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a b s t r a c t

In this work the uncapacitated dynamic lot-sizing problem is considered. Demands are deterministic and
production costs consist of convex costs that arise from economic production functions plus set-up costs.
We formulate the problem as a mixed integer, non-linear programming problem and obtain structural
results which are used to construct a forward dynamic-programming algorithm that obtains the optimal
solution in polynomial time. For positive setup costs, the generic approaches are found to be
prohibitively time-consuming; therefore we focus on approximate solution methods. The forward
DP algorithm is modified via the conjunctive use of three rules for solution generation. Additionally,
we propose six heuristics. Two of these are single-stepSilver–Meal and EOQ heuristics for the classical
lot-sizing problem. The third is a variant of the Wagner–Whitin algorithm. The remaining three
heuristics are two-step hybrids that improve on the initial solutions of the first three by exploiting the
structural properties of optimal production subplans. The proposed algorithms are evaluated by an
extensive numerical study. The two-step Wagner–Whitin algorithm turns out to be the best heuristic.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the problem of dynamic lot-sizing in
the presence of polynomial-type convex production functions and
non-zero setup costs. The dynamic lot-sizing problem is defined as
the determination of the production plan that minimizes the total
(fixed setup, holding and variable production) costs incurred over
the planning horizon for a single, storable item facing determinis-
tic demands. The so-called classical dynamic lot-sizing problem
was first analyzed by Wagner and Whitin (1958). They established
that, in an optimal plan with positive fixed setup costs and linear
production and holding costs, production is done in a period only
if its net demand (actual demand less inventories) is positive, and
a period's demand is satisfied entirely by production in a single
period (that is, integrality of demand is preserved.) For linear
production costs, extensions include Zangwill (1966), Blackburn
and Kunreuther (1974), Lundin and Morton (1975), Federgruen
and Tzur (1991), Wagelmans et al. (1992), Aggarwal and Park
(1993), Azaron et al. (2009), Ganas and Papachristos (2005),
Okhrin and Richter (2011) and Toy and Berk (2013). The funda-
mental properties of the optimal plans for linear costs hold for

piecewise linear and concave cost structures, as well. For details on
such results, we refer the reader to the reviews in Brahimi et al.
(2006), Karimi et al. (2003), Jans and Degraeve (2007), Buschkühl
et al. (2010) and Jans and Degraeve (2008). There is also a parallel
stream of research that focuses on developing lot sizing heuristics
based on simple stopping rules. (See Vollmann et al. (1997),
Simpson (2001), and Jeunet and Jonard (2000) for a full list and
review.) The advantages of such approximate solution methodol-
ogies are their ease-of-use, smoother production schedules and
providing more intuition to practitioners about the fundamental
trade-offs. Hence, the available commercial ERP software (e.g., SAP)
offers the well-known heuristics for the classical lot sizing pro-
blem as options for decision-makers in theirmanufacturing mod-
ules. These include the Silver–Meal and economic order quantity
(EOQ) based heuristics among others (Silver and Meal, 1973;
Harris, 1913; Erlenkotter, 1989).

Most of the existing works on the dynamic lot-sizing problem
deal with linear and/or concave production functions rather than
convex functions. For convex cost functions and zero setup costs, a
parametric algorithm was developed by Veinott (1964) for the
problem, which can be solved by an incremental approach satisfy-
ing each unit of demand as cheaply as possible. The algorithm has
a computational complexity ofOðTD1;T Þ where T is the problem
horizon length and D1;T stands for the total demand over the
problem horizon. Works by Meyer (1977) and Khachian (1979)
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render this problem solvable in strictly polynomial time. Our work
differs from the existing literature in our main assumption about
the structure of production costs. Specifically, we consider variable

production costs in period t of the polynomial form ∑m
n ¼ 1w

n
t q

rnt
t

where qt denotes the quantity produced in the period, wt
n and rt

n

are positive constants and m is the number of resources. The
assumed non-linearity aims to capture the externalities in produc-
tion activities that are encountered in a number of industrial
settings as briefly discussed below:

(i) Productive assets require maintenance and repair activities
over their lifetimes and almost all production processes
generate undesirable wastes, which must be disposed of
and/or whose negative ecological impact must be mitigated.
As additional resources are required or legal penalty rates
become progressive, the costs associated with such auxiliary
activities exhibit a convex behavior. To the best of our knowl-
edge, the only attempt to incorporate such non-linear costs in
production planning is performed by Heck and Schmidt
(2010) who proposed a heuristic which is a variant of the
incremental solution approach in Veinott (1964).

(ii) Non-linear production functions also arise from production
activities that use a number of substitutable resources such as
materials, labor, machinery, capital, energy, etc. One of the
most common production functions is the Cobb–Douglas
production function, which was introduced at a macroeco-
nomic level for the US manufacturing industries for the period
1899–1922 but has been widely applied to individual produc-
tion processes at the microeconomic level, as well. For
example, Shadbegian and Gray (2005) use the Cobb–Douglas
production function to model production processes in the
paper, steel and oil industries, Hatirli et al. (2006) to model
agricultural production, and Kogan and Tapiero (2009) to
model logistics/supply chain operations. The Cobb–Douglas
production function assumes that multiple (m) resources are
needed for output, Q and they may be substituted to exploit
the marginal cost advantages. In general, it has the form

Q ¼ A∏m
i ¼ 1xðiÞαðiÞ where A is the technology level for the

production process, x(i) denotes the amount of resource i
used and αðiÞ40 is the resource elasticity. Assuming that
resource i has a unit cost of p(i), the total cost for output Q is
given by wQr where w¼ ð1=rÞA� r∏m

i ¼ 1ðpðiÞ=αðiÞÞαðiÞr and

1=r¼∑m
i ¼ 1α

i (Heathfield and Wibe, 1987). The total elasticity
parameter 1=r may be greater than (smaller than) or equal to
1 depending on whether there is diminishing (increasing)
returns to resources, resulting in convex (concave) variable
production costs. Despite its widespread occurrence, the
impact of the Cobb–Douglas production function on dynamic
lot-sizing problems has not been studied.

