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1. Introduction

Cramtonet al. (1987) studyapartnershipdissolvingunder incomplete
information using the tool of mechanism design. We consider a similar
but distinct situation inwhich one piece of perfect complement is useless
for its owner. For example, one consumer owns 3 out of 4 volumes of a
dictionary, and another accidentally has the other 1 volume.We focus on
the mechanism of k+1−price auction or bargaining, probably first
introduced by Chatterjee and Samuelson (1983), and adopt the notation
of Cramton et al. (1987) inwhich k∈[0, 1], and k=0 and 1 represent the
first-price and second-price sealed auctions respectively. We study the
Bayesian–Nash equilibrium in this scenario, and test whether players
follow the predicted bidding strategy in reality.

2. The model

We consider a 2-player (i=1, 2) asymmetric incomplete information
game that the well-established framework of the Bayesian–Nash
equilibrium is applicable. The signal vi of player i distributes according to
the cumulative distribution function (c.d.f.) Fi(v) on the closed interval
½Pvi; vi�, with a positive and twice continuously differentiable probability
density function (p.d.f.) fi(v). These signals tell how much the players
value the combination respectively. The distributions are common
knowledge, but each one only receives her own signal. Player i owns a
share θi≥0 of the combination, and θ1+θ2=1. By doing so, the seller–
buyer bargaining model becomes a degenerate case of ours. The
ownership structure is clear or pre-agreed, and how it is obtained is not
of our concern.

The mechanism determines the price of the combination of two
perfect complements according to messages sent by two players, that
is, (1−k)b(1)+kb(2), where b(i) stands for the i-th higher message
sent by them. The higher bidder i gets the combination, and pays the
other θj[(1−k)b(1)+kb(2)]. In conclusion, for an arbitrary bidder i,
the ex post payoff is given by

πi =

vi−θj½ð1−kÞbi + kbj� if bi N bj;

1
2
ðvi−θjbiÞ +

1
2
θibi if bi = bj;

θi½ð1−kÞbj + kbi� if bi b bj:

8>>><
>>>:

The equilibrium strategy consists of two bidding functions β1(v)
and β2(v), guiding player i to submit a message or bid of bi=βi(v)
when she receives a signal v. They satisfy

Π1ðβ1ðvÞ; vÞ≥Π1ðb; vÞ for all v ∈½�v1;
�v1�andb;

Π2ðβ2ðvÞ; vÞ≥Π2ðb; vÞ for all v ∈½�v2;
�v2�andb;
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Fig. 1. Bidding functions.

116 N. Yu et al. / Economics Letters 107 (2010) 115–118
whereΠi(βi(v),v) stands for the expected payoff given βj(v) and Fj(v).
With a bidding function, it is easy to compute the corresponding c.d.f.
of the player's bid, and we set them to be G1(b) and G2(b).

We now characterize the properties of certain bidding functions in
equilibrium and corresponding c.d.f. of bids in the form of assump-
tions because the proofs of them are standardized in the auction
literature and apply here with marginal modifications. The represen-
tative ones can be found in Amann and Leininger (1996), Lizzeri and
Persico (2000), and Maskin and Riley (2003).

Assumption 1. [Common extrema]

inf ðb1Þ = inf ðb2Þ = �b; and
supðb1Þ = supðb2Þ =

�
b:

(

Assumption 2. [Single atoms at extrema] If p_ i=Prob(bi=b_)=Gi(b_),
and p̅i=Prob(bi=b̄)=1− lim

b→ b−̅Gi(b), for i=1,2, then

minf�p1;�p2g = 0; and

minf�p1;�p2g = 0:

(

Assumption 3. [No atoms in between] For i=1,2,Gi(b) is continu-
ously differentiable on (b_ , b̅).

Assumption 4. [Monotonicity] For i=1,2, βi(v)≥βi(v′) if vNv′.

We can imply from these assumptions that there exist w_i and wi̅

that satisfy Fi(w_i)=p_ i and 1−Fi(w̅i)=pi̅. It is obvious that if p_ i=0,
then w_i=v_ i, and that if p̅i=0, w̅i=v i̅. The first derivative of Gi(b) is
gi(b), and we know ∫b_

bgi(t)dt=Gi(b)−p_ i. We can assume further that
the monotonicity property of bidding functions holds strictly on [w_i,
w̅i], and βi(v) is differentiable.

