 7.56 

49 36 6.64 55 65 6.36 

51 53 9.08 63 19 6.05 

53 24 11.00 69 11 5.89 

60 28 7.77 70 45 5.67 

63 19 6.58 80 2 6.10 

69 11 6.79 86 34 6.64 

70 45 6.55 96 1 5.21 

76 1 5.87 98 28 7.08 

80 25 7.65    
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To conclude, the investigation provides an analysis and interpretation of the V1, V2, V3 and 

S before and after using a number of statistical and data visualization methods including the 

use of SOM. The purpose of this investigation was not having a sample for statistical 

purposes, but qualitative understandings regarding which main changes in module design 

elicit a high level student satisfaction and how strong these changes will impact or affect 

student satisfaction. From this Preliminary investigation, some core underlying design 

preferences were emerged as will be discussed in the next section.  

6.3 Extracting the Core Design Principles Formed by the Neural 
Network 

The network was trained on good design practices according to high student satisfaction. 

Then it was presented with input design patters associated with low satisfaction scores where 

its main task to recognize each of the given input pattern either as one it has seen before and 

therefore match it with a module within the training set or as one it might have seen before 

thus the new pattern is produced with such changes. These changes are interpreted as 

corrections the network attempts to make in order to match it with a good design from what it 

has learnt. It was seen in the analysis section above that there were significant differences 

between the alignment scores before and after especially in the V1 and V2 alignment scores. 

In this section these changes and the core learning design principles drawn from the network, 

to form such educational designs that can attract and raise the level of student satisfaction, are 

discussed and presented. The changes made to each case of V1, V2, and V3 will be discussed 

separately and conclude with the design principles extracted to effect improved student 

satisfaction in each case.    

Case V1: 

The analysis results of V1 alignment scores indicated that the network generated some 

changes that resulted in lowering the alignment values in most of the cases. This decrease in 

the degree of alignments has taken two forms where either the learning outcome’s level has 

changed or the learning objective’s level has changed. In case where the learning outcomes 

have changed; the network had made a weak change by moving down one level of the 

Bloom’s level for the following learning outcomes: the analysis (Bloom 4), synthesis (Bloom 

5), and evaluation (Bloom 6). This changed to application (Bloom 3), analysis (Bloom 4), 

and, synthesis (Bloom 5) respectively. These changes however, nudged the alignment scores 
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of the test patterns (before) to become within the allowable range i.e. it has enhanced the 

relation from eliciting high alignment values above the range of 11.5. The network’s decision 

in lowering the levels of the learning outcomes in general and focusing on suggesting 

outcomes with verbs under the application, analysis, and synthesis seems a good sign of its 

understanding in the relation of the learning outcome Bloom’s levels. These learning levels 

can help students to acquire the required knowledge, skills, and ability that can help them to 

develop their higher learning abilities and this is exactly what Bloom’s learning theory is 

based on where the assumption is that the six learning levels are progressive and that 

movement to higher levels depends on successful ability in the lower levels (Bloom, 1956). 

Therefore, focusing on the application, analysis, and synthesis more preferable and can lead 

to higher-learning improvement as well as higher student engagement and thus satisfaction. 

In case where the level of the objective has changed, it was noticed that it has been raised up 

one level in most cases, which can be seen as a strong change the network has made. This 

change (moving up one level of Bloom’s for the given learning objective) can some time 

cause the alignment value to be positively misaligned in that learning objectives are eliciting 

higher Bloom’s level than the associated learning outcome level. On the other hand, it was 

also noticed that the network has decreased the Bloom’s level for some learning objectives 

(moving down one level of Bloom’s for the given learning objective) resulting in negative 

misalignment between the learning outcomes and the learning objectives. Generally it can be 

said that the network is relatively ambivalent towards the alignment of learning outcomes and 

learning objectives suggesting there is some confusion between teaching practitioners as to 

how these are related.  

Design preference 1: Both negative and positive misalignment is supported when associating 

learning outcomes and objectives – indicating some confusion in practice as to how these are 

associated and distinguished  

 

 

 

 

 



 

 

151 
 

Case V2: 

The analysis results of V2 showed that there is an increase in V2 alignment scores resulting 

in an increase the satisfaction scores as well. Moreover, the effect size indicated an increase 

of one and a half standard deviations on V2, and is typically associated with a strong change 

in the type of activities and the level of Bloom’s associated with the activities. In other words, 

we can say that the network was typically able to generate strong changes to the V2 

alignment scores where it has been moving the level of the TLA from lower Bloom level to a 

higher level increasing the level of the corresponding student satisfaction. The following 

preferences were merged. 

