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Key Point Summary  

1. Diabetes is thought to induce neuropathic pain through activation of dorsal horn 

sensory neurons in the spinal cord. 

2. Here we explore the impact of hyperglycaemia on the blood supply supporting 

the spinal cord and chronic pain development. 

3. In streptozotocin-induced diabetic rats, neuropathic pain is accompanied by a 

decline in microvascular integrity in the dorsal horn. Hyperglycaemia-induced 

degeneration of the endothelium in the dorsal horn was associated with a loss in 

VEGF-A165b expression. VEGF-A165b treatment prevented diabetic neuropathic 

pain and degeneration of the endothelium in the spinal cord. 

4. Using an endothelial specific VEGFR2 knockout transgenic mouse model, the 

loss of endothelial VEGFR2 signalling led to a decline in vascular integrity in the 

dorsal horn and the development of hyperalgesia in VEGFR2 knockout mice.  

5. This highlights that vascular degeneration in the spinal cord could be a previously 

unidentified factor in the development of diabetic neuropathic pain. 

 

 

Abstract 

Abnormalities of neurovascular interactions within the central nervous system of diabetic 

patients is associated with the onset of many neurological disease states. However, to date, 

the link between the neurovascular network within the spinal cord and regulation of 

nociception has not been investigated despite neuropathic pain being common in diabetes. 

We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, 

due to suppression of VEGF-A/VEGFR2 signalling, induces diabetic neuropathic pain. 

Nociceptive pain behaviour was investigated in a chemically induced model of type 1 

diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A165b 
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treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic 

animals developed mechanical allodynia and heat hyperalgesia. This was associated with a 

reduction in the number of blood vessels and reduction in Evans blue extravasation in the 

lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers 

occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group 

versus controls, as well as a concurrent reduction of VEGF-A165b expression. In diabetic 

animals, VEGF-A165b treatment (biweekly intraperitoneal, 20ng/g) restored normal Evans 

blue extravasation and prevented vascular degeneration, diabetes-induced central neuron 

activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated 

Tie2CreERT2-vegfr2flfl mice) led to a reduction in blood vessel network volume in the lumbar 

spinal cord and development of heat hyperalgesia. These findings indicate that 

hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade resulting in 

endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor 

to diabetic neuropathic pain. 

 

Abbreviations 

VEGF-A = vascular endothelial growth factor-A 

VEGFR2 = vascular endothelial growth factor receptor 2 

STZ = streptozotocin 

i.p. = intra-peritoneal 

 

 

Introduction 

Diabetes mellitus leads to an array of health complications that can cause significant 

morbidity. In people with diabetes, neuropathic pain is common (Tesfaye et al., 2013), 

characterised by enhanced responses to noxious (painful) stimuli (hyperalgesia) as well as 

to innocuous stimuli (allodynia). These alterations in pain perception are due to maladaptive 

changes in the sensory neuronal circuitry. The plasticity of the nociceptive neuronal systems, 

both peripheral (Reichling & Levine, 2009) and central (Latremoliere A, 2009), means that 

they can respond to disease and/or treatment such as in diabetes (Chen & Levine, 2001) 

(Morgado et al., 2010; Tan et al., 2012). These responses lead to neuronal sensitisation, and 

in diabetes, chronic pain development. The peripheral sensory nerves are well known to be 

affected by hyperglycaemia, including degeneration of intra-epidermal nerve fibre innervation 

patterns (Hulse et al., 2015) and hyper-excitability (Chen & Levine, 2003). However, pain 
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management in people with diabetes often only provides partial pain relief (Tesfaye et al., 

2011; Tesfaye et al., 2013). There are now focussed efforts to investigate how changes in 

nociceptive processing in the central nervous system, in particular the spinal cord, are 

altered in diabetic neuropathic pain (Biessels et al., 2014; Tesfaye et al., 2016). Studies 

have identified that in diabetic rodents, sensory neurons within the spinal cord elicit 

exaggerated responses to sensory stimulation (Morgado et al., 2010; Tan et al., 2012). 

Despite this evidence for the involvement of spinal cord changes in the pathogenesis of 

diabetic neuropathic pain, there are few investigations into those mechanisms that may 

underlie the development of central sensitisation in the spinal cord in diabetes (Tan et al., 

2012; Lee-Kubli CA, 2013). 

 

An important component of the nervous system is the supporting blood vessel network. A 

compromised vascular system is integral to the development of multiple neurological 

diseases (e.g. stroke, Alzheimer’s disease) (Tiehuis et al., 2008; Vandal et al., 2014; Winkler 

et al., 2015). Hyperglycaemia induces extensive vascular remodelling in the nervous system 

(Taylor et al., 2015; Hardigan et al., 2016) as well as direct glucose toxicity on sensory 

neurons (Chowdhury et al., 2014; Hulse et al., 2015), with both of these contributing to 

neurological complications including increased susceptibility of people with diabetes to 

cognitive decline, stroke, and peripheral ischaemic neuropathies (motor, sensory and 

autonomic) (Said, 2007; Hardigan et al., 2016). Vascular endothelial growth factor-A (VEGF-

A) is strongly implicated in diabetic vascular disease, including driving aberrant vessel 

growth and increased permeability in diabetic retinopathy (Cai & Boulton, 2002). This is 

highly correlated with increased VEGF-A expression and is therefore a prime target for 

diabetic retinopathy treatment (Gupta et al., 2013). The VEGF-A gene gives rise to a variety 

of VEGF-A splice variants, differing in length and terminal sequence, leading to contrasting 

functions (Harper & Bates, 2008). The archetypal proangiogenic isoform is VEGF-A165a and 

is typically associated with vascular remodelling such as in diabetic retinopathy and cancer 

(Perrin et al., 2005). The VEGF-A165b isoform is predominantly found in normal tissues, 

areas with reduced angiogenesis(Pritchard-Jones et al., 2007), and pathologies where 

angiogenesis is impaired (e.g. systemic sclerosis and peripheral arterial disease) (Manetti et 

al., 2011; Kikuchi et al., 2014; Ngo et al., 2014). It is known to compete with VEGF-A165a for 

VEGFR2 binding (Bates et al., 2002; Cébe Suarez S, 2006) and can independently act 

through VEGFR2, resulting in cytoprotective effects (Beazley-Long et al., 2013). For 

example, in diabetic nephropathy VEGF-A165b treatment leads to a rescue in endothelial cell 
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survival and return to normal kidney function (Oltean et al., 2014), and we have previously 

found that indicators of altered blood vascular integrity, enhanced in the peripheral nervous 

system and the dorsal root ganglia, can be reversed by VEGF-A165b, resulting in 

amelioration of pain behaviours in rats (Hulse et al., 2015). 

