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Stationary Concepts for Experimental 2x2-Games 

By Reinhard Selten and Thorsten Chmura* 

Five stationary concepts for completely mixed 2x2-games are experimentally 
compared Nash equilibrium, quantal response equilibrium, action-sampling 
equilibrium, payoff-sampling equilibrium (Martin J Osborne and Ariel Rubinstein 

1998), and impulse balance equilibrium Experiments on 12 games, 6 constant 
sum games, and 6 nonconstant sum games were run with 12 independent sub? 

ject groups for each constant sum game and 6 independent subject groups for 
each nonconstant sum game Each independent subject group consisted of four 
players 1 and four players 2, interacting anonymously over 200 periods with 
random matching The comparison of the five theories shows that the order of 
performance from best to worst is as follows impulse balance equilibrium, 
payoff-sampling equilibrium, action-sampling equilibrium, quantal response 

equilibrium, Nash equilibrium (JEL C70, C91) 

Experimental evidence suggests that mixed Nash equilibrium is not a very good predictor of 

behavior Thus, Ido Erev and Alvin E Roth (1998, 853) conclude as their first summary observa? 
tion that 

" 
in some of the games the equilibrium prediction does very badly" A normal form 

game is called completely mixed if it has only one equilibrium point in which every pure strategy 
is used with positive probability Of special interest are 2x2-games of this kind They are the 

simplest games for which mixed equilibrium is the unequivocal game theoretic prediction, if 

they are played as noncooperative one-shot games 
Mixed equilibrium has several interpretations One interpretation is that of a rational recom? 

mendation for a one-shot game Another interpretation looks at mixed equilibrium as a result 

of evolutionary or learning processes in a situation of frequently repeated play with two popu? 
lations of randomly matched opponents One may speak of mixed equilibrium as a behavioral 

stationary concept Ken Bmmore, Joe Swierzbmski, and Chris Proulx (2001) argue in their paper 
that mixed Nash equilibrium predicts reasonably well for completely mixed, constant sum 2x2 

games However, it is difficult to judge the goodness of fit, if there is no comparison to other 

stationary concepts 

Economic theory makes extensive use of the concept of mixed equilibrium One of its attrac? 
tions is its independence of parameters outside the structure of the game For the purpose of 

analyzing theoretical models, it is of great advantage to be able to rely on stationary concepts 

In this paper we will present several alternative stationary concepts for 2x2-games, which can 

be compared with mixed equilibrium and with each other For this purpose, we have performed 
experiments on 12 completely mixed 2x2-games Six of them are constant sum games and the 

other six are nonconstant sum games Each of the constant-sum games was run with 12 inde? 

pendent subject groups and each of the other games with 6 independent subject groups Each 

independent subject group consisted of four players 1 and four players 2, interacting in fixed roles 
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over 200 periods with random matching. The stationary concepts compared were: Nash equilib? 
rium, quantal response equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, 
and impulse balance equilibrium. 

Quantal response equilibrium (Richard D. McKelvey and Thomas R. Palfrey 1995) assumes 

that players give quantal best responses to the behavior of the others (see Section IB). In the 

exponential form of quantal response equilibrium considered here, the probabilities are propor? 
tional to an exponential with the expected payoff times a parameter in the exponent. 

Action-sampling equilibrium is based on the idea that, in a stationary situation, a player 
takes a sample of seven observations of the strategies played on the other side, and then optimizes 
against this sample. If a player has a unique pure best response to her sample, then she plays this 

strategy. If both strategies are best responses, then each of them is chosen with probability Vi. 
This yields a mixed strategy depending on the probabilities of pure strategies on the other side. 

Action-sampling equilibrium is a mixed strategy combination consistent with this picture. The 
name "action-sampling equilibrium" refers to the sampling of the opponent's actions. The con? 

cept has been developed by one of the authors (Selten). As far as we know, it cannot be found 
in the literature. However the sampling of actions of other players also appears in a paper by 

Osborne and Rubinstein (1993) in the context of a sampling equilibrium for a large voting game. 
The sample size is a parameter. Originally the sample size 7 was chosen in view of the famous 

paper "The Magical Number Seven, Plus or Minus Take Two: Some Limits on Our Capacity for 

Processing Information" by George A. Miller (1956). Later we found that seven actually gives a 

better fit than other sample sizes. 

Payoff-sampling equilibrium (Osborne and Rubinstein 1998) envisions a stationary situa? 
tion in which a player takes two samples of equal size, one for each of her pure strategies. She 
then compares the sum of her payoffs in the two samples and plays the strategy with the higher 
payoff sum. If both payoff sums are equal, then both pure strategies are chosen with probability 
Vi. Payoff-sampling equilibrium is a mixed strategy combination reflecting this picture. Here, 
too, the sample size is a parameter. The best fitting sample size turns out to be six for each of 
both samples. The name "payoff-sampling equilibrium" refers to the sampling of own payoffs 
for each pure strategy. 

Impulse balance equilibrium proposed by one of the authors (Selten) is based on learn? 

ing direction theory (Selten and Joachim Buchta 1999). This learning theory is applicable to 
the repeated choice of the same parameter in learning situations in which the decision maker 
receives feedback, not only about the payoff for the choice taken, but also for the payoffs con? 
nected to alternative actions. If a higher parameter would have brought a higher payoff, we speak 
of an upward impulse, and if a lower parameter would have yielded a higher payoff, we speak of 
a downward impulse. The decision maker is assumed to have a tendency to move in the direction 
of the impulse. 

It is worth pointing out that impulse learning is very different from reinforcement learning. 
In reinforcement learning, the payoff obtained for a pure strategy played in the preceding period 
determines the increase of the probability for this strategy. The higher this payoff, the greater 
is this increase. In impulse learning it is not the payoff in the preceding period that is of cru? 
cial importance. It is the difference between what could have been obtained and what has been 
received, which moves the behavior in the direction of the higher payoff. Moreover, reinforce? 
ment learning is entirely based on observed own payoffs, whereas impulse learning requires 
feedback on the other player's choice and the knowledge of the player's own payoff. 
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In Selten, Klaus Abbink, and Ricarda Cox (2005) impulse balance theory, a semi-quantita? 
tive version of learning direction theory, has been proposed. The learning process itself is not 

modeled, but only the stationary distribution. In the stationary distribution, expected upward 

impulses are equal to expected downward impulses. As in prospect theory (Daniel Kahnemann 

and Amos Tversky 1979), losses are counted double in the computation of impulses (formally, 
this involves the computation of a loss impulse). 

Impulse balance equilibrium applies the idea of impulse balance theory to 2x2-games. The 

probability of choosing one of two pure strategies, say strategy A, is looked upon as the param? 
eter to be adjusted upward or downward. It is assumed that the pure strategy maximin is the 

reference level determining what is perceived as profit or loss. In impulse balance equilibrium, 

expected upward and downward impulses are equal for each of both players simultaneously. 

Following a suggestion of one of the authors (Selten), impulse balance equilibrium has been 

successfully applied to special 2x2- and 2x2x2-games in a paper by Judith Avrahami, Werner 

G?th, and Yaakov Kareev (2005). 

Remarks: Two of the stationary concepts compared in this paper, Nash equilibrium and impulse 
balance equilibrium, are parameter free. Action-sampling equilibrium involves one parameter, 

namely, the number seven which, however, has been chosen in view of admittedly quite weak 

theoretical considerations confirmed by pilot experiments not included in the main sample of 

this paper. A similar theoretical reasoning would suggest seven as the sample size for payoff 

sampling equilibrium. However, there six yields the best fit to the data. Quantal response equilib? 
rium involves one parameter, namely, the constant multiplier of expected payoffs in the exponent. 
This parameter has to be adjusted to the data. There are no theoretical considerations, not even 

very weak ones, which could be used in order to determine this parameter in any other way. 

Quantal response equilibrium modifies Nash equilibrium by introducing noise into the optimiza? 
tion process. Thereby, the best response notion is replaced by a notion of quantal response. The two 

sampling equilibria, action-sampling equilibrium and payoff-sampling equilibrium, also involve 

noise produced by sampling error. In contrast to quantal response equilibrium, however, this noise 

is endogenous and is completely determined by the sample size and the payoffs of the game. 

Quantal response equilibrium is not connected to any theory that relates the noise parameter 
to the structure of the game. One could, of course, fit the parameter for every individual game 

separately. However, this does not yield a method for predicting a unique stationary mixed strat? 

egy combination for every completely mixed 2x2-game. In order to make the concept of quantal 

response equilibrium comparable to other theories involving at most one parameter, one has to 

look at the parameter of quantal response equilibrium as an unknown behavioral constant which 

is the same for all games. Accordingly, we determine the value of the parameter that best fits all 
our data, and base our comparison on this. 

The five concepts can be thought of as stationary states of dynamic learning models. Learning 
models differ with respect to their requirements on prior knowledge of the game and on feedback 

after each period. Nash equilibrium is stationary with respect to reinforcement learning models 

like the ones used by Erev and Roth (1998). These models require feedback on own payoffs but 

not more. A player does not even have to know his or her own payoff matrix. The same knowl? 

edge and feedback requirements are sufficient for learning models with quantal response equi? 
librium as stationary state. The expected payoffs appearing in the formulas for quantal response 

equilibrium can be estimated as average past payoffs. Simple learning models yielding payoff 

sampling equilibrium as stationary state immediately suggest themselves. It is clear that here, 

too, only feedback of a player's own period payoff is necessary. 
The other two concepts seem to be more demanding with respect to learning models yielding 

them as stationary states. As far as we can see, one needs knowledge of one's own payoff matrix, as 
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well as feedback on the other player's choice in these two cases. Clearly, a player must know his or 

her own payoff matrix for optimizing against a sample of the other player's choices. The same kind 
of knowledge and feedback is necessary for perceiving impulses in learning direction theory. 

