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Introduction

 

Telomeres, the TTAGGG tandem repeats at the ends of mam-
malian chromosomes, undergo attrition with each division of
somatic cells in culture, and hence their length is an indicator
of the replicative potential of these cells [1]. The inability of
DNA polymerases to replicate a linear DNA molecule to its
very end [2] and the action of a strand-specific exonuclease [3]
are believed to contribute to the shortening of telomeres.
Increased oxygen tension has also been shown to accelerate

telomere shortening in replicating fibroblasts 

 

in vitro

 

 [4].
Telomeric DNA sequences appear to be particularly prone
to chromosomal breakage [5], and their GGG-triplets are a
major target for reactive oxygen species [6–8].

Recent studies have demonstrated that telomere shortening
is related to various pathological conditions including athero-
sclerosis [9–12]. Jeanclos 

 

et al

 

. [13] established an association
between telomere shortening in white blood cells (WBCs) and
Type 1, but not in Type 2, diabetic patients of European origin.
Asian Indian Type 2 diabetic patients differ from Europeans in
several aspects: the onset of diabetes occurs at a younger age
[14], and there is a greater degree of hyperinsulinaemia [15]
and insulin resistance [16]. In addition they have very high
prevalence rates of premature coronary artery disease [17,18].
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Abstract

 

Aim

 

Telomere shortening has been reported in several diseases including athero-
sclerosis and Type 1 diabetes. Asian Indians have an increased predilection for
Type 2 diabetes and premature coronary artery disease. The aim of this study was
to determine whether telomeric shortening occurs in Asian Indian Type 2 diabetic
patients.

 

Methods

 

Using Southern-blot analysis we determined mean terminal restriction
fragment (TRF) length, a measure of average telomere size, in leucocyte DNA.
Type 2 diabetic patients without any diabetes-related complications (

 

n

 

 = 40)
and age- and sex-matched control non-diabetic subjects (

 

n

 

 = 40) were selected
from the Chennai Urban Rural Epidemiology Study (CURES). Plasma level of
malondialdehyde (MDA), a marker of lipid peroxidation, was measured by
TBARS (thiobarbituric acid reactive substances) using a fluorescence method.

 

Results

 

Mean (

 

±

 

 SE) TRF lengths of the Type 2 diabetic patients (6.01 

 

±

 

 0.2 kb)
were significantly shorter than those of the control subjects (9.11 

 

±

 

 0.6 kb) (

 

P =

 

0.0001). Among the biochemical parameters, only levels of TBARS showed a
negative correlation with shortened telomeres in the diabetic subjects (

 

r =

 

 

 

−

 

0.36;

 

P =

 

 0.02). However, telomere lengths were negatively correlated with insulin
resistance (HOMA-IR) (

 

r =

 

 

 

−

 

0.4; 

 

P =

 

 0.01) and age (

 

r =

 

 

 

−

 

0.3; 

 

P =

 

 0.058) and
positively correlated with HDL levels (

 

r =

 

 0.4; 

 

P =

 

 0.01) in the control subjects.
Multiple linear regression (MLR) analysis revealed diabetes to be significantly
(

 

P <

 

 0.0001) associated with shortening of TRF lengths.

 

Conclusions

 

Telomere shortening occurs in Asian Indian Type 2 diabetic patients.
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In this paper we report that telomere lengths are shortened in
urban southern Indian Type 2 diabetic patients. This is the first
report, to our knowledge, of telomere shortening in Type 2 diabetes.

 

Subjects and methods

 

Sample selection

 

The Chennai Urban Rural Epidemiology Study (CURES) is an
ongoing epidemiological study conducted on a representative
population of Chennai (formerly Madras), the fourth largest
city in India with a population of approximately 4.2 million.
The methodology of the study has been published elsewhere
[19,20]. Briefly, in Phase 1 of the urban component of CURES,
26 001 individuals were recruited based on a systematic ran-
dom sampling technique. Self-reported diabetic subjects were
classified as ‘known diabetic subjects’.

