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Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and
EEG data is no exemption. Intracranial EEG data enhances the training of deep learning models of the
human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative
is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG
data often impedes the learning process of neural models, achieving substandard performance. Here,
an ensemble deep learning architecture for non-linearly mapping scalp to intracranial EEG data is
proposed. The proposed architecture exploits the information from a limited number of joint scalp-
intracranial recording to establish a novel methodology for detecting the epileptic discharges from the
scalp EEG of a general population of subjects. Statistical tests and qualitative analysis have revealed
that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This
facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As
a real world clinical application, these pseudo-intracranial EEG are then used by a convolutional neural
network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials
in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability
of intracranial EEG and the limitations of scalp EEG, we have achieved a classification accuracy of 64%;
an increase of 6% over the previously proposed linear regression mapping.
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1. Introduction

EEG is a brain recording modality that captures the

electric activity of the brain1. Those electric fields

are traditionally measured by scalp electroencephalo-

gram (sEEG) offering a cheap and non-invasive

method at the cost of low signal to noise ratio (SNR).

sEEG has found a number of applications including

brain-computer interface2 (BCI) and epilepsy detec-

tion3,4. For clinical and rehabilitation applications,

intracranial EEG (iEEG) is a better alternative in

many fields5,6, since the effects of background activ-

ities, attenuation, and blurring/delay are less promi-

nent than in the sEEG1.

Data is often tainted with different kinds of

noise, depending on the equipment used to capture

it and other external factors. In the context of sEEG

data, subjects differ in terms of noise due to vari-

ations in neural generation mechanisms originating

in the brain cortex that depend on age, gender and

medical condition. These factors are often referred to

as background EEG and make independent subject

monitoring a difficult task. In fact, it has been shown

that some intracranial epileptic discharges (IEDs)

generated by deep structures may not be visible on

the scalp because of the relatively high attenuation of

electrical fields due to distance from the source and

high attenuation by the skull, essentially masking

them beneath the noise floor7,8. An example of at-

tenuation of IED, captured by Foramen Ovale (FO)

electrodes, evident in the sEEG is shown in Fig. 1.

Such attenuation of IED makes it hard for the clin-

ician and the data analyst to label periods of EEG

data as IED and non-IED. IED detection techniques

have been developed for scalp9,10 or intracranial11,12

EEG separately, but no joint modalities have been

exploited. To address this shortcoming in the litera-

ture, we aim to recover iEEG from sEEG by approx-

imating the mapping between these two modalities.

To this end, we introduce a non-linear approach to

map the scalp signals to their corresponding intracra-

nial activations. Such mapping has been considered

before, however, these preliminary findings may not

have captured the complexity of the EEG data. For

instance, Kaur et al14 investigated the linear map-

ping of non-epileptic sEEG responses to the concur-

rent iEEG via a regression model and subsequently

classified through an iEEG classifier. Another work15

explored dictionary learning that mapped scalp to in-

tracranial EEG in a within-subject paradigm. These

works provided valuable first insights into the prob-

lem of mapping scalp to intracranial EEG, yet the

techniques were modeled based on a single layer of

machine learning, even though the data may be too

complex to be learned by such a simple model. On

the other hand, deep learning of neural networks has

shown that the complexity of the data can be bro-

ken down into several lower complexity data through

many layers; each of those layers are trained one at a

time16. For instance, in image processing, the neural

network learns rudimentary features such as edges

in the first layers, while more complex shapes are

learned in deeper layers17. Therefore, deep learning

is considered for the mapping of sEEG to iEEG to

introduce non-linearity and break down the learn-

ing process into multiple stages, each performed by

a layer.
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Figure 1. Average amplitudes for scalp and intracranial
IEDs13 from a subject for segments indicated as visible-
scalp (left) and non-visible scalp (right) IEDs. Note the
scale difference of the two modalities. The labeling of the
intracranial electrodes is indicated as R1 to R6 and L1
to L6 from the deepest to the most superficial right and
left side FO respectively.
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Deep learning is a hot topic in image pro-

cessing, yet it is only starting to emerge in

EEG processing. Applications of deep learn-

ing in biomedicine include the diagnosis

of Alzheimers18 and Creutzfeldt-Jakob dis-

eases19. Convolutional neural networks (CNNs)

have been applied for EEG-based decoding of move-

ment related information20, P300 detection for

BCI21 and seizure detection22. Another example of

deep learning in EEG processing was to shed light

on the black box nature of neural networks; to make

sense of machine learning, it was shown that the

learning coefficients of a CNN can converge to the

morphology of events of interest in EEG such as the

interictal epileptiform discharges23.