(iii) Another commonly used economic production function is the
Leontieff function introduced by Leontieff (1947). Its main
difference from the Cobb–Douglas function is that it assumes
that resources are not substitutable but complementary. The
applications include Haldi and Whitcomb (1967) for refining
of petroleum and primary metals, Ozaki (1976) for large-scale
assembly production, Lau and Tamura (1972) for ethylene
production, and Nakamura (1990) for iron and steel produc-
tion. The Leontieff production function has the form
Q ¼minifxðiÞαðiÞg for a given set of resources where x(i )
denotes the amount of resource i used and αðiÞ40 is the
resource elasticity. Assuming that resource i has a unit cost of

p(i), the total cost for output Q is given by ∑m
i ¼ 1w

iQ1=αðiÞ

where wi ¼ pðiÞ. Typically, it is assumed that αðiÞr1 so that

the variable cost of production is convex in output. Similarly,
there are no studies on the dynamic lot-sizing problem in the
presence of Leontieff production functions.

The general structure for variable production costs assumed
above subsumes the above three classes of costs of production
externalities. For m41, each term wi

tq
rit
t corresponds either

directly to the cost of using resource i in a complementary fashion
in order to produce qt units in period t through a Leontieff-type
production function or to the individual polynomial terms of the
cost of efforts to mitigate the ecological impact. For m¼1, the only
term w1

t q
r1t
t corresponds to the effective cost of using all resources

to produce qt units in period t through a Cobb–Douglas type
production function. To avoid confusion, we remind the reader
that the above discussion of multiple resources is to motivate the
form of the variable production cost functions. Once we have
them, we focus on the production plan of the single item.

In this paper, we formulate the dynamic lot-sizing problem first
as a mixed integer non-linear programming (MINLP) problem and
obtain fundamental properties of the optimal solution. In parti-
cular, we characterize the optimal solution structure for the case of
zero setup costs and establish the property that shows how the
optimal solution for a T-period problem can be updated to give the
solution for a (Tþ1)-period problem. This property leads us later
to develop a forward dynamic programming (DP) formulation
which obtains the optimal production plan in OðT22T Þ run time in
general. For positive setup costs, we also show that the same
optimal production plan structure (consisting of G-class subplans)
is retained when periods are pre-specified in which production is
done. Based on this property, we modify the forward DP algorithm
by means of three simple set-construction rules so that OðT2Þ
computational complexity is achieved. This constitutes our bench-
mark algorithm for large sized problems. In addition, we propose
six new heuristics for the lot sizing problem at hand. Heuristics H1
and H2 are based on stopping rules and variants of the Silver–Meal
and EOQ based heuristics for the classical lot sizing problem.
Heuristic H3 is a variant of the Wagner–Whitin solution that
employs the forward DP algorithm while imposing demand
integrality on the production quantities. The first three heuristics
are single step heuristics. The remaining three heuristics, which
we call the G-heuristics, are two-step hybrids that use the set of
production periods of the solutions obtained by the first three
heuristics and improve them via G-class production subplans.

An extensive numerical study establishes that a forward DP
algorithm wherein production periods within generations are
selected via simple rules provides a reasonably fast and efficient
solution methodology. Among the proposed heuristics, the
Wagner–Whitin heuristic (H3) performs best among the single
step heuristics and the hybrid G-heuristics exploiting the optimal
production plan structure outperform the single step heuristics
significantly. The best heuristic among all those proposed turns
out to be the hybrid one that improves on the Wagner–Whitin
solution, namely, heuristic H6. These are followed in performance
by the single step heuristic H2, which is based on the EOQ model,
and the G-heuristic H5, which improves on that. The sensitivity
analysis on the optimal solutions (obtained by the benchmark DP
algorithm) reveals two fundamental tendencies which are in
accordance with intuition. Higher production cost non-linearities
and lower average unit production costs force production to be
spread over a larger number of periods to exploit the marginal cost
benefits. Thus, unlike the classical lot-sizing model with the non-
speculative cost structure, production functions generate a ten-
dency to produce in earlier periods when setup costs are zero. This
results in production smoothing – production decisions in more
periods with smaller quantities. Positive setup costs, on the other
hand, introduce the batching tendency, as expected; for larger
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setup costs, larger production quantities emerge to compensate for
a setup in a period. The interaction between these two tendencies
is not always straightforward for particular cost parameter values
but the fundamental trade-offs could be observed in all experi-
ment instances. The production smoothing tendency revealed in
our study is of interest from a practical perspective, as well; it
supports the managerial attitudes toward dedicated facilities and
high asset utilization rates in practice.

The remainder of the paper is organized as follows: Section 2
describes the model and provides the MINLP formulation. Section
3 presents the structural results on the optimal solution. In Section
4, we discuss possible solution approaches that can be applied to
the problem at hand, formulate both backward and forward DP
algorithms based on the fundamental structural properties of
optimal solutions and develop our additional heuristics. We
present our findings from an extensive numerical study in
Section 5. Specifically, we compare the performance of the
heuristics and the forward DP algorithm in terms of attained costs
and corresponding computational times; and, discuss some sensi-
tivity results. Finally, in Section 6 we briefly summarize our
findings and suggest future research directions.

