
Bio-inspired Ganglion Cell Models for Detecting
Horizontal and Vertical Movements

Pedro Machado, Andreas Oikonomou, Georgina Cosma, T.M. McGinnity
Computational Neurosciences and Cognitive Robotics Laboratory

School of Science and Technology
Nottingham Trent University

Nottingham, United Kingdom
{pedro.baptistamachado,andreas.oikonomou,georgina.cosma,martin.mcginnity}@ntu.ac.uk

Abstract—The retina performs the earlier stages of image
processing in living beings and is composed of six different
groups of cells, namely, the rods, cones, horizontal, bipolar,
amacrine and ganglion cells. Each of those group of cells can
be sub-divided into other types of cells that vary in shape,
size, connectivity and functionality. Each cell is responsible for
performing specific tasks in these early stages of biological image
processing. Some of those cells are sensitive to horizontal and
vertical movements. This paper proposes a multi-hierarchical
spiking neural network architecture for detecting horizontal and
vertical movements using a custom dataset which was generated
in laboratory settings. The proposed architecture was designed
to reflect the connectivity, behaviour and the number of layers
found in the majority of vertebrates retinas, including humans.
The architecture was trained using 2303 images and tested using
816 images. Simulation results revealed that each cell model is
sensitive to vertical and horizontal movements with a detection
error of 6.75 percent.

Index Terms—SNN, retinal cells, bio-inspired retinal cells,
movement sensitive cells, ReSuMe

I. INTRODUCTION

The retina, which is considered an extension of the brain,
has been widely studied since Cajal (1892) [1] and six different
groups of cells have been identified in all vertebrates retinas,
namely, rods and cones, bipolar, horizontal, amacrine and
ganglion cells. From this general grouping of cells, 50 distinct
types of cells have been identified [2]. The cell types differ
widely in shape, size and connectivity. Recently, Gollish and
Meinster [3] described a set of visual tasks relevant to all
species. Object motion detection, light sensitive and looming
detection are three of the visual tasks that are observed in
all vertebrate retinas. These three types of cells are called
object-motion-sensitive (OMS), looming and light sensitivity
ganglion cells (GCs). The OMS GCs actively respond when a
local patch on a receptive field centre moves with a trajectory
different from the background, the light sensitive GCs respond
to light intensity variation and the looming GCs respond to
approach and recede motions [3]. More complex cells have
also been identified including fast response and predictive
GCs. The fast response cells respond to fast motion varia-
tions while the predictive cells trigger automatic responses to
specific stimuli that were previously learnt [3].

Wu et al. prosed the use of hierarchical spiking networks
for processing visual stimuli [4, 5, 6, 7, 8, 9]. In these works,

Wu et al. describes different multi-hierarchical architectures
for performing image segmentation and extracting different
features (including straight lines, blobs and colour features).
Kerr et al. [10] proposed a 4 layer hierarchical neural net-
work for extraction complex features from natural images
. Kerr et al. and the Wu et al. [4, 5, 6, 7, 8, 9] share
the following similarities: (i) the use of leaky-integrate-and-
fire (LIF) neuron models (see Section II-B), organized in an
hierarchical network; (ii) the neural networks are composed of
3 or more layers which are interconnected via excitatory and/or
inhibitory synapses, forming receptive fields; (iii) inclusion
of final layer implementing spike time dependent plasticity
(STDP). Neither study addressed emulation of the behaviour
of OMS GCs.

Zylberberq et al. [11] used a biologically inspired sparse
coding model using spiking neural networks for emulating
the type of responses that are found in cortical neurons in
the primate visual cortex (also known as Gabor functions).
Zylberberg et al. use a population of inhibitory neurons and
a second population of excitatory neurons. The inhibitory
neurons are used for producing lateral inhibition which is
required to generate the same patterns generated by Gabor
functions. They also introduce a new unsupervised learning
technique, an adaptation of Oja’s learning rule [12] for training
the weights of both populations of neurons. The work reported
in [11] was extended by Tavnaei et al. [13] who proposed
a biological-inspired convolutional spiking neural network
(CSNN) composed of a convolution layer, followed by a pool-
ing layer and a fully connected layer (feature discovery). In
classification tasks on the MNIST digit dataset1, the proposed
architecture showed an accuracy of 98% for clean (without any
additive noise) images. None of the architectures mentioned so
far are able to detect movement. However, Rueckert et al. [14]
proposed a recurrent spiking network (RSNN) for planning
tasks which detect movements. The proposed architecture is
composed of 2 layers of LIF neurons, one for saving the
current state and another for keeping the context. The RSNN
is inspired by hippocampal neurons found in rats; however,
such recurrence is not found in vertebrate retinas. Neither the

1The MNIST database of handwritten digits which is widely used to mea-
suring the accuracy of machine learning and artificial intelligence algorithms.
http://yann.lecun.com/exdb/mnist/, last accessed on the 27/02/2018.