 

Enhanced sensitivity in central nociceptive networks (spinal cord (Tan et al., 2012; Lee-Kubli 

CA, 2013), brain (Silva M, 2013)) have long been attributed to neuroplastic changes. Despite 

extensive evidence that the cerebral vasculature is altered in diabetic rodents, there has 

been limited investigation into the neurovascular interactions in the spinal cord particularly 

with reference to nociception (Costigan et al., 2009; Beggs et al., 2010). Here we 

hypothesised that a decline (endothelial cell loss) in the vascular system within the spinal 

cord could contribute to the onset of diabetic neuropathic pain. Using an in vivo rat model of 

type 1 diabetes, and an inducible VEGF receptor-2 (VEGFR2) knockdown transgenic 

mouse, neuro-vascular disruption in the spinal cord was associated with changes in 

neuropathic pain. Administration of the VEGF-A165b isoform protected the endothelial 

component of the CNS, and prevented diabetic neuropathic pain. 

 

Methods 

 

Ethical Approval, Animals used and Diabetes induction 

24 male (21 Evans blue and 3 S1 tissue collection) and 42 female (24 Evans blue and 18 S1 

tissue collection) Sprague Dawley rats (~250g) were used in this study. Experiments were 

carried out in accord with the institution's animal welfare committee (UoN), and conform to 

the principles and regulations as described in the Editorial by Grundy (Grundy, 2015). 

Procedures were carried out in accordance with the UK Home Office Animals (Scientific 

Procedures) Act 1986 and EU Directive 2010/63/EU after review by the local Animal Welfare 

and Ethics Review Board (UoN). Diabetes was induced by intraperitoneal (i.p.) injection of 

streptozotocin (STZ) (50mg/kg)(Hulse et al., 2015). Animals had ad libitum access to 

standard chow and were housed in groups (n>2) under 12:12h light:dark conditions.  In male 

rats, experimental groups (1 week, no insulin supplementation) were naïve (sham injected 

n=9) and STZ treated (n=12). At the end of the study animal weight and blood glucose 

(>15mmol) were naïve=339±8.26g and 6.8±0.85 mmol; diabetics=314±11.86g and 

30.12±0.95 mmol respectively. 
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In female rats (8 week experiments), animals were treated with insulin using one third of an 

insulin pellet (Linshin, Canada) implanted under isoflurane anaesthesia (2-3% in O2) 

(Calcutt, 2004). Experimental treatments were biweekly recombinant human (rh)VEGF-A165b 

(20ng/g body weight, i.p. twice weekly from week 1) or saline (vehicle;i.p.). This VEGF-A165b 

regime has previously been used (Beazley-Long et al., 2013; Hulse et al., 2014)). Blood 

glucose and weight was measured in all animals at the end of the study. Blood glucose: 

naïve=8.08±0.72, diabetic+vehicle=29.27±1.35, diabetic+VEGF-A165b=30.81±0.78. Animal 

body weight: naïve=324.1g±8.5, diabetic+vehicle=284.2±7.3g, diabetic+VEGF-

A165b=289.1±5.4g.  

 

75 transgenic mice were used in this study(C57.bl6,25-30g; both genders). Tie2CreERT2 

mice [Tg(Tek-cre/ERT2)1Arnd, European Mutant Mouse Archive] were crossed with vegfr2fl/fl 

(generated/used as previously described (Albuquerque et al., 2009; Sison et al., 2010; 

Beazley-Long et al., 2018)). All mice used were vegfr2fl/fl and either Tie2CreERT2 positive 

(n=27) or Tie2CreERT2 negative (n=28) and dosed once daily by i.p. with 1mg tamoxifen or 

vehicle (10% ethanol in sunflower oil) for 5 consecutive days. 

 

Nociceptive Behaviour 

Nociceptive behavioural experiments were carried out as previously described (Drake et al., 

2014; Hulse et al., 2016). on 8 week diabetic animals and age matched sham controls 

(naïve).Mechanical withdrawal thresholds were measured using von Frey (vF) 

monofilaments (Hulse et al., 2015) or a mechanical pincher (Drake et al., 2014; Hirschberg 

et al., 2017). A range of von Frey hairs were applied to the hind paw plantar surface (a 

maximum of five seconds or until paw withdrawal). A total of five vF applications were 

applied per weighted hair and force response curves were generated and withdrawal values 

were calculated as the weight at which withdrawal frequency = 50%. A mechanical pincher 

(equipped with strain gauges and calibrated to force (g)) (Drake et al., 2014) was applied to 

the hind paw until the animal withdrew to determine mechanical hyperalgesia. Raw data 

were acquired through a Neurolog power unit and a bridge amp module (Digitimer), with 

digital acquisition via CED micro1401v3 and Spike2 v7 software (Cambridge Electronic 

Design UK). Withdrawal to heat was determined using the Hargreaves test (Hargreaves et 

al., 1988). The experimenter was blinded to treatment.  
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Evans blue extravasation 

In vivo vascular perfusion was evaluated using Evans blue dye, as previously described (Xu 

et al., 2001). Animals (age matched sham controls (naïve), week 1 and week 8 diabetic rats) 

were terminally anesthetized (ketamine medetomidine i.v. 50 mg/kg) and infused (via the 

external jugular vein) with Evans blue dye i.v. (Sigma-Aldrich, 45 mg/kg) at 120mmHg 

pressure. Two minutes post-infusion, 0.2mL arterial blood was withdrawn, followed by 

subsequent 0.1mL withdrawals every 15 minutes for 2 hours. After 2 hours 0.2mL blood was 

withdrawn followed by cardiac perfusion of 50mL saline at 120mmHg.  Lumbar spinal cord 

and a single brain hemisphere were excised (whole spinal cord including ventral and dorsal 

horn) and weighed (wet weight). Tissue was dried at 70˚C overnight and weighed (dry 

weight). Dried tissue was incubated in 0.15mL formamide (Sigma Aldrich) at 70˚C overnight. 

Blood samples were centrifuged (12,000rpm, 45 minutes, 4˚C), and the supernatant from 

tissue and blood samples were analysed at 620nm. Evans blue extravasation was calculated 

as (solute flux (μg/min/g) = Evans blue mass (μg)/ tissue dry weight (g) divided by time 

(120min). 