2. Model assumptions and formulation

We consider a single item. The length of the problem horizon,
T, is finite and known. The demand amount in period t is denoted
by dt (t¼1,…,T). All demands are non-negative and known, but
may be different over the planning horizon. No shortages are
allowed; that is, the amount demanded in a period has to be
produced in or before its period. The amount of production in
period t is denoted by qt and is uncapacitated. Production
quantities may be real-valued. Production in any period t incurs
a fixed cost (of setup) KtðZ0Þ and a variable cost component.
Variable cost of production is non-linear in qt and is of the form:

∑m
j ¼ 1w

j
tq

rjt
t , where wt

j and rt
j are non-negative constants. We

assume that rjt4 ðr Þ1 for all j; t resulting in convex (concave)
variable production costs. Any period in which qt40 is called a
production period; otherwise, it is a no-production period. The
inventory on hand at the end of period t is denoted by It; each unit
of ending inventory in the period is charged a unit holding cost of ht.
Without loss of generality, the initial inventory level, I0, is assumed to
be zero. The objective is to find a production plan that determines
the timing and amount of production ðqtÞ such that the total cost of
production and holding over the horizon is minimized. For the sub-
horizon consisting of periods fu;uþ1;…; vg (½u; v� in short), let Pu;v

denote the production planning problem, Du;v ¼ duþduþ1þ⋯þdv
denote the total demand, Qu;v ¼ ðqu;…; qvÞ denote the production
plan and Fu;v denote the corresponding total cost.

We formulate the problem as a MINLP problem. This allows us
to establish certain structural properties of the optimal solution.
We can state problem Pu;v formally as follows:

min
qu ;…;qv

Fu;v ¼ ∑
v

t ¼ u
Ktytþ ∑

m

j ¼ 1
wj

tq
rjt
t þ ∑

v

i ¼ t
hi

 !
qt

 !" #
� ∑

v

t ¼ u
htDu;t

ð1aÞ

s:t: ∑
t

i ¼ u
qiZDu;t ; tAfu;…; vg ð1bÞ

qtZ0; tAfu;…; vg ð1cÞ

qtrDt;vyt ; tAfu;…; vg ð1dÞ

ytAf0;1g; tAfu;…; vg ð1eÞ

where yt denotes the binary variable for a setup. The first set of
constraints (1b) ensure that all demands will be met and (1c) are
nonnegativity constraints. The optimization problem at hand is
finding Qn

1;T ¼ ðqn

1;…; qn
T Þ and Fn

1;T for P1;T over the horizon ½1; T �,
where we use ðnÞ to indicate optimality for all entities. In the
analysis that follows, we assume, for convenience, that production
quantities are non-negative real numbers.

The nonlinear convex production costs are the key difference
between our model and the classical well-known model intro-
duced by Wagner and Whitin (1958) which is a Mixed integer
Programming (MIP) model. The fundamental properties of the
optimal solution for rr1 are that, in an optimal plan,
(i) production may occur in period t only if It�1 ¼ 0 and (ii) the
entire demand in a period is covered by production in a single
period (demand integrality is preserved) (Wagner and Whitin,
1958). For r41, these properties do not hold. This makes the
production planning problem in the presence of convex produc-
tion costs challenging and interesting. To illustrate this point,
consider P1;T for the following simple example. For T¼2,
Kt ¼ K ¼ 700, ht ¼ h¼ 1, m¼1, w1

t ¼w¼ 0:01, r1t ¼ r¼ 2 for
1rtrT and d¼ ð100;300Þ. As will be established later, the
optimal plan for this problem gives qn

1 ¼ 175 and qn

2 ¼ 225. Note
that neither of the two properties holds; In1 � qn

2a0 and
0oqn

2od2. In technical jargon, the feasible solution set is convex.
A concave function attains its minimum over a convex set at an
extreme point. Thus, whenever the cost functions in a lot sizing
model is concave, the optimal solution lies on the extreme points.
On the other hand, a convex function may attain its minimum in
an interior point of the feasible region (as in the example above).
Such an interior point solution is called a non-integral plan since
the production quantity in each period is not exactly equal to the
demand summed over one or more future periods. Our main
contribution is to characterize such non-integral solutions (if any)
and the related structural results which are provided in the next
section.

3. Structural results

In this section, we present structural results on the optimal
production plan for the dynamic lot-sizing problem Pu;v intro-
duced above. In particular, we introduce the key concept of a
generation and related definitions; establish the decomposition
properties for production subplans in terms of inventory levels
and generations, and the characteristics of a production plan for a
generation; and, based on these, we characterize the optimal
production plan structure. For the special case of K¼0, we also
provide a planning horizon that rests on merging of generations as
problem horizon extends. We begin with the definitions and key
concepts.

Definition 1. In a given production plan, Qij for periods fi;…; jg,

(1) period t is a regeneration point if It�1 ¼ 0;
(2) a sequence of periods fu;uþ1;…; vg, for irurvr j, is a

generation, denoted by 〈u; v〉, if Iu�1 ¼ Iv ¼ 0 and It40 for
tAfu;uþ1;…; v�1g;

(3) the production plan of a generation is called a production
sequence.

Note that the definitions above are similar to those in Manne
and Veinott (1967) and Florian and Klein (1971) with slight
notational differences. Regeneration points (and, thereby, genera-
tions) play a central role in finding the optimal production plans in
lot-sizing problems. Specifically, they allow us to partition the
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problem horizons and to independently solve for sub-problems.
Florian and Klein (1971) have established this property for any cost
structure. We re-state their result below.

Theorem 1 (Inventory decomposition property). Suppose that the
constraint

Ik ¼ 0 for some k Af1;…; t�1g; ð2Þ
is added to problem P1;t , then, an optimal solution to the original
problem can be found by independently finding solutions to the
problems for the first k periods and for the last t�k periods.

Inventory decomposition has direct implications on the struc-
ture of an optimal production plan. Based on this property, it
suffices to consider only production sequences to find the optimal
solution to problem Pu;v as stated below.

Corollary 1 (Generation decomposition property). An optimal pro-
duction plan Qn

u;v for problem Pu;v consists of production sequences
which can be independently solved.