CSNN nor the RSNN mimic the functionalities of the retina
described in [3, 15, 16].

The paper structure is as follows. Related works are pre-
sented in section II, the proposed multi-hierarchical SNN
is described in Section III, the simulation methodology is
described in section IV, the simulation results are presented
in Section V and analysis and future work are discussed in
Section VI.

II. RELATED WORKS

A. Biological Architecture of the Retina

Vertebrates retinas vary in type, shape, size, connectivity
and number of cell types, but all are characterized by having
6 layers composed of cones and rods, bipolar, horizontal,
amacrine and ganglion cells (Figure 1).

Fig. 1: (a) a cross section of the eye where the retina is the thin layer
(about 1mm of thickness) of tissue located at the back of the eye ball
and connected to the optic nerve; (b) layers of the retina in stained
tissue where each type of retinal cells is shown (b) and (c) a drawing
showing the interconnections between each type of retinal cell and
the optic nerve2.

Retinal rod and cone cells, also known as photoreceptors
convert light into electrical signals that change the electrical
potential of a cell’s membrane allowing it to communicate
information to other connected cells. The human retina con-
sists of 120 million rod cells and 6 million cone cells. The
input layer in the proposed architecture mimics those cells.
Retinal bipolar cells in human retinas perform two sets of
functions. They synapse either with rods or cones and accept
synapses from horizontal cells. They transmit signals from
the photoreceptors or the horizontal cells and pass them to
ganglion cells either directly or indirectly (via amacrine cells).
Communication is via graded potentials, which is unlike many
other cell types which communicate via action potentials.
Graded potentials describe a continuous change in membrane
potential that can be either large or small and last either for
short or long durations, unlike action potentials that have fixed
amplitudes and timings[15, 16].

Amacrine cells are mostly inhibitory in operation and in-
teract with ganglion cells. They are connected laterally to
ganglion cells and affect the output of bipolar cells. There
are at least 33 known types and each type releases one or
several neurotransmitters. Among other functions they are
responsible for detecting or contributing to the detection of

2This work by Cenveo is licensed under a Creative Commons Attribution
3.0 United States (http://creativecommons.org/licenses/by/3.0/us/).

directional motion. Retinal ganglion cells receive information
from bipolar and amacrine cells and transmit action potentials
to a number of regions in the brain including the thalamus,
hypothalamus and mesencephalon where images are thought
to be formed and classified [17, 18]. Therefore, the early stages
of image pre-processing are done in an efficient way in the
retina meaning that robust models of such cells will result in
powerful and efficient computer vision algorithms.

B. Spiking Neural Networks

Spiking Neural Networks are used in this work because,
unlike classical neurons, spiking neurons are bio-inspired and
their dynamics seek to be equivalent to those observed in
real neurons [19]. The Leaky-Integrate-and-Fire (LIF) neuron
model was chosen as the LIF model has a good balance be-
tween processing cost and biological compatibility dynamics.
More complex models are available (e.g. Izhkivich [20]), but
they also increase the computation time and are not the best
option for implementing in dedicated hardware (e.g. field-
programmable gate arrays) which is one of the goals this
research.

A RLC (Resistance, Inductance, Capacitance) electronic
circuit can be used for emulating the dynamics of a LIF neuron
as shown in picture Figure 2.

Fig. 2: Schematic diagram of the leaky-integrate-and-fire neuron
model. The base circuit is the module inside the dashed circle on the
right-hand side. A current I(t) charges the RC circuit. If the voltage
u(t) across the capacitance reaches the threshold v then is a spike
generated and u(t) is set to the reset voltage during a refractory period
[19].

Therefore, the LIF neuron model action potential is gov-
erned by equation 1.

τδu

δt
= −u (t) +RI (t) (1)

where τ = RC is the time constant, R the membrane
resistance, C the membrane capacitance, u(t) the membrane
voltage at a given time t and I(t) is the current at time t.