The development of stationary concepts that fit experimental data is very important for behav? 

ioral theory. With the help of such concepts, theoretically interesting situations can be mathemat? 

ically explored as, for example, a voting situation in a paper by Osborne and Rubinstein (2003). 

Learning models could also be applied to theoretically interesting situations. However, the 

construction of learning models usually involves many details which may influence the outcome 

of computer simulations. This makes it difficult to work with learning models rather than station? 

ary concepts. Moreover, in complex situations, one may need a huge number of computer simula? 

tions in order to answer questions of comparative statics, which can be attacked mathematically 
on the basis of stationary concepts. 

In completely mixed 2x2-games, Nash equilibrium and impulse balance equilibrium can be 
described by explicit formulas, and therefore are easy to use in theoretical investigations. This 

is not true, however, for quantal response equilibrium, action-sampling equilibrium, or payoff 

sampling equilibrium. The latter concepts can be computed numerically only with the help of 
a computer. Nevertheless it is maybe sometimes possible to investigate their comparative static 

properties by mathematical operations like implicit differentiation applied to the defining equa? 
tions. A similar approach to the results of learning models seems to be almost hopeless. 

In this paper, all five stationary concepts will be defined only for completely mixed 2x2 

games. In the literature, Nash equilibrium, quantal response equilibrium, and payoff-sampling 
equilibrium are defined for normal form games in general. It is also clear how the concept of 

action-sampling equilibrium can be generalized to all normal form games. Admittedly, this is 
less clear for impulse balance equilibrium as far as normal forms with more than 2 strategies 
for some players are concerned. Here, different generalizations are possible. The basic principle 
would be that for each strategy of a player, expected incoming impulses should be equal to 

expected outgoing impulses unless there are no outgoing impulses, as in pure Nash equilib? 
rium. In Appendix F (part of the online Appendix, available at http://www.aeaweb.org/articles. 
php?doi=10.1257/aer.98.3.938) a sketch of a generalization of impulse balance equilibrium to 

general ^-person games in normal form is presented. 
The comparison of stationary concepts can also guide the search for adequate learning rules. 

In the past, many authors, like Selten (1990) and Sergiu Hart and Andreu Mas-Collel (2000), felt 
that a reasonable learning model should converge to Nash equilibrium or correlated equilibrium 
under favorable assumptions. If, however, other stationary concepts better fit experimental data, 
one may want to look at learning processes converging to them. 

As we shall see, over all 200 periods and all 108 independent subject groups, the comparison 
yields the following order with respect to the goodness of fit from best to worst: impulse balance 

equilibrium, payoff-sampling equilibrium, action-sampling equilibrium, quantal response equi? 
librium, Nash equilibrium. However, the difference between impulse balance equilibrium and 

payoff-sampling equilibrium is not statistically significant (see Section IIIH). 
In Section I we shall present a more detailed description of the five concepts. Section II will 

explain the experimental setup, and Section III will describe the results. Section IV concludes 
with a summary and discussion. 

I. The Five Stationary Concepts 

All the experimental 2x2-games in this paper have the structure shown by Figure 1. The 
arrows around the matrix show the direction of best replies. The parameters aL, aR, bv, and bD 
are assumed to be nonnegative. Games with negative payoffs probably would require special 
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U: up D: down 
L: left R: right 

Player 1 's payoff in the upper-left corner 

Player 2's payoff in the lower-right corner 

UL, UR, UV, UD^KJ 

4 

Figure 1. Structure of the Experimental 2x2-Games 

behavioral considerations, which we want to avoid in this paper. The parameters cL and cR are 

player l's payoff differences in favor of JJ and D, respectively. Similarly, du and dD are payoff 
differences of player 2 for R and L, respectively. All these payoff differences are assumed to be 

positive. It is clear that a game with this structure is completely mixed, in the sense that it has a 

uniquely determined, completely mixed Nash equilibrium. 
In a completely mixed 2x2-game, the arrows may also have the opposite orientation. However, 

we can restrict our attention to the structure shown by Figure 1 without any loss of generality. 
The case of counterclockwise arrows can be transformed to the one shown above by an inter? 

change of the two rows. 

A. Equilibrium Conditions and Their Graphical Representation 

Letp 
= 

{pu,pD) and q 
= 

(qL,qR) be the mixed strategies of player 1 and player 2, respectively. 
Here, pv andpD are player l's choice probabilities for JJ and D, and qL and qR are player 2's choice 

probabilities for strategy L and R. The space of mixed strategies for a game with a structure of 

Figure 1 can be described by the {pu,qL) -diagram, which shows the interval 0 < pv 
< 1 hori? 

zontally and the interval 0 < qL < 1 vertically. Every point (pu,qj) in this square represents a 

strategy combination. 
Each of the five concepts involves two equilibrium conditions. The first one describes equilib? 

rium adjustment of player 1 for any given mixed strategy of player 2. In the same way, the second 

condition expresses equilibrium adjustment of player 2 to any given mixed strategy of player 1. 

These two equilibrium conditions can be represented by curves in the (pv, q?) -diagram. We call 
the graph of the first equilibrium condition the curve for pv and the graph for the second one 

the curve for qL. The intersection of both curves is the stationary equilibrium specified by the 

concerning concept. 

Figure 2 shows the curves ?ovpu and qL arising in the example of our experimental game 1 (see 

Figure 5 in IIB). With the exception of the case of Nash equilibrium, the curves forp^ are monoton 

ically increasing and the curves for qL are monotonically decreasing. In all five parts of Figure 2, 
both curves intersect at the relevant stationary equilibrium of our experimental game 1. 

We now briefly discuss the two curves in the case of the Nash equilibrium. Let p$ and p? be 
the Nash equilibrium probabilities for JJ and L, respectively. Let us look atp^ on the curve for pv 
as qL moves from zero to one. In the first vertical piece of the curve with 0 < qL -^ q?, the prob? 

ability pu remains constant aipu 
= 0. Then it moves on a horizontal piece at q^ from zero to one. 

The curve ends with a vertical piece with q" 
< qL < 1, at which pv stays atp^ 

= 1. Similarly, on 

the curve for qL, the probability qL stays at qL 
? 1 in a horizontal piece with 0 < qv < p", then 

h+d? 

K+du 
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0.2|r .X^Vn 

0.2 0.4 0.6 0.8 1 
Pu--? 

l^i^ 
* 

?\ta-sa y t?**s?^ 

Figure 2 The Curves for/v and ??l Arising in the Example of Game 1 for Each of the Five Concepts 
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decreases from one to zero on a vertical piece with qL 
= 

q?, and finally comes to a horizontal 

piece with q^< qL<\ and pv 
= 0. In this sense, one may say that pv is increasing or constant 

along the curve for pv, and qL is decreasing or constant along the curve for qL 
In the case of the other four concepts, the curves ioxpu and qL are continuously differentiable. 

For each of these concepts, equations for the two curves will be given in the Section II B, C, D, 
and E. In these cases, the value of pv at qL on the curve for plJ is denoted by Pu(qL). Similarly, the 

notation qL{pv) is used for the value of qL atpv on the curve for qL. 
The curves for the concepts different from Nash equilibrium reveal a considerable sensitiv? 

ity with respect to the strategy of the other player. Suppose, for example, player 2 plays her 

Nash equilibrium strategy q^and player 1 chooses the strategyPu(<1l)- The value ofPu(qi)for 

quantal response equilibrium, action-sampling equilibrium, payoff-sampling equilibrium, and 

impulse equilibrium is 0.29,0.52,0.56, and 0.33, respectively, whereas p?j is equal to 0.09. It can 

be seen that in all four cases there is a considerable difference betweenpv(qi) andp?j. 
A look at Figure 2 suggests a distinction of two groups of the pictures shown there. The first 

group consists of the two diagrams in the first row and the second group is formed by the remain? 

ing three pictures. The curves for quantal response equilibrium are near to those of Nash equi? 
librium. In this respect, there is a close similarity within the first group. The diagrams within 

the second group also look very similar to each other, but there is a marked difference between 

the two groups. 
As we shall see later, the concepts giving rise to the second group of pictures clearly outper? 

form those connected to the first group. These three concepts yield predictions near to each other 

and much nearer to the observed relative frequencies. 
In online Appendix D, it will be shown for each of the five stationary concepts that the curves 

for pu and qL always have a unique intersection. Therefore, the stationary equilibrium exists and 

is uniquely determined in all five cases. 

In completely mixed games, the Nash equilibrium strategy of a player is independent of his 

own payoff. As one would intuitively expect, experimental findings suggest that an increase of a 

player's payoff in one of the four fields with all other playoffs of both players kept constant tends 

to increase the probability of this player's strategy used in this field. In online Appendix E it will 

be shown that, at equilibrium, such payoff changes always increase this probability for quantal 

response equilibrium and for impulse balance equilibrium and, in the case of action-sampling 

equilibrium and payoff-sampling equilibrium, this probability is never decreased, but increased if 

the payoff change is big enough. The two sampling equilibria depend discontinuously on payoffs. 

B. Nash Equilibrium 

In the case of Nash equilibrium, the curves for pv and qL are the graphs of the best reply cor? 

respondences for the two players (see Figure 2). The choice probabilities are as follows: 

dD dv cR cL 
(1) Pu 

= 
, , , , Pd 

= 
, , , , <1l =-;-, <?/? 

= 

dv + do dv + dD cL + cR cL + cR 

The choice probabilities of a player in Nash equilibrium are independent of his own payoff. They 
are entirely determined by the payoff differences of the other player. This is a well-known coun? 

terintuitive property of Nash equilibrium. 

C. Quantal Response Equilibrium 

It is assumed that players choose a "quantal best response" to the strategies of the other player. 

They make mistakes, taking the mistakes of the other player into account. 