Proof. By assumption, Iu�1 ¼ 0. Clearly, in an optimal production
plan, Inv ¼ 0. If Int a0 for tAfu;…; v�1g, then there is a single
production sequence. Otherwise, Ik¼0 for some kAfu;…; v�1g.
In this case, there are kþ1 generations by definition. From
Theorem 1, each generation can be solved as a sub-problem.
Hence, the result. □

In the remainder of this section, we provide results on the
characteristics of generations and optimal production sequences.

Lemma 1 (Generation characteristics). For a generation 〈u; v〉,

(i) qu ¼ duZ0 if u¼v;
(ii) ∑t

s ¼ uqs4∑t
s ¼ uds for tAfu;uþ1;…; v�1g if uov;

(iii) qu40 if uov;
(iv) dv40 if uov.

Proof. (i) Follows from (1b). (ii) By definition. That is, if
∑t

s ¼ uqs ¼∑t
s ¼ uds, then the generation would have ended at

v¼t, which contradicts the definition. (iii) Immediately follows
from the previous two results. (iv) We prove the result by contra-
diction. Suppose that dv¼0. Then, the inventory balance equation
of period v, Iv ¼ qvþ Iv�1�dv, implies 0¼ qvþ Iv�1, which is
possible only if qv ¼ Iv�1 ¼ 0 due to the non-negativity of these
variables. But this contradicts the definition of a generation, hence
the result. □

The above lemma implies that a generation whose total
demand is zero consists of a single no-production period, and
that a generation with at least two periods can neither end with a
zero-demand period nor start with a no-production period. Next,
we present our results on the structure of the optimal production
plan. In any production plan, there may be production and no-
production periods. Given a production plan Qu;v, let SðQu;vÞ denote
the set of production periods. A special class of production plans
forms the basis of the characterization of the optimal solution. We
introduce this class below.

Definition 2. A production plan Qu;v ¼ ðqu;…; qvÞ is of class G if

∑
m

n ¼ 1
rni w

n
i q

rni �1
i ¼ ∑

m

n ¼ 1
rnj w

n
j q

rnj �1

j � ∑
j�1

s ¼ i
hs ð3Þ

for any i; jASðQu;vÞ and ur io jrv.

Now, we can give the fundamental results on the optimal
production plan structure. (The proofs of the results in the
remainder of this section are provided in Appendix.)

Theorem 2 (Optimal production plan structure I). In an optimal
production plan Qn

1;T , for any generation 〈u; v〉,

(i) Qn

uv ¼ ðduÞ if 1ru¼ vrT ,
(ii) Qn

u;v ¼ ðDuv;0;…;0Þ if 1ruovrT and rnt r1 for tA ½u; v�,
(iii) Qn

u;v ¼ ðqn
u;…; qn

vÞ is of class G if 1ruovrT and rnt 41 for
tA ½u; v�,

The above result implies that it suffices to consider only those
feasible production plans that are of class G in order to optimize
the problem Pu;v for any horizon ½u; v�. We shall exploit this
property when we develop our forward dynamic programming
solution approach. Theorem 2 characterizes the relationship
among the production quantities within a generation. Next, we
establish the relationship between the production quantities of
two consecutive generations in an optimal production plan.

Theorem 3 (Optimal production plan structure II). If rnt Z1 for all
n; t, in an optimal production plan, for generations 〈u; v〉 and
〈vþ1; v0〉,

∑
m

n ¼ 1
rnvþ1w

n
vþ1ðqn

vþ1Þr
n
vþ 1 �1r ∑

m

n ¼ 1
rnl w

n
l q

n

l r
n
l �1þ ∑

v

i ¼ l
hi; ð4Þ

where, l is the last production period in 〈u; v〉.

The above theorem enables us to check whether a proposed
bisecting of the sub-horizon ½u; v0� can be optimal. So far, we have
provided structural results of the optimal production plans for the
general case that allows for non-zero fixed production (setup) costs.
Next, we focus on the special case of Kt ¼ 0 8 t, which enables us to
obtain further results on the optimal production plans.

3.1. A special case: zero setup costs ðKt ¼ 0Þ

Recall that, in the classical lot-sizing problem with the non-
speculative cost structure ðctþht4ctþ1 8 tÞ, the optimal produc-
tion plan consists of lot-for-lot productions in the absence of setup
costs. This has two implications: (i) each period is one generation,
and (ii) production is done only in periods of non-zero demand. In
the presence of production functions, these results no longer hold. In
particular, it is optimal to produce in every period within a genera-
tion 〈u; v〉 if Duv40. This result follows from the property below.

Lemma 2. If rnt Z1 and Kt ¼ 0 8 t, in an optimal production plan, for
generation 〈u; v〉, qn

j 40 if qn
t 40 for urto jrv.

It follows from the lemma above that all periods within a
generation are production periods provided that the total demand
is positive and setup costs are negligible.

For convex production and zero setup costs, the optimal
solution behaves in a particular way with respect to demand
increases and horizon extensions. If the last period's demand is
increased (all else being the same), then in the optimal production
plan for the modified problem, (1) the number of generations cannot
increase, and (2) the optimal solution to the original problem is
retained up to a regeneration point obtained in the original problem.
That is, only the last generation in the original solution may merge
with previous ones to form a longer last generation in the modified
problem's solution. If the problem horizon is extended, then, in the
optimal solution, either the new period constitutes the (new) last
generation in addition to those obtained in the original problem or
the effect of extending the problem horizon is similar to a demand
increase in the last period of the original problem. We formally state
these properties in the following theorem.