III. PROPOSED MULTI-HIERARCHICAL SPIKING NEURAL
NETWORKS FOR DETECTING HORIZONTAL AND VERTICAL

MOVEMENTS

In this paper, we propose a four-layer architecture for
mimicking the object movement sensitive ganglion cells which
was described in [3]. The input layer converts the pixel graded
values (0.0 up to 1.0) to spike events (where values above
0.85 are considered a spike event); layer 1 detects local edges,



layer 2 extracts movement features, layer 3 extracts movement
features and layer 4 detects types of movement. The proposed
architecture is shown in Figure 3.

Fig. 3: Multi-hierarchical spiking neural network with (i) 40×40
image input followed by the four processing layers. Layer 1: Edge
detection layer, Layer 2: Direction features extraction, Layer 3: move-
ment extraction features and Layer 4: movement sensitive ganglion
cells.

A. Input layer: Binarisation via conversion from pixel grade
values to spike events

The input layer converts pixel graded values to spike events.
Values equal or above 0.85 are considered a spike events
similar to the functionality of rods [15]. A 1:1 connectivity
is used between each pixel and the neurons in the input layer.

Figure 4 shows an example where three sequential image
frames (from a synthetic dataset with objects performing hori-
zontal and vertical movements) of 40×40 pixels are presented
to the Input Layer, then processed by the neurons in Layers 1
to 4. The results are represented as vertical spikes in the output
synapse coming from the right-to-left movement sensitive
ganglion cell.

Fig. 4: Three image frames being processed by the proposed archi-
tecture. The images are presented to each layer in sequence (layer
1, 2, and 3) and finally the movement is detected in Layer 4 by the
right-to-left (R), left-to-right (L), Up (U) and Down (D) ganglion
cells.

In Figure 4 a black cylinder object is shown moving from
the left to the right is shown. Each image is input to the
proposed architecture for a period of 1ms.

B. Layer 1: Edge detection

The aim of layer 1 is to detect edges. 40×40 pixels images
are exposed to Layer 1 for a period of 1 simulation time
step. The neurons in Layer 1 receive spike events from a 3×3

patch where the central neuron is connected via an excita-
tory synapse (weight greater than 0) and the 8 neighbouring
neurons are connected via inhibitory synapses (weight lower
than 0), originating a receptive field (RF). The RF in the
visual system comprises a 2D region in a specific visual
space and may have different sizes and shapes. The latter
are represented in Figure 3 by windows composed of 8 black
circumferences (that act as inhibitory synapses) and a white
central circumference (that acts as an excitatory synapse). The
RFs have a stride of 1 for retaining the spatial information that
is required for performing the edge detection of a RF weights
distribution is given by the Difference of Gaussians (DoG)
function. The DoG function in Layer is used for performing
the edge detection and it is governed by equation 2.

DoG(x, y) =
1

2πσ2
s

e
−
x2 + y2

2σ2
s − 1

2πσ2
c

e
−
x2 + y2

2σ2
c (2)

σc
σs

= 1.6 (3)

where the parameters σs and σc are the standard deviations
of the neighbouring and central pixels of the DoG filter [10].
The number of neurons per pixels is reduced by 2 columns and
2 rows (i.e. required number of neurons is 38×38) because of
the borders conditions. Zero or negative values are produced
by the DoG filter when the patch is composed of similar pixels
intensities (in this case the neuron will not spike); positive
values are produced when the neighbouring pixels and the
central pixels have a big variation (in this case the neuron
will spike).

C. Layer 2: Horizontal and vertical features extraction

The aim of layer 2 is to extract horizontal and vertical fea-
tures. Layer 2 is composed of 36 rows× 36 columns×4 groups
of neurons (36×36×4) where each neuron is connected via a
3×3 RF and the connection between neurons is performed
via inhibitory and excitatory synapses. The organisation of
the excitatory synapses between the neurons of Layer 1 and
Layer 2 varies accordingly to the type of filter used. The
goal of each filter type is to generate unique spike patterns
that are required for detecting the movement type while
retaining spatial information. The filters, in the inner layer,
are represented in Figure 3 with 9 blue circles overlapping 9
neurons in Layer 1.

The neurons in Layer 2 are used to extract features related
to each type of movement (left-to-right, right-to-left, up and
down). Again, 3×3 windows are used to produce features
maps that capture the required details for a specific movement
and distinct pattern from the homologous movement.