Deep learning models rely heavily on large vol-

ume of data to train. However, EEG datasets rarely

contain an adequate number of subjects, which

makes it impossible for deep learning to generalize

the models in subject independent studies. To ad-

dress this common shortcoming in EEG datasets, we

consider mapping several pseudo-versions of the in-

tracranial EEG data with the aid of noise. A number

of articles suggest that incorporating noise in ma-

chine learning algorithms can enhance their robust-

ness, especially in the area of image recognition24–26.

It is in this spirit that we propose a novel mapping

algorithm for estimating not one but several pseudo-

versions of the iEEG for training purposes.

Our approach exploits the unsupervised training

capability of autoencoders in a subject independent

fashion. Each model learned by each autoencoder, es-

timates the scalp to intracranial EEG mappings of a

specific subject and then creates a new version of the

entire dataset based on this mapping. This enables

diversity in the data which consolidates the statisti-

cal learning of neural networks. To take advantage

of the temporal characteristics of the data, a CNN

learner is trained to classify each trial of the newly

generated datasets as IED and non-IED. After the

training is complete, the model closest to that of the

patient of interest (unseen test subject) is used to

estimate its pseudo-intracranial EEG, which is then

classified as IED or non-IED.

As a real world application, this study suggests

an unsupervised mapping of sEEG to iEEG in order

to improve the SNR and aid clinicians in the iden-

tification of IEDs contained in EEG trials. Such a

tool has the potential of limiting the amount of raw

EEG recordings, which an expert has to examine in

order to distinguish and label such waveforms. Ad-

ditionally, the use of deep CNNs enables automatic

generation of features that can benefit the training

of classifiers.

This paper is structured as follows: the problem

of mapping scalp to intracranial EEG data is formu-

lated in Section 2, the deep learning models used are

introduced in Sections 3, 4 and 5, the proposed deep

architecture for mapping and classifying the scalp

data is presented in Section 6, and the experiments

are listed in Section 7. Section 8 concludes our work

on the mapping and classification of sEEG.

2. Problem Formulation

The problem of mapping scalp to intracranial EEG

can be posed as a source separation problem. Con-

sider the sEEG signals x(n), where each observed sig-

nal is comprised of a number of unobservable source

signals (i.e intracranial EEG) s(n), and their rela-

tionship can be modeled as

xN (n) = HNsN (n) (1)

where H and the subscript ‘N ’ denote the unavail-

able mapping matrix model of size (τ × m) to be

estimated and the Nth subject respectively. In the

context of our problem, τ > m, as the number of

sEEG channels exceeds the number of intracranial

EEG channels. The scalp data is treated as a noisy

version of the intracranial data and the goal here is

to “reduce” the noise by estimating the iEEG from

the sEEG. Moreover, the patient of interest whose

brain mapping and iEEG are unknown, is always

considered to be the last subject in a population of N

subjects. The problem is twofold. First, the inverse

of mapping model HN (i.e. WN ) needs to be es-

timated to reconstruct the intracranial EEG sN (n).

Second, the estimated intracranial EEG ŝN (n) needs

to be labeled as either IED or non IED, which can

be expressed as

PN = g(̂sN (n)) (2)

where PN is the classification accuracy for subject

N , g() is the function implemented by a classifier

and ŝN (n) is the estimated pseudo-iEEG generated

by the mapping model.

In contrast to blind source separation, here we do

not need to make assumptions that may not be real-

istic in practice. For example, the statistical indepen-
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Figure 2. Topology of the Asymmetric-Symmetric Autoencoder (ASAE). x is the sEEG, y1 is the hidden layer of the
Asymmetric Auto-Encoder (AAE), z1, z2 are the estimated sources of iEEG, y2 is the hidden layer of the Autoencoder
(AE), We and Wd are the weights of the AAE and W are the tied weights of the AE.

dence of the sources may not be an accurate assump-

tion, since they may be correlated due to connectiv-

ity within the brain27. Instead, we leverage the EEG

datasets of the other N − 1 subjects to approximate

the inverse human brain mapping W, where both the

sEEG x(n) and iEEG s(n) are available. Thus, the

inverse mapping W is more straightforward for each

of these N − 1 subjects than that of the Nth pa-

tient. Deep learning of neural networks is exploited

in two ways. First, autoencoders are modeled to ad-

dress the estimation problem in Eq. (1), which was

not previously considered in our works13,23,34. Sec-

ond, the classification problem Eq. (2) of intracranial

EEG is solved by CNNs, whose filters have been de-

signed and optimized for characterizing intracranial

epileptic discharges.