Design preference 1: Encouraging collaborative learning and high challengeable TLAs with 

low, intermediate, and high learning objectives help to improve student satisfaction      

It is well known that collaborative learning is one of the most substantial approaches for 

improving learning outcomes (Beck, Chizhik, and McElroy, 2005; Chase and Okie, 2000; 

Hbscher-Younger and Narayanan, 2003; Jonassen, Lee, Yang, and Laffey, 2005; Joseph and 

Payne, 2003; McDowell, Werner, Bullock, and Fernald, 2002). It combines the social 

learning with experiential learning or inquiry-based learning in the sense that students work 

together in pairs or small groups to discuss concepts, or find solutions to problems. The move 

from individual-based activities to group-based activities was the most suggestions proposed 

by the network. The network demonstrates a preference for associating group-based activity, 

problem solving to learning objective eliciting Bloom’s level 3, 4, 5 and 6. The network also 

preferred learning objectives beginning with the words ‘define’ and ’list, and learning 

objectives beginning with the words ‘classify, identify, and ‘explain’, that is learning 

objectives in Bloom’s level 1 and Bloom’s level 2 respectively, to be associated with higher 

levels of learning as well. These preferences may be against the principle of constructive 

alignment, however it seems that it is better suited in practice and student satisfaction as it 

has been seen that when these kinds of associations are taking place, the average level of 

satisfaction increases from 3.3 to 3.8. 
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Design preference 2: Introducing plenty of example illustrations and exercises during the 

lectures help to increase the students’ satisfaction level      

Lectures play an important role in teaching for transmitting the knowledge however; pure 

lectures sometime can be pointless and hard to understand. Students like good and interactive 

lectures, otherwise they prefer group-based activities and more active learning to motivate 

them (Race, 2001, 2005). A preferred learning activity informed by the network was the use 

of example illustrations and small group exercises for learning objective being one of the 

following: application, analysis, and synthesis. If lectures were used as TLAs with the above 

objectives, the network suggestion was to associate the lectures with either example 

illustrations or group exercises. Incorporating plenty of examples during the given lecture 

often enhances both the presentation of the material and students’ learning, which can help 

them to learn by applying a concept to real life. This in return reflects the levels of their 

satisfaction.      

Design preference 3: Increasing the level of communication and interaction has a clear 

impact on students' learning and satisfaction 

Interaction among students and instructors and among student themselves highly correlates 

with the level of their learning, engaging, and satisfaction (Swan, 2001). Weimer (1990) 

identified different strategies and methods that can be employed in the classroom that help 

enhance the learning experience of students. According to her, warming up the environment 

is integral in enhancing student satisfaction. Questioning, hands-on, and class discussion are 

one of the activities that help to create an environment of warmth, respect, enjoyment, and 

enthusiasm. These activities also increase the level of communication among students. The 

frequency relationships analysis of V2 showed that the most frequent type of teaching 

activities associated with learning objectives sitting at Bloom’s levels 1 and 2 are found to be 

higher level activities than the associated level of the learning objectives. These activities 

were in the form of group discussions, class discussions, and questionings which are inline 

with the other studies such as Hiltz (1994), Moore (1989), and Swan (2001) that signify the 

impact of these teaching activities on achieving high student satisfaction and point the 

importance of increasing opportunities for interaction and communication during the lecture 

session.       
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Case V3: 

Designing the assessment task is often one of the difficult parts that face the module designer. 

It is often viewed as being somehow separate from the learning process that used to measure 

what students know and what they don’t know. However, assessment is an integral part of the 

learning process and should aim to improve the quality of student learning (Ciara O’Farrell, 

2009). Biggs (1999), (2003), asserts the relationship between the module learning outcomes 

and the kind of assessment tasks used by ensuring that the intended verb in the learning 

outcomes is present in the assessment task. However, module designers often use one type of 

assessment in the form of exams to assess a student’s knowledge. The analysis result of V3 

showed that there is decrease in the V3 alignment values in order to bring the alignment 

values within the allowable range, however; this decrease in the V3 values was most affected 

by the decrease of the Bloom’s level of the learning outcomes as V3 calculates the 

relationship between the learning outcomes and the assessment tasks. Practice, on the other 

hand, has revealed a modification to the alignment theory by using assessment tasks higher 

than learning outcomes. It also revealed the use of essay exam as alternative assessment 

strategy can be more effective tool than the traditional unseen exams. 

Design preference 1: higher levels of assessment tasks can challenge the learning of the 

students to make them motivated towards learning.  

Students find it interesting to learn when they figure out that their learning is based on 

challenging tasks. This helps them to develop their interest in the module and find themselves 

to be more challenged towards testing their learning and finding out what they have learned. 

With more challenges, they receive more motivation, and with more motivation, they find 

more level of satisfaction within the learning process and find it effective to be in a position 

where their learning is challenged at every step (Munns, 2009). Therefore, teaching 

practitioners are advised to use appropriate types of high-level assessment tasks. The 

transformed design patterns have showed that group assignments and group projects were 

associated to an average of 3.9 of the overall satisfaction.      

Design preference 2: Essay exams can be more effective assessment tool than traditional 

unseen exams. 

This gives an inference that using traditional exams to assess learning outcomes may not be 

always good practice and teaching practitioners may need to consider differ approaches to 

assess outcomes more effectively. Essay exams measures higher-order learning (Biggs, 
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2003), and also can be in perfect alignment relationship with all learning outcomes 

(knowledge, comprehension, application, analysis, synthesis, and evaluation) if teaching 

practitioners can make sure that the essay questions in the exam are aligned with their 

intended learning outcomes through activating the verb in the questions. This type of 

assessment has some advantages compared to the unseen vague examinations that make 

students revise the whole materials and test their memories rather than their understanding. 