Lf (x, y) =

x∑
i=0

y∑
j=0

x

2
− i (4)

Rg (x, y) =

x∑
i=0

y∑
j=0

−x
2

+ i (5)



Up (x, y) =

y∑
j=0

x∑
i=0

−y
2

+ j (6)

Dw (x, y) =

y∑
j=0

x∑
i=0

y

2
− j (7)

where the parameters Lf , Rg , Up and Dw represents the
left-to-right, right-to-left, up and down filters weight distri-
bution. The number of neurons per patch of layer neurons
is reduced by 2 columns and 2 rows (i.e. required number
of neurons is 36×36) per filter type because of the borders
conditions. Analogous to the DoG filters, the neuron will spike
when the value given by the spikes, generated by the patch of
neurons in Layer 1, multiplied by the weights of the respective
synapses is positive and greater or equal to the threshold.

D. Layer 3: Extraction of movement features

The aim of layer 3 is to extract movement features. The
neurons in Layer 3 are connected in a one-to-one (1:1)
configuration to the Layer 2 neurons. There are two neuron
populations, Population A and Population B. The Population
A neurons are wired via 2 synapses, the excitatory synapse
has no delay and the inhibitory synapse has a delay of 1
simulation time step. The use of synapses with different delays
facilitates movement features extraction [21]. Delaying the
spikes propagation a specific simulation time step produces
a local memory (e.g. given a pre-neuron that spiked at the
time step t and did not spiked in time step t-1 triggers a spike
event in the post neuron because the result of the difference
between spikes will be positive and greater of equal to the
threshold.).

Population B differs from Population A only because the
inhibitory synapse is delayed by two simulation time steps as
opposed to one. The two populations are used for improving
the accuracy of the movement features extraction by creating
a bio-inspired buffer of 3 spike patterns. Each group of
neurons is composed of groups of 36×36 neurons and in
the overall configuration there are a total of eight groups of
neurons (four per each population). The neurons in layer 3
are able to sense movement because they are inter-connected
using different propagation delays. Such delays create a local
residual memory for holding past neuron’s events and compare
them with current events (the simulation time-step was set to
1ms). The populations are used to improve the robustness of
the motion detection, because fast movements are detected by
Population A, slower movements by Population B and average
speed movements detected by both populations of neurons.
Therefore, a movement feature is extracted if a there is a spike
in the actual frame which was not detected in the previous
frame (population A with a propagation delay of one) or two
frames before (population B with a propagation delay of 2).
Therefore, it is possible to generate different spiking patterns
that are used to detect differences between spike trains. The
neurons in Layer 3 will spike if changes are detected.

E. Layer 4: Detection of movement type

The aim of layer 4 is to determine specific movements
based on the movement features extracted in Layer 3. Each
neuron in Layer 4 receives connections from all the neurons
of population A and B, of its specific type of movement (e.g.
the left-to-right movement cell is connected via excitatory
cells to the left populations A and B) and inhibitory synapses
from its type of movement (e.g. left-to-right movement cell is
connected via inhibitory cells to the right populations A and
B). The reason for having these connections is because the
right-to-left cell must not spike when the left-to-right cell is
spiking, or vice-versa. It is possible in certain circumstances
to have different types of cells spiking at the same time (e.g.
a simultaneous left-to-right and up). However a certain cell
cannot spike at the same time as it pairing cell (e.g. left-to-
right cell cannot spike at the same time as the right-to-left cell
because that would mean that a given object was moving to the
left-to-right and right-to-left at the same time). In Figure 3, the
inhibitory synapses are represented with dashed red lines and
the inhibitory synapses with blue dashed lines, and the brown
and yellow dashed boxes represents that all the neurons are
connected to the movement sensitive cells.

In this layer the movement sensitive neurons are found.
Overall. there are four types of neurons, two of which respond
to horizontal movements and the other two to vertical move-
ments. These neurons receive connections from the neurons of
both populations, A and B, of the same type and its pairing
(e.g. left-to-right/right-to-left). The connections from the same
type of movements are excitatory while the connections from
the paring type are inhibitory. The weights of these connec-
tions were trained using the ReSuMe algorithm described in
[22]. ReSuMe is a supervised learning method for training
SNN by imposing on the neural network the desired input-
output properties for producing the desired spike pattern to a
stimulus. A teacher signal (desired spike pattern) is given to
a neuron ndj that delivers a spike train Sd (t) to a synaptic
connection Wki between an input nink and an output nouti

neurons. The learning occurs with modification of the weights.

Fig. 5: ReSuMe learning: (A) Remote supervision. (B) Learning
windows [22].