Theorem 4 (Planning horizon theorem). Given a problem P1;t with
demands dt ¼ ðd1;…; dtÞ and rni 41 and Ki¼0 for n¼1,…,m and
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i¼ 1;…; t, suppose that the optimal production plan is Qn

1;t ¼
Qn

t1 ;t2 �1 [ Qn

t2 ;t3 �1 [ …Qn

tk ;t
where k denotes the number of genera-

tions in the plan and tj denotes the regeneration points with t1 ¼ 1.

(i) For a modified problem P1;t with modified demands d1;t ¼
ðd1;…; dt�1; dtþxÞ where x40, the optimal production plan,

Q
n

1;t is given as Qn

t1 ;t2 �1 [ … [ Qn

ti� 1 ;ti �1 [ Q
n

ti ;t
where Q

n

ti ;t

denotes the (new) production sequence for the (new) last
generation and iAf1;…; kg.

(ii) For problem P1;tþ1 with demands dtþ1 ¼ ðd1;…; dt ; dtþ1Þ, the

optimal production plan is Qn

1;tþ1 ¼ Qn

t1 ;t2 �1 [ … [ Qn

ti� 1 ;ti �1 [
Q

n

ti ;tþ1 where Q
n

ti ;tþ1 denotes the (new) production sequence for

the (new) last generation iAf1;…; kþ1g with tkþ1 ¼ tþ1 if
rntþ141 for n¼1,…,m and Ktþ1 ¼ 0.

An illustration of this property is given in the example in
Table 1 as evolution of the optimal solution is depicted for
successively longer problem horizons. As horizon extends from
T¼7 to T¼8, the former set of generations is retained and the last
generation is composed of the new period, whereas the last
generation merges with three former ones as horizon further
extends to T¼9. Thus, the last generation in an optimal solution
can only extend and its regeneration point can only shift toward
the time origin. (See also T¼10,11.) This theorem is of interest for
settings where production plans may be done on a rolling horizon
basis. In certain cases, the merging of the last generation with the
previous ones may continue up to the first period. Unlike the
classical lot-sizing problem, there exists no guaranteed partition-
ing of the problem horizon even for zero setup costs.

4. Solution algorithms and heuristics

The dynamic lot sizing problem with convex economic produc-
tion functions can be solved in a number of ways: Direct application
of the available generic optimizers on the given mixed integer
nonlinear programming (MINLP) formulation; a backward dynamic
programming (DP) formulation with inventory levels as states and
time periods as stages; a forward DP formulation with exhaustive
and heuristic search subroutines; and, heuristics specially developed
for the problem at hand. We considered all of these approaches.
Below, we discuss the particulars of each approach with its merits
and disadvantages.

Problem Pu;v is already formulated as an MINLP problem.
Therefore, one option is to employ the commercially available
solvers which have been developed for generic MINLP problems.
In a preliminary unreported numerical study, we tested the suit-
ability of such optimization packages. A direct application of the
given MINLP formulation resulted in poor performance of the
available solvers; sometimes no solution could be found at all.
To overcome this, a possibility is to consider reformulations of the
MINLP problem similar to those in Brahimi et al. (2006) making the
problem more amenable to the available solvers. A small numerical
study indicated that there is indeed room for improvement in the
performance of the generic solvers with different reformulations.
But, for large scale problems, we still encountered the difficulties
of computational time and iteration limits. Another option is to
obtain the optimal solution to problem P1;T by a general backward

dynamic programming (DP) algorithm. To this end, define JTt ðItÞ
as the minimum total cost under an optimal production plan
for periods tþ1 through T, where It�1 is ending inventory as
defined before and follows the recursion It ¼ It�1þqt�dt for all t.

(We retain all other notation introduced previously.) Then

JTt�1ðIt�1Þ ¼ min
qt Zmaxð0;dt � It � 1Þ

Kt1qt 40þhtItþ ∑
m

n ¼ 1
wn

t q
rnt
t þ JTt ðItÞ

� �

tAf1;…; Tg ð5Þ

with 1qt 40 denoting the indicator for a setup and the boundary

condition in period T being JTT ðIT Þ ¼ 0 for all IT. The optimal solution

is found using the above recursion and JT0ð0Þ denotes the minimum
cost over the problem horizon. The main difficulty with this back-
ward DP algorithm is the curse of dimensionality. For real valued
demands, implementing the above formulation requires discretiza-
tion of ending inventories (and production quantities) with a
suitable step-size, say, δ. Then the total memory requirement for
the cost-to-go array is of size ½∑T

t ¼ 1∑
T
i ¼ tdi�=δ. As the problem

horizon extends, it becomes prohibitively high preventing its usage
for large problems. However, it is possible to use the structural
properties of optimal solutions and formulate the problem as a
forward DP problem which we discuss next.

Generation decomposition property in Corollary 1 implies that
an optimal plan for Pu;v can be found by considering generations
over ½u; v� which can be independently solved. This property forms
the basis of the forward dynamic programming recursion which
uses only the period information. The logic of the forward DP rests
on partitioning any given problem. For any problem horizon t, we
construct the feasible production plans by considering the last
generation in the plan, 〈i; t〉, for some iA ½1; t� and the best solution
obtained for ½0; i�1� where period 0 denotes the time origin for
convenience. Formally, we can state the forward DP algorithm as
follows. Let f nt be the cost under an optimal production plan for
½1; t� given that I0 ¼ 0. Then, for t¼1,…,T, we have

f nt ¼ min
1r ir t

ff ni�1þgi;tg; ð6Þ

where gi;t is the cost associated with generation 〈i; t〉, f n0 � 0 and f nT
is the optimal cost for problem P1;T . To find the optimal production
sequence for generation 〈i; t〉, we search over the feasible produc-
tion plans of class G as implied by Theorem 2. Specifically, we start
with some production period set, S for the given generation 〈i; t〉
and solve for the positive production quantities that satisfy the
condition for class G plans. (If the obtained production plan is not
feasible, it is discarded as having infinite cost.) If necessary, we
update the set S and find new production sequences until no
further cost improvements are achieved. Recall that, if Kt ¼ 0 8 t,
production is done in all periods within a generation except for
one-period generations with zero demands. For this case, it
suffices to choose the initial S as containing all of the periods
fi; iþ1;…; tg and no updating is necessary. Furthermore, as the
algorithm progresses (as t is increased to tþ1), from Theorem 4,
instead of minimizing over iA ½1; t�, it is sufficient to consider only
the regeneration points ft1;…; tkg [ ftg, where tj's denote the
regeneration points obtained for problem horizon t. The above
algorithm is guaranteed to give the optimal solution for problem
P1;T (i.e., f nt ¼ Fn