Practice also revealed that there is good correlation (r = 0.415, significant at the 0.05 level) 

between high assessment tasks (Bloom’s 6), in which an essay exam is categorised under this 

level, and student satisfaction. Accordingly Essay examinations are preferred over traditional 

unseen examinations for improving alignment and student satisfaction. The research literature 

appears to support this as essay type examinations require less memory and gives a better 

(compared to non-essay examinations) evaluation of how students have understood the 

subject and their ability to apply their knowledge and understanding (Brown, 2001; 

Champlin, 2006; Murphy, 2009; O’Farrell, 2009). Thus essay examinations can be 

considered a more effective assessment tool compared to the unseen examinations that make 

students revise the whole material and test their memories rather than their understanding. 

Whereas in real practice, students do need to be assessed on their critical thinking, 

understanding, communication, and collaboration skills that will help them in their future and 

career.  

6.4 Summary  

The given results emphasized two important factors, first the understanding of student 

satisfaction toward the core educational design components and identifying which of the 

components have significant roles in increasing the satisfaction. Second, searching and 

highlighting the most effective design preferences that teaching practitioners can utilize to 

improve both module alignment and student satisfaction. The outputs of the auto-encoder 

neural network creates prevalent patterns that show that most of the learning outcomes were 

associated with learning objectives formulated at the intermediate levels of Bloom’s 

taxonomy of cognitive demand. This does not negate the importance of the other Bloom’s 

cognitive levels, but explains that the intermediate levels of Bloom’s taxonomy (application 

and analysis) were better appropriate in practice. Different teaching strategies utilizing higher 

level activities, which can be applied to different and similar modules, were presented and 

showed to correlate positively with student satisfaction. These results extracted from the 
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neural network were consistent with the results of other studies like Killen (2009) and 

Kennedy et al (2007) which suggest that learning should be verbalized with a focus on 

intermediate and higher-order cognitive skills, and the learning activities should challenge 

students to make the best use of their learning experiences. The next chapter compares the 

system's performance with respect to other approaches and discusses the nexus of theory and 

practice. Then it summarises the whole research and draws its final conclusions and 

recommendations for future work. 
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CHAPTER 7: Conclusion and Future Work 
 

7.1 The Nexus of Theory and Practice 

In examining the relationship between learning theory and instructional design it is well 

known that the two disciplines affect each other continuously, each influencing the other for 

the good of the system and the good of the students (Desmarais, 2009). The theoretical 

framework is an important factor and considered the main building block for the design of a 

successful learning. In addition, the importance of linking between theory and practice in the 

design and development of any education system is also an important factor that helps to 

motivate the learning at the highest level. The task of translating a learning theory such as the 

‘Constructive Alignment’ into practical application one of the difficult tasks (Ertmer and 

Newby, 2013), however; its application shows its effectiveness and its reflection on 

increasing the level of student satisfaction and perceived engagement in their learning, 

indicating the benefits of the application of this outcome-based pedagogical theory.  

7.2 Comparison with Previous Work 

Existing learning design tools, as discussed in Chapter 2, suffer from lacking a quantitative 

measure on which to base alignment or any means in which to adapt design patterns 

according to the student experience. Therefore, the development of EDIT aimed to introduce 

a neurally-inspired approach to learning design tools that seek to address this gap by 

implementing Tepper’s quantitative measure of constructive alignment and associating 

module design patterns with their student satisfaction levels to calibrate alignment measures 

and provide more pragmatic and realistic design decisions based on both theory and practice. 

In this section a brief comparative review is presented between the existing learning design 

tools and EDIT, which is given in Table [7.1] providing the main properties. 
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Table [7.1]: Comparative review of main properties of EDIT and existing design tools 

Learning 

design 

tool 

Properties 

Design level Measure 

design 

quality? 

Inference? Adaptive? Recommendations to 

enhance design? 

LAMS Session 

level 

(sequencing 

activities 

within a 

session) 

No  No  No  No 

Phoebe Module and 

session level  

 

No No  No  No – just wiki-based 

references links and 

resources    

LPP Module and 

session level  

 

No No  No  No – only maps 

different design 

components together  

LDSE Module and 

session level  

 

No Yes 

inferences 

only from 

theory 

informed 

knowledge-

based 

No  

based on 

symbolic 

rules 

stored in 

the KB 

Yes - recommends 

only alternative 

TLAs on the basis of 

the properties of the 

currently used TLA 

and suggests ways to 

combine TLAs and 

TEL approaches 

EDIT Module and 

session level  

 

Yes provides 

numerical 

measure of 

alignment 

between 

module’s 

components 

and for the 

entire module 

Yes 

inferences 

from theory 

and real-

practice 

informed 

knowledge- 

based 

Yes  

based on 

new 

design 

patterns 

and 

adaptive 

KB   

Yes - recommends 

alternative LOs, 

LObjs, TLAs, and 

ATs to effect better 

alignment and 

increase student 

satisfaction   
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Most learning design tools combine functionality for designing and supporting teaching 

practitioners through the series of design decisions involved in bringing together into a 

learning design the core elements of the education design together with advice and guidance 

on making those decisions. However, recommendation to enhance the design was given in 

the form of wiki-based such as in Phoebe or more test-based derived from a static knowledge 

base which has been based solely on theoretical frameworks such as LAMS and LPP. The 

most comparable tool is that of Laurillard (2011) who produced the LDSE investigating the 

approach of artificial intelligence by drawing inferences from comparisons between a user’s 

decisions and a developing knowledge based system of design practice informed by 

pedagogic theories. A set of self-configurable rules are used as means to extend the 

knowledge base inference which provides a knowledge-aware application in finding, using 

and presenting the support to the user. This enhances the user’s experience by offering 

alternative TLAs only for the given learning outcome to maximise the learner’s potential to 

meet the learning outcome. However, a limitation of LDSE is again the interaction with a 

theory-informed knowledge base in drawing such inferences.  