3. Autoencoders

Autoencoders (AEs), shown in Fig. 2, enable neural

networks to train layer by layer in an unsupervised

manner. This layer by layer training allows the neural

network to break down virtually the complex learn-

ing process into simpler and more efficient learning

processes across different layers. In other words, the

training process in AEs is achieved by greedy layer-

wise training of multiple layer learning processes,

rather than learning from traditional backpropaga-

tion in neural networks. As a result, the layers are

trained one by one using stochastic gradient descent

to minimize the error between the input and the out-

put. When the layers are trained, they are combined

as shown in Fig. 2. The unsupervised learning of au-

toencoders is next explained in the context of IEDs.

As illustrated in the right hand side of Fig. 2, the

number of (green) input neurons matches the num-

ber of (green) output neurons in AEs.

For compact representation of the data, an AE

“encodes” an input x(n) by mapping into a smaller

number of neurons y(n) in the hidden layer of the

neural network, such that:

y(n) = φ(WTx(n) + b) (3)

where φ(·) is the so-called activation function which

models the nonlinear mapping, W is the weight ma-

trix, b denotes the activation bias, and (.)T is the

transpose operator. To verify that the encoded com-

pact representation y(n) is optimal, y(n) is decoded

(estimated) into the input x(n) in the form of z(n):

z(n) = φ(Wy(n) + b) (4)

Observe that the training does not require any

output target; instead, the output y(n) is mapped

back into the input x(n). This is why it is common

to consider the learning process of AEs as unsuper-

vised. To reduce the number of free parameters, the

weight matrix W used in the encoding, see Eq. (3),

is reused in the decoding Eq. (4); this process is of-

ten referred to as tied weights and has the effect of

reducing the number of parameters during training.
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4. Asymmetric Autoencoders

As the dimensionalities of iEEG sj(n) and sEEG

xj(n) are likely to differ, we consider the asymmetric

autoencoder (AAE) to determine the mapping from

xj(n) to sj(n). Unlike AEs, which are symmetric,

asymmetric structures require two weight matrices

of different dimensions We and Wd for the encod-

ing and decoding operations respectively, which can

be expressed as:

y(n) = φ(Wex(n) + b) (5)

z(n) = φ(Wdy(n) + b) (6)

where x is the observed signal (sEEG) and z is the

estimated source (iEEG) signal. Compared to AEs,

the optimization for asymmetric AEs is more chal-

lenging, as it requires two sets of weights {We,Wd}
to be optimized at each layer instead of one. For such

optimization, we have considered the cross-entropy

of the reconstruction as the error function.

L(s(n), z(n)) =

−
d∑

k=1

[sk(n) log zk(n) + (1− sk(n)) log(1− zk(n))]

(7)

where d is the dimensionality of z(n) and s(n), and

log(.) is the logarithm function.

Fig. 2 shows the proposed topology of AEs to

map the sEEG onto iEEG. The first stage (left-hand

side) is comprised of the asymmetric AE which maps

the dimensionality of the sEEG to that of the iEEG.

It takes the sEEG, x, as the input and produces the

iEEG estimate of a trial in its output. In the sec-

ond stage (right-hand side), an AE enhances the es-

timated pseudo-iEEG. This is performed using the

pseudo-iEEG estimated by the asymmetric AE, and

mapping it to the true iEEG to increase the quality

of the estimation. In short, the ASAE architecture

takes as input the sEEG, x, of a subject and outputs

the estimated iEEG, z2, for each trial. To address

the estimation problem in Eq. (1), the topology of the

neural network considered in Fig. 2 is adequate, how-

ever AEs only exploit cross-channel information and

cannot capture ‘local’ temporal information within

each channel. This property is crucial in the classifi-

cation of EEG data, since the detection of temporal

and morphological bio-markers such as IEDs can as-

sist in the classification process. To this end, CNNs

are considered for the classification of the pseudo-

intracranial EEG described in Eq. (2), as explained

in the next section.

5. Convolutional Neural Networks

Based on the human visual cortex, a CNN has en-

hanced modeling capability over a traditional neural

network, since it can exploit filters that can learn

hierarchical representations of the data. To achieve

this, the input space is first convolved by each of

those filters, then passed through a non-linear func-

tion to create a feature map. This feature map rep-

resents the useful information in the data. In terms

of operation, the oth filtering and nonlinear process

at layer l can be expressed as:

Zl
i,j,o = φ(

C∑
c=1

L∑
k=1

(Fl
[i,j,o]Z

l−1
[i+c−1,j+k−1]) + bl) (8)

where L is the filter length, C is the number of chan-

nels, Fl
o is the oth filter at layer l, Zl−1 is a feature

map at layer l− 1 after applying the hyperbolic tan-

gent non-linear function, j represents the jth channel

and bl is the activation bias for layer l.