This content downloaded  on Tue, 12 Feb 2013 11:27:53 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 98 NO. 3 SELTEN AND CHMURA: STATIONARY CONCEPTS FOR EXPERIMENTAL 2X2-GAMES 945 

Let Ev(q) and ED(q) be player l's expected payoff for JJ and D, respectively, against a strategy 
q of player 2. Similarly, EL{p) and ER{p) are player 2's expected payoffs for L and J?, respectively, 
against a strategy p of player 1. 

In quantal response equilibrium, the curves forp^ and qL are as follows: 

eMu(q) eXEL(p) 

These equations yield a simultaneous equation system, which determines the choice probabili? 
ties as functions of ?. For our data, ? = 8.84 is the best fitting overall estimate. This value of ? 

minimizes the sum of mean squared distances from the actually observed relative choice fre? 

quencies for the 12 experimental games. This measure of predictive success will be explained 
in Section IIIB. 

The best response structure of a two-person game is a pair of mappings (a, ?). The mapping a 

maps the strategies q of player 2 to player l's set a (q) of pure best responses to q, and the mapping 
? maps the mixed strategies p of player 1 to the set ?(p) of player 2's pure best responses to p. 
Nash equilibrium depends only on the best response structure of the game. However, quantal 
response equilibria with the same parameter ? can be different for two games with the same best 

response structure. If all payoffs of a 2x2-game are multiplied by the same positive factor x, the 
best response structure remains unchanged, but quantal response equilibrium for a fixed param? 
eter ? does change. The multiplication of all payoffs by x has the same effect as not changing 
payoffs and replacing ? by ?' 

= Ax. 

Suppose that the payoffs are changed by adding a constant r to all payoffs of player 1 in row R 
of Figure 1 and leaving everything else unchanged. Let E(j(q) and E'D(q) be the new payoffs for 
JJ and D in the new game obtained in this way. We have 

(3) Ei(q) 
= 

Ev{q) + qRr, E'D{q) 
= 

ED{q) + qRr. 

This means that the equation for pv in the new game can be simplified by dividing numerator 
and denominator by the common factor eq?r. Therefore, the equations iorpu andpD do not really 
change in the transition to the new game. The same argument can be applied to the case that 
a constant is added to player l's payoff in the column L or players 2's payoff in one of the two 
rows. We can conclude that such additive changes do not have any effect on the quantal response 
equilibrium, even if it does not depend on the best response structure alone. 

D. Action-Sampling Equilibrium 

In the stationary state described by p^ pD, qL, and qR, player 1 takes a sample of n choices L 
or R and optimizes against this sample. Player 2 behaves analogously. This concept describes a 

stationary state of two large populations of players 1 and 2. Every member takes a sample of n 

past decisions of players on the other side and optimizes against it. More precisely, he chooses 

his best response if this is uniquely determined and plays his mixed strategy (V2, Vi) if both pure 
strategies are best responses. The action-sampling equilibrium is a stationary state of this sys? 
tem. Here, too, pv, pD pL, and pR are stationary probabilities of JJ, D, R, and L. Consider two 

specific players 1 and 2 in both populations. Let fe be the number of L's in player l's sample and 
let m be the number of D's in player 2's sample. Then, players 1 and 2 will play as follows: 

? 
Player 1 plays JJ, D, (l/2,Vi) for kcL > (n 

- 
k)cR, kcL < (n 

? 
k)cR, kcL 

= 
(n 

? 
k)cRb, 

respectively; 
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Player 2 plays L, R, (Vi,Vi) for mdD > (n 
- 

m)du, mdD < (n 
- 

m)dv, mdD 
= 

(n 
- 

m)du, 
respectively. 

Instead of kcL > (n 
- 

k)cR, we also can write 

(4) 
fe cR 
-> 
n cL + cR 

Let <%(fe) be the probability of player 1 choosing JJ for fe and aL(m) be the probability of player 
2 choosing L for m. 

It can be seen immediately that we have 

(5) 

fe cR 
lfor-> 

<*u(k) 
= 

n cL + cR 

Ik cR - 
for 

- = 

2 ft cL 4- cR 
' 

0 else 

m 
1 for ? > 

du 

aL(m) 
= 

\ 

n dv 4- dD 

\ m djj - 
for 

? = 

2 ? d?j + dD 

0 else 

L is played with the probability qL. Accordingly, the number fe of L's in player l's sample is bino 

mially distributed. An analogous statement holds for the number of D's in player 2's sample. One 

obtains the following equations forp^ and qL. 

(6) Pu=^(lW(l-^Y-kau(k), 
<?,= _.")(! ?to W ?%\m 

' 
? 
Pu)mPu~maL{m). 

These equations describe the curves foxpv and qL explained in Section IA. 

Remarks: The functions av(k) and aL(m) depend only on the payoff differences cL, cR, dv, 
and dD. Therefore, the concept of action-sampling equilibrium depends only on the best response 
structure. 

The curves for pv and qL are differentiable with respect to qL and pv, respectively, for given 

payoff differences cL, cR, dv, and dD\ however, the two curves do not depend continuously on 

these payoff differences. If, for example, cR/(cL 4- cR) is equal to Vi, a small change of either cL 
or cR results in a jump of av(k). 

The concept of action-sampling equilibrium can easily be extended to general normal form 

games. In a stationary situation, a player takes a sample of seven observations of combinations of 

pure strategies for the other players and then optimizes against this sample. In the case of several 

best responses, each of them is chosen with equal probability. 

E. Payoff-Sampling Equilibrium 

The basic idea of payoff-sampling equilibrium has been explained in the introduction. Osborne 

and Rubinstein (1998) did not specify the probabilities of both strategies in the case that the pay? 
off sums for the two samples are equal. In order to obtain a unique prediction, we added the rule 

that, in this case, each pure strategy is chosen with probability Vi. 
As before, pv, pD, qL, and qR denote the stationary probability for the corresponding pure 

strategies. 
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Let n be the sample size and kv and kD be the number of P's in a player l's sample for ?7 and 

D, respectively. Similarly, let mL and mR be the number of t/'s in a player 2's sample for L and 

R, respectively. 
Player l's sums of payoffs Hv and HD in the samples for U and D, respectively, are as follows: 

(7) Hv 
= 

kv(aL + cL) + (n- kv)aR, HD 
= 

kDaL + (n 
- 

kD)(aR + cR). 

In the same way, player 2's sum of payoffs in the samples for L and R are given by 

(8) HL 
= 

mfjby + (n 
- 

mL) (bv + dD), HD 
= 

m/?(??[/ + dv) + (n 
- 

m?)fcD 

Player l's probability ?z/fc/y, ?D) of playing U if fc/y and kD are the numbers of P's in his sample, 
as well as the probability y (mL, mR) of player 2 playing L if she observes the numbers mL and mR 
of i/'s in her samples for L and P, are as follows: 

(9) ?(kUfkD) 

1 for Hv > HD 
f 
1 for HL>HR 

forH? 
= 

HD, y(mL,mR) 
= 

{ ~forHL 
= 

HR. 2 

, 0 else I 0 else 

Since kv and kD, as well as mL and mR, are binomially distributed, we have 

n n ' 
n\l n 

(io) ^ = 
2 2u? U ?*^1 ~^)2n^"^feM. 
^=0^=0\%/ V^d/ 

(ID 9t = i ?? 
" 
) ( 

" 
)O 

- 
^)'"t+mW""mi"m?7(m?ms). 

The curves for pv and ^L in the case of payoff-sampling equilibrium are represented by these 
two equations. 

Remarks: The operation of adding a constant to player l's payoffs in the column for R may 
change ?u(kv, kD) and, therefore, the first of the two equations. Similarly, adding a constant to 

player 2's payoffs in the row for U may change the second equation. For this reason, payoff 
sampling equilibrium is not invariant with respect to these operations. 

As in the case of action-sampling equilibrium, the curves forpv and qL are differentiable with 

respect to qL and/%, respectively, but not continuous with respect to a small change of one payoff 
in the payoff-matrix for the concerning player. 

F. Impulse Balance Equilibrium 

As was explained in the introduction, impulse balance theory is not applied to the original 
game, but to a transformed game, in which losses with respect to a natural aspiration level get 
twice the weight as gains above this level. 

The natural aspiration level for a player is his pure strategy maximin value or, in other words, 
the maximum of the lowest payoff he may obtain for using one of his pure strategies. Define: 

(12) s j = max[min(aL + cL,aR), min(aL,aR + cR)]. 

(13) s2 = max[min(/?f/, bD + dD), min^ + dUf bD)]. 

This content downloaded  on Tue, 12 Feb 2013 11:27:53 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


948 THE AMERICAN ECONOMIC REVIEW JUNE 2008 

From now on, we shall refer to s? and s2 as the pure strategy maximin payoffs or shortly the 

security levels of players 1 and 2, respectively. 
In the following, it will be argued that the security level of a player is her second lowest pay? 

off. It may happen that the lowest payoff is obtained at more than one of the four fields. In this 

case, there is no difference between the second lowest payoff and the lowest payoff. The words 

"second lowest payoff" will always be understood this way. 
In a completely mixed 2x2-game, no pure strategy can dominate another one (see Figure 1). 

Therefore, the lowest and the second lowest payoff of player 1 cannot appear in the same row. An 

analogous statement holds for player 2. 

The second lowest payoff is always at least obtained if it is the lowest one. Otherwise, the 

lowest payoff can be avoided by not choosing the pure strategy which may yield it. Thereby, the 

second lowest payoff is secured. It is also clear that one cannot secure more than that by the use 

of a pure strategy. 
The security level can be enforced, no matter what the other player does. Therefore, it is natu? 

ral to look at a lower payoff as a failure, and its difference to the security level as a loss. It makes 

no sense to be satisfied with less than one could have had for sure. Loss aversion is a well-known 

behavioral concept used, for example, in prospect theory (Kahnemann and Tversky 1979). In the 

case of a payoff below the security level, there are two reasons for thinking that one should have 

chosen the other strategy. The first is that the other strategy would have yielded a higher payoff. 
The second is that the loss should be avoided. The loss counts as a part of the foregone payoff 
and, in addition, counts once more by its quality of being a loss rather than merely a foregone 

gain. 