In contrast, EDIT has incorporated high scores of student satisfaction to indicate good design 

practices in the knowledge base and uses a variation of a back-propagation technique ‘auto-

associative neural network’ that is trained to learn the relationships between good module 

designs to form a learned knowledge based system that can be used to ‘correct’ poor design 

patterns and build its inferences based on its knowledge base of theory and practice. The 

network has units associated with input and output as well as a modified set of hidden units 

that enable the network to learn a useful representation of the well-formed design patterns. 

With 519 training patterns generated from good practices according to high satisfaction 

scores, being presented to the auto-encoder network to learn from, the network was able to 

recognize 456 design patterns on training data correctly producing an average successful 

learning of 88% but failed to learn from the remaining 11 % that is about 57 design patterns. 

EDIT’s ability to generalize from what it has learned to new patterns indicates that some 

general knowledge of effective design preferences (in line with pedagogic theory like the 

collaborative based learning and social-constructivist learning) has been extracted from its 

experience of good module designs. After successful training, 102 new test patterns 

associated with low student satisfactions were presented to the network where only 5 design 

patterns were recognized and 97 new design patterns were generated. The high RMSE 

generated from the test stage is a clear indication of aggregate design changes gained by the 
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networks. The results of the analysis and interpretation of these changes revealed a set of 

design preferences inline with the social-constructivist learning and collaboration learning, 

which emphasize the discussion and collaborative nature of much learning (Vygotsky, 1978; 

Swan, 2001). The network also revealed its ability to make some modifications to alignment 

theory by suggesting higher level TLAs than their associated learning objectives and higher 

ATs than their associated learning outcomes as seen in Chapter 6.  

In comparison with LDSE, EDIT provides more options for a given TLA which can be seen 

as alternative activities to consider beside the traditional lectures and seminars. In Table [7.2] 

it can be seen that EDIT provides an opportunity for more active and collaborative learning 

activities to be considered when the TLA ‘lecture’ was presented. LDSE on the other hand 

suggested only one TLA that intended to save the teacher’s time. However, teacher-students 

interaction is one of the important factors that help students’ engagement and contribute to 

their satisfaction (Swan, 2001). Moreover, providing alternative options for the given TLA 

can show a path to help the teacher or lecturer to pay more attention on the importance of 

supporting lectures and injecting them with these types of teaching activities due to their 

significant impact. The other examples in the table show that for each TLA in LDSE, the 

alternative activity is to use a technology-based activity that can aid again to save the 

teacher’s time and cost while it does not consider if it suits practice or not. For example, 

considering a given TLA such as individual practical activity or resource-based individual 

activity, the LDSE’s alternative suggestions to these TLAs are only: adaptive TEL individual 

activity, individual project activity, or TEL resourced based individual activity as seen in 

Table [7.2]. In case of EDIT for each of the individualised activities, the option of group 

activities is always suggested representing it as one of the best TLAs to use. 

Table [7.2]: Example comparison between EDIT and LDSE in making alternative 

recommendations to the given TLAs 

TLA LDSE EDIT 

Individual 

practical activity  

 

Adaptive TEL 

Individual activity,  

Individual project 

Group activity, seminar excises, Individual 

project, laboratory notebook    

Resource-based TEL Resource-

based Individual 

Individual Project, Example illustration, group 
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Individual activity   activity   

 

activity, TEL-Individual activity     

TEL Resource-

based Individual 

activity   

Individual practical 

activity  

Resource-based group activity, Group practical 

activity.   

Teacher 

presentation  

Online teacher 

presentation  

Small group discussion, Class discussion, Group 

exercise, Example illustration,  

Resource-based 

group activity   

TEL Resource-

based group activity   

Resource-based group activity, Problem solving, 

Group presentation 

 

Last but not least EDIT outperforms all the existing tools in its ability to recommend 

alternative types of objectives, activities, and assessment tasks and was not restricted to 

particular types as the case in all the tools in the table, which either they do not recommend at 

all or are limited in proposing only TLAs to enhance the design and unable to recommend 

alternative types of learning objectives and assessment tasks relative to the learning outcomes 

to effect better alignment.  

7.2 Calibrating Alignment Ranges  

Good and effective module design practices associated with high levels of student satisfaction 

scores were used to calibrate the alignment measures and identify meaningful alignment 

value ranges for the three main relations (V1, V2, and V3) for the alignment metric.  