The ReSuMe equations are as follows:

W d(sd) =

{
+Ade

(
−sd

τd

)
if sd > 0,

0 if sd ≤ 0,
(8)

W l(sl) =

{
+Ale

(
−sl

τl

)
if sl > 0,

0 if sl ≤ 0,
(9)



where Ad, Al and τd, taul are constants. Ad and Al

are positive in excitatory synapses and negative in inhibitory
synapses. In both cases τd and taul are positive [22]. Teacher
signals were used for training the Layer 4 neurons. The
training was initially done to the horizontally sensitive cells
and then to the vertically sensitive cells. In Figure 6 the
two teacher signals used to train the synaptic weights of the
horizontal cells during the simulation time window [2290,
2315]ms are shown. The period [2290, 2315]ms refers to a
time period where a black cylinder object is moving from the
left to right from [2290, 2303]ms and from the right to left
from [2304, 2315]ms.

Fig. 6: Two teacher signals used to train the horizontal sensitive cells
during the simulation time window [2290, 2315]ms.

IV. SIMULATION METHODOLOGY

This section explains how the dataset was generated and
pre-processed, and the methodology that was followed for
evaluating the performance of the proposed multi-hierarchical
spiking neural network for detecting horizontal and vertical
movements.

A. Dataset

A basic dataset was generated for testing the proposed
architecture. A test scenario was prepared, where a black cylin-
drical object moved from left to right. Overall, one hundred
repetitions were made. Every repetition has approximately 30
images (the number of images is proportional to the object
speed). Overall 100 video-clips were generated. A total of
3120 images were generated from the one hundred video-clips.
The dataset was augmented by performing rotations of π

2 rad,
π rad and 2π

3 rad. All the images were annotated. The original
size of each figure is 640×480 pixels.

B. Image pre-processing

The natural images extracted from the video clips require
pre-processing to reduce the dimension of the images and
lower the number of neurons per layer. The image is first
converted to grey scale and the number of channels reduced
from 3 (red, green and blue) to one (grey scale). This is done
by applying equation 10.

Grey = (0.299×R) + (0.587×G) + (0.114×B) (10)

The second step is resizing the image to reduce the number
of required neurons per layer; this was accomplished by using

the OpenCV library built-in functions for Python 2.7. The
images were scaled to 40×40 pixels while keeping the original
aspect ratio. The third and final pre-processing steps were
to compute Principal Component Analysis (PCA) followed
by image whitening. Whitening transform is a conventional
preprocessing step in statistical analysis for transformation
random variables to orthogonality [23]. The PCA and whiten-
ing was done using the Python 2.7 Sklearn library. Figure 7
shows a sequence of 4 images extracted from one of the trials,
where the black cylindrical object is moving from the left to
the right.

Fig. 7: Sequence of 4 raw images, where a black cylinder object is
moving from the left to right (1st column); image after pre-processing
steps namely, conversion from RGB to greyscale, resizing, PCA and
whitening (2nd column).

Fig. 8: Histograms of the sequence of the images shown in Figure 7.
The histograms of pre-processed images are shown in the 1rd column
and histograms of the post-processed images are shown in the 2nd

column.

Figure 8 shows the histograms of the pre-/post-processed
images. The histograms from the right, when compared with
the ones from the left-to-right, show a dimensionality reduc-
tion as a consequence of applying the PCA, reducing the
local correlation between pixels; These steps are required for
speeding up the image processing.

C. Simulation Process
The simulation was performed using the Brian2 SNN sim-

ulator3.
3The Brian2 SNN simulator. http://brian2.readthedocs.io/en/stable/index.

html, last accessed: 31/01/2018



Step 1 - Preparing the simulation: The pre-processed
images was loaded into memory and the proposed multi-
hierarchical architecture was implemented in Brian2. The
video-clips were randomly split into 4 datasets each compris-
ing different training and testing data cases. In each dataset 75
video sequences (2303 images) were used for training and 25
video sequences (816 images) of the data was used for testing.

Step 2 - Setting the simulation parameters: The sim-
ulation was configured with a time step of τ = 1ms.
The following values of parameters are set all the neurons,
ureset = −1mV , taurefractory = 0. The threshold for
neurons in Layer 1, 2 and 3 was set to uth = 0.0mV and
for layer 4 uth = 30.0mV . The weights for layers 1, 2 and 3
were set constant. The weights of the neurons in Layer 4 were
trained using the ReSuMe algorithm and parameters were set
as follows, τd = 20ms, taul = 20ms, Ad = 0.01, Al = 0.01
(for excitatory synapses) and Ad = −0.01, Al = −0.01 (for
inhibitory synapses).