An earlier formulation of impulse balance theory concerned an auction situation in which 

losses could occur only in connection with bids appearing to be too high ex post (Selten, Abbink, 
and Cox 2005). Therefore, in the case of a loss, the decision maker experienced a downward 

impulse and a loss impulse. In 2x2-games, losses may occur for choices of one strategy or the 

other, depending on the structure of the game. Thus, in game 1 (see Figure 5, p. 951), player 1 

at (c7, R) experiences a loss of nine and a foregone payoff of ten. Therefore, a loss impulse of nine 

is added to the ordinary impulse of ten from U to D at (U,R). At (D,L) player 1 receives only an 

ordinary impulse of one from D to U. 

As we shall see, the combination of ordinary impulses and loss impulses is automatically 
taken care of if impulses from one pure strategy to another are computed in a transformed game 
in which losses receive double the weight of gains. We construct this transformed game by leav? 

ing player Ps payoffs below and at st unchanged, and by reducing the surplus over st of higher 

payoffs by the factor Vi. Figure 3 shows the impulse balance transformation for the example of 

experimental game 3 (see Figure 5). 
The payoff differences in the transformed game corresponding to cL, cR, dv, dD are denoted 

by c*L, cR, d?j, dp. If, after a play, player i could have obtained a higher payoff by the choice of 

his other strategy, he receives an "impulse" in the direction of his other strategy. The size of this 

impulse is the foregone payoff in the transformed game. If, for example, player 1 chooses U and 

the other player chooses R, then player 1 receives an impulse of cR = 8.5 in the direction of D. 

A player receives no impulse if the payoff for the strategy he did not choose was lower than the 

one he obtained. Figure 4 shows the impulses in the direction of the strategy not chosen, similar 

to a payoff table. 
It can now be seen without difficulty that impulses in the transformed game automatically 

combine ordinary impulses and loss impulses in the original game. In the case of a payoff below 

st, the loss part of an impulse is fully counted and a possible foregone-gain part is reduced by the 

factor Vi, just like an impulse in the case of a payoff above the security level. Half of the fully 
counted loss corresponds to the loss impulse. 
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Figure 3. Impulse Balance Transformation for the Example of Experimental Game 3 

D 

d*? 

d\ 

Figure 4. Impulse in the Direction of the Strategy Not Chosen 

Impulse balance equilibrium requires that player l's expected impulse from JJ to D is equal 
to his expected impulse from D to JJ. Similarly, player 2's expected impulse from L to R must 

be equal to her expected impulse from R to L. This yields the following two impulse balance 

equations'. 

(14) PuQrCr 
= 

PdVlCl , Pu^du 
= 

Pd^r^d ? 

The left-hand side of the first impulse balance equation is player l's expected impulse from JJ 
to D, and the right-hand side is player l's expected impulse from D to JJ. If the left-hand side is 

greater than the right-hand side, then player 1 receives stronger impulses from R to D, and this 
will decrease qR and increase qL. This creates a tendency in the direction of impulse balance. 
An analogous interpretation can be given to the second impulse balance equation. Of course this 
is only a heuristic argument. In this paper, we do not want to explore the dynamics of impulse 
balance equilibrium. 

The impulse balance equations yield the following equations of the curves forp^ and qv\ 

(15) Pv 
<Ii?l 

(life + (1 
- 

qL)cR 
<1l 

= (1 
- 

pu)d*D 

Pud*u 4- (1 
- 

pv)d*D 

In Section E4 of online Appendix E, explicit formulas will be derived for the coordinates of the 
intersection (pv, qL) of the two curves. Define c = c*L/cR and d = dy/dp : it will be shown in E4 that 
at the intersection we havep^ 

= 
Vc/(Vc + Vd) and qL = 1/(1 + Vcd). 
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In online Appendix F a possibility of generalizing impulse balance equilibrium to ft-person 
normal form games will be briefly sketched. Even if for the substance of this paper no such gen? 
eralization is needed, it is maybe of interest to see in which way it could be achieved. 

II. Experimental Design 

A. Procedure 

The experimental data were obtained in 54 sessions with 16 subjects each, 864 altogether. 
The subjects were students of the University of Bonn, mainly majoring in economics or law. The 

experiments were run in the Bonn Experimental Economics Laboratory. The computer program 
was based on the toolbox Ratlmage developed by Abbink and Abdolkarim Sadrieh (1995). Only 
one game was played in each session. 

At the beginning of a session, oral and written instructions were given to the subjects. The 

written instructions (in German) are shown in online Appendix B. The subjects were informed 

about the game matrix, including the payoffs of both players. They were told that they would 

interact with randomly changing opponents and always be in the same player role over 200 peri? 
ods. Actually, in each session there were two independent subject groups with four participants 
in the role of player 1 and four participants in the role of player 2. The players played against 

randomly chosen opponents but only within their independent group. They were not informed 

about the fact that there are two groups. We did not lie to them, but did convey the impression 
that they would interact directly or indirectly with 15 other players. 

After the instruction, participants sat in separate cubicles and made their decisions by mouse 

click. The decisions in a play were made without any information about the choices of the other play? 
ers. After each of the 200 plays, they received feedback about the other players' choice and payoff, 

period number, and their cumulative payoff. No limit was imposed on the decision time. The sub? 

jects were not permitted to take notes of any kind about their playing experience. They were also not 

permitted to talk to each other during the experiment and they had no opportunity to see the screens 

of other participants. After each experiment, participants had to fill in a questionnaire. (Because no 

use of the questionnaire data is made in this paper, the questionnaire is not shown here.) 
Each participant received 5 ? and, in addition, a monetary payoff proportional to his or her 

game payoff accumulated over the 200 periods. The exchange rate was 1.6?-Cent per payoff 

point. An experimental session took 1.5 to 2 hours and the average earning of a subject was about 

24 ? including the fee for showing up. 
In some sessions, a digit span test (E. A. Davis 1931; S. C. Della Sala et al. 1999) preceded 

the game playing. This test is designed to measure the short-term memory size. As we make no 

use of the data collected by this test in this paper, the details of the digit span test will not be 

explained here. 

B. Experimental Games 

Figure 5 shows the 12 games used in our experiment. The constant sum games are shown on the 

left side of Figure 5 and the nonconstant sum games on the right side. The nonconstant sum game 

right next to a constant sum game in the Figure 5 has the same best response structure. We say that 

the two games form a pair. The nonconstant sum game in a pair is derived from the constant sum 

game in the pair by adding the same constant to player l's payoff in the column for R and player 
2's payoff in the row for JJ. It is clear that this does not change the best response structure. 

Nash equilibrium and action-sampling equilibrium depend only on the best response structure, 

and therefore yield the same predictions for both games in a pair. In Section IB, we explained 
that adding a constant to all payoffs of player 1 in a specific column or to all payoffs of player 2 
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Figure 5 Experimentally Investigated Games 

22 

16 

17 

13 

11 

in a row does not change the quantal response equilibrium, even if this concept does not depend 
only on the best response structure. Therefore, quantal response equilibrium also yields the same 

prediction for the two games in a pair. 
The games in a pair also have the same action-sampling equilibrium. A best response to a 

sample of pure strategies of the other player in one of the two games is also a best response to 
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this sample in the other game. This is an immediate consequence of the fact that both games have 

the same best response structure. 

In view of the remark at the end of Section ID one cannot expect that payoff-sampling equilib? 
rium generates the same prediction for the games in a pair. In fact, these predictions are different 

for all six pairs. 
The determination of impulse balance equilibrium involves a transition from the original game 

to the transformed game. The pure strategy maximin payoff, which serves as a reference point 
for gains and losses, may be different for the two games of the pair, and even if this is not the 

case, the best response structures will usually be different. In fact, in all six cases, the impulse 
balance equilibria are different for the two games in a pair. 

In the selection of the experimental games, we have been guided by several considerations 

explained in the following. Two pilot experiments were run with the games shown in Figure 6. 

Game A is similar to the game played by Jack Ochs (1995) and also by Jakob K. Goeree, Charles 

A. Holt, and Palfrey (2003). In the questionnaires, the subjects who had played game A often 

reported attempts to cooperate. 
Even if these attempts failed, they may have had an influence on the observed relative frequen? 

cies. Therefore, we decided to explore constant sum games extensively. Constant sum games 
offer no cooperation opportunities. We wanted to contrast them with similar nonconstant sum 

games offering some scope for cooperation. 
The concepts of action-sampling equilibrium and impulse balance equilibrium have been 

developed on the basis of the pilot experiments with games A and B. Therefore, the experimental 
results obtained with these games are not included in the comparison of the five theories. 

The selection of the constant sum games was guided by the idea that, on the one hand, a reasonably 
wide distribution over the parameter space should be achieved, and, on the other hand, the number of 

games should be small enough to permit a sufficiently large number of independent subject groups 
in every case. 

The games explored here have eight payoffs, but the best response structure is characterized by 
two parameters. The Nash equilibrium choice probabilities/?^ and q? will serve as these two param? 
eters in the following figure. Figure 7 show the six Nash equilibria for the experimental games. 

In all six cases, py is between 0 and 0.5 and q? is between 0.5 and 1. Therefore only this 

part of the parameter space is shown in Figure 7. The best reply structure remains essentially 

unchanged if the rows or columns, or the role of both players, are exchanged. Such transforma? 

tions yield all the points in Figure 7. 