Applying the metric to the module design patterns in the training set, which represents the 

good and effective module design practices, has resulted in the alignment value ranges shown 

in Table [7.3]. Therefore it is expected that if module designs stay within these ranges then 

the modules will be well-formed and constructively aligned in a way that will potentially 

yield positive student satisfaction. 
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Table 7.3: Acceptable and meaningful alignment value ranges calculated from good practise  

 Min (X) Max (X) 

V1 4.8 11.1 

V2 6.9 11.5 

V3 7.8 13.1 

AVG_V 7.6 10.7 

  

The changes applied by the auto-encoder network to the test patterns indicated some design 

suggestions to bring the V1, V2, and V3 of the test patterns (before) into the allowable 

alignment ranges and move them closer towards the good design space as illustrated in Table 

[7.4] and therefore, raised the average satisfaction scores accordingly from an average of 3.3 

to 3.8 

 

Table [7.4]: Alignment ranges for test patterns before and after network’s changes   

Alignment Ranges V1 V2 V3 AVG_V S 

Acceptable Alignment 

Ranges based on good 

practices (Training 

patterns) 

4.8 – 11.1 6.9 – 11.5 7.8 -13.1 7.6 – 10.7 4.5 

Test patterns (Before)  3.7 - 21.2 3.7 - 16.4 4.0 - 16.7 4.4 – 14.3 3.3 

Test patterns (After)  4.8 - 14.8 5.8 - 15.1 3.8 – 16.6 5.7 – 13.3 3.8 

  

In answering the question regarding the relationship between good module design and student 

satisfaction of the implementation and delivery of that design changes, the findings indicate 

that there is a relationship between the V1, V2, and V3 in relation to student satisfaction 

whereas the V2 alignment scores (r = 0.645, p < 0.05) was relatively highly correlated in 

comparison with V1 and V3 alignment scores (r = 0.504, p < 0.05) (r =0.415, p < 0.05). This 

correlation was confirmed with 41% of the variance in student satisfaction was accounted for 

the changes made to V2 eliciting a high level student satisfaction. The major conclusion that 
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can be drawn from this correlation is to confirm that there is a strong link between the 

amount of active, social, and collaborative activities that student perceive and their 

satisfaction. Therefore, teaching practitioners are advised to increase these types of activities 

when designing their course and modules. The research shows that student satisfaction scores 

are good indicators to enhance module designs and learning. The results also show that neural 

networks offer a viable alternative to traditional artificial intelligence methods as a means of 

developing intelligent decision making tool, however; future works were identified for 

extending the scope of this research. 

7.3 Summary of EDIT’s Contributions   

There currently exists no other learning design system that is able to objectively measure the 

quality of a learning design based on the principle of constructive alignment or any means in 

which to adapt design patterns according to their effectiveness in practice. This research is 

the first in quantifying the quality of learning designs by integrating both the principle of 

constructive alignment and good design practices based on threshold levels of student 

satisfaction. EDIT is an attempt to provide teaching practitioners with more pragmatic design 

solutions that is theoretically sound and aligned with current design practices within the 

discipline. Moreover, EDIT’s transformation of test patterns can be used as future training 

patterns and thus new module designs. EDIT is an adaptive system so as practice evolves so 

too can EDIT’s underlying knowledge-base by retraining the auto-encoder network. 

Furthermore, this research has led to the development of a substantial module design database 

with more than 500 design patterns for the science and technology sector provided in a 

structured way – so that relations between design components are easily understood and can 

thus be utilised by other researchers to evaluate their educational design tools and patterns.  

 

Finally, in Tepper’s alignment model there was no clear consensus as to what the threshold 

alignment values should be for V1, V2 and V3. In this research, effective practices (as judged 

by students satisfaction scores) have been used to calibrate these metrics and have thus 

identified suitable alignment ranges for each of the three tree structures as shown in Chapter 

4, which researchers and practitioners can utilize and extend. 
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7.4  Conclusion and Future Work   

Designing outcomes-based learning is a very complex and time-consuming process, yet 

fundamental to what teaching practitioners do. Different learning design tools exist but they 

do not measure the quality of an educational design, integrate theory and effective practice, or 

adapt to changing practices. This research thesis represents a significant step towards 

demonstrating the use of artificial neural networks for adaptively supporting the educational 

design process. More specifically, the approach uses an ‘auto-encoder neural network’ that is 

trained to memorise features of good module designs to form a learned knowledge based 

system that can then be used to ‘correct’ poor module designs during testing. EDIT’s ability 

to generalize from what it has learned to new patterns indicates that some general knowledge 

of effective design preferences (in line with pedagogic theory like the collaborative based 

learning and social-constructivist learning) has been extracted from its experience of good 

module designs. EDIT represents a data-orientated and objective view of design practices and 

is therefore dependent on the veracity of its input data. Further research will focus on 

generating larger samples of module designs that reflect practices across broader subject 

disciplines and higher education institutions. This will involve the use of focus groups that 

will also help to better establish practices surrounding the use of learning outcomes and 

learning objectives as there appears much confusion in this area. The research will also 

continue to investigate the design preferences of EDIT and how the transformations it makes 

actually works in practice i.e. do the projected improvements in student satisfaction actually 

materialise? Finally, further investigation is required as to how to optimise the deep auto-

encoder networks so that they are able to act as perfect memories of the good design patterns 

as, at present, the current level of 88% indicates substantial scope for improvement.  
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    Appendixes 