 

Immunofluorescence analyses 

Animals from all experimental groups (normal, diabetes, diabetes+VEGF-A165b; 8 weeks) 

were terminally anaesthetised (sodium pentobarbital 60mg/kg i.p.) and transcardially 

perfused, with phosphate buffered saline (PBS) followed by 4% paraformaldehyde in PBS 

(PFA; pH7.4). Tissue was prepared as previously described (Hulse et al., 2016). Spinal 

cords (40µm thickness) were incubated in primary antibodies (see below) in blocking 

solution (5% bovine serum albumin, 10% fetal calf serum), overnight at 4oC (IB4 72 hours). 

Primary antibodies/markers and dilutions used were: biotin conjugated isolectin B4 (IB4;1 in 

100, Sigma-Aldrich); rat anti-CD31 (MEC13.3;1 in 10, Santa Cruz), mouse anti-CD31 (1 in 

100, Abcam), rabbit anti-GFAP (1 in 500, Abcam), rabbit anti-fos (1 in 100, Santa Cruz,); 

mouse anti-NeuN (1 in 200; Millipore), rabbit anti-VEGFR2 (1 in 200, 55B11, Cell Signalling), 

rabbit anti-cleaved caspase 3 (1 in 500, Cell Signalling) and anti-rabbit biotinylated IgG (1 in 

500, Jackson Laboratories). Secondary antibodies were incubated in PBS + 0.2% Triton X-

100, which were Alexa Fluor 488-conjugated chicken anti-mouse, Alexa Fluor 555-

conjugated donkey anti-rabbit and streptavidin-conjugated Alexa Fluor-555 (1 in 500, all 

Invitrogen, UK. Confocal imaging of the dorsal horn of the lumbar spinal cord of all groups 

was performed on a Leica TCS SPE confocal microscope. 
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Spinal cord Endothelial Cell Culture 

Whole lumbar spinal cords were dissected from adult male Sprague Dawley rats and 

dissociated (0.125% collagenase). Endothelial cells were extracted and cultured in 

endothelial media (M199 media, 60g/ml endothelial cell growth supplement and 50ug/ml 

Heparin). Endothelial cells were plated (1% gelatin coated) onto either 6 well plates (for 

protein extraction) or 96 well plates (for cell viability studies). For cell viability assays, when 

80% confluent endothelial cells were incubated for 24 hours in either 5mM glucose (normal), 

50mM mannitol (osmotic control) or 50mM glucose (high glucose) + 2.5nM VEGF-A165b or 

vehicle. Cell death was determined with neutral red (Sigma-Aldrich). 

 

Flow Cytometry 

Spleens were isolated from CTL and ecKO transgenic mouse experimental groups and 

placed in media (containing RPMI1640, Penicillin/streptomycin, 10% FBS, 1%l-glutamine, 

0.1% sodium pyruvate). Tissue was mechanically dissociated through a 40µm cell strainer 

and washed through with media. Cell suspension was then centrifuged at 1500rpm for 

3mins. Supernatant was removed and cells were resuspended in 2 ml red cell lysis medium 

(Sigma)., then left for 30 seconds. Following this 10ml of media was added and the cells 

were centrifuged as previously. Cells were then fixed in 4% paraformaldehyde for 15minutes 

at room temperature and then subsequently washed three times. Cells were permeabilised 

with 0.4% Triton X-100 in PBS for 15 minute at room temperature. Cells were blocked in 1% 

FBS in PBS, mixed gently and incubated for 30 min at room temperature. Antibodies 

(CD11b-APC (1 in 100; Biolegend) and F4/80-PE (1 in 100; Biolegend)) were added, left 

overnight in the fridge, and samples analysed on MoFlo analyser. 

 

qPCR Method 

Total RNA was extracted from whole lumbar spinal cord tissue isolated from CTL and ecKO 

transgenic colony experimental groups using TRIzol reagent (Invitrogen). cDNA synthesis 

was carried using PrimeScriptTMRT reagent kit (TaKaRa,RR037A) with a starting amount of 

1g of RNA. The resulting cDNA was used for Q-PCR using a LightCycler 480 SYBR Green 

I Mastermix (Roche 04707516001) following the manufacturer’s instructions. CD31 and VE-

cadherin primers were synthesised by Eurofins. Beta actin and VEGFR2 primers were 
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synthesised by Sigma-Aldrich. Beta actin was used as a reference gene. The primer 

sequences were as follows (5’-3’);  

 

-actin F – 5’ ATTGCCAATGAGCGGTTC-3’ 

-actin R – 5’ GGATGCCACAGGACTCCA-3’ 

CD31 F - 5’ GAAATGCTCTCGAAGCCCAG-3’ 

CD31 R - 5’ ACCTCGAGAGTCTGGAAGTC-3’ 

VE- cadherin F - 5’ TCCCTGGACTATGAAGTCAT-3’ 

VE- cadherin R - 5’ GAAGACAGGGGGCTCATCCA-3’ 

VEGFR2 F - 5’ GGATCTGAAAAGACGCTTGG-3’ 

VEGFR2 R – 5’ TGCTCCAAGGTCAGGAAGTC-3’ 

 

Western Blotting 

Protein was extracted from spinal cord endothelial cells and human umbilical vein 

endothelial cells as well as spinal cord tissue as previously described(Vencappa et al., 2015; 

Hulse et al., 2016). Animals from all experimental groups (CTL and ecKO transgenic mice; 

normal, diabetes, diabetes+VEGF-A165b; 8 weeks) were terminally anaesthetized with 

sodium pentobarbital (i.p. 60 mg/kg, Sigma-Aldrich). Lumbar spinal cords were extracted, 

frozen immediately and stored at -80oC until sample processing. 100µg endothelial cell 

lysate and 80μg of each spinal cord lysates were loaded in a 4%-20% precast Mini-Protean 

TGX gel (Biorad), separated by SDS-PAGE electrophoresis and transferred using Trans-blot 

turbo transfer system (Bio-Rad). The membrane was incubated in 5% milk powder in tris-

buffered saline (TBS)-Tween 0.1% (TBST) for 30 minutes at room temperature. Primary 

antibodies, mouse anti-CD31 (2µg/ml, Abcam; AB24590), rabbit anti-occludin (5µg/ml, 

Invitrogen; 71-1500), mouse anti-VE cadherin (5µg/ml, BD Biosciences; 550548), rabbit anti-

VEGFR2 (1 in 200, 55B11, Cell Signalling), rabbit anti-Pan VEGF-A (A20, 1μg/ml, Santa 

Cruz; sc-152), mouse anti-VEGF-A165b (2μg/ml, Abcam; ab-14994), and rabbit anti-Actin 

(1:100 Santa Cruz) antibodies were diluted in blocking solution and incubated overnight at 

40C. Secondary antibodies (Licor donkey anti-rabbit and anti-mouse antibodies 1:10000) in 

TBST-0.1% 1% BSA and visualised on the Licor Odessey.  