In Phase 2 of CURES, all known diabetic subjects (

 

n

 

 = 1529)
were invited to our centre for detailed studies on vascular com-
plications. In addition, age- and sex-matched non-diabetic
subjects underwent oral glucose tolerance tests (OGTT) using
75 g of glucose load. Those who were confirmed by OGTT to
have fasting venous plasma glucose < 6.1 mmol/ l and a 2-h
plasma glucose value < 7.8 mmol/ l were categorized as normal
glucose tolerance (NGT). For the present study we randomly
selected 40 diabetic subjects without any complications (using
computer-generated random numbers) and 40 age- and sex-
matched subjects with NGT. The study had a power of 80% to
detect a statistically significant (

 

P =

 

 0.05) difference of 2.0 kb in
TRF between the two study groups.

Physical examination included height, weight, waist and hip
measurements using standardized techniques. Blood pressure
was recorded in the right arm with a mercury sphygmomano-
meter (Diamond Deluxe Blood Pressure Apparatus, Pune, India)
while the patients were seated. Two readings were taken 5 min
apart and the mean of the two was taken as the blood pressure.
A fasting blood sample was taken, and serum separated and
stored at 

 

−

 

70

 

°

 

C until the assays were performed. Biochemical
analyses were carried out on a Hitachi-912 Autoanalyser (Hitachi,
Mannheim, Germany) using kits supplied by Roche Diagnostics
(Mannheim, Germany). Fasting plasma glucose (GOD-POD
method), serum cholesterol (CHOD-PAP method), serum
triglycerides (GPO-PAP method) and HDL cholesterol (direct
method—polyethylene glycol-pretreated enzymes) were meas-
ured. Low-density lipoprotein (LDL) cholesterol was calculated
using the Friedewald formula [21]. Glycated haemoglobin (HbA

 

1c

 

)
was estimated by high-pressure liquid chromatography using
the Variant machine (Bio-Rad, Hercules, CA, USA). Serum
insulin concentration was estimated using Dako kits (Dako,
Glostrup, Denmark). Insulin resistance (HOMA-IR) was calcu-
lated using the Homeostasis Model Assessment using the formula:
fasting insulin (

 

µ

 

IU/ml) 

 

×

 

 fasting glucose (mmol/l)/22.5 [22].
Informed consent was obtained from all study subjects, and the
study was approved by the institutional Ethics Committee.

To avoid the confounding effect of diabetic complications
on telomeric shortening, the diabetic subjects selected had no
evidence of retinopathy (assessed by retinal photography) or
nephropathy (24-h protein excretion < 100 mg/day and urinary
albumin levels < 30 

 

µ

 

g/mg creatinine). They also had no history

of angina or myocardial infarction, and a normal 12-lead rest-
ing ECG. Hypertension was diagnosed if the subjects had
been treated with antihypertensive drugs or had systolic blood
pressure (SBP) 

 

≥

 

 140 mmHg or diastolic blood pressure (DBP)

 

≥

 

 90 mmHg.

 

TRF length analysis

 

Genomic DNA was prepared from whole blood by digestion
with proteinase-K and extraction with phenol/chloroform and
was quantified spectrophotometrically. The DNA samples
extracted from WBCs were coded, and only after completion of
the TRF measurement was the code broken for data analysis.
Terminal restriction fragment (TRF) lengths were measured using
the Southern-blotting technique [13]. Briefly, equal amounts of
DNA (2 

 

µ

 

g) were digested with restriction enzymes HinfI (20 U)
and RsaI (20 U) (Roche Diagnostics) for 2 h at 37

 

°

 

C to liberate
TRFs, which include both subtelomeric repetitive DNA and
telomeric TTAGGG repeats. The TRFs that determines the
telomere lengths were separated by electrophoresis on 0.8%
agarose gel denatured with 0.5 M NaOH/1.5 M NaCl and neu-
tralized for 30 min in 0.5 M Tris and 1.5 M NaCl. The DNA
was transferred overnight to a nylon membrane positively charged
using capillary transfer. The membranes were then hybridized
with telomeric probe digoxigenin 3

 

′

 

end labelled 5

 

′

 

-(CCCTAA)

 

3

 

for 3 h in the hybridization solution. They were then washed
at room temperature, three times in 2 

 

×

 

 saline sodium citrate
(SSC), 0.1% SDS each for 15 min and once in 2 

 

×

 

 SSC for
15 min. The digoxigenin-labelled probe was detected by the
digoxigenin luminescent detection procedure and exposed on
X-ray film. The mean TRF length was determined using auto-
mated BIORAD Gel documentation software and calculated as
follows: TRF = 

 

Σ

 

 ODi/(

 

Σ

 

 ODi/

 