1;T ). We provide the pseudo-code for the forward DP
algorithm in Appendix. For zero setup fixed costs, it has a

computational complexity of OðT2Þ; in practice, this translates to
the algorithm being able to solve large scale problems with 300
periods within a millisecond on a personal computer. For positive
setup costs, however, production may not be done in all periods in

a generation 〈i; t〉, and all 2t� iþ1 possible sets must be considered
for S as candidates for new production sequences. The forward DP
algorithm that considers all these sets provides the optimal

solution and has OðT22T Þ run time complexity. But such an
exhaustive search is prohibitively time-consuming rendering the
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exact solution by the given forward DP formulation impractical for
K40 and long problem horizons.

In the absence of reasonably fast exact solution methodologies,
one may resort to approximate solutions. We develop an approx-
imate version of the above forward DP algorithm, which will be
used a benchmark. Additionally, we propose six heuristics for
problem P1;T , which we refer to as heuristics H1–H6. Heuristics
H1 and H2 are based on stopping rules and variants of the Silver–
Meal and EOQ based heuristics for the classical lot sizing problem.
Heuristic H3 is a variant of the Wagner–Whitin solution that
employs the forward DP algorithm while imposing demand inte-
grality on the production quantities. The first three heuristics are
single step heuristics. The remaining three heuristics, which we call
the G-heuristics, are two-step hybrids that use the set of production
periods of the solutions obtained by the first three heuristics and
improve them via G-class production subplans. For all heuristics, we
adopt the following notation. The solution for problem P1;T

obtained under heuristic Hj consists of the set of production

quantities denoted by Q ðjÞ
T ¼ fqðjÞ1 ; qðjÞ2 ;…; qðjÞT g and the index set of

production periods for the problem horizon denoted by ΩðjÞ
T in

which period t is a production period if qðjÞt 40 for t¼1,…,T, and

results in the cost, f ðjÞT ¼∑tAΩðjÞ
T
Ktþ∑T

t ¼ 1½htItþ∑m
n ¼ 1w

n
t ðqðjÞt Þrnt �with

It as defined before. Below, we explain the construction and
particulars of each heuristic in detail.

Heuristic H1 is similar in construction to the heuristic in Silver
and Meal (1973) developed for the classical dynamic lot sizing
problem. Under this heuristic, the beginning period of each
generation is its sole production period. The generations them-
selves are obtained in a forward manner along the problem
horizon by means of a stopping rule. A generation starting in

period u terminates in period uþ l̂ðuÞ where

l̂ðuÞ ¼max l :
gð1Þu;uþ l

l
Z

gð1Þu;uþ lþ1

lþ1
;ur lrT

( )

with gð1Þu;v≔Kuþ½∑v�1
s ¼ uhsDsþ1;v�þ ∑m

n ¼ 1w
n
uD

rnu
u;v

h i
being the cost

associated with the periods ½u; v�. The generation terminates at

l̂ðuÞ because the cost per period starts to increase after that. The
solution algorithm starts with the initial period of the problem
horizon.

Once the stopping rule is satisfied and l̂ð1Þ is found, the

production plan over ½1; l̂ð1Þþ1� is retained and the procedure is

repeated for the remaining periods starting with period l̂ð1Þþ1
until the entire horizon is covered. The pseudo-code is provided in
Appendix and has O(T)computational complexity. Under this

heuristic, the quantity produced in period t is given as qð1Þt ¼
Dt;l̂ðtÞ if tAΩð1Þ

T and zero, otherwise. Then, we have f ð1ÞT ¼
∑iAΩð1Þ

T
gð1Þ
i;iþ l̂ðiÞ. By design, with this heuristic, demand integrality

is preserved in production quantities and each production period
constitutes a generation start in the solution. The stopping rule
computation differs from the classical Silver–Meal heuristic in
order to incorporate the nonlinear production costs in our setting.

Heuristic H2 is based on a variant of the economic order
quantity (EOQ) model which was developed by Harris (1913) for
linear acquisition costs. To develop the heuristic, consider the
following stylized continuous time counterpart for our production
setting. Demand for the item is deterministic with a constant rate,

d over an infinite problem horizon with stationary cost para-
meters. Production is done in lots of constant size ~Q (because of
infinite horizon) incurring costs nonlinear in the production
quantity. The objective is to minimize the total cost rate

TCð ~Q Þ ¼ Kd= ~Q þh ~Q =2þ½∑m
n ¼ 1w

n ~Q
rn �d= ~Q where K stands for the

fixed setup cost and h for the unit holding cost rate. Let the
minimum total cost rate be denoted by TCn and the corresponding

optimal lot size by ~Q
n

. We have the following result.