 

Statistical Analysis 

All data are represented as mean±SEM unless stated and experimenter was blinded where 

appropriate. Data were acquired/quantified using Microsoft Excel 2010, Graphpad Prism 6 
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and Imaris (Bitplane) Spike2 v7 software (CED) was used to digitally acquire mechanical 

withdrawal thresholds from the pincher and for offline analysis. Immunofluorescence was 

quantified by obtaining 10 random non-sequential sections (Z stacks) per animal and a mean 

value calculated per animal. Dorsal horn spinal cords (Lamina I-V) were imaged with the 

confocal as described above, and vessels were identified through CD31 and IB4 

immunoreactivity. IB4 signal fluorescence was vascular in the majority of the spinal cord with 

C-fibre projections also staining in the peripheral laminae (I-II), but vessels could also be 

clearly delineated here by CD31 staining as well as morphology. Stained images were 

rendered on Imaris 8.11 imaging software. This allows for automated quantification of vessel 

diameter and blood vessel volume. Neuron number (cleaved caspase-3 and C-Fos 

quantification) was determined as per laminae of the dorsal horn and therefore expressed 

according to lamina I-V as previously characterised (Hsieh et al., 2015). Western blot 

densitometry was quantified using ImageJ (https://imagej.nih.gov/ij/) gel quantification plugin. 

Paw mechanical withdrawal thresholds, the number of blood vessels in the dorsal horn of the 

spinal cord and spinal cord Evans blue extravasation were analysed using a Mann-Whitney 

test. Evans blue, IB4 positive blood vessel volume and length, mechanical and heat 

nociceptive behaviour and western blot densitometry quantification were analysed using a 

Kruskal Wallis and appropriate post-hoc tests. 

 

Results 

Diabetes resulted in increased mechanical hyperalgesia -  a reduction in withdrawal 

threshold to a noxious stimulus (hindpaw pinch) when compared to both before diabetes 

(p<0.05) and to vehicle/age matched animals at week 8 post STZ injection (naïve; Fig. 1A, 

*p<0.05). This was accompanied by a reduction in the number of blood vessels in the dorsal 

horn of the lumbar region of the spinal cord (Fig. 1B-D, *p<0.05) as well as a reduction in 

microvessel diameter (labelled with CD31 and IB4) (Fig. 1E-G);. The VEGF-A family is a key 

regulator of angiogenic processes. Pan-VEGF-A expression was unaltered in the lumbar 

spinal cord of diabetic rats when compared to age/gender matched control animals (Fig. 

1H&I). However, VEGF-Axxxb expression was significantly reduced in the lumbar spinal cord 

of diabetic animals (Fig. 1H, I, *p<0.05). 

 

As hyperglycaemia affected spinal cord microvasculature and reduced VEGF-A165b 

expression, we investigated the direct cytoprotective actions of VEGF-A165b upon cultured 

spinal cord endothelial cells. Isolated spinal cord endothelial cells showed increased cell 
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death when cultured in high (50mM) versus low glucose (5mM) conditions (Fig. 2A). There 

was no effect of 50mM mannitol, an osmotic control. VEGF-A165b treatment prevented high 

glucose-induced endothelial cell death (Fig. 2A). Consequently, the cytoprotective actions of 

VEGF-A165b on the spinal cord endothelium were investigated in vivo. The vascular network 

was well defined in naïve animals (Fig. 2B), was reduced in number in diabetic+vehicle 

treated animals (Fig. 2C) but this was prevented by VEGF-A165b (Fig. 2D). Quantification 

indicated a reduction in endothelium (reduced total vascular volume) within the dorsal horn 

of the lumbar region of the spinal cord, which was rescued by VEGF-A165b (Fig. 2E). There 

was also an overall reduction in dorsal horn vessel diameter, again prevented by VEGF-

A165b (Fig. 2F). There was a non-significant increase in vessel diameter in the 

diabetic+VEGF-A165b treated group when compared with the naïve group (Fig. 2F). Analysis 

of the frequency distribution of the vessels by size indicated that the reduction in size in the 

diabetics was due to a reduced number of the “larger microvessels” (8-12µm) rather than a 

reduction in the number of small (<8µm vessels). (Fig. 2G). To determine whether markers 

of endothelial integrity/activation (including junctional markers) were altered in the lumbar 

spinal cord in diabetes, lumbar spinal cord protein samples were subjected to 

immunoblotting for VE-cadherin (Fig. 3A upper band), CD31 (Fig. 3A lower band), and 

occludin (Fig. 3B upper band; lower band actin). There was a marked reduction in junctional 

and adhesion molecules in diabetic+vehicle treated rats, with non-significant reductions in 

VE-cadherin (Fig. 3C) and significant reductions in CD31 (Fig. 3D) and occludin (Fig. 3E), all 

of which were prevented by VEGF-A165b treatment.  

 

To investigate the possible functional changes in the microvasculature within the spinal cord 

in diabetes, Evans blue extravasation was measured (Xu et al., 2001). Evans blue vascular 

leakage is dependent on blood flow, surface area, hydrostatic pressure and vascular 

permeability. In an acute diabetic rodent model (1 week) there was a pronounced decrease 

in Evans blue extravasation within the lumbar region of the spinal cord compared with that of 

the control cohort (Fig. 4A). Diabetic groups were systemically (i.p.) treated with either saline 

or VEGF-A165b (20ng/g) using a longer term diabetic model (8 weeks). In longer duration 

diabetes (8 weeks) there was also a significant reduction in Evans blue extravasation 

compared with the control naive group (Fig. 4B), which was prevented by VEGF-A165b (Fig. 

4B). Brains were also extracted from the long term (8 week) study (Fig. 4C) though there 

was no difference in solute flux between groups. 
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Mechanical hypersensitivity and heat hyperalgesia developed only in the diabetic+vehicle 

animals. VEGF-A165b treatment (timepoint of administration shown via arrow) not only 

prevented the spinal cord vascular degeneration (consistent with previous experiments 

(Hulse et al., 2015; Ved et al., 2017)) but also prevented diabetic neuropathic pain 

behaviours (mechanical allodynia Fig. 5A and heat hyperalgesia Fig. 5B). Within the spinal 

cord, not only was the vasculature disturbed in the diabetic+vehicle group, but sensory 

neurons (NeuN) in the dorsal horn also expressed increased cleaved caspase-3 (CC3), an 

indicator of neuronal damage, when compared with naïve age matched animals (Fig. 5C). 