It can be seen that the six games, together with their automorphic transformations, are widely 
distributed over the parameter space. However, we intentionally underrepresented cases in which 

one of the equilibrium choice probabilities is near to 0.5. In our sample of six, only game 6 has this 

property. In the middle of the parameter space, where both parameters are 0.5, every reasonable 

theory predicts equal probabilities for all strategies. The greater the distance from the midpoint, 
the more the stationary concepts compared in this paper differ with respect to their predictions. 

Since constant sum games are more basic, we have run experiments with 12 independent sub? 

ject groups for each of the 6 constant sum games but only 6 independent subject groups for each 

of the nonconstant sum games. 

III. Experimental Results 

A. Predicted and Observed Relative Frequencies 

We begin our descriptions of the results obtained by a number of figures showing the predic? 
tions of the five stationary concepts, together with the observed overall relative frequencies, for 
each of the experimental games. The numerical values are shown in Table 1. 
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Figure 6 Structure of the Pilot Experiments 
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Figure 7 Permutations of Rows, Columns, or Player Roles Transform the 6 Experimental Games into 
44 Games with the Nash Equilibria Shown in the Figure 

In the first three columns of Table 1 the theoretical values of the upper half are repeated in the 
lower half. This is due to the fact that Nash equilibrium and action-sampling equilibrium depend 
only on the best response structure (see the remark at the end of Section ID and the property of 

quantal response equilibrium explained at the end of Section IC). 
In Figures 8 and 14 in the online Appendix A, we show cutouts of the whole parameter space 

with predictions and observed averages for all 12 games. Apart from the fact that the Nash 

equilibrium of game 2 is nearer to (0.5,0.5) than that of game 3, the games 1-6 are farther from 
the middle of the parameter space the lower their order in the numbering. One can see that the 
discrimination between the concepts tends to be worse for games nearer to the middle of the 

parameter space. For games 1 to 5, Nash equilibrium and quantal response equilibrium are far? 
ther from the observed averages than the other three concepts, but for game 6, all concepts are 

quite near to the observed average. Since game 6 is near to the middle of the parameter space, 
random fluctuations seem to play a greater role for this game. 

The predictions of impulse balance equilibrium, payoff-sampling equilibrium, and action 

sampling equilibrium tend to be near to each other. Therefore random fluctuations make the 
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Table 1?Five Stationary Concepts Together with the Observed Relative Frequencies 
for Each of the Experimental Games 

Nash 

equilibrium 

Quantal 
response 

equilibrium 

Action 

sampling 
equilibrium 

Payoff 

sampling 

equilibrium 

Impulse 
balance 

equilibrium 

Observed 

average of 12 

observations 

Game 1 

Game 2 

Game 3 

Game 4 

Game 5 

Game 6 

U 
L 

U 
L 

U 

L 
U 

L 

U 

L 

U 
L 

0 091 
0 909 
0 182 
0 727 
0 273 
0 909 
0 364 
0 818 
0 364 
0 727 
0 455 
0 636 

0 070 
0 882 
0 172 
0711 
0 250 
0 898 
0 348 
0 812 
0 354 
0 721 
0 449 
0 634 

0 057 
0 664 
0185 
0 619 
0137 
0 753 
0 286 
0 679 
0 286 
0 679 
0 448 
0 613 

0 071 
0 645 
0 184 
0 569 
0 152 
0 773 
0 285 
0 726 
0 307 
0 654 
0 427 
0 597 

0 088 
0 580 
0 172 
0 491 
0 161 
0 765 
0 259 
0710 
0 297 
0 628 
0 400 
0 600 

0 079 
0 690 
0 217 
0 527 
0 198 
0 793 
0 286 
0 736 
0 327 
0 664 
0 445 
0 596 

Nash 

equilibrium 

Quantal 
response 

equilibrium 

Action 

sampling 
equilibrium 

Payoff 

samphng 

equilibrium 

Impulse 
balance 

equilibrium 

Observed 

average of 6 

observations 

Game 7 

Game 8 

Game 9 

Game 10 

Game 11 

Game 12 

U 
L 

U 

L 
U 

L 

U 
L 
U 
L 
U 
L 

0 091 
0 909 
0 182 
0727 
0 273 
0 909 
0 364 
0 818 
0 364 
0 727 
0 455 
0 636 

0 070 
0 882 
0172 
0711 
0 250 
0 898 
0 348 
0812 
0 354 
0 721 
0 449 
0 634 

0 057 
0 664 
0185 
0 619 
0137 
0 753 
0 286 
0 679 
0 286 
0 679 
0 448 
0 613 

0 056 
0 691 
0 222 
0 601 
0 154 
0 767 
0 308 
0 731 
0 339 
0 651 
0 405 
0 600 

0104 
0 634 
0 258 
0 561 
0 188 
0 764 
0 304 
0 724 
0 354 
0 646 
0 466 
0 604 

0141 
0 564 
0 250 
0 586 
0 254 
0 827 
0 366 
0 699 
0 331 
0 652 
0 439 
0 604 

comparisons among these three concepts difficult. The cutouts for games 7 to 12 show a similar 

picture. However, contrary to what happens in other games, in game 9 Nash equilibrium and 

quantal response equilibrium are slightly nearer to the observed averages than the other three 

concepts. As we shall see in Section IIIF, our data suggest that the results of game 9 are influ? 

enced by especially large random fluctuations. 
As has been explained in Section IB-E, each of the three concepts, Nash equilibrium, action 

sampling equilibrium, and quantal response equilibrium, yields the same prediction for the two games 
in a pair. This is not the case for payoff-sampling equilibrium or impulse balance equilibrium. 

B. The Measure of Predictive Success 

We look at the five theories compared in this paper as predictions of the relative frequencies 
of U and L in an independent subject group playing one of the games 1 to 12. We do not want to 
assert that a player uses the same mixed strategy in all 200 periods of a session, and we also do 
not assume that all players in the same role always behave in the same way. Presumably the play? 
ers are engaged in complex learning processes which differ from person to person. Nevertheless, 

such behavior may result in frequencies of U and L that can be predicted reasonably well by 
stationary concepts. It is important to know how well-observed relative frequencies can be 

explained without going into the details of stochastic learning models. 
For a theory predicting a point in an Euclidian space, the squared distance of theoretical and 

observed values is a reasonable measure of predictive success, in the sense that the predicted 
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Figure 8. Visualization of the Theoretical Equilibria and the Observed Average in the Constant Sum Games 

success is the greater the smaller this distance is. In the following, we explain how this measure 

is applied to our data. Each game i with i = 1,..., 12 has been played by s, independent subject 
groups with s, 

= 12 for i = 1,..., 6 and st 
= 6 for i = 7,..., 12. 

We use the index j with j 
= 

1,...,^ for the subject groups. Let/^ and/Ly be the relative fre? 

quencies of JJ and L in the 7-th independent subject group playing game /. Consider a prediction 
Pu and qL for these relative frequencies; then, 

(16) Q,j 
= 
ttuj-Pu)2 + (U-q?2 

is the squared distance of the j-th observation for game / from the prediction for game /. The 
mean squared distance for the data of this game i from (pv,Pi) is as follows: 

(17) a = 
72?v 
J?y=i 

We shall look at the overall predicted success, but also at the predicted success of the constant 
sum games 1 to 6 and the nonconstant sum games 7 to 12, separately. Define 

(l8) 
J 

6 
J 

12 
J 

12 

0/=i 0/ = 7 l^i=l 
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The indices C and N stand for constant sum and nonconstant sum games. The mean squared 
distances Qc, QN, and Q will be the basis of our comparison of the five theories. 

For every game i, let/if/ and/;L be the mean values offlVj and//Lj with/ 
= 

1,..., s: 

d9) f,v = -if.uj for/ = 1.12. flL = -?f./, for< = 1.12. 
^1=1 Sll=\ 

The expression 

(20) S, - -?(/^ -flV)2 + (flLj -flLf for/ = 1.12 
sij=\ 

is the sampling variance of game / and 

(21) T, 
= 

(ftU 
- 

Puf + (f,L 
- 

qLf for /= 1,.... 12 

is the theory specific component of the mean squared distance. The mean squared distance for a 

game can be split into these two components: 

(22) Ql 
= 

Sl + Tl for/= 1.12. 

Define 

16 1 12 1 12 

(23) Sc = t2X ^ = 
-2X 5 = t^2^ ?/=l ?*=7 1Z/=1 

16 1 12 1 12 

(24) rc = 7lX ?W = -2rM r=T^2r. 

The mean squared distances Qc, QN, and ? can also be split into two components: 

(25) Qc 
= 

Sc+Tc, QN 
= 

SN+TN, Q 
= S+T. 

Note that each game receives equal weight in Q, S, and P, in spite of the fact that there are twice 
as many observations for each constant sum game than for each nonconstant sum game. This 

conforms to the goal of obtaining an adequate judgment of the overall goodness of fit for the 12 

games. 

Since the mean sampling variances Sc, SN, and S do not depend on the theory under consider? 

ation, it does not really matter whether the comparison of theories is based on Qc QN, and Q or 

alternatively on Tc, TN, and P. However, the mean squared distances Qc, QN, and Q are more nat? 

ural measures of predictive success. A high sampling variance limits the accuracy of prediction, 
even if the theory-specific component is very small. Therefore, the mean squared distance of the 
individual observations from the theory is more adequate as a measure of predictive success. 

For none of the five theories considered here, the mean squared distance Q can be smaller than 
S. The sampling variance S is an unavoidable part of Q. 

C. Comparison of Sample Sizes for Action-S ampang Equilibrium 

Originally, action-sampling equilibrium with the sample size 7 had been considered as a the? 

ory to be compared with the data, since this sample size finds some admittedly weak support 
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in the psychological literature (Miller 1956). The sample size 7 seems to be connected to the 

average capacity of short-term memory. It is not really clear, however, whether this is relevant 
for the behavior in our experiments. Therefore, another sample size could have yielded a better 
fit for our data. 