Σ

 

 MWi), where ODi is the optical
density at a given position in the lane and MWi is the molecular
weight at that position; this formula [23] accounts for the fact
that longer telomeres bind more labelled probes and conse-
quently appear darker on the X-ray film (Fig. 1). Proper refer-
ence standards and molecular-weight markers were included in
all blots. To show the reproducibility of our method, we meas-
ured the telomere lengths of eight subjects on two different occa-
sions. For this, blood samples were taken twice from the same
subject on two different occasions and the respective DNA
used for the TRF length measurements were referred to as
TRF1 and TRF2. As shown in Fig. 2, the two values correlated well
(

 

r =

 

 0.93; 

 

P

 

 < 0.001), indicating that white blood cell mean TRF
length is a reproducible measure. The interassay coefficient
of variation was < 3% and the maximum difference between
the two blots carried out from the same subject on different
days (blot-to-blot variability) was < 7%, i.e. < 0.5 kb.

 

Lipid peroxidation

 

Plasma levels of malondialdehyde (MDA), a marker of lipid
peroxidation, were measured by TBARS (thiobarbituric acid
reactive substances) by fluorescence methodology [24]. Plasma
(200 

 

µ

 

l) was treated with 8.1% SDS and 20% acetic acid to
solubilize and precipitate protein and then heated with TBA
for 1 h at 95

 

°

 

C. The supernatant was then extracted with
butanol:pyridine (15 : 1), to produce a fluorescent product, which
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was detected by excitation at 535 nm and emission at 553 nm.
Absolute MDA (malonodialdehyde) levels were calculated using
the regression parameters obtained using various concentrations
(0.25–5.0 nM) of the standard, 1,1

 

′

 

,3,3

 

′

 

,-tetramethoxypropane.
Inter- and intra-assay coefficients of variation of the above
method were < 5 and 10%, respectively.

 

Statistical analysis

 

Comparisons between groups were performed using an un-
paired Student’s 

 

t

 

-test. Two-tailed 

 

P

 

-values equal to or less than

0.05 were considered statistically significant. Pearson correla-
tion analysis was performed between variables. Risk variables
that had a significant association with TRF on univariate re-
gression were included as independent variables in multiple
linear regression analysis. Care was taken to avoid intercorrelated
variables in the regression equation. All analyses were carried
out using a Windows-based SPSS statistical package (Version
10.0, Chicago, IL, USA).

 

Results

 

Table 1 shows the characteristics of both the diabetic and non-
diabetic subjects. None of the diabetic patients had ketonuria or
any history of diabetic ketosis at any time and all were treated
with oral agents sulphonylurea (glipizide or glibenclamide) and/
or metformin. Hence they all had Type 2 diabetes. Diabetic
patients had significantly higher plasma glucose, HbA

 

1c

 

, serum
cholesterol, triglycerides and HOMA-IR compared with the
control subjects.

The mean (

 

±

 

 SE) TRF lengths were significantly lower in the
patients with Type 2 diabetes (6.01 

 

±

 

 0.2; range 3.0–9.5 kb)
compared with the control subjects (9.11 

 

±

 

 0.6; range 3.5–
15.8 kb) (

 

P =

 

 0.0001) (Fig. 3). Age-adjusted telomere lengths
were significantly shorter in men (7.69 

 

±

 

 0.6) than in women
(10.42 

 

±

 

 1.0) (

 

P =

 

 0.02) in the control subjects. This gender
difference in TRF length was not observed among the diabetic
subjects (men 5.81 

 

±

 

 0.4, women 6.22 

 

±

 

 0.3, 

 

P =

 

 0.51). When
compared with the diabetic subjects without hypertension
(6.74 

 

±

 

 0.3) the diabetic subjects with hypertension exhibited
significantly shorter TRF lengths (5.23 

 

±

 

 0.4) (

 

P =

 

 0.007).
Lipid peroxidation as measured by TBARS was significantly

higher in the patients with Type 2 diabetes (9.69 

 

±

 

 1.0 nM/ml)
when compared with the control subjects (6.17 

 

±

 

 0.3 nM/ml)
(Fig. 4a). Increased levels of TBARS also showed a negative
correlation with shortened telomeres in the diabetic subjects
(

 

r =

 

 

 

−

 

0.36; 

 

P =

 

 0.02) (Fig. 4b). However, such a relationship

Figure 1 Autoradiograph showing the lengths of the terminal restriction 
fragment (TRF) of genomic DNA from white blood cells (WBCs). Lanes 
2–5: samples from the control subjects. Lanes 7–10: samples from the 
diabetic subjects; Lanes 1 & 11: reference samples (High MWt & Low 
MWt); Lane 6: molecular weight marker (1.9–21.2 Kb).