There was increased CC3 immunoreactivity in the superficial lamina (I & II) of the dorsal 

horn of diabetic animals (Fig. 5D). This was blocked by VEGF-A165b treatment (Fig. 5E&F-

D). Sensory neurons within the spinal cord, once activated, express the immediate early 

gene c-fos (Hunt SP, 1987). C-fos is a marker of neuronal activation in chronic pain states 

(Kalynovska et al., 2017; Khasabov et al., 2017) and is an indicator of spinal neuronal 

activation in diabetic neuropathic pain (Morgado et al., 2010). There was an increase in c-fos 

expression in neurons (NeuN co-labelled) within the lumbar dorsal horn in the spinal cord in 

diabetic rats (Fig. 6A&B) compared with naïve animals. Systemic treatment with VEGF-A165b 

led to an attenuation of the diabetes induced c-fos expression (Fig. 6A&B). All lamina of the 

dorsal horn demonstrated increased c-fos expression in neurons in the diabetic+vehicle 

group compared with the naïve and diabetic+VEGF-A165b groups (Fig. 6C).  

 

The involvement of VEGF-A/VEGFR2 signalling on spinal cord endothelial cell function and 

survival and the relationship to the generation of behavioural hypersensitivity was 

determined by using an endothelial cell specific inducible VEGFR2 knockdown in vivo. 

Systemic tamoxifen treatment led to a reduction in VEGFR2 protein expression in 

endothelial cells from vegfr2flfl Tie2CreERT2-positive mice, i.e. VEGFR2 endothelial cell 

knockout (VEGFR2ECKO) compared with control mouse endothelial cells (CTL = vegfr2flfl 

Tie2CreERT2-negative + tamoxifen) isolated from lung (Fig. 7A-B), as well as a reduction in 

VE-cadherin expression (Fig. 7C-D). In the spinal cord there was a reduction in VEGFR2 

(Fig. 7E) as well as VE-cadherin (Fig. 7F) and CD31 (Fig. 7G) expression in the 

VEGFR2ECKO animals compared with CTL animals. In addition, VE-cadherin protein 

expression from the spinal cord of VEGFR2ECKO animals was reduced when compared with 

the CTL animals (Fig. 7H, I). 
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When compared with CTL mice (Fig. 8A-C), the VEGFR2ECKO (Fig. 8A; low power, 8B high 

power) had a significant decline in vascular integrity within the lumbar spinal cord 8 days 

after the final drug injection. The endothelium demonstrated a reduced endothelial volume 

(Fig. 8C) as well as showing a reduced diameter of spinal cord microvessels in the 

VEGFR2ECKO mice treated with tamoxifen when compared with CTL mice (and VEGFR2fl/fl 

with Cre but not given tamoxifen “vehicle”) (Fig. 8D). There was an increase number of 

smaller vessels in the VEGFR2ECKO mice when compared to control mice (CTL and vehicle) 

(Fig. 8E). 

 

In VEGFR2ECKO and CTL mice there was no difference in nociceptive behaviour prior to 

tamoxifen administration (Fig. 8F). The vegfr2flfl Tie2CreERT2 mice treated with vehicle 

(“vehicle”) and CTL mice treated with either vehicle or tamoxifen demonstrated no change in 

nociceptive behavioural responses to heat (Fig. 8F). However, the VEGFR2ECKO mice 

demonstrated a pronounced heat hypersensitivity compared with all other groups following 

tamoxifen injection (Fig. 6I). To exclude the involvement of a subset of haemopoietic cells 

that express Tie2 and VEGFR2 we determined the impact of VEGFR2 knockdown in this cell 

population. There was no change in the number of F4/80 (macrophage marker) or CD11b 

marker of leukocytes including monocytes, neutrophils, natural killer cells, granulocytes and 

macrophages) positive cell types isolated from the spleen in either the CTL mice treated with 

tamoxifen or VEGFR2ECKO mice (Fig. 9). 

 

 

Discussion 

We show here that the microvasculature in the spinal cord was disrupted in a rodent model 

of diabetic neuropathic pain, demonstrated by a reduction in the volume of the blood vessel 

network in the spinal cord. These findings are associated with neuropathic pain development 

and spinal neuronal activation. There was a concurrent reduction in the spinal cord 

expression of the VEGF-A165b isoform, but no overall change in total VEGF-A expression. In 

the inducible VEGFR2ECKO mice, the vasculature in the lumbar spinal cord was also reduced 

and was accompanied by the development of hyperalgesia. Critically, reversing the 

diabetes-induced vascular degeneration using systemic VEGF-A165b treatment also resulted 

in reversal of chronic pain. 
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Neuropathic pain is common in diabetic patients and is typically associated with 

hyperglycaemia impacting upon the peripheral vasculature through alterations in blood flow 

and solute leakage (Poduslo & Curran, 1992; Tesfaye et al., 2013; Hulse et al., 2015). The 

peripheral sensory nerves are compromised in these instances through a degeneration of 

nerve terminals (loss of intra epidermal nerve fibre innervation) in the skin (Narayanaswamy 

et al., 2012), atrophy of the nerve trunk (shrinkage of nerve fibre diameter) (Hulse et al., 

2015), reduction in nerve conduction velocity (Ali et al., 2014) and excitation of C nociceptor 

fibres (Chen & Levine, 2001). However, despite these widely diagnosed symptoms, current 

treatments have poor success rates and low long-term success. Recent advances in 

understanding diabetic pain have highlighted that neuropathic pain is associated with 

activation and alteration of nociceptive processing in the central nervous system. The spinal 

cord (Morgado et al., 2010) and brain (Silva M, 2013) are hyperactivated in rodent models of 

diabetic neuropathic pain, with increased activity of spinal wide dynamic range neurons 

(Pertovaara et al., 2001; Morgado et al., 2010; Tan et al., 2012).  Microvascular 

degeneration is disrupted in the brain of diabetic rodents and linked to e.g. cognitive 

impairment (Taylor et al., 2015; Hardigan et al., 2016), however the impact of 

hyperglycaemia on the spinal cord microvasculature has not been reported previously. The 

results we present here support the conclusion that there is a widespread vasculopathy in 

the spinal cord, which is associated with diabetes and nociceptive processing. The reduced 

spinal vasculature associated with hyperglycaemia could be in part due to an increase in 

endothelial cell death. This compromises the function of the spinal cord microcirculation – to 

provide delivery of solutes as well as appropriate endothelial cell signalling – evidenced by 

altered neuronal activation (c-fos staining) In all five lamina of the dorsal horn, and caspase 

staining in laminae 1-2 . Whether the effect on sensory neuronal function within the spinal 

cord is impaired as a result of decreased nutrient/oxygen delivery or through disturbance of 

an endothelial-neuronal-glial signalling event remains to be determined.  