In order to verify this, we compared the predictive success for action-sampling equilibria with 

different sample sizes. 

Figure 9 shows the overall mean squared distances Q for the action-sampling equilibria with 

the sample sizes n - 2,..., 10. It can be seen immediately that the average squared distance is 

smallest for n ? 1. This means that the best fit to the data is obtained with sample size 7. In our 

comparison of the five concepts, we therefore do not have to consider other sample sizes for 

action-sampling equilibrium. 
The figure also shows the mean sampling variance in grey. It can be seen that for the sample 

size 7 the mean squared distance Q is much nearer to its unavoidable part S than for all other 

sample sizes. 

D. Comparison of Sample Sizes for Payoff-Sampling Equilibrium 

Figure 10 shows the overall mean squared distances Q for the payoff-sampling equilibria with 

the sample sizes n = 1,..., 10. It can be seen that the sample size 6 yields the best fit to the data. 
Therefore our comparison of the five theories is based on the sample size 6 for payoff-sampling 
equilibrium. 

E. Original versus Transformed Games 

The basic idea of impulse balance is applied to the transformed game rather than the original 
one. This idea could also be applied directly to the original game. As we shall see later, the 

application to the transformed game yields a better fit to the data. This was already true for the 

pilot study on games A and B. We therefore decided to test impulse balance theory in the form 
described in Section IE. It is of interest, however, to examine the question how the direct applica? 
tion compares to the concept of impulse balance equilibrium proposed here. 

It could be the case that the predictive power not only of impulse balance equilibrium, but also 
of other concepts, is increased by applying it to the transformed game rather than to the original 
one. 

We shall examine this question for Nash equilibrium, action-sampling equilibrium, and pay? 

off-sampling equilibrium. Contrary to Nash equilibrium and quantal response equilibrium, 
action-sampling equilibrium and payoff-sampling equilibrium fit the data quite well. It is there? 
fore of special interest to explore whether a better fit could be obtained by applying these two 

concepts to the transformed game rather than to the original one. If, in this way, one obtained a 
better fitting version of one of the two concepts, then this version should be compared with the 
other three theories. 

We did not examine what happens if quantal response equilibrium is applied to the trans? 
formed game rather to the original one. In the cutouts of Figures 8 and 14 in online Appendix A, 
quantal response equilibrium is always very near to Nash equilibrium and it can be expected that 
this would not change in an application to the transformed game. 

Figure 11 shows the overall mean squared distances for Nash equilibrium, action-sampling 
equilibrium, payoff-sampling equilibrium, and impulse balance equilibrium applied directly to 
the original game or to the transformed game. It can be seen that only impulse balance theory 
profits from being applied to the transformed game, whereas the other three theories do not gain 
by being modified in this way. 
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.0.05 

Sample size 

Figure 9. Overall Mean Squared Distances Q for the Action-Sampling Equilibria 
with Different Sample Sizes 

Figure 10. Overall Mean Squared Distances Q for the Payoff-Sampling Equilibria 
with Different Sample Sizes 

The figure also shows the decomposition of the mean squared distance Q into the sampling 
variance S (grey) and the theory-specific component T (black and white, respectively). The dif? 
ference between the applications to the original game and the transformed one are even more 

dramatic in the case of impulse balance equilibrium if one looks at the theory-specific compo? 
nents instead of the mean squared distance. 
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Figure 11. Advantages and Disadvantages of Applying a Concept to the Transformed Game 
Rather than the Original One 

In view of Figure 7, it seems to be justified not to add the modifications of Nash equilibrium, 
action-sampling equilibrium, and payoff-sampling equilibrium to the list of the five theories that 
are the main focus in this paper. 

As we shall see in the next section, impulse balance equilibrium fits our data best. Figure 
15 (in the online Appendix) shows that this success is not due primarily to the use of the trans? 
formed game. Otherwise, the predictive success of other concepts should be improved as well, if 

they are applied to the transformed game rather than the original one. This is not the case. 

F. Comparison of the Five Theories 

Table 2 shows the mean squared distances of the 5 theories for the 12 games separately. It also 
contains the sampling variance for each game. 

Figure 12 shows the overall mean squared distances Q for the five theories compared in this 

paper. It can be seen that there is a clear order of success: impulse balance equilibrium, pay? 

off-sampling equilibrium, action-sampling equilibrium, quantal response equilibrium, and Nash 

equilibrium. The figure also shows the sampling variance S in grey and the theory-specific com? 

ponents in black. 
The sampling variance for game 9 is much greater than for other games. This is probably the 

reason for the unusual constellation of the cutout for game 9 in Figure 14, online Appendix A. 

G. Changes over Time 

The question arises whether the order of predictive success of the five theories remains stable 
over time. Of course we can investigate this question only within the span of the 200 periods 
played in our experiments. For this purpose, we compared the first hundred periods with the 
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Table 2?Squared Distances of the Five Theories 

Nash 

equilibrium 

Quantal 

response 

equilibrium 

Action 

sampling 
equilibrium 

Payoff 

sampling 
equilibrium 

Impulse 
balance 

equilibrium 
Sampling 
variance 

Game 1 

Game 2 
Game 3 

Game 4 

Game 5 

Game 6 

Game 7 
Game 8 
Game 9 
Game 10 

Game 11 

Game 12 

0 0572 
0 0483 
0 0321 
0 0169 
0 0149 
0 0042 
01237 
0 0298 
0 0212 
0 0208 
0 0098 
0 0045 

0 0460 
0 0428 
0 0250 
0 0137 
0 0136 
0 0039 
01082 
0 0269 
0 0192 
0 0196 
0 0084 
0 0042 

0 0103 
0 0164 
0 0087 
0 0072 
00115 
0 0027 
0 0189 
0 0106 
0 0332 
0 0134 
0 0059 
0 0033 

00112 
0 0098 
0 0057 
0 0041 
0 0100 
0 0028 
0 0253 
0 0063 
0 0276 
0 0109 
0 0032 
0 0047 

0 0213 
0 0102 
0 0073 
0 0054 
0 0117 
0 0045 
0 0081 
0 0060 
0 0224 
00111 
0 0036 
0 0039 

0 00909 
0 00693 
0 00523 
0 00403 
0 00953 
0 00246 
0 00178 
0 00531 
0 01409 
0 00665 
0 00307 
0 00317 

second hundred periods Figure 13 shows the mean squared distances decomposed into sampling 
variance (grey) and the theory-specific components (black and white, respectively) for periods 
1-100 (left) and 101-200 (right) for the five theories compared in this paper It can be seen that 
in the second half of the experiments the predictive success of payoff-sampling equilibrium is 

slightly greater than that of impulse balance equilibrium The difference is not significant under 
the Wilcoxon signed rank test The predictive success of impulse balance equilibrium is the 
same one in the first and second half For each of the other four theories the performance is better 
in the second than in the first half 

The sampling variance is greater in the second half than in the first half A two-tailed matched 

pairs Wilcoxon signed rank test applied to the sampling variances for the first half and the sec? 

ond half in the 12 games shows no significant difference Therefore, we interpret the difference 
between the sampling variances in Figure 13 as due to a random effect 

The improvement of predictive success in the second half of the experiment is connected to a 
movement of the observed relative frequencies nearer to the convex hull of the theoretical prob? 
ability vectors The relative frequencies for the first and the second half of game 4 are both inside 
the convex hull, but for the other 11 games the relative frequencies for the first half are outside 
the convex hull In the second half they are either inside (four games) or still outside but nearer 
to the convex hull (seven games) 

Apart from the reversal between payoff-sampling equilibrium and impulse balance equilib? 
rium, the order of predictive success of the five theories remains unchanged from the first half 
to the second half of the experiments The difference between the predictive success of payoff 
sampling equilibrium and impulse balance equilibrium in the second half of the experiments is 

quite small, however, and may be due to random influences The data do not permit conclusions 
about convergence to a specific stationary concept over time 

H Significance of the Comparisons of Predictive Success 

In Section IIIA, we pointed out that the discrimination among the five concepts tends to be 
worse the nearer the games are to the middle of the parameter space Therefore, we cannot 

expect significant results for the 12 or 6 observations for each of the games separately It is more 

reasonable to apply a test to all constant sum games together, and to do the same for all noncon 

stant sum games together 
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Figure 12. Overall Mean Squared Distances of the Four Stationary Concepts 
Compared to the Observed Average 

In order to compare the performance of two stationary concepts in the 12 games, we apply the 
Wilcoxon matched-pairs signed rank test to the squared distances of the theoretical values from 
the observed relative frequencies for the 108 independent subject groups. 

In the application of this test, differences of the squared distances are computed for each of 
the 108 observations and then ranked from 1 to 108 according to their absolute value. Smaller 
absolute values receive a lower rank. The test statistic is the sum of the ranks in favor of the first 

theory, in the sense that the squared distance for the first theory is lower than that for the second 

theory. This means that higher differences count more than lower ones, since they are less likely 
to be disturbed by random fluctuations. Therefore, the fact that games near the middle of the 

parameter space discriminate less among the theories is automatically taken into account by the 
Wilcoxon matched-pairs signed rank test. 

The same test has also been applied to the 72 observations on constant sum games and the 36 
observations on nonconstant sum games separately. 