CNNs have been used traditionally in image pro-

cessing, which required the filters to be two dimen-

sional. In our work, however, we are interested only in

channel-wide information. As such, one dimensional

filters are more appropriate to capture only the tem-

poral features. This circumvents the issue of channel

mixing. The one dimensional filter convolution has

been designed to process a multi-channel signal as:

Zl
i,j,o = φ(

Φl−1∑
g=1

L∑
k=1

Fl
j,oZ

l−1
[i,j+k,g] + bl) (9)

where j = {1, .., C}, o = {1, ..,Φl} and Φl is the

number of filters in the lth layer.

Following each convolutional layer, a pooling

layer is generally utilized to map a window of the

generated feature map to a scalar value. Pooling has

been proven to achieve invariance to transformation

and a more compact representation of images. Al-

though pooling has been proved to be beneficial to

deep learning for image processing, it has been found

to impede the training of CNNs with epileptic EEG

data34. This is due to loss of information regarding

IED morphology and as a result, pooling has been

omitted in this work.
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Figure 3. Visual comparison between our proposed method (left) and an ensemble model (right). In this scenario, con-
sider X2 to be more similar to X3 than X1. On the right side, both X1 and X2 are used to train the classifiers in order
to predict X3. Whereas, the left model only uses the estimator trained with X2 to generate the unknown signal S3. This
estimation (S23) is used to predict the classes of Y3.

6. The proposed deep neural network
for the classification of scalp EEG

For clarity, it is instructive to present our overall

proposed method over a numerical example shown

in Fig. 3. On its left hand side lies our proposed

deep neural architecture to classify sEEG, whereas

the right-hand side figure shows the state-of-the-art

ensemble29 model traditionally used for classification

tasks.

Ensemble learning relies upon several models

such as neural networks, support vector machines

and Bayesian techniques, which train independently

or collaboratively on the training data. In our ex-

ample, the models train on {x1, x2}. To predict

the label for x3, the ensemble either aggregates the

results of each model {y13,y23,y33} or selects the

best model during training to undertake the classi-

fication. This results in the predicted labels y3. To

our best knowledge, ensemble learning is the closest

methodology to our proposed approach.

In contrast to ensemble learning mod-

els, our approach first estimates hidden states

{s11, s12, s21, s22} which exhibit additional features;

these features may not always manifest in the data

{x1,x2}, yet provide further insights into the data

such as IED. The hidden states which are estimated

from autoencoders, are then used to train the CNN.

In the context of our work, sij = Wixj denotes

the estimated intracranial EEG of the jth subject

based on the model derived from the ith subject. To

classify the unlabeled test sEEG data of subject 3

(i.e. x3), only the model (from x2) closest to test

scalp data x3 is considered to estimate the corre-

sponding intracranial EEG data of the latter (i.e.

s23).

Algorithm 1 for EEG mapping and classification

t r a i n S e t =[ ]

t e s t S e t =[ ]

maxCorr=−1

I n i t i a l i z e AEs

f o r i = 1 : N − 1{
Train AEi with xi

f o r j = 1 : N − 1{
Generate sij = Wixj

Add sij to t r a i n S e t

}
Generate siN = WixN

Add siN to t e s t S e t

}

Train CNN with t r a i n S e t

f o r i = 1 : N − 1{
Compute ρ = corr(xN ,xi)

i f (ρ > maxCorr ){
maxCorr=ρ

t e s t S e t=siN
}

C l a s s i f y us ing CNN with t e s t S e t
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To determine the autoencoder model closest to

the test scalp data (such as x3), a simple correlation

analysis between the test scalp data and the train-

ing scalp data is carried out, since both datasets are

available. This simple yet crucial step leads to en-

hanced estimation of the intracranial EEG of the

test data, as demonstrated experimentally in Sec-

tion 7.1 and analytically in Appendix 1. Our pro-

posed methodology for the mapping and classifica-

tion of sEEG is summarized in Algorithm 1, where

corr(xN ,xi) denotes the Pearson correlation coeffi-

cient function between xN and xi.

7. Experiments

The proposed and competing models were built us-

ing the python open-source framework Theano30 and

run on a GTX 980ti.