 

Multiple diabetic complications arise due to vascular pathology whereby vessel or cell 

function is impaired (e.g. retinopathy, nephropathy) (Gupta et al., 2013; Oltean et al., 2014). 

We have previously shown that enhanced extravasation in diabetes does occur in the 

peripheral nervous system, including in the DRG, and this is mediated in part through VEGF-

A, as treatment with VEGF-A165b – which can inhibit endogenous VEGF-A165b signalling 

through VEGFR2, and prevent TRPA1 and TRPV1 activation in cultured DRG cells ex vivo, 

blocked the enhanced extravasation and the associated pain behaviours. In this case we 
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describe a reduction in solute flux in the CNS, which combined with a loss of vessels, can 

only be attributed to a reduction in blood flow. Evans blue extravasation is often taken as an 

indication of increased vascular permeability, and if blood is still flowing to the vessels where 

the vascular permeability increases, this is often consistent with the data. However, 

extravasation requires a provision of solute in the blood, and therefore is highly dependent 

on blood flow. A reduction in Evans blue extravasation in the spinal cord, where the 

permeability is already very low compared with most tissues (e.g. heart, skin, DRG(Hulse et 

al., 2015))), can only be reasonably interpreted as an indication of reduced surface area for 

exchange, or reduced capillary pressure. The loss of endothelial cell staining, reduction of 

CD31 combined with reduced Evans blue extravasation indicates that diabetic animals have 

lost functional blood vessels from the spinal cord. This is an interesting comparison with 

most other vascular beds (including eyes (Ved et al., 2017) and the peripheral nerves (Hulse 

et al., 2015)), where diabetes results in increased solute flux, probably through increased 

vascular permeability (Poduslo & Curran, 1992). In peripheral tissues such as in the sensory 

nerve and the DRG, increased blood-nerve barrier breakdown could arise due to direct 

glucose toxicity upon the vessels in the epineurium. However, sensory nerves are activated 

following exposure to high blood glucose (Chen & Levine, 2001; Chen & Levine, 2003). Such 

activity would drive peripheral extravasation through release of CGRP or activation of 

TRPA1; which is activated in sensory nerves of diabetic rodents (Koivisto et al., 2012; Hulse 

et al., 2015). These systems are not expected to be in play in the spinal cord therefore 

alternative mechanisms must be in action.   

 

In this study we find that alterations in VEGF-A/VEGFR2 activation, as evidenced 

both by inhibition of VEGFR2 by VEGF-A165b (Bates et al., 2002; Cébe Suarez S, 2006) and 

VEGFR2 knockout, is culpable in the decline in microvascular function. The VEGF-A family 

consists of two families of alternative spliced isoforms termed VEGF-Axxxa and VEGF-Axxxb 

(xxx denote amino acid number). These isoforms differ solely due to exon 8 splicing giving 

rise to differing C terminus sequences that critically alter isoform function (Harper & Bates, 

2008). It has been shown that both bind to VEGFR2 with equal affinity and both possess 

cytoprotective actions, however VEGF-Axxxa is pro-angiogenic and VEGF-Axxxb is able to 

inhibit VEGF-Axxxa mediated angiogenesis (Woolard et al., 2004). Therefore VEGF-A165b 

(acting via VEGFR2) may act as a vascular protective agent under normal conditions, 

preventing loss of blood vessels. Loss of VEGF-A165b in diabetic spinal cord removes such 

protection, resulting in vascular damage; reducing both vascular integrity and function. This 
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concept, that loss of endogenous endothelial cell VEGFR2 mediated cytoprotection 

contributes to nociceptive processing, is consistent with the results from the endothelial 

specific VEGFR2 KO mice. These mice demonstrated loss of spinal cord endothelium and 

associated development of hyperalgesia, consistent with this concept that endogenous 

maintenance of VEGFR2 activity is cytoprotective to the spinal cord endothelium, albeit that 

we have not directly measured spinal cord neuronal nociceptive processing. One interesting 

difference between the diabetic and VEGFR2ECKO animals was that whereas the diabetic rats 

had a reduction in larger microvessels and no change in smaller vessels, the VEGFR2ECKO 

animals had increased number of small but reduced numbers of larger vessels. This 

suggests that in diabetes the loss of vessels was due to either selective loss of larger 

microvessels (8-12µm), or a combination of loss of all vessels and a reduction in size of the 

larger vessels (hypotrophy or atrophy, or vasoconstriction). In contrast the VEGFR2ECKO 

mice had the latter effect. The functional implications would still be ischemia, but may have 

other subtle differences in nutrient or cell delivery. While the understanding of spinal 

nociceptive neuronal processing in diabetes is progressing, the contribution of microvascular 

alteration has never been investigated in this context. Furthermore, it has been shown that 

peripheral sensory neurons become sensitised upon reduced perfusion (So et al., 2016), 

leading us to speculate that the changes in the spinal cord vascular network, as a result of 

hyperglycaemia that we report, could alter the microenvironment of the spinal cord sensory 

neurons and thus alter their level of activation. This would be anticipated to contribute to 

changes in pain perception and underlie neuropathic pain development. 

 

The VEGFR2 knockdown was restricted to Tie2-positive cell types, which encompass 

the endothelial and haemopoietic cell populations. The Tie2 promoter driven transgenic 

models are widely used to investigate endothelial function (Makino et al., 2014; Moyes et al., 

2014), however it has been reported that Tie2 is expressed on CD11b/CD45 positive cells. 

(De Palma et al., 2005; Tang et al., 2010). In this study there was no impact of VEGFR2 

knockout on haematopoietic cell populations. An impact of this knockout system on 

circulatory macrophages and consequent endothelium would be expected to be minimal as 

there is a very small number of, if any, Tie2-positive, VEGFR2 positive macrophages (Okubo 

et al., 2016). 