Table 3 shows the two-tailed significances in favor of the row concept. 
In the following, we look at the overall comparisons based on all 108 observations. The com? 

parison between impulse balance equilibrium and payoff-sampling equilibrium is not significant. 
The same is true for the comparison between payoff-sampling equilibrium and action-sampling 
equilibrium. This means that the second rank of payoff-sampling equilibrium in the order of pre? 
dictive success shown in Figure 16 in the online Appendix may be due to random fluctuations. It 
could be just as well at the first or third place. However, the order among the other four concept 
is clearly confirmed by the comparisons based on all 108 observations. 
We now turn our attention to the comparison between impulse balance equilibrium and payoff 

sampling equilibrium for the 72 observations on constant sum games and the 36 observations on 
nonconstant sum games. Table 3 shows that payoff-sampling equilibrium performs significantly 
better in constant sum games, whereas impulse balance equilibrium has a significantly greater 
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0.05 

Figure 13. Comparison of Predictive Success in the First Half and Second Half of the Experiments 

success in nonconstant sum games. We also see the better fit of payoff-sampling equilibrium 
for constant sum games and of impulse balance equilibrium for nonconstant sum games in the 

comparison of both games with action-sampling equilibrium. 
It is remarkable that the newer concepts of impulse balance equilibrium, payoff sampling 

equilibrium, and action-sampling equilibrium clearly outperform the more established concepts 
of quantal response equilibrium and Nash equilibrium. All the relevant comparisons are highly 
significant. This is perhaps the most important result of the statistical tests. 

According to the Wilcoxon signed rank test, quantal response equilibrium beats Nash equi? 
librium, in spite of the fact that the predictions of both concepts are very close to each other (see 

Figures 11 and 12). There is nothing wrong with this. Even if the deviations of predicted and 
observed values are very similar for both concepts, the relatively small difference between them 
tends to be in favor of quantal response equilibrium. These differences are important for the 

Wilcoxon test. Nevertheless, one may say that the relatively small differences are substantially 
insignificant, even if they are the basis of statistical significance. 

IV. Summary and Discussion 

Five stationary concepts for completely mixed 2x2-games have been compared in this paper. 
For this purpose, experiments have been run on 12 games, 6 constant sum games with 12 indepen? 
dent subject groups each, and 6 nonconstant sum games with 6 independent subject groups each. 

The games were selected in such a way that the constant sum games were reasonably well dis? 
tributed over the parameter space. Each nonconstant sum game had the same best reply structure 
as an associated constant sum game. 
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Table 3?Significances in Favor of Row Concepts, Two-Tailed Matched-Pairs Wilcoxon Signed Rank Test 

(Rounded to the next higher level among 0 1 percent, 0 2 percent, 0 5 percent, 1 percent, 2 percent, 
5 percent, and 10 percent) 

Impulse balance Payoff-sampling Action-sampling Quantal response Nash 

equilibrium equilibrium equilibrium equilibrium equilibrium 

Impulse balance 

equilibrium 

Payoff-sample 

equilibrium 

Action-sample 

equihbrum 

Quantal response 

equilibrium 

Nash equilibrium 

5 percent 

n.s. 

10 percent 

10 percent 
n s 

2 percent 

n.s. 

10 percent 

1 percent 
1 percent 
1 percent 

1 percent 
1 percent 
1 percent 

1 percent 
1 percent 
1 percent 

1 percent 
1 percent 
1 percent 

1 percent 
1 percent 
1 percent 

1 percent 
/ percent 

0 5 percent 

1 percent 
2 percent 
5 percent 

Notes Above: all 108 Experiments, Middle 72 constant-sum game experiments, Below 36 non-constant sum game 

experiments 

Each subject group consisted of eight participants, four playing on one side and four on the 

other. Each subject group played only one game over 200 periods with random matching. 
The literature reports about similar experiments with 2x2-games (McKelvey, Palfrey, and 

Roberto A. Weber 2000; Goeree, Holt, and Palfrey 2003; Binmore, Swierzbinski, and Proulx 

2001; Ochs 1995). Usually, the number of periods played is much lower, and more than one 

game has been played by the same subjects in one session. Thus, in the experiments by Goeree, 
Holt, and Palfrey (2003), the number of periods was 40. We wanted a greater number of periods 
because it is doubtful that a stationary state can be reached within only relatively few periods. 
Play must be long enough to wash out initial effects. 

An exception with respect to the number of plays is the paper by Binmore, Swierzbinski, and 
Proulx (2001). They report experiments about several games played 150 times. There was only 
one completely mixed 2x2-game (game 1) among them, however. Each subject played seven 

games (including two practice games). If several games are played one after the other by the 
same subjects, transfer of experience may occur from earlier to later games. Moreover, data from 
different games played by the same subject are not statistically independent from each other. In 
our experiment each subject participated in only one independent subject group and played only 
one game. This is necessary for an appropriate application of statistical tests. 

In the literature, usually only two of the stationary concepts are confronted with experi? 
mental data: Nash equilibrium and quantal response equilibrium. An exception is the paper by 
Avrahami, Giith, and Kareev (2005). They successfully compared impulse balance equilibrium 
with their data, following the suggestion of one of this paper's authors (Selten). The new con? 

cept of action-sampling equilibrium was never examined before. The same is true for payoff 

sampling equilibrium. 
Our measure of predictive success forms mean square deviations of observed relative frequen? 

cies from predicted probabilities for every game separately, and then takes the average over the 
12 games. The comparison of the five theories over the entire time span of 200 periods yields a 
clear order of predictive success from best to worst: 

1. Impulse balance equilibrium 
2. Payoff-sampling equilibrium 
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3. Action-sampling equilibrium 
4. Quantal response 
5. Nash equilibrium 

In order to examine the question to what extent one can exclude the possibility that this ranking 
of the five concepts is merely the outcome of random fluctuations, we have performed pairwise 

comparisons with the Wilcoxon matched-pairs signed rank test. The results can be summarized 
as follows: The rank 2 of payoff-sampling equilibrium is not confirmed. One cannot exclude the 

possibility that this is due to random fluctuation. The rank of payoff-sampling equilibrium could 

just as well be 1 or 3. However, the order of the other four concepts is confirmed by significance 
tests. 

A remarkable result can be seen in the fact that the newer concepts of impulse balance equi? 
librium, payoff-sampling equilibrium, and action-sampling equilibrium clearly outperform the 

more established concepts of Nash equilibrium and quantal response equilibrium. It can be seen 

in Figure 12 that impulse balance equilibrium, payoff-sampling equilibrium, and one-sample 

equilibrium are near to each other with respect to their predictive success. Moreover, the predic? 
tive success of these three newer theories is strikingly better than that of the two more estab? 

lished concepts. Moreover, all the statistical comparisons between a newer concept on one side 

and a more established one on the other side are highly significant in favor of the newer one. 

This is true not only for comparisons based on all 108 observations, but also for those based on 

observations for constant sum games or nonconstant sum games only. 

The comparisons based on constant sum games and nonconstant sum games alone throw 

light on the differences between impulse balance equilibrium and payoff-sampling equilibrium. 

Payoff-sampling equilibrium performs better in constant sum games, whereas impulse balance 

equilibrium shows the better fit for nonconstant sum games. 
The best sample size for payoff-sampling equilibrium was 6. The sample size 7 for action 

sampling equilibrium is suggested by the finding that 7 seems to be near to the average number 

of items that can be kept in short-term memory (Miller 1951). Action-sampling equilibrium with 

sample size 7 fits our data much better than other sample sizes between 2 and 10. 

It is of great importance that even for completely mixed constant sum 2x2-games, Nash equi? 
librium and quantal response equilibrium fail in comparison to other concepts. 

In this paper, we concentrated on games played repeatedly with random matching by two pop? 
ulations. The literature also reports experiments on 2x2-games played repeatedly by the same 

two opponents. Behavior in such games may very well be different from that in games played by 

populations. If two subjects play the same two-person zero-sum game a hundred times against 
each other, they will be concerned about not being predictable. This may drive them nearer to 

maximin strategies. The experimental investigation by B. O'Neill (1987) and an empirical paper 

by Mark Walker and John Wooders (2001) on "Minimax Play at Wimbledon" suggests that this 

may be the case. 

In our experiments, quantal response equilibrium performs significantly better than Nash 

equilibrium. Quantal response equilibrium was applied with the same free parameter estimated 

from the data for all games. This parameter was quite high, probably because it has to accom? 

modate relatively many games with a diverse structure. This is perhaps the reason the predictions 
of quantal response equilibrium are, on the one hand, very near to those of Nash equilibrium 
theory and, on the other hand, nevertheless significantly better. The difference between the two 

theories is statistically significant, even if it is substantially insignificant. 
In the literature, much better fits of quantal response equilibrium to observed data are reported 

(e.g., McKelvey, Palfrey, and Weber 2000). In these studies, however, the noise parameter ? is 
fitted to each game separately. Since only two probabilities need to be predicted, one for one 
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strategy of each player, the prediction task is substantially facilitated. Loosely speaking, one 

may say that estimating a parameter for each game separately does half the job of predicting two 
numbers. 

It would be desirable to complement quantal response equilibrium by a theory that permits 
the computation of the noise parameter ? as a function of the payoffs of the game. Extended in 
this way, quantal response equilibrium could become a much more powerful stationary concept. 
Since at the moment no theory of ? is available, we have applied quantal response theory with ? 

interpreted as a natural constant, which is the same one for all games. 
In the same way as Nash equilibrium and quantal response equilibrium, action-sampling equi? 

librium is still a concept based on best replies, even if these are not best replies to the equilibrium 
strategies of the others, but to a random sample of strategies on the other side. Payoff-sampling 
equilibrium is not based on best replies, but rather on the comparison of samples of payoffs 
obtained for own choices. 

Impulse balance equilibrium is very different from the four other concepts, since it is based 
neither on best responses nor on payoffs obtained for own choices. Unlike the other four con? 

cepts, it cannot be considered to be a modification of Nash equilibrium. Impulse balance is dif? 
ferent from optimization, even in one-person decision problems (Selten, Abbink, and Cox 2001; 
Ockenfels and Selten 2005). Moreover, impulse balance equilibrium is applied to a transformed 

game. The transformation is based on the idea that losses relative to a natural reference point (the 
pure strategy maximin payoff) count double. 