Lemma 3. The total cost rate TCð ~Q Þ is quasi-convex for rnZ1 and
has a unique minimizer ~Q

n

which solves

K�hð ~Q nÞ2=2dþ ∑
m

n ¼ 1
ð1�rnÞwnð ~Q nÞrn �1 ¼ 0:

The proof rests on a standard optimization methodology and is
provided in Appendix. Note that the above result reduces to the
classical EOQ result for rn¼1 for n¼m¼ 1. For the general case, it

does not yield a closed-form solution for ~Q
n

but the uniqueness of
the solution allows for an efficient linear search for it. (For integer
demands, it is possible to modify the expressions similar to Garcia-
Laguna et al. (2010); but it has not been pursued herein.) Under
heuristic H2 the production quantity in period t is found as

qð2Þt ¼minð½Dt;T � It�1�þ ;maxð½dt� It�1�þ ; ~Q
nÞÞ for 1rtrT starting

with I0 ¼ 0. The solution algorithm starts with the initial period of
the problem horizon, and production quantities are obtained
as one proceeds over the entire problem horizon. The pseudo-
code for the algorithm is provided in Appendix and has O(T)

computational complexity. We have f ð2ÞT ¼∑tAΩð2Þ
T
Ktþ∑T

t ¼ 1½htItþ
∑m

n ¼ 1w
n
t ðqð2Þt Þrnt �. The condition on the net remaining total

demands ð½Dt;T � It�1�þ Þ ensures ending inventory to be zero.
Unlike the above heuristic, demand integrality is not preserved
under this heuristic.

Heuristics H3–H6 and the benchmark approximate DP employ
the forward DP algorithm introduced above and obtain solutions
by means of simple rules to construct the set S in a generation
resulting in a possibly suboptimal solution. The approximate
algorithm differs from the exact one only in its construction of S.
The approximate forward DP that one would get has the advantage
of providing solutions within reasonable times and the goodness
of the solutions can be improved by developing efficient set-
construction heuristics. Below, we explain the details of these
heuristics.

Heuristic H3 is obtained by employing the forward recursive
procedure in Eq. (6) while imposing the condition that demand
integrality is preserved. Hence, for any generation 〈u; v〉 in the

solution, we set the quantity produced in period i, qð3Þi ¼Du;v for

i¼u and qð3Þi ¼ 0 for uo irv and search over all possible genera-

tions over the problem horizon. Let gð3Þi;t be the total cost of the

subproblem ½i; t� which constitutes a single generation 〈i; t〉, f 30 � 0.

Then, for t¼1,…,T, f ð3Þt ¼min1r ir tff ð3Þi�1þgð3Þi;t g where gð3Þi;t ¼ Kiþ
½∑t�1

s ¼ ihsDsþ1;t �þ½∑m
n ¼ 1w

n
t D

rni
i;t �. Due to the imposition of demand

integrality, this heuristic may be viewed as a version of the
classical Wagner–Whitin solution methodology. It has the same
computational complexity as the classical algorithm in Wagner
and Whitin (1958) and it reduces to the solution in the classical
setting, for rnt ¼ 1 for all n. In its implementation, the forward DP
algorithm is employed wherein the production period set S for a
generation 〈u; v〉 is constructed as consisting of only period u. Aside
from being a viable approximate solution technique, heuristic H3
is important in that its performance illustrates the significance of
demand splitting in the case of nonlinear production costs and the
importance of class G production subplans.

Next, we introduce heuristics H4–H6 which exploit the G-class
property of the production subplans. They work as follows. First,
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we obtain an initial (approximate) solution to the problem P1;T by
one of the above three heuristics. Of this initial solution obtained

via heuristic Hj, we take only the set of production periods ΩðjÞ
T , and

use it as the given global set of production periods. That is, as we
implement the forward DP algorithm, we construct the set S for

the generation 〈u; v〉 using the subset of ΩðjÞ
T corresponding to the

problem subhorizon ½u; v�. In practice, this amounts to simply
reading off the indexes of the production periods, if any, in the
set-construction subroutine. The rest of the algorithm is applied as
before. Hence, H4–H6 are two-step improvement extensions of

heuristics H1–H3. That is, H4 takes Ωð1Þ
T obtained by heuristic H1

and improves on it via class G subplans in accordance with

Theorem 3, heuristic H5 takes Ωð2Þ
T obtained by heuristic H2 and

improves on it, and so forth. By construct, the use of the initial
solutions implies that we construct the set S a priori and, hence,
need only to consider a smaller fraction of class G subplans. This
greatly reduces the computational effort. The approximate for-

ward DP algorithm has OðT2Þ computational time complexity,

given that ΩðiÞ
T is provided as pre-processed data. We denote the

usage of these S-construction heuristics in the pseudo-codes as

instructions denoted by ΩðiÞ
T -S. The performance of this group of

heuristics depends, to some extent, on the performance of the

initial approximate solution which gives ΩðiÞ
T . But, the significant

improvements over the initial solutions indicate that developing
the G-class subplans for generations is the main factor for obtain-
ing good solutions.

Lastly, we consider another method of constructing the set S for
a generation in the solution. In this method, we create the set S for
each generation under consideration according to three set-
construction rules used conjunctively as the algorithm proceeds
over the problem horizon. (i) The first rule is a greedy exclusion
rule. Initially, S contains all periods within the generation. One by
one, each period (other than the first) is excluded in the updated S.
The best is retained and the greedy improvement is repeated with
the remaining periods until no further improvement. To avoid
possible local optima, we also implemented a scatter search by
means of updating S randomly as follows. (ii) The second rule is a
randomized exclusion rule. This is the randomized version of the
greedy exclusion rule. Initially, S is full. A period is randomly
selected to be excluded from the updated S. This is repeated for n

times. The best is retained and the greedy improvement is
repeated with the remaining periods until no further improve-
ment. (iii) Finally, a randomized inclusion rule. Initially, S contains
only the first period of the generation. This corresponds to the
solution in the classical dynamic lot-sizing problem. A period is
randomly selected to be included in the updated S. This is repeated
for n times. The best is retained and the greedy improvement is
repeated with the remaining periods until no further improve-
ment. The conjunctive use of these rules implies that, for a
generation considered in the solution, set S that gives the mini-
mum cost among all those constructed by the three rules is taken
as the production period set for that generation. With the
implementation of the S-construction subroutine using the above
rules, the forward DP algorithm has a computational complexity of

OðT4Þ in the presence of positive setup costs. Clearly, this algorithm
cannot guarantee optimality for positive setups costs; however,
our preliminary numerical tests (with problem horizon length of
100 periods) indicate that the suboptimality decreases signifi-
cantly for long problem horizons with average deviations from the
optimal (obtained by backward DP algorithm) of approximately
0.1%. Therefore, we adopted this solution algorithm as our bench-
mark solution methodology.