 

People with diabetes are susceptible to neurological disease as a result of the microvascular 

dysfunction, impacting on motor, autonomic and cognitive systems, and increased 
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susceptibility to stroke and dementia (Kissela et al., 2005; Tiehuis et al., 2008). The VEGF-A 

angiogenic family has a pivotal role in managing vascular development and function (Bates, 

2010), however additional evidence now also supports a fundamental role for this family in 

neuronal activity and survival (Verheyen et al., 2012; Beazley-Long et al., 2013). As a 

consequence, VEGF-A treatment has been trialled for peripheral diabetic neuropathy 

(Schratzberger et al., 2001; Ropper et al., 2009). Experimental hyperglycaemia leads to a 

reduction in VEGF-A and VEGFR2 expression in the brain; VEGF-A treatment can protect 

both endothelium and neuronal circuits (Taylor et al., 2015). Dysfunction of the VEGF-A 

signalling pathway within the hippocampus impacts upon the microvasculature and leads to 

impaired spatial memory (Reeson et al., 2015; Taylor et al., 2015). A decline in vascular 

support and diminished vascular response in diabetes and stroke models therefore clearly 

affects neuronal function. However, VEGF-A165a also increases vascular permeability and 

stimulates abnormal angiogenesis, which is detrimental in the CNS, for instance in diabetic 

retinopathy (Perrin et al., 2005). The VEGF-Axxxb isoforms, however, do not stimulate 

angiogenesis or increase solute flux in diabetes, in fact they can reverse it in rodent models 

of diabetic retinopathy (Ved et al., 2017).  Despite these opposing profiles both families are 

cytoprotective, for endothelial cells and neurons (Beazley-Long et al., 2013; Oltean et al., 

2014; Hulse et al., 2015; Vencappa et al., 2015) . For example, reduced VEGF-A165b 

expression in diabetic patients is associated with reduced kidney function (Oltean et al., 

2014). Furthermore, treatment of diabetic mice with VEGF-A165b prevented endothelial 

dysfunction in the kidney of these animals (Oltean et al., 2014).  Here we show that a 

reduction in VEGF-A165b in the lumbar spinal cord of diabetic animals was associated with 

neuropathic pain and a degeneration of the spinal vasculature. Systemically reintroducing 

VEGF-A165b prevented vascular degeneration, spinal cord neuron activation and pain. 

VEGF-A165b was reduced in diabetic rats, despite reports that VEGF-A165b is associated with 

inhibition of vessel growth (Woolard et al., 2004).  Thus VEGF-A165b should be considered 

both an anti-angiogenic, and an endothelial survival factor –or a homeostatic counterpart to 

its vascular remodelling isoform, VEGF-A165a.  It must be noted that the actions of VEGF-

A165b and VEGFR2 on pain may not be restricted to vascular protection but also to effects on 

the spinal cord neurons, either indirectly, as VEGF-A165b has been shown to inhibit 

peripheral sensory neuron excitability and activation of peripheral nociceptors induce c-fos 

expression in the dorsal horn(Hulse et al., 2014), or directly through inhibiting VEGF-A165a 

actions on spinal cord circuitry (Hulse et al., 2016). Accompanying this, neutralising 

endogenous VEGF-A165b as well as pharmacological blockade of VEGFR2 signalling at the 
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level of the spinal cord led to the development of pain (Hulse et al., 2016). In addition, 

reductions in VEGF-A165b expression and no change in total VEGF-A expression would 

highlight a plausible increase in alternative isoforms such as VEGF-A165a, an event 

associated with pro-nociception and chronic pain(Hulse et al., 2014; Hulse et al., 2016) 

which cannot be ruled out in this instance.  

Furthermore, some consideration does need to be made when using diabetic models 

such as in the instance of using STZ. STZ is a reliable rodent model of type 1 diabetic 

neuropathy displaying comparable pain behaviour, nerve electrophysiological parameters 

and nerve histology, used widely throughout the field of diabetes research. However, it is an 

experimental model of islet cell ablation by a toxic agent that may have other effects, so 

despite its widespread use in many experimental models of diabetic complications 

(nephropathy, neuropathy, retinopathy and others) it is still critical that these findings are 

reproduced in type II diabetic models, and other models of type I diabetes before being 

applied to people with diabetes.  

These findings lead us to speculate that diabetes induced alterations of the 

somatosensory systems, for instance by affecting the vasculature supporting somatosensory 

processing at the level of the spinal cord, could be a key concept in regulating neuropathic 

pain and treatment of such complications (for example spinal cord vasculopathy) could 

provide a key target in treating diabetic neuropathic pain. 

 

In summary, we report for the first time a significant vascular degeneration in the spinal cord 

of diabetic rats, which is associated with a loss of spinal VEGF-A165b. This was accompanied 

by spinal neuron activation, indicative of altered function of the spinal cord neurons, and also 

by enhanced nociceptive pain behaviour. Administration of VEGF-A165b alleviated both the 

spinal cord vascular degeneration and pain neuropathic pain. This work is complementary to 

previous work in the nervous system demonstrating a neuroprotective action of VEGF-A 

(Reeson et al., 2015; Taylor et al., 2015), but herein we demonstrate central effects in the 

spinal cord with potential contribution to the control of chronic pain development, rather than 

actions purely at peripheral sites. These findings provide additional avenues for to further 

understanding diabetic neuropathic pain and the possible mechanisms that underlie 

sensitisation of nociceptive pathways. 
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Figure 1 – Diabetes-induced neuropathic pain is associated with a reduction in spinal cord 
vasculature and a decrease in VEGF-A165b expression. [A] Diabetes resulted in a reduction 
in mechanical withdrawal threshold measured by pincher, when compared with naïve age 
matched animals (*p<0.05,n=5/group). [B] Blood vessels identified (IB4) in the deeper 
laminar layers of the spinal cord (layers III-VI) of the naïve animal [C] with a decline in 
vascular staining in the diabetic animal. [D] There was a reduction in blood vessel 
(CD31/IB4+ve) number (*p<0.05,n=4/group) [E= naïve, F = Diabetic; reduced diameter 
(*p<0.05, n=4/group) as well as diameter [G] in the lumbar spinal cord in diabetic animals 
compared with naïve controls. [H] Immunoblot of panVEGF, VEGF-A165b and actin in lysates 
from spinal cord of normal and diabetic animals. [I]. Densitometry analysis demonstrates no 
change in pan-VEGF-A expression and a decrease in VEGF-A165b expression in diabetic 

lumbar spinal cord versus naïve animals. (*p<0.05,n=5/group) (B&C Scale bar= 40m, E&F 