The next task is looking for this unique equilibrium. We first focus
on the straightforward part. For vi∈ [w_i,w̅i], the bidding function is
strictly increasing, so an inverse bidding function ϕi(b) exists. The
expected payoff of player i after she receives a signal v and bids b is

Πiðb; vÞ = �pjfv−θj½ð1−kÞb + k�b�g + ∫�
b
bfv−θj½ð1−kÞb + kt�ggjðtÞdt +

+ ∫b
bθi½ð1−kÞt + kb�gjðtÞdt + pjθi½ð1−kÞb + kb�Πiðb; vÞ

= ð1−θiÞk∫b

P
bGjðtÞdt−θið1−kÞ∫b

bGjðtÞdt + ðv−bÞGjðbÞ +

+ θikb + θið1−kÞb;

where

GjðbÞ = pj + ∫b

P
bgjðtÞdt = FjðϕjðbÞÞ;

and

gjðbÞ = fjðϕjðbÞÞϕ′
j ðbÞ:

The first order condition is then

∂Πiðb; vÞ
∂b = ðv−bÞgjðbÞ−½1 + 2θik−θi−k�GjðbÞ + θik = 0:

Easy substitution and rearrangement give

ϕ′
j ðbÞ =

½1 + 2θik−θi−k�FjðϕjðbÞÞ−θik
ðv−bÞfjðϕjðbÞÞ

: ð1Þ

Conducting the same computation for player j can give us another
ordinary differential equation (ODE) like Eq. (1). Thenwe can compute
βi(v) as the inverse function of ϕi(b). On other intervals, the strategy
becomes apparent, for the bidding functions are continuous and
Assumptions 1 and 2 are restrictive. Specifically, βi(v)=βi(w_ i) for
v∈ [v_ i, w_ i], and βi(v)=βi(wi̅) for v∈ [w̅i, v i̅].

3. The uniform case

In this section, we study the behavior of players with symmetric
uniform distribution. We assume vi~U(0, 1) for i=1,2, and get the
bidding function of player i on the interval [w_i, w̅i] with parameters θi and
k, that is,

βiðv;θi; kÞ =
v + 1

2
kð1 + 2θik−kÞ

2 + 2θik−θi−k
: ð2Þ

Fig. 1 shows the bidding functions when θ1 = 2
3
and k = 1

4
. Actually,

it can be easily shown from Eq. (2) that if only θ1≥θ2, β1(v)≥β2(v), that
is, the onewith the larger share always bidsmore aggressively than her
competitor. From now on, we let θ1≥θ2, i.e., θ1≥1

2
for convenience, and

study the efficiency of k+1−bargaining by measuring the ex ante
probability of inefficient allocations (IA). Tedious computation gives us

ProbðIAÞ = 1
2
−

2−θ1 + θ1−
1
2

� �
kð1−kÞ

2ð1 + θ1 + k−2θ1kÞð2 + 2θ1k−θ1−kÞ :

Observe that if θ1 = 1
2
, Prob(IA)=0, and we have an efficient

mechanism, nomatter which value k takes. This result is a special case

in Cramton et al. (1987). If θ1≠1
2
, Prob(IA)N0. We compute the first

order condition of an optimal k as

∂ProbðIAÞ
∂k =

2−θ1 + θ1−
1
2

� �
kð1−kÞ

h i
ðθ1−2Þ2 + 2 θ1−

1
2

� �2
kð1−kÞ

� �
ð1 + θ1 + k−2θ1kÞ2ð2 + 2θ1k−θ1−kÞ2 ⋅

⋅ θ1−
1
2

� �
ð2k−1Þ: ð3Þ

On the left of Eq. (3), the first two terms are both positive, and it is

obvious that when kb1
2
, Prob(IA) is decreasing in k, and that when

k N
1
2
, Prob(IA) is increasing in k. So k = 1

2
minimizes our measure of



Table 1
Number of observations for each category.1

Num of books
of player 1

First price Second price

Player 1 Player 2 Player 1 Player 2

4 #(1)=0 #(2)=20 #(3)=20 #(4)=0
2 #(5)=10 #(6)=10 #(7)=10 #(8)=10
3 #(9)=20 #(10)=20 #(11)=20 #(11)=20

1 Arguments of the #() functions represent the category order.
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inefficiency. This is consistent with previous seller–buyer bargaining
models, for instance, in Chatterjee and Samuelson (1983). Myerson
and Satterthwaite (1983) also show that in the symmetric uniform
case, the split-the-difference bargaining (k = 1

2
) is the optimal

mechanism that maximizes expected total gains from trade when
the object belongs to one of two players. Although first-price and
second-price auctions are popular in practice, they generally make an
efficient trade least possible.