Figure 2 Reproducibility of mean telomere restriction fragment (TRF) 
length assay. Blood samples were taken twice from the same subject on 
two different occasions and the respective DNA was used for the 
determination of telomere lengths (referred as TRF1 and TRF2). 
Excellent correlation (r = 0.93; P = 0.001) between these two 
measurements obtained from eight individuals.

Table 1 Clinical characteristics of the study subjects

Parameters
Control 
(n = 40)

Type 2 diabetes 
(n = 40)

Age (years)  49 ± 8  49 ± 7
Male: Female (n) 20 : 20 20 : 20
Duration of diabetes (years) — 3.3 ± 2.8
Body mass index (kg/m2) 23.5 ± 4.2 25.2 ± 3.8
Fasting plasma glucose (mmol/ l) 4.7 ± 0.8 8.3 ± 3.5*
HbA1c (%) 5.5 ± 0.6 8.7 ± 2.6*
Systolic blood pressure (mmHg)  126 ± 19  125 ± 25
Diastolic blood pressure (mmHg)  77 ± 11 79 ± 13
Serum Cholesterol (mmol/ l) 4.6 ± 0.8 5.1 ± 1.1*
Serum Triglycerides (mmol/ l) 1.4 ± 0.6 2.1 ± 1.1*
Serum HDL cholesterol (mmol/ l) 1.08 ± 0.3 1.05 ± 0.2
Serum LDL cholesterol (mmol/ l) 2.9 ± 0.7 3.1 ± 0.9
HOMA-IR 1.75 ± 1.1 4.04 ± 2.9*

Values are expressed as mean ± SD.
*P < 0.05 compared with control.
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between TBARS and TRF was not observed in the control
group.

Telomere lengths were negatively correlated with insulin
resistance (HOMA-IR) (

 

r =

 

 

 

−

 

0.4; 

 

P =

 

 0.01) and age (r = −0.3;
P = 0.058) and positively correlated with HDL levels (r = 0.4;
P = 0.01) in the control subjects. Correlation of TRF lengths
with HbA1c levels (r = −0.28; P = 0.01) and cholesterol to
HDL ratio (r = −0.31; P = 0.005) was obvious only in the total
study subjects. Multiple linear regression analysis carried out
using diabetes status, cholesterol to HDL ratio and TBARS as
independent variables revealed the presence of diabetes as the
sole risk factor associated with telomere shortening (β = −2.71,
P < 0.0001).

Discussion

Shortening of telomeres has been reported to be present in
patients with inherited respiratory chain disorders [25], Down’s
syndrome [26], vascular dementia [27] and ataxia-telangiectasia
[28]. Recent studies have also shown that telomere shortening
can be a biomarker of premature cell senescence in vascular
diseases and metabolic disorders [10,11,12].

An earlier study from the USA demonstrated telomere
shortening in Type 1, but not in Type 2 diabetic patients of
European descent [13]. Our study is the first to demonstrate
a shortened TRF length in WBCs in patients with Type 2
diabetes. It is possible that the increased insulin resistance
observed in Asian Indians [16] contributes to the telomere
shortening observed in our patients. This is supported by the
association of the telomere shortening with HOMA-IR observed
in this study. Our results also indicate the presence of diabetes
as one of the risk factors associated with telomere shortening.
It is possible that chronic hyperglycaemia and associated oxi-
dative stress may modify TRF length in WBCs. Alternatively,
a diminished TRF length could be a secondary phenomenon

arising out of accelerated telomere attrition owing to an
increased turnover and chronic activation of inflammatory
cells.

In non-diabetic subjects, the age-adjusted telomere length is
shorter in men than in women, confirming earlier studies [29–
31]. As premenopausal women are less prone than men to
cardiovascular diseases [32] and several systemic parameters
show poor correlation with blood pressure in women [33], our
observations suggest that the biology of ageing differs between
men and women. Moreover, an oestrogen-responsive element
is present in hTERT [34], and hence hormonal changes
may influence telomerase to maintain the telomere length in
women. However, this gender difference was absent in Type 2
diabetic subjects. It is well known that women with Type 2 dia-
betes lose their protection from coronary artery disease [35].
Our study confirms these findings using TRF as a marker.