7.1. Simulations using synthetic
signals

The objective of this experiment is to demonstrate

that the model trained with the signal closest to the

signal of interest (test signal) achieves the highest

accuracy. To this end, we consider a classification

problem of synthetic signals, which are defined as

follows:

x1(n) = sin(n− π

4
) + ε(n)

x2(n) = sin(n) + ε(n)

x3(n) =
1

2
− tan−1[cot(

n

2π
)] + ε(n) (10)

x4(n) = sin[φ0 + 2π(f0n+
k

2
n2)] + ε(n)

x5(n) = sin[φ0 + 2π(f0(n− π

4
) +

k

2
(n− π

4
)
2
)] + ε(n)

where ε is some random white Gaussian noise with

zero mean and standard deviation=1, x1(n) and

x2(n) are sinusoidal functions, x3(n) is a sawtooth

function, and x4(n) and x5(n) are chirp signals. For

x4(n) and x5(n) the instantaneous frequency f0 is

0.1 and the initial phase φ0 is 0.

Recall that the aim of this experiment is to show

that the model trained with the signal closest to

the (test) signal of interest attains the highest ac-

curacy. To this end, consider x5(n) as the training

data, and the problem is to classify the remaining

signals {x1(n), x2(n), x3(n), x4(n)}.

A comprehensive set of simulations were carried

out over a range of SNR and the results are summa-

rized in Fig. 4. It is clear from Eq. (10) that x5(n) is

most similar to x4(n), and most dissimilar to x3(n).

This is why the model provided the highest classifica-

tion accuracy for x4(n) whereas the lowest accuracy

was obtained for the classification of x3(n). For rigor,

we also show analytically in Appendix 1 why a model

trained with data closest to the data of interest pro-

vides superior performance. Now that the rationale

underlying Algorithm 1 for mapping and classifica-

tion of sEEG has been established, we proceed with

assessing the efficacy of our proposed method (shown

in Fig. 3) in a real-world application: detection of in-

tracranial epileptic discharges from sEEG.

7.2. Detection of IEDs from scalp EEG

7.2.1. Dataset

The datasets of the epileptic subjects13 are summa-

rized in Table 1, which includes a total of 18 subjects;

11 males and 7 females. A number of trials were ex-

amined for each subject to allow for a dataset large

enough to have statistical significance. Each subject

was assessed for temporal lobe epilepsy using 12 FO

and 20 scalp electrodes at King’s College Hospital

London. Each trial lasted 325ms and was digitized

at 200Hz. As the number of electrodes and therefore

the channels, differed between scalp and intracranial

recordings, each trial resulted in a dataframe of size

[time(325) × frequency (0.2) × No. of channels].

In essence, the data for each subject had a size of

[1300× No. of trials] for the sEEG and [780× No. of

trials] for the iEEG.

Table 1. Summary of scored data.

Subject No. of trials Subject No. of trials

S1 684 S10 448
S2 100 S11 1696
S3 144 S12 1906
S4 330 S13 1658
S5 316 S14 1082
S6 944 S15 520
S7 398 S16 1212
S8 634 S17 228
S9 682 S18 236

The data was scored by an expert epileptologist into

the IED positive and non-IED classes. Examining
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Figure 5. Waveform difference in IED segments for two subjects.

Fig. 5 and Fig. 6, observe the variability between sub-

jects in terms of the IED and non-IED trials respec-

tively. The vast variations in the waveforms make the

accurate detection of IEDs from EEG data a chal-

lenging machine learning problem.

7.2.2. Experimental Setup

To address this high degree of variability, we adopted

the leave-subject-out method; our proposed deep

AEs were trained using the data from 17 subjects

to map the sEEG to iEEG for each, using the sEEG

as the input and the iEEG as the target. Each of

the 17 autoencoders (AAE and ASAE) was used

to create an estimation of each of the other sub-

jects’ intracranial data. To enable this, the autoen-

coders were trained using the sEEG and iEEG of

the 17 subjects, one subject per AE. The estimated

pseudo-iEEG were used as input to the CNN and

were divided into two proportional sets, validation

and training. To generate the test data the sEEG

of the 18th subject (test subject) was used. The

cross correlations between the test subject’s sEEG

and the other 17 subjects were computed. The AE

trained with the subject that had the highest corre-

lation to the test subject was used to estimate the

test pseudo-iEEG. Finally, the pseudo-iEEG of the

test subject was passed as input to the CNN for fea-

ture extraction and classification. For completeness,

we have also performed within-subject experiments

where only half the data of a subject was used as the

training set and the remaining half was used as the
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Figure 6. Waveform difference in normal brain activity (non-IED) segments for two subjects.

testing set.