Appendix [A]:  Xml Structure of LDSE Pattern  

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<ldse version="3.0"> 
<design type="module"> 
<module elapsedTime="0" name="Process Modelling" noOfStudents="20" staffTimeAllocated="0"> 
<calendar end="1371117572999" start="1371117572999"/> 
<intendedLearningTime>0</intendedLearningTime> 
<staffInvolved/> 
<learnerCharacteristics/> 
<prerequisites/> 
<summativeAssessment/> 
<aims/> 
<sessions size="3"> 
<session elapsedTime="0" learningLevel="1" learningTime="60" name="UseCase Modelling Lecture" 
noOfStudents="20" scheduleEnd="1262307600000" scheduleStart="1262304000000" topic="" 
typeID="TeacherSupportedClassFE"> 
<id>1377260543043</id> 
<description/> 
<note/> 
<reflections/> 
<student_feedback/> 
<activities size="4"> 
<activity description="" duration="15" groupsize="20" name="Introduction to use cases" notes="Describe the 
role of use cases" start="1262304000000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultTutorPresentation" name="Teacher 
presentation"/> 
<resources/> 
</activity> 
<activity description="" duration="20" groupsize="5" name="Creating use case tables " notes="Explain the 
process used to create use cases.&#10;" start="1262304900000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultResourceBasedGroupActivity" 
name="Resource based group activity"/> 
<resources/> 
</activity> 
<activity description="" duration="15" groupsize="20" name="Purpose of Process Modelling" notes="Define 
process modelling and describe its benefits." start="1262306100000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultTutorPresentation" name="Teacher 
presentation"/> 
<resources/> 
</activity> 
<activity description="" duration="10" groupsize="1" name="Fragment Logical level 0 DFD" 
notes="Demonstrate an understanding of the basic concepts and constructs of the DFDs." 
start="1262307000000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultResourceBasedIndividualActivity" 
name="Resource based individual activity"/> 
<resources/> 
</activity> 
</activities> 
<aims/> 
<outcomes> 
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<outcome verb="Analyse (Analysis)"><![CDATA[Analyse sysytems in a systematic and methodical 
manner.]]></outcome> 
</outcomes> 
</session> 
<session elapsedTime="0" learningLevel="1" learningTime="60" name="DFD Levelling and balancing" 
noOfStudents="20" scheduleEnd="1262311200000" scheduleStart="1262307600000" topic="" 
typeID="TeacherSupportedClassFE"> 
<id>1377260543049</id> 
<description/> 
<note/> 
<reflections/> 
<student_feedback/> 
<activities size="5"> 
<activity description="" duration="15" groupsize="20" name="Introduction to decomposing DFDs to level1" 
notes="Breakdown DFDs into lower level diagrams." start="1262304000000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultTutorPresentation" name="Teacher 
presentation"/> 
<resources/> 
</activity> 
<activity description="" duration="10" groupsize="1" name="Create level 1 DFD" notes="Breakdown DFDs into 
lower level diagrams." start="1262304900000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultResourceBasedIndividualActivity" 
name="Resource based individual activity"/> 
<resources/> 
</activity> 
<activity description="" duration="10" groupsize="20" name="Balancing DFD Across levels " notes="Explain 
DFD balancing." start="1262305500000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultTutorPresentation" name="Teacher 
presentation"/> 
<resources/> 
</activity> 
<activity description="" duration="5" groupsize="5" name="Balance DFD for a given system " notes="Explain 
DFD balancing." start="1262306100000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultResourceBasedGroupActivity" 
name="Resource based group activity"/> 
<resources/> 
</activity> 
<activity description="" duration="20" groupsize="20" name="Explain Types and uses of DFDs" notes="Explain 
the differences among four types of DFDs and the use of DFDs in system analysis and design." 
start="1262306400000"> 
<teachingmethod group=" TeacherSupportedClassFE " id="DefaultTutorPresentation" name="Teacher 
presentation"/> 
<resources/> 
</activity> 
</activities> 
<aims/> 
<outcomes> 
<outcome verb="Formulate (Comprehension)"><![CDATA[Formulate a set of balanced DFDs for a simple 
information  
systems.]]></outcome> 
<outcome verb="Analyse (Analysis)"><![CDATA[Analyse sysytems in a systematic and methodical 
manner.]]></outcome> 
<outcome verb="Design (Synthesis)"><![CDATA[Design the processing logic for primitive DFD processes using a 
logic modelling 
technique.]]></outcome> 
</outcomes> 
</session> 
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<session elapsedTime="0" learningLevel="1" learningTime="180" name="Summative Assessment F E" 
noOfStudents="15" scheduleEnd="1262314800000" scheduleStart="1262304000000" topic="" 
typeID="SummativeAssessmentFE"> 
<id>1377260543051</id> 
<description/> 
<note/> 
<reflections/> 
<student_feedback/> 
<activities size="2"> 
<activity description="" duration="180" groupsize="1" name="Exam" notes="" start="1262304000000"> 
<teachingmethod group=" SummativeAssessmentFE " id="DefaultExam" name="Exam"/> 
<resources/> 
</activity> 
<activity description="" duration="30" groupsize="1" name="Project" notes="" start="1262314800000"> 
<teachingmethod group=" SummativeAssessmentFE " id="DefaultProjectReport" name="Project"/> 
<resources/> 
</activity> 
</activities> 
<aims/> 
<outcomes/> 
</session> 
</sessions> 
</module> 
</design> 
</ldse> 
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Appendix [B]: Alignment Tables  