Within the diabetic subjects, those with hypertension also
showed a significantly reduced TRF length when compared
with subjects without hypertension. Hypertensive subjects are

Figure 3 Mean (± SE) telomere lengths of the control (9.11 ± 0.6 kb) and 
Type 2 diabetic subjects (6.01 ± 0.2 kb).

Figure 4 (a) Mean (± SE) lipid peroxidation levels in the Type 2 
diabetes (9.69 ± 1.0 nM/ml) and control subjects (6.17 ± 0.3 nM/ml). 
(b) Correlation between TBARS (thiobarbituric acid reactive substances) 
and terminal restriction fragment (TRF) length in the diabetic subjects 
(r = −0.36; P = 0.02).
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at higher risk for atherosclerosis and accelerated cardiovascu-
lar ageing [30]. Increased oxidative stress has been considered
as one of the molecular determinants of cardiovascular dis-
eases [36]. Therefore telomere length may provide an addi-
tional link between oxidative stress and the predisposition to
cardiovascular disease in hypertensive subjects.

The association of short telomeres with insulin resistance
(as measured by HOMA-IR) and cholesterol to HDL ratio
suggests that telomere shortening could probably be used as
an additional marker of atherosclerosis. In support of this,
coronary artery disease patients have been shown to exhibit
telomere shortening [11]. Asian Indians have high prevalence
rates of premature coronary artery disease [17,18,37]. The
excess risk for coronary artery disease seen among Asian Indians
has hitherto not been explained by any of the conventional
risk factors. From this study one could speculate that telomere
attrition could be one of the molecular mechanisms that pre-
dispose Asian Indian diabetic patients to premature coronary
artery disease. However, further work needs to be performed
on diabetic patients with and without coronary artery disease
to confirm this hypothesis. It is also known that several addi-
tional factors such as oxygen-free radicals and elevated plasma
homocysteine, which are overproduced in some metabolic
diseases, are responsible for DNA damage and telomere short-
ening, and can induce atherosclerosis [8,38–40]. The positive
association of HDL cholesterol and TRF length in our study
also lends further support to this hypothesis. Interestingly
it was recently shown that increased HDL cholesterol and
TRF were linked to increased longevity even in animal models
[41–43].

The association of increased lipid peroxidation (TBARS)
with shorter telomeres in our study may indicate a role for
reactive oxygen species in telomere shortening. Schisterman
et al. [44] have shown that individuals with coronary heart
disease had significantly higher levels of TBARS and lipid
peroxidation was found to be the best discriminator when the
biomarkers of oxidative stress were evaluated individually.
Studies in cultured cells have shown that telomere erosion per
replication is inversely related to antioxidant capacity [4,45,46].
Inflammation and ROS thus appear to be important factors
in the pathobiology of age-related disorders, including Type 2
diabetes [47,48]. As suggested by Furumoto et al. [49] telomere
length registers the turnover rate of cells, including WBC,
a rate that may be augmented by chronic inflammation, and
an increase in the cumulative oxidative stress. We found a
good correlation between TBARS and telomere shortening.
However, in our multiple linear regression model diabetes was
the only significant factor in determining telomere shortening,
and addition of TBARS did not affect this relationship. This
may be explained by the fact that in diabetes, oxidative stress
appears as an early biochemical defect and thus further addition
of TBARS into the model only had minimal influence.

In summary, we report that telomere shortening of WBCs
is observed in Asian Indian patients with Type 2 diabetes.
Oxidative stress could be a common molecular mechanism in

which the expression of genes related to glucose metabolism,
lipid metabolism and vascular function are modified in subjects
with diabetes. As telomere length is also highly heritable [29,50],
and probably X-linked in some cases [31], the role of genetic
predisposition to shortened telomeres in chronic age-related
disorders needs further investigation. Telomeres shorten very
slowly with age, raising the exciting possibility that telomere
shortening may be a risk marker of diabetes and its vascular
complications. Future studies are needed to look at telomere
shortening in diabetic micro- and macro-vascular complica-
tions, and also into whether the shortening can be reversed, at
least in part, by tight control of diabetes.
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