7.2.3. Competing models

A number of models have been proposed for the

analysis of EEG data for epilepsy. These include

continuous wavelet transform31, chirplet transform32

and time domain data. In a recent work by Spyrou

et al.13, it was discovered that time-frequency (TF)

features were superior to the above methods in this

dataset. As a result, the TF features13 were consid-

ered as the state-of-the-art. Additionally, the linear

mapping proposed by Kaur et. al14 is used as it con-

sidered a similar mapping to the proposed methodol-

ogy. Finally, a benchmark AE model was considered

as a third comparison to the proposed models. The

three competing methodologies compared against

the proposed asymmetric autoencoder (AAE) and

asymmetric symmetric autoencoder (ASAE) are as

follows:

• TF: A recent TF approach13 for feature extraction

from the sEEG data and a logistic regression classi-

fier.

• Linear Regression: A linear regression model for

mapping sEEG to iEEG and a classifier trained with

stepwise discriminant analysis14.

• AE: A benchmark deep learning AE28 for feature

extraction from the sEEG data and a logistic regres-

sion classifier.

For fair comparisons, the AE models were set approx-

imately to the same number of parameters shown in

Table 2. All models trained on the same dataset. The

input neurons of the AEs reflect the dimensionality

of the sEEG data, which were recorded with 20 elec-

trodes, as described in Section 7.2.1. The activations

of the AAE and ASAE were passed to a CNN for

feature extraction. All 5 models were followed by a

logistic regressor with the cross-entropy loss func-

tion in Eq. (7) and trained with stochastic gradient

descent. For the CNN model, the same archi-

tecture and training procedure were used as

in our previous work34. The input layer of the

CNN consisted of 780 neurons, as this reflected the

dimensionality of the iEEG and pseudo-iEEG data as

discussed in Section 7.2.1. After initial experimenta-

tion and finetuning of parameters, the optimal CNN

had 4 convolutional layers, a fully connected hidden

layer, and a softmax layer for the classification. For

the convolutional layers, the first filter size was set

to 32 (160ms) since this duration was adequate to

capture the main part of IED waveforms. The filters

for the following convolutional layer were gradually

reduced to capture finer details of the IEDs33.

7.2.4. Results and Discussions

Fig. 7 shows the estimated iEEG (second and third

row) mapped from sEEG (first row). It is clear that
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Table 2. Training parameters for Autoencoders

Parameter AE AAE ASAE

Input neurons 1300 1300 1300
Hidden layers 5 1 2
Hidden neurons 1500, 780, 500, 100, 50 1500 1500, 500
Activation function Hyberbolic tangent Hyberbolic tangent Hyberbolic tangent

Network parameters 4.06 × 106 3.12 × 106 3.90 × 106

Output features 50 780 780
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Figure 7. Estimation of iEEG for two IED segments and a non-IED segment (averaged over all channels) using AAE
and ASAE. In the case of ASAE, the additional symmetric layer led to a smoother estimation of the intracranial data.
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the proposed ASAE provided better estimates than

those by the proposed AAE. The deeper learning

architecture of ASAE led to this superior mapping

performance, indicating that ASAE is likely to have

better classification accuracy than AAE. Table 3 con-

firms that it is indeed the case, and also compares

against recent competing techniques13,28. As Fig. 7

offers a qualitative assessment of the mapping, we

have provided a more quantitative measure of suc-

cess through testing the no correlation hypothesis

for all the subjects, see Table 5. For testing the

statistical significance between the different meth-

ods, we used the binomial confidence interval. In

order to assess for significant differences between the

two methods, we calculated the confidence interval

for one and checked whether the accuracy of the
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Table 3. Classification accuracy per subject for different approaches.

Subject AE28 Linear Regression14 TF13 AAE-CNN ASAE-CNN

1 56 (60) 65 (72) 71 (78) 85 (80) 87 (78)
2 67 (70) 86 (81) 81 (75) 92 (82) 94 (88)
3 58 (67) 65 (69) 68 (75) 72 (72) 69 (82)
4 55 (58) 58 (62) 58 (65) 58 (71) 59 (77)
5 56 (56) 55 (55) 57 (57) 64 (64) 65 (75)
6 57 (57) 61 (59) 73 (75) 71 (60) 71 (63)
7 54 (56) 59 (64) 60 (64) 54 (62) 67 (72)
8 57 (57) 55 (66) 58 (64) 55 (62) 57 (68)
9 54 (63) 63 (65) 70 (72) 61 (74) 62 (68)
10 52 (63) 66 (70) 75 (78) 71 (65) 74 (77)
11 55 (54) 63 (64) 61 (63) 65 (67) 65 (68)
12 69 (77) 73 (79) 67 (71) 75 (84) 77 (84)
13 55 (58) 62 (71) 66 (72) 62 (72) 64 (71)
14 55 (55) 59 (62) 62 (65) 66 (71) 67 (65)
15 52 (50) 50 (46) 44 (54) 50 (53) 50 (52)
16 66 (64) 51 (55) 61 (62) 67 (77) 68 (72)
17 56 (67) 54 (62) 66 (74) 59 (54) 62 (71)
18 66 (64) 66 (64) 57 (50) 61 (53) 67 (75)