Teaching and learning activities and the type of learning they elicit. The level in Bloom’s 

taxonomy assigned for each assessment task based on Biggs 2003  

 

TLA  A form of learning   Bloom’s Taxonomy (1-6) 

  
1. Teacher-controlled (TLAt)  

lecture, set texts (TLAt1)  reception of selected content  2  

think aloud (TLAt2)  demonstrate conceptual skills  3  

questioning (TLAt3)  clarifying, seeking error  4  

advance organizer (TLAt4)  structuring, preview  5  

concept mapping (TLAt5)  structuring, overview  5  

tutorial (TLAt6)  elaboration, clarification  2  

laboratory (TLAt7)  procedures, application  4  

excursion (TLAt8)  experiential knowledge, interest  2  

seminar (TLAt9)  clarify, presentation skill  3  

2. Peer-controlled (TLAp)  

various groups (TLAp1)  elaboration, problem-solving, 

metacognition  
6  

learning partners (TLAp2)  resolve differences, application  6  

peer teaching (TLAp3)  depends whether teacher or 

taught  
3  

spontaneous collaboration (TLAp4)  breadth, self-insight  3  

3. Self-controlled (TLAs)  

generic study skills (TLAs1)  basic self-management  5/6  

content study skills (TLAs2)  information handling  5/6  

metacognitive learning skills (TLAs3)  independence and self-

monitoring  
6  
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Assessment tasks and the types of the type of learning they evaluate. The level in Bloom’s 

taxonomy assigned for each assessment task based on Biggs 2003.  

 

 

AT                                                     Type of learning assessed               Bloom’s level. (1-6) 
 

1. Extended prose, essay-type (ATe)  

essay exam (ATe1)  rote, question spotting, speed 

structuring  

5  

open book (Ate2)  as above but less memory and 

greater coverage  

2  

assignment, take-home (ATe3)  read widely, interrelate, 

organise, apply, copy  

5  

2. Objective test (ATo)  

multiple-choice (ATo1)  recognition, strategy, 

comprehension, coverage  

2  

ordered outcome (ATo2)  hierarchies of understanding  3  

3. Performance assessment (ATp)  

practicum (ATp1)  skills needed in real life, 

procedural knowledge  

4  

seminar, presentation (ATp2)  communication skills  3  

posters (ATp3)  Concentrating on relevance, 

application  

3  

interviewing (ATp4)  responding interactively, recall, 

application  

3  

critical incidents (ATp5)  reflection, application, sense of 

relevance  

6  

project (ATp6)  application, research, problem 

solving  

4  

reflective journal (ATp7)  reflection, application, sense of 

relevance  

6  

case study, problems (ATp8)  application, professional skills  3  

portfolio (ATp9)  reflection, creativity, unintended 

outcomes  

6  

4. Rapid ATs (large class) (ATr)  

concept maps (ATr1)  coverage, relationships, some 

holistic understanding  

5  

Venn diagrams (ATr2)  Relationships  2  

three-minute essay (ATr3)  level of understanding, sense of 

relevance  

3  

gobbets (ATr4)  realising importance of 

significant detail, some 

multistructural understanding 

across topics  

2  

short answer (ATr5)  recall units of information, 

coverage  

2  

letter to a friend (ATr6)  holistic understanding, 

application, reflection  

3  

cloze (ATr7)  Comprehension of main ideas  2  
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Appendix [C]: Student Evaluation Survey 
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Appendix [D]: Mappings among the TLAs and ATs in SST and LDSE 

TLAs  

 

TLAs LDSE TLAs SST 

 

Session: Tutor-supported class Session: Lectures 

 

Teacher presentation  Lecture, presentation  

Student presentation  Student presentation  

Class discussion  Class discussion  

Small group discussion  Small group discussion  

Resource-based group/individual activity  group/individual activity 

Group/individual practical activity  Group/individual practical activity, 

Group/individual Laboratory 

Check for learning  Questioning  

Online teacher presentation  Online lecture, virtual learning environment (NOW) 

Session: Tutor-supported group  Session: Seminars/Labs  

TLAs LDSE TLAs SST 

Teacher presentation  Tutorial, seminar   

Student presentation  Student presentation  

Small group discussion  Small group discussion  

Resource-based group/individual activity  group/individual activity, problem solving,  

Group/individual practical activity  Group/individual practical activity, 

Group/individual Laboratory 

Session: Independent group work Session: Independent group work 

 

Resource-based group  Resource-based group  

TEL Resource-based group NOW, submit file  

Group practical activity  Group practical activity, group lab   



Appendixes 

 

183 
 

Student group discussion  Peer discussion  

TEL peer assessed  Forum 

Session: Independent individual work 

 

Session: Independent study 

Resource-based individual  Resource-based individual  

TEL Resource-based individual  NOW, submit file  

Individual practical activity  Individual practical activity, Individual lab 

Session: Tutor-individual work 

 

Session: Supervision 

One to one coaching  Supervision, One-to-one Tutorial   

 

 

ATs 
 

ATs LDSE 

 

ATs SST 

Summative assessment 

 

Summative assessment 

Teacher marked summative assessment  Exam, project report, portfolio, presentation,  design/create, 

individual/group practical, practical report, assignment 

TEL summative assessment MCQ, Computer-based assessment 

Essay  Essay report, essay exam , open book  

Exam Exam, short answer exam,  in class test 

Dissertation Dissertation, project,   

Project Individual project, group project, individual practical, group 

practical  

 