4. Experimental evidence

4.1. Experiment setup

We conducted experiments for understanding the behavioral side
of themodel above. Our experimentswere conducted at theUniversity
of Bonn. Participants were recruited from the campus canteen and had
no previous training in economics or game theory. Each participant
played only one game and had to make exactly one decision. The
subject was told, that she owned b {0,1,2,3,4} books of a 4-volumed
dictionary and shewould interactwith another player,who owned the
remaining 4-b books of the same dictionary. Each participant was
informed about her private value v for the whole dictionary, which
was drawn from a uniform distribution from 0 to 10 Thalers. She was
also informed, that the opponent private value followed the same
uniform distribution. The participants were told that only, if she
owned the complete dictionary she could realize this value v. The
subject had to give an offer (sealed bid) how much she would like to
pay for the 4 volumes. The payoff was calculated according to a first-
price (respectively second-price auction): if the amount the opponent
was willing to pay was higher than the subject's bid, then the subject
had to hand her volumes, and received a compensation of b/4, of the
opponent's bid in the case of the first-price auction (her bid in the case
of second-price auction). In this case the subjects' payoff was the
Table 2
Test of fitness of prediction.2

2 ***, **, or * denotes the significance level of 1%, 5%, or 10% respectively, to reject the N
equal as those of our prediction with an one-sided Mann–Whitney U test. ^^^, ^^, or ^ d
compensation she got from its opponent in Thalers. If the subject's bid
was higher than the opponent's bid, her payoff was the value v of the
booksminus the compensation she had to pay to her opponent. If both
players bid the same price, the participant who got the complete
dictionary would be drawn randomly with probability 1/2, which
never happened during the experiment. Each subject got 0.5 EURO
show-up fee. The conversion rate was 0.5 EURO per Thaler. We
summarize the observations taken in Table 1.

We did not test categories 1 and 4, because rationally bidders
would have just bid their own values, shedding little light on the
validity of our theory. Owing to the symmetric distribution of books in
some cases, we cut observations into half. Overall, we had 160
participants, 20 for each of the 8 tested types.

4.2. Experiment result

For each participant, we calculate the quadratic distances (bi−e(i,T))2

between her bid bi and the prediction e(i,T) of the theory T. The theory set
includes 9 different bidding behaviors for 12 categories. For each of the
8 types observed, we test whether their bids follow the right bidding
behaviors against alternative ones. Table 2 shows the results. Economics
works!

First result: except for categories2and3, ourpredictionsare consistent
enough to be better or no worse than alternatives in a statistical sense.
There are only 4players in category 2bidding their ownvalues, andonly 1
biddinghigher, implying that badpredictions in this categories are at large
because players did not shed enough their bids from their values. For
category 3, the prediction is that these owners set reserve prices higher
than their private values, and14of themdid so, and5others bid their own
value. We do not have plausible explanation for this phenomenon.

Second result: generally speaking, a theory for a first-price category
can easily reject alternative predictions from a second-price category
and vice versa.Moreover, the larger the book difference from the setting
of the alternative theory to the right one, the easier the rejection, which
is most evident for category 10.

Third result:we are not able to legitimize the kinks like those in Fig. 1.
Kinks show up in theoretical predictions for category 10 and 11. With
kinks, the mean squared distances are 1.45 and 4.21 respectively as in
Table 1, but if we allow the bidding functions to straighten up, the
squared distances drop to 0.68 and 1.54, sharp decreases if we take into
account that theprivate values requiringkinks are exceptions rather than
the rule. A tentative explanation is that the kinking behavior requires the
players to reason that their opponentsmust not bid higher or lower than
ull hypothesis, that the alternative theory produces quadratic distances smaller or
enotes the contrary. − denotes, that the tests yield no significant result.
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certain extreme values, which they often fail to do as recorded by
numerous experiments involving several levels of second guessing.

5. Discussion

While the two-player scenario is the most common, n-person cases
are also worth considering. More importantly, it is interesting if players
with zero shares enter the mechanism. The Internet may facilitate
combining complementary goods. A consumer holding one piece can
submit the information to certain websites, and wait for someone with
its complement. Our model suggests split-the-difference bargaining as
an optimal mechanism, but there is an alternative—the open auction
among share-holders and pure buyers.
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