Mean 58 (61) 62 (65) 65 (67) 66 (68) 68 (73)

The accuracy of the leave-subject-out method in terms of classifying the IED and non-IED segments. The

numbers in brackets denote the within-subject accuracy.

second method exceeds that interval. These confi-

dence intervals indicate the range of classification

accuracies that can arise by chance (within a 95%

condifence level). In the case of Linear Regression

and ASAE-CNN, the subject independent perfor-

mance exceeded the confidence interval for all the

subjects except S8, S15 and S18. For the comparison

between TF and ASAE-CNN, the subjects whose

performances did not exceed the confidence interval

were S3, S4, S9, S11 and S17. The following remarks

can be made with respect to the results.

#Remark 1: The deep learning AE performed the

worst out of all competing models. This can be at-

tributed to the fact that unlike the other com-

peting models, the AE was used for feature

extraction from sEEG. Deep learning techniques

can be used in many areas and have exceeded the

state-of-the-art in many applications. To this end,

the particularities of the data need to be taken into

account. In this work, the consideration of asymmet-

ric AEs and 1-d CNNs for feature extraction was a

crucial factor for the improved performance.

#Remark 2: The highest accuracy increase was

observed in within-subject experiments as expected,

where the proposed ASAE method outperformed

those trained with TF and AAE features by 6% and

5% respectively.

#Remark 3: For subjects 1 and 2, the within-

subject accuracy is worse than the subject inde-

pendent accuracy. This means that training on data

from other subjects has benefited our proposed mod-

els more than training on their own data.

#Remark 4: The ROC curves in Fig. 9 re-affirms

the improved accuracy of our proposed ASAE. Ta-

ble 3 indicated that TF and the proposed AAE had

almost identical performances, yet Fig. 9 demon-

strates the superior performance of the proposed

AAE method due to the more in depth analysis en-

tailed by the ROC.

#Remark 5: For rigor, a statistical analysis for

the performance of each method is also provided

in Table 4. Observe that the ASAE-CNN approach

has superior performance in terms of True Positives,

confirming that the additional non-linear layer is

beneficial to detecting IEDs, as suggested by Fig. 7.

#Remark 6: The hypothesis of no correlation was
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tested between the estimated pseudo-iEEG and the

true iEEG as a statistical verification. The results

showed that the no correlation hypothesis was re-

jected for all the subjects as shown in Table 5.

This further confirms that the estimated pseudo-

intracranial had high fidelity with the true iEEG

data.

#Remark 7: Although both AAE-CNN and ASAE-

CNN architectures have outperformed the compet-

ing models, the computational complexity involved

in training such deep networks must be considered.

As opposed to the TF features and linear regres-

sion, deep learning models are time-consuming to

train. Even with the use of high end graphics cards,

the time required to train such models cannot be

emphasized enough. Even so, after a deep model is

trained, predictions on unseen data can be done ap-

proximately in real-time.
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Figure 9. ROC curves for the competing methods: Ar-
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8. Conclusion

Deep learning can benefit clinical neuroscience

through automatic feature generation and improved

classification accuracy, given enough computational

processing power. In this work, we have proposed an

ensemble deep learning architecture for non-linearly

mapping scalp to iEEG. In order to accurately detect

epileptic discharges from sEEG of a subject, we have

leveraged the iEEG information of other subjects. To

this end, asymmetric autoencoders have been intro-

duced and used to map the sEEG to the iEEG and

circumvent the issue of dimensionality difference.

The proposed methodology offers a novel way to

estimate iEEG, taking a step towards circumventing

the need to undertake invasive surgical intervention.

To enable the deep architecture to better estimate

the iEEG of an unseen subject, we have used the

mapping model trained on the subject with the high-

est correlated sEEG data to the test subject. Using

the estimated iEEG data from this model, our clas-

sifiers were able to outperform the state-of-the-art in

classification accuracy. For statistical rigor, the esti-

mated pseudo-intracranial EEG were compared with

the true iEEG and were found comparable as the ‘no

correlation’ hypothesis was rejected.

Future work includes the use of deep subdural

electrodes as an alternative source of iEEG data as

well as deeper computational models to enhance the

mapping performance of the proposed architecture.

Additionally, extending the study group to subjects

with epileptic focus on extratemporal locations could

help generalize the proposed approach.

Appendix A

The aim is to provide a sketch demonstration that

the estimate of source sN (n) based on a model

trained on data xj(n) is the best estimate, given that

the expectation E{sN (n)sj(n)} > E{sN (n)si(n)},
where i 6= j 6= N .