 

 

 



Appendixes 

 

184 
 

Appendix [E]: An Example of Design Pattern Data 

 

Design pattern data  

Module subject area: BIOL   

Module level: 2 

Module credit point: 20  

Score of S1: 4.7 

Score of S2: 4.8  

Score of S3: 4.4  

Score of S4: 4.8 

V1: 

V2: 

V3: 

OverallAlignment:  

Lo1- Explain  

Lobj1- Explain   

TLA1- Lecture         

TLA2- Group discussion    

Lobj2- Differentiate 

TLA1- Resource based group activity         

TLA2- Small group discussion  

AT1- Individual assignment          

AT2- Examination         

Lo2- Demonstrate Knowledge  

Lobj1- Illustrate    

TLA1- Lecture         

TLA2- Group discussion 

Lobj2- Describe 

TLA1- Lecture          

TLA2- Small group discussion  

AT1- Individual assignment          

AT2- Examination 

Lo3- Reflect 

Lobj1- Discuss    

TLA1- Resource based group activity 

TLA2- Group discussion  

Lobj2- Explain 

TLA1- Lecture         

TLA2- Class discussion  

AT1- Individual assignment         
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AT2- Examination 

Lo4- Analyse 

Lobj1- Analyse    

TLA1- Lecture         

TLA2- Individual practical activity  

Lobj2- Justify   

TLA1- Group presentation          

TLA2- Group activity  

AT1- Group assignment         

AT2- Examination 

Lo5- Evaluate  

Lobj1- Apply    

TLA1- Seminar        

TLA2- Resource based group activity  

Lobj2- Analyse  

TLA1- Seminar         

TLA2- Resource based group activity 

AT1- Group assignment           

AT2- Examination 
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Appendix [F]: Verbs, TLAs, and ATs Grouping List  

Verbs 

Level Cognitive Ability Stimulated Action Elicited Verbs 

6 Evaluation  Ability to make a 

judgment of the worth 

of something  

Argue, Criticize, Evaluate, 

Justify, Reflect 

5 Synthesis Ability to combine 

separate part into a new 

whole or propose 

alternative solutions  

Combine, Produce, 

Compute,  Design, 

Formulate, Generate, 

Organize, Summarize, 

Construct 

4 Analysis  Ability to break down 

objects or ideas into 

simpler parts and find 

evidence to support 

generalizations. 

Analyze, Breakdown, 

Compare and Contrast, 

Contrast, Differentiate, 

Distinguish, Predict 

3 Application  Ability to apply 

knowledge to actual 

situations. 

Apply, Assemble, 

Calculate, Choose, 

Demonstrate, Estimate, 

Illustrate, Investigate, 

Modify, Operate, Prepare, 

Solve, Implement, Use, 

Write, Select 

2 Comprehension  Ability to understand 

facts and rephrase 

knowledge. 

Clarify, Classify, Describe, 

Discuss, Explain, Identify 

1 Knowledge  Ability to remember 

previously learned 

information 

Label, List, Name, Recall, 

Recognize, Specify, State, 

Define 
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TLAs 

Group TLA Bloom Level 

6 Resource Based Group Activity 

Group Practical Activity 

TEL Resource Based Group Activity 

Group Project 

Group Laboratory Lab 

6 

4 Resource Based Individual Activity 

Individual Practical Activity 

Questioning 

Example Illustration 

Laboratory Notebook 

Individual Project 

Individual Laboratory Lab 

Online Exercises 

4 

3 Student Presentation 

Class Discussion 

Small Group Discussion 

Online Small Group Discussion 

Group Tutorials 

Seminars 

3 

2 Lecture  

Online Teacher Presentation 

Supervision Meeting 

Tutorials 

2 
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ATs 

Level AT 

6 Essay Exam 

Open Book Exam 

Exam 

Group Practical 

Case Studies 

Portfolio 

Group Project 

5 Individual Assignment  

Laboratory Notebook 

Project Report  

Group Assignment 

4 MCQ 

Individual Practical 

Individual Project 

Laboratory Based Assessment 

Short Answer Exam 

Practical Report 

3 Seminars 

Presentations 

Peer Group Presentation 

Posters 
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Appendix [G]: t-Test between the Test Set (before) and the Test Set 
(after) 

 

 

t-Test: Paired Two Sample for Means 

     V1(Before) V1(After) 

Mean 9.606863 6.317647 

Variance 27.46975 8.000478 

Observations 102 102 

Hypothesized Mean 

Difference 0 0 

t Stat 8.770517 

 P(T<=t) two-tail 0.000 

 t Critical two-tail 1.983731   

  V2(Before) V2(After) 

Mean 7.814706 9.730392 

Variance 5.758098 3.988352 

Observations 102 102 

Hypothesized Mean 

Difference 0 0 

t Stat 5.824646 

 P(T<=t) two-tail 0.000 

 t Critical two-tail 1.983731   

  V3(Before) V3(After) 

Mean 10.1549 9.759804 

Variance 9.89458 8.911339 

Observations 102 102 

Hypothesized Mean 

Difference 0 0 

t Stat 2.777646 

 P(T<=t) two-tail 0.000 

 