Step 3 - Simulation stages: The simulation can be divided
into two stages, namely training and testing.

1) Training Stage: During the training stage of the simula-
tion a teacher signal is used for training the weights of
each cell. The weights of all synapses connected to all
the layer 4 neurons were initialised with 1.0. The training
is repeated 10000 times on the training batches while the
weights are constantly updated.

2) Testing Stage: The testing mode is repeated 1 time on the
testing batches while the weights are are kept constant.
In the test mode, ReSuMe is not used and the outputs of
the Layer 4 are scored against the expected results.

V. SIMULATION RESULTS

The voltage threshold of the Layer 1 neuron was obtained
by computing the average of all the images used for training.
The Brian2 simulator has a structure called “TimedArray” that
was used for exposing the images to the first layer neurons.
Images are converted into 1D vectors and each image is a row
of the “TimedArray”.

The spatial information between image pixels and neurons
was kept by creating a vector of indexes that was used for
creating the desired connectivity between neurons. The Brian2
exposes each row (image) after the predefined interval which
in this case was set to 1ms.

The spike monitors were configured for tracking all the
spikes generated in each layer and were plotted at the end
of the simulation. During each iteration in the training mode
the synaptic weights were updated accordingly with the output
generated ReSuMe training algorithm.

A. Horizontal movement test

The results obtained from the horizontal test sequences are
shown in Figures 9, 10 and 11.

Fig. 9: Raster plot of the spiking pattern obtained during the period
[4605,4640]ms (a black cylinder object was moving from the left to
right) and generated by the input layer (after converting the graded
values into spikes) and Layer 1 (edge extraction) neurons.

Referring to Figure 9, during the period [4605,4640]ms
the image was performing a movement from the left to the
right. The input layer illustrates the graded values after the
conversion to spike events (values above 0.85 are considered
spike events). Layer 1 shows the spike pattern generated from
the edge extraction. The spiking pattern in Figure 9 was
generated during in test mode (after training).

Fig. 10: Raster plot of the spikes obtained during the period
[4605,4640]ms (a black cylinder object was moving from the left
to right) and generated by the neurons in layers 2 and 3.

Referring to Figure 10, the spike activity from the left-to-
right cells is more prominent than the right-to-left cells which
is a consequence of the type of movement. The spike patterns
obtained in population A (frame[t]-frame[t-1]) are very similar
to the ones obtained from population B (frame[t]-frame[t-2])
which is a consequence of having slow movements which are
detected by both populations of neurons.

Fig. 11: Raster plot of the spikes pattern obtained during the period
[4605,4640]ms (a black cylinder object was moving from the left to
right) and generated by the horizontal sensitive cells.

Figure 11 shows that each cell is spiking in the correct time.
The scoring algorithm compares the output spiking vector with



the expected output vector and adds a penalty of one unit every
time that output and expected spikes do not match. The testing
error given by the score algorithm was 7% for the horizontal
cells. The error is associated with a sudden change of images
sequences. This error occurs when the last image of a sequence
is followed by the first image of a new sequence. This situation
triggers a different spike pattern that will be compared with
the previous spike patterns (Layer 3 populations A and B).

B. Vertical movement test

The results obtained from the vertical test sequences are
shown in Figures 12, 13 and 14.

Fig. 12: Raster plot of the spikes obtained during the period
[4605,4640]ms of the vertical test and generated by the input layer
(after converting the graded values into spikes) and Layer 1 neurons.

Referring to Fig. 12, during the period [4605,4640]ms the
object is moving down. In the input layer are shown the graded
values after the conversion to spike events (values above 0.85
are considered spike events). In layer 1 the spike pattern
generated from the edge extraction are shown. The spiking
pattern in Figure 12 is clearly distinct from the spike pattern
in Figure 9. It is possible to infer from the spike pattern of
the input layer that the object is moving down.

Fig. 13: Raster plot of the spiking pattern obtained during the period
[4605,4640]ms of the vertical test and generated by the neurons in
layers 2 and 3.

Referring to Fig. 13, the spike activity of the down cells is
more prominent than the up cells which is a consequence of the
type of the movement. Again, the spike patterns obtained from
population A (frame[t]-frame[t-1]) are very similar to the ones
obtained from population B (frame[t]-frame[t-2]) which is a
consequence of having slow movements which are detected
by both populations of neurons.

Fig. 14: Raster plot of the spiking pattern obtained during the period
[4605,4640]ms of the vertical test and generated by the vertical
sensitive cells.