Consider two uncorrelated variables s1(n), s2(n)

such that E{s1(n)s2(n)} = 0. These can be used to

generate a generic sk(n) signal such that:

sk(n) = ρs1(n) + s2(n)
√

1− ρ2 (A.1)

for 0 ≤ ρ ≤ 1. Consider sN (n) = s1(n), which is the

unknown source of its noisy version xN (n) and sub-

stitute Eq. (A.1) to derive the correlation between

sN (n) and an arbitrary sk(n) as:

E{sN (n)sk(n)} = E{s1(n)[ρs1 + s2(n)
√

1− ρ2]}

= E{sN (n)[ρsN (n) + s2(n)
√

1− ρ2]}
(A.2)

To model a non-correlated and a correlated signal to

sN (n) we can adapt ρ in Eq. (A.2) to have:

ρ = 0 =⇒ si(n) = sk(n) = s2(n)

=⇒ E{sN (n)si(n)} = 0

ρ = 1 =⇒ sj(n) = sk(n) = sN (n)

=⇒ E{sN (n)sj(n)) = E{s2
N (n)}

(A.3)



January 6, 2018 18:26 manuscript

Deep neural architectures for mapping scalp to intracranial EEG 13

Table 4. Statistical results for different approaches.

Method TP FP FN TN Precision Sensitivity f-measure Specificity

AE 7745 5473 6123 7095 0.59 0.56 0.57 0.56
Linear Regression 7553 5665 4897 8321 0.57 0.61 0.59 0.59
TF 8214 5004 4456 8762 0.62 0.65 0.63 0.64
AAE-CNN 8369 4849 4273 8945 0.63 0.66 0.65 0.65
ASAE-CNN 9246 3972 4591 8627 0.70 0.67 0.68 0.68

Table 5. Statistical test of no correlation between estimated pseudo-in-
tracranial EEG and true iEEG for subjects.

Subject p-value No Correlation Hypothesis
(confidence threshold 95%)

1 0.0216 Rejected
2 0.0297 Rejected
3 0.0491 Rejected
4 0.0472 Rejected
5 0.0383 Rejected
6 0.0175 Rejected
7 0.0283 Rejected
8 0.0190 Rejected
9 0.0241 Rejected
10 0.0308 Rejected
11 0.0107 Rejected
12 0.0198 Rejected
13 0.0102 Rejected
14 0.0104 Rejected
15 0.0183 Rejected
16 0.0178 Rejected
17 0.0447 Rejected
18 0.0256 Rejected

Clearly, when ρ = 1 the expectation is maximized.

Additionally, when ρ = 1 we have:

sN (n) = sj(n) = Wjxj(n) = WNxN (n) (A.4)

=⇒

E{sN (n)} = WNE{xN (n)} (A.5)

=⇒

E{sN (n)sj(n)} = WNE{xN (n)xj(n)}Wj

= WNE{xN (n)xN (n)}WN

(A.6)

Therefore we have:

ρ→ 0 =⇒ si(n)→ s2(n)

=⇒ xN (n) 6→ xi(n),WN 6→Wi

ρ→ 1 =⇒ sj(n)→ sN (n)

=⇒ xN (n)→ xj(n),WN →Wj

(A.7)

Based on Eq. (2), we assume that the highest achiev-

able accuracy is PN . We need to show that:

|PN − Pj | < |PN − Pi| (A.8)

First, we expand PN , Pj and Pi using Eq. (2):

PN = g(WNxN (n))

Pj = g(Wjxj(n))

Pi = g(Wixi(n))

(A.9)

Second, we substitute Eq. (A.9) in Eq. (A.8) to ob-

tain:

|g([WN−Wj ]xN (n))| < |g([WNxN (n)−Wixi(n)])|
(A.10)

Therefore, as ρ→ 1, xN − xj → 0, WN −Wj → 0.

As a result, the absolute difference in performance

between the optimal PN and Pj is smaller than any

other Pi.

If the expectation of xN (n) and xj(n) is higher than
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the expectation of xN (n) and any other xj(n):

E{xN (n)xj(n)} > E{xN (n)xi(n)} (A.11)

then as ρ→ 1 and Pj → PN we have:

xj(n)→ xN (n)

Wj →WN

}
=⇒ |Pj − PN | < |Pi − PN |

(A.12)

This shows that if the two signals xN (n) and xj(n)

are more correlated than xN (n) and xi(n), then the

estimated unknown source ŝNj(n) is closer to sN (n)

than sNi(n). As a result, the classification accuracy

Pj is higher than Pi.
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