Scale bar= 20m). 
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Figure 2 – Diabetes induced vascular impairment in the spinal cord.  [A] Isolated spinal cord 
endothelial cells demonstrated increased cell death in 50mM glucose when compared with 
50mM mannitol and 5mM glucose (*p<0.05, ***p<0.001). [A] VEGF-A165b treatment 
prevented high glucose-induced endothelial cell death (**p<0.01). [B] IB4 stained vasculature 
in the spinal cord of naïve age matched controls was compared with that in [C] 
diabetic+vehicle (Arrow heads = vessels smaller than 6µm) and [D] diabetic +VEGFA165b. [E] 
There was a significant reduction in total volume of the microvasculature in the spinal cord of 
the diabetic+vehicle group in addition to [F] a reduction in vessel diameter compared with 
naïve controls (**p<0.01, ***p<0.001, n=4/group). [E-F] VEGF-A165b treatment prevented the 
diabetes-induced vascular degeneration in the lumbar spinal cord (**p<0.01, n=4/group). [G] 
VEGF-A165b treatment also prevents the diabetes induced decrease in larger and 

intermediate microvessels. (B-D Scale bar = 25m). 
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Figure 3 – Diabetes induced degeneration of the endothelium. Immunoblots using dual 

colour far red imaging for endothelial markers ([A] VE-Cadherin, [A] CD31 and [B] occludin 

and [B] actin) demonstrated [C] a non-significant reduction in VE-cadherin expression and 

significant reductions in [D] CD31 and [E] occludin in the diabetic+vehicle group compared 

with naïve and diabetic+VEGF-A165b animals (*p<0.05,n=5). 
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Figure 4 – Reduced vascular functionality in the spinal cord of diabetic rats. There was a 

significant reduction in Evans blue solute flux in the lumbar spinal cord of diabetic animals 

after [A] 1 week (naïve;n=9, diabetes;n= 12, ***p<0.001) and [B] 8 weeks (*p<0.05,n=4/5 

/group). VEGF-A165b treatment prevented the diabetes-induced reduction in solute flux within 

the lumbar spinal cord at 8 weeks (*p<0.05,n=4/5 /group). [C] There was no change in solute 

flux in the brain of any treatment group (naïve vs diabetic+vehicle = p=0.52; diabetic+vehicle 

vs diabetic +VEGF-A165b = p=>0.99; n=4/5 /group). 
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Figure 5 – Diabetes induced dysfunction of microvasculature in the spinal cord and 
neuropathic pain is reversed by VEGF-A165b. [A] Diabetic+vehicle animals demonstrated a 
decrease in mechanical withdrawal threshold (vF hairs) and [B] reduced withdrawal latency 
to heat compared with both naïve and diabetic+VEGF-A165b treated groups (** p<0.01, *** 
p<0.001 naïve vs diabetic+vehicle; # p<0.001 diabetic +VEGF-A165b vs diabetic+vehicle, n=5 
per group). Arrow highlight onset of VEGF-A165b treatment,[C] Cleaved caspase-3 

(red=CC3) and sensory neuron (green=NeuN) staining in the spinal cord (Scale bar=40m). 
[D] There was an increase in cleaved caspase-3 expression in sensory neurons in the 
superficial lamina (I&II) of the dorsal horn of the spinal cord in the diabetic + vehicle groups 
compared with naïve age matched controls and VEGF-A165b treated diabetic animals. [E] 
There is an increased number of CC3 positive dorsal horn sensory neurons (arrows in E) in 
the dorsal horn of the spinal cord in the diabetic + vehicle groups compared with naïve age 
matched controls and VEGF-A165b treated diabetic animals. This is graphically represented 
in [F] (*p<0.05,n=4). 
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Figure 6 – Diabetes induced hyperactivity in sensory neurons of the dorsal horn in the spinal 

cord. [A-B] Immunoreactivity of a marker of central sensitisation, c-fos (red; NeuN green), 

was increased in sensory neurons in the dorsal horn of the spinal cord in diabetic+vehicle 

animals versus naïve animals. This was reduced by VEGF-A165b treatment. [C] There was 

an increase of c-fos expression in sensory neurons in all lamina of the dorsal horn (I-V) in 

the diabetic+vehicle group when compared to naïve and diabetic+VEGF-A165b (*p<0.05, 

**p<0.001, ***p<0.001; n=4). 
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 Figure 7 – Tamoxifen induced VEGFR2 knockout. VEGFR2 was inducibly knocked out in 
endothelial cells by crossing vegfr2fl/fl with Tie2CreERT2 mice and treating with tamoxifen 
(VEGFR2ECKO). [A] In lung tissue, VEGFR2 protein was detected in tamoxifen treated 
vegfr2fl/fl mice lacking Cre (CTL), but not in VEGFR2ECKO mice [B] Immunoblot densitometry 
demonstrated reduced VEGFR2 protein in the VEGFR2ECKO mice compared with controls 
(*p<0.05, =6 per group). [C-D] VE-cadherin expression was also reduced in lung tissue of 
the VEGFR2ECKO mice (*p<0.05, n=6 per group).  [E] There was a reduction in VEGFR2 in 
the spinal cord of the  VEGFR2ECKO mice when compared to CTL mice (*p<0.05, n=4 per 
group, this was accompanied by reductions in endothelial markers [F] VE-cadherin and [G] 
CD31 (**p<0.01, n=4 per group. [H] Western blot of the lumbar spinal cord from 
VEGFR2ECKO mice demonstrating [I] a reduction in VE-Cadherin expression when compared 
to CTL mice.  
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Figure 8 - Inducible endothelial cell vegfr2 KO caused microvasculature loss in the dorsal 
horn of the lumbar region of the spinal and hyperalgesia. Representative images from the 
microvessels in [A lower power; B high power] vegfr2fl/fl Tie2CreERT2 positive mice + vehicle 
(Vehicle) and [D-F] VEGFR2ECKO. VEGFR2ECKO mice had a significant reduction in 
microvasculature [C] volume and [D] diameter compared with controls (CTL and vehicle). 
(***p<0.000,*p<0.01, comparison between Vehicle and CTL vessel diameter p= 0.5391). [E]  
VEGFR2ECKO mice had an increased number of smaller microvessels versus other 
experimental groups. [F] VEGFR2ECKO mice showed a reduced withdrawal latency to heat 
when compared to control mice(***p<0.001 comparison made at day 11 between CTL 
(p=0.003), Vehicle (P=0.001) and CTL +Vehicle (P=0.0008) against VEGFR2ECKO mice, 
n=10/11 per group).  
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Figure 9 – Tamoxifen did not induce a loss in haematopoietic cells in the mouse spleen 

[A-B] Cells isolated from mouse spleens were analysed using flow cytometry to identify [C] 

F4/80 and [D] CD11b cell populations. In VEGFR2ECKO + tamoxifen mice there were no 

changes in cell number in [E] F4/80 (p=0.630), [F] CD11b (p>0.99) and [G] F4/80/CD11b 

(p>0.99) cell populations or [H&I] median fluorescent intensity (F4/80=p=0.11; CD11b=0.11) 

when compared with tamoxifen treated Tie2CRE mice (n=4/group). 

 