Figure 14 shows that each cell is spiking in the correct
time because the first set of images are up movements and
then down movements. It is also clear from the image that
on left-to-right cell spikes while the right-to-left cell does not
spike and vice-versa. The scoring algorithm returned a testing
error of 6.5% for the vertical cells. The errors occur when
the last image of a sequence is followed by the first image
of a new sequence (i.e. when a new sequence starts and the
object moves from the end position to the start position of two
sequential images).

VI. CONCLUSION AND FUTURE WORK

Retinal ganglion cells perform the primary processing steps
of natural images in an efficient way. Features such as object
movement detection, looming, fast response to fast stimuli and
even prediction are performed in the retina. This paper pro-
poses a multi-hierarchical Spiking Neural Network (SNN) that
was designed for simulating Object-Motion-Sensitive (OMS)
Ganglion Cells (GC). The individual horizontal and vertical
motion sensitive models were integrated and the outcome is
an innovative multi-hierarchical bio-inspired SNN that reflects
object motion detection in vertebrate retinas. Results suggest
that the motion cells are sensitive to horizontal and vertical
movements. The proposed architecture can be adapted for
modelling many other retinal cell types (such as the texture
motion4 and/or omitted stimulus response5 cells).

Several improvements are required in terms of increasing
the robustness and performance of the horizontal and vertical
motion cells. For example, the proposed architecture needs
to be evaluated in different natural scenarios with different
lighting conditions, different object shapes and multi-objects
moving in the same scene. In addition, approaches are required
for reducing the number of neurons per layer.

REFERENCES

[1] R. Cajal. “The Structure of the Retina”. In: hTorpe SA,
Glickstein M, translators. (1892).

[2] R. Masland. “The fundamental plan of the retina.” In:
Natual Neurosciences 4 (2001), pp. 877–886.

4The texture motion cells are cells sensitive to light intensity variations
caused when textured image patch moves across the retina [3].

5The omitted stimulus response cells are cells that react to periodic stimulus
with a periodic response and keep generating such responses when some of
those stimuli are dropped [3].



[3] Tim Gollisch and Markus Meister. “Eye Smarter than
Scientists Believed: Neural Computations in Circuits of
the Retina”. In: Neuron 65.2 (2010), pp. 150–164. ISSN:
08966273. DOI: 10.1016/j.neuron.2009.12.009. arXiv:
NIHMS150003.

[4] Q.X. Wu, T.M. McGinnity, L.P. Maguire, A. Belatreche,
and B. Glackin. “Processing visual stimuli using hier-
archical spiking neural networks”. In: Neurocomputing
71.10-12 (June 2008), pp. 2055–2068. ISSN: 09252312.
DOI: 10.1016/j.neucom.2007.10.020.

[5] QingXiang Wu, Rongtai Cai, T M McGinnity, Liam
Maguire, and Jim Harkin. “Remembering Key Features
of Visual Images Based on Spike Timing Dependent
Plasticity of Spiking Neurons”. In: Image and Signal
Processing, 2009. CISP ’09. 2nd International Congress
on 12311117 (Oct. 2009), pp. 1–5. DOI: 10.1109/CISP.
2009.5303978.

[6] QingXiang Wu, T Martin McGinnity, Liam Maguire,
G.D. Valderrama-Gonzalez, and Jianyong Cai. “Detec-
tion of Straight Lines Using a Spiking Neural Network
Model”. In: Fifth International Conference on Natural
Computation (2009), pp. 385–389. DOI: 10.1109/ICNC.
2009.484.

[7] QingXiang Wu, T. M. McGinnity, Liam Maguire, G. D.
Valderrama-Gonzalez, and Patrick Dempster. “Colour
Image Segmentation Based on a Spiking Neural Net-
work Model Inspired by the Visual System”. In: Ad-
vanced Intelligent Computing Theories and Applica-
tions. 2010, pp. 49–57. ISBN: 978-3-642-14921-4, 978-
3-642-14922-1. DOI: 10.1007/978-3-642-14922-1 7.

[8] Qingxiang Wu, T. Martin McGinnity, Liam Maguire,
Rongtai Cai, and Meigui Chen. “Simulation of Vi-
sual Attention Using Hierarchical Spiking Neural Net-
works”. In: International Conference on Intelligent
Computing. 2011, pp. 26–31. DOI: 10 . 1007 / 978 - 3 -
642-24553-4 5.