Impulse balance theory could also be applied to the original game, but the application to 
the transformed game improves its performance. If Nash equilibrium, action-sampling equilib? 
rium, or payoff-sampling equilibrium is applied to the transformed game rather the original one, 
the performance of these concepts becomes worse. The transformation is an important part of 

impulse balance theory but it is not the only reason for its success. 
It is not easy to understand why the predictions of the three newer concepts are not very far 

apart, in spite of the fact that they are based on very different principles. This is perhaps peculiar 
to our sample. It would be desirable to devise experiments that permit a better discrimination 
among the three concepts. 

In this paper, we look at stationary concepts without any discussion of learning processes. 
The comparison of our data with learning processes will be the subject of a later paper. As far 
as movement over time is concerned we looked only at differences between periods 1-100 and 
101-200. We have seen that the order of predictive success of impulse balance theory and payoff 
sampling theory reverses from the first half to the second half of the experiments. The reversal is 
not statistically significant. No other changes of the order of predictive success from the first half 
to the second half are observed. In the second half, the sampling variance is slightly increased. 
The predictive success of impulse balance equilibrium is the same in the second half as in the 
first half, but the other four concepts perform much better in the second half than in the first 
half. The mean frequencies of individual observations seem to move nearer to the convex hull 
of the theoretical predictions, even if within a game the variance of the relative frequencies in 
independent subject groups does not change significantly. One cannot know whether the station? 
ary distribution is reached within the 200 periods, but the evidence conveys the impression that 
one comes near to it. 

Stationary concepts are of great importance, especially if they do not depend on parameters, 
which have to be adjusted to the data. Impulse balance theory does not involve any such param? 
eters and can be used in theoretical investigations just like Nash equilibrium. It is possible to 
generalize impulse balance theory to general games in normal form (see online Appendix F). 
It would certainly be desirable to gain experiences with games with more than two strategies or 

more than two players. 

This content downloaded  on Tue, 12 Feb 2013 11:27:53 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


966 THE AMERICAN ECONOMIC REVIEW JUNE 2008 

REFERENCES 

Abbink, Klaus, and Abdolkarim Sadrieh. 1995 "Ratimage?Research Assistance Toolbox for Computer 
Aided Human Behavior Experiments 

" 
University of Bonn SFB Discussion Paper B-325 

Avrahami, Judith, G?th Werner, and Yaakov Kareev. 2005 "Games of Competition in a Stochastic Envi? 

ronment 
" 
Theory and Decision, 59(4) 255-94 

Binmore, Ken, Joe Swierzbinski, and Chris Proulx. 2001 "Does Minimax Work9 An Experimental 

Study" Economic Journal, 111(473) 445-64 
Davis, E. A. 1931 "Knox Cube Test and Digit Span 

" 
Journal of Genetic Psychology, 32 235-37 

Della Sala, S., C. Gray, A. Baddeley, N. Allamano, and L. Wilson. 1999 "Pattern Span A Tool for Unweld 

mg Visuo-Spatial Memory Neuropsychologia, 37(10) 1189-99 
Erev, Ido, and Alvin E. Roth. 1998 "Predicting How People Play Games Reinforcement Learning m 

Experimental Games with Unique Mixed Strategy Equilibria" American Economic Review, 88(4) 
848-81 

Goeree, Jakob K., Charles A. Holt, and Thomas R. Palfrey. 2003 "Risk Averse Behavior in Generalized 

Matching Pennies Games 
" 

Games and Economic Behavior, 45(1) 97-113 

Hart, Sergiu, and Andreu Mas-Colell. 2000 "A Simple Adaptive Procedure Leading to Correlated Equi? 
librium 

" 
Econometnca, 68(5) 1127-50 

Kahneman, Daniel, Amos Tversky. 1979 "Prospect Theory An Analysis of Decision under Risk 
" 
Econo? 

metnca, 47(2) 263-91 
McKelvey, Richard D., and Thomas R. Palfrey. 1995 "Quantal Response Equilibria for Normal Form 

Games 
" 
Games and Economic Behavior, 10(1) 6-38 

McKelvey, Richard D., Thomas R. Palfrey, and Roberto A. Weber. 2000 "The Effects of Payoff Magni? 
tude and Heterogeneity on Behavior in 2 X 2 Games with Unique Mixed Strategy Equilibria 

" 
Journal 

of Economic Behavior and Organization, 42(4) 523-48 

Miller, George A. 1956 "The Magical Number Seven, Plus or Minus Two Some Limits on Our Capacity 
for Processing Information 

" 
Psychological Review, 63(2) 81-97 

Ochs, Jack. 1995 "Games with Unique, Mixed Strategy Equilibria An Experimental Study" Games and 

Economic Behavior, 10(1) 202-17 

Ockenfels, Axel, and Reinhard Selten. 2005 "Impulse Balance Equilibrium and Feedback m First Price 

Auctions 
" 
Games and Economic Behavior, 51(1) 155-70 

O'Neil, B. 1987 "Nonmetnc Test of the Minmax Theory of Two-Person Zerosum Games 
" 
Proceedings of 

the National Academy of Sciences, 84(7) 2106-09 

Osborne, Martin J., and Ariel Rubinstein. 1998 "Games with Procedurally Rational Players 
" 
American 

Economic Review, 88(4) 834-47 
Osborne, Martin J., and Ariel Rubinstein. 2003 "Sampling Equilibrium, with an Application to Strategic 

Voting 
" 
Games and Economic Behavior, 45(2) 434-41 

Selten, Reinhard, and Joachim Buchta. 1999 "Experimental Sealed Bid First Price Auctions with Directly 

Observed Bid Functions 
" 

In Games and Human Behavior Essays in the Honor ofAmnon Rapoport, 

ed David Budescu, Ido Erev, and Rami Zwick, 79-104 Mahwah NJ Lawrenz Associates 

Selten, Reinhard. 2000 "Lernnchtungstheorie 
" 

In Innovative Kapitalanlagekonzepte, ed Elisabeth 

Hehn, 11-18 Wiesbaden Gabler Verlag 

Selten, Reinhard, Klaus Abbink, and Ricarda Cox. 2005 "Learning Direction Theory and the Winner's 

Curse 
" 
Experimental Economics, 8(1) 5-20 

Walker, Mark, and John Wooders. 2001 "Minimax Play at Wimbledon 
" 

American Economic Review, 

91(5) 1521-38 

This content downloaded  on Tue, 12 Feb 2013 11:27:53 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 938
	p. 939
	p. 940
	p. 941
	p. 942
	p. 943
	p. 944
	p. 945
	p. 946
	p. 947
	p. 948
	p. 949
	p. 950
	p. 951
	p. 952
	p. 953
	p. 954
	p. 955
	p. 956
	p. 957
	p. 958
	p. 959
	p. 960
	p. 961
	p. 962
	p. 963
	p. 964
	p. 965
	p. 966

	Issue Table of Contents
	The American Economic Review, Vol. 98, No. 3 (Jun., 2008), pp. 567-1205, i-xiii
	Front Matter
	Orley Ashenfelter, Distinguished Fellow 2007
	Mechanism Design: How to Implement Social Goals [pp. 567-576]
	But Who Will Guard the Guardians? [pp. 577-585]
	Perspectives on Mechanism Design in Economic Theory [pp. 586-603]
	The Time-Varying Volatility of Macroeconomic Fluctuations [pp. 604-641]
	The Difference That CEOs Make: An Assignment Model Approach [pp. 642-668]
	What's the Matter with Tie-Breaking? Improving Efficiency in School Choice [pp. 669-689]
	Default Risk and Income Fluctuations in Emerging Economies [pp. 690-712]
	Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-Evidence on Individuals' Asset Allocation [pp. 713-736]
	Temporary Investment Tax Incentives: Theory with Evidence from Bonus Depreciation [pp. 737-768]
	How the Electoral College Influences Campaigns and Policy: The Probability of Being Florida [pp. 769-807]
	Income and Democracy [pp. 808-842]
	Do People Vote with Their Feet? An Empirical Test of Tiebout's Mechanism [pp. 843-863]
	Information Aggregation in Polls [pp. 864-896]
	Stability in Supply Chain Networks [pp. 897-923]
	Thar She Blows: Can Bubbles Be Rekindled with Experienced Subjects? [pp. 924-937]
	Stationary Concepts for Experimental 2×2-Games [pp. 938-966]
	Contracts, Hold-Up, and Exports: Textiles and Opium in Colonial India [pp. 967-989]
	Pride and Prejudice: The Human Side of Incentive Theory [pp. 990-1008]
	Historical Property Rights, Sociality, and the Emergence of Impersonal Exchange in Long-Distance Trade [pp. 1009-1039]
	Credit Elasticities in Less-Developed Economies: Implications for Microfinance [pp. 1040-1068]
	Shorter Papers
	Reference-Dependent Preferences and Labor Supply: The Case of New York City Taxi Drivers [pp. 1069-1082]
	The Interaction of Public and Private Insurance: Medicaid and the Long-Term Care Insurance Market [pp. 1083-1102]
	Estimates of the Impact of Crime Risk on Property Values from Megan's Laws [pp. 1103-1127]
	Ordering the Extraction of Polluting Nonrenewable Resources [pp. 1128-1144]
	Strotz Meets Allais: Diminishing Impatience and the Certainty Effect [pp. 1145-1162]
	Monetary Policy, Judgment, and Near-Rational Exuberance [pp. 1163-1177]
	Evolution of Time Preference by Natural Selection: Comment [pp. 1178-1188]
	Matching with Contracts: Comment [pp. 1189-1194]
	When Does Coordination Require Centralization? Corrigendum [pp. 1195-1196]

	Independent Auditors' Report [pp. 1197-1205]
	Back Matter