[9] QingXiang Wu, T.M. M. McGinnity, Liam Maguire,
Rongtai Cai, and Meigui Chen. “A visual attention
model based on hierarchical spiking neural networks”.
In: Neurocomputing 116 (Sept. 2013), pp. 3–12. ISSN:
09252312. DOI: 10.1016/j.neucom.2012.01.046.

[10] Dermot Kerr, T.M. M. McGinnity, Sonya Coleman,
and Marine Clogenson. “A biologically inspired spiking
model of visual processing for image feature detection”.
In: Neurocomputing 158 (2015), pp. 268–280. ISSN:
18728286. DOI: 10.1016/j.neucom.2015.01.011.

[11] Joel Zylberberg, Jason Timothy Murphy, and Michael
Robert DeWeese. “A sparse coding model with synap-
tically local plasticity and spiking neurons can account
for the diverse shapes of V1 simple cell receptive
fields”. In: PLoS Computational Biology 7.10 (2011).
ISSN: 1553734X. DOI: 10.1371/journal.pcbi.1002250.
arXiv: 1109.2239.

[12] Erkki Oja. “Simplified neuron model as a principal com-
ponent analyzer”. In: Journal of Mathematical Biology

15.3 (1982), pp. 267–273. ISSN: 0303-6812. DOI: 10.
1007/BF00275687.

[13] Amirhossein Tavanaei and Anthony S. Maida. “Bio-
Inspired Spiking Convolutional Neural Network using
Layer-wise Sparse Coding and STDP Learning”. In:
arXiv Pre-Print (2016). arXiv: 1611.03000. URL: http:
//arxiv.org/abs/1611.03000.

[14] Elmar Rueckert, David Kappel, Daniel Tanneberg, De-
jan Pecevski, and Jan Peters. “Recurrent Spiking Net-
works Solve Planning Tasks”. In: Scientific Reports
6.February (2016), pp. 1–10. ISSN: 20452322. DOI: 10.
1038/srep21142.

[15] Helga Kolb. “How the Retina Works”. In: American
Scientist 91 (2003), pp. 28 –34. URL: http : / / www.
americanscientist . org / issues / feature / how - the - retina -
works.

[16] H. Kolb, R. Nelson, E. Fernandez, and B. Jones. The
organization of the retina and visual system. Ed. by
H. Kolb, R. Nelson, E. Fernandez, and B. Jones. Web-
vision, 2018. URL: http://webvision.med.utah.edu/.

[17] R. Masland. “The Neuronal Organization of the Retina.”
In: Neuron 76(2).2 (2012), pp. 266–280. DOI: 0.1016/
j.neuron.2012.10.002.

[18] Jonathan B. Demb and Joshua H. Singer. “Functional
Circuitry of the Retina”. In: Annual Review of Vision
Science 1.1 (2015), pp. 263–289. DOI: 10 . 1146 /
annurev - vision - 082114 - 035334. eprint: https : / / doi .
org/10.1146/annurev-vision-082114-035334.

[19] Wulfram. Gerstner and Werner M. Kistler. Spiking Neu-
ron Models. Cambridge: Cambridge University Press,
2002, p. 496. ISBN: 9780511815706. DOI: 10 . 1017 /
CBO9780511815706. URL: http : / / ebooks . cambridge .
org/ref/id/CBO9780511815706.

[20] E.M. Izhikevich. “Which Model to Use for Cortical
Spiking Neurons?” In: IEEE Transactions on Neural
Networks 15.5 (Sept. 2004), pp. 1063–1070. ISSN:
1045-9227. DOI: 10 . 1109 / TNN . 2004 . 832719. URL:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1333071.

[21] Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, and
Liam P. Maguire. “DL-ReSuMe: A delay learning-based
remote supervised method for spiking neurons”. In:
IEEE Transactions on Neural Networks and Learning
Systems 26.12 (2015), pp. 3137–3149. ISSN: 21622388.
DOI: 10.1109/TNNLS.2015.2404938.

[22] Filip Ponulak and Andrzej Kasiski. “Supervised Learn-
ing in Spiking Neural Networks with ReSuMe: Se-
quence Learning, Classification, and Spike Shifting”.
In: Neural Computation 22.2 (2010). PMID: 19842989,
pp. 467–510. DOI: 10.1162/neco.2009.11-08-901.

[23] Agnan Kessy, Alex Lewin, and Korbinian Strimmer.
“Optimal whitening and decorrelation”. In: ArXiv Pre-
Print December 2015 (2015), pp. 1–14. ISSN: 0003-
1305. DOI: 10.1080/00031305.2016.1277159. arXiv:
1512.00809.