Before we proceed with our detailed numerical study, we illustrate
the implementation of the proposed solution algorithms through
a small example. We have ht ¼ h¼ 0:1, m¼1, w1

t ¼w¼ 0:01,
r1t ¼ r¼ 2, Kt ¼ K for all tAf1;…; Tg, T¼12, K ¼ f0;100g and the
demand vector, d¼ ð50;100;0;70;80; 40;45;30;80;35;250;75Þ. We
assume that production quantities can be real numbers. In Table 1, we
present the optimal production plans Qn

1;i, the corresponding total

cost f n1;i, the regeneration points in the optimal solution and the
candidate solutions developed for problem P1;i as the DP progresses
over the horizon length i¼ 1;…; T for K¼0. Note that for zero setup
costs, the forward DP is guaranteed to find the optimal. But, for K40,
the forward algorithm does not guarantee the optimal solution. In
Table 2, for different sub-problem horizon lengths i, we present the
optimal production plan Qn

1;i and the corresponding total cost Fn

1;i as

obtained by the backward DP algorithm and the counterparts ~Q 1;i

and ~F 1;i obtained by the forward DP employing with a discretization
increment of δ¼0.01 units. As the forward algorithm partitions the
problem into the last generation 〈kþ1; i〉 and the sub-horizon ½1; k�, it

Table 1
Forward dynamic programming algorithm solution (m¼ 1;w1

t ¼w¼ 0:01;ht ¼ h¼ 0:1; r1t ¼ r¼ 2;Kt ¼ 0 for all tAf1;…; Tg).

i Qn

1;i f ni Regeneration points Minimization search

1 {50} 25 {1} fg1;1g
2 {72.5,77.5} 114.88 {1} fg1;2 ; f

n

1þg2;2g
3 {72.5,77.5}, {0} 114.88 {1,3} fg1;3; fn2þg3;3g
4 {72.5,77.5}, {32.5,37.5} 142.75 {1,3} fg1;4; fn2þg3;4 ; f

n

3þg4;4g
5 {72.5,77.5}, {45,50,55} 197.38 {1,3} fg1;5; fn2þg3;5 ; f

n

4þg5;5g
6 {72.5,77.5}, {45,50,55}, {40} 213.38 {1,3,6} fg1;6; f n2þg3;6 ; f

n

5þg6;6g
7 {72.5,77.5}, {45,50,55}, 233.63 {1,3,6,7} fg1;7; f n2þg3;7 ; f

n

5þg6;7,
{40}, {45} fn6þg7;7g

8 {72.5,77.5}, {45,50,55}, {40}, 242.63 {1,3,6,7,8} fg1;8; f n2þg3;8 ; f
n

5þg6;8,
{45}, {30} f n6þg7;8; f

n

7þg8;8g
9 {72.5,77.5}, {45,50,55}, {41.25, 296.44 {1,3,6} fg1;9; f n2þg3;9 ; f

n

5þg6;9 ,
46.25,51.25,56.25} f n7þg8;9; f

n

6þg7;9 ; f
n

8þg9;9g
10 {72.5,77.5}, {45,50,55}, {41.25, 308.69 {1,3,6,10} fg1;10; f n2þg3;10; f

n

5þg6;10,
46.25,51.25,56.25}, {35} fn9þg10;10g

11 {72.5,77.5}, {50,55,60, 629.38 {1,3} fg1;11; fn2þg3;11 ; f
n

5þg6;11,
65,70,75,80,85,90} f n10þg11;11g

12 {72.5,77.5}, {50,55,60, 685.63 {1,3,11,12} fg1;12; f n2þg3;12; f
n

11þg12;12g
65,70,75,80,85,90}, {75}
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results in some (globally suboptimal) local optima. Although the
resulting production plans may differ significantly, the resulting
maximum cost deviation from the optimal is about 0.95% for i¼5
and less than 0.014% for i¼12. As the problem horizon increases, the
performance of the forward algorithm improves, as expected. For the
illustrative example, only one of the set-construction rules (the greedy
inclusion updating routine) has been used to find the best production

sequence for the last generation. Based on similar preliminary studies,
the other two rules (randomized search routines discussed above)
have been developed and implemented which result in significant
improvements within generations. Hence, they have been embedded
to be used conjunctively in the benchmark solution algorithm for the
numerical study. For the case of K¼100, we provide the solutions
obtained with the proposed eight additional heuristics in Table 3.

Table 2

Comparison of solutions for P1;i obtained by backward and forward dynamic programming algorithms, Qn

1;i ; f
n

1;i and ~Q
n

1;i ;
~f
n

1;i (m¼ 1;w1
t ¼w¼ 0:01;

ht ¼ h¼ 0:1; r1t ¼ r¼ 2;Kt ¼ 100 for all tAf1;…; Tg; T ¼ 12).

i Qn

1;i f n1;i ~f 1;i ~Q 1;i

1 {50} 125 125 {50}
2 {72.5,77.5} 314.88 314.88 {72.5,78.5}
3 {72.5,77.5}, {0} 314.88 314.88 {72.5,78.5}, {0}
4 {107,113,0,0} 461.88 463.88 {72.5,78.5}, {0}, {70}
5 {93.33,98.33,0,108,34,0} 621.83 627.75 {72.5,78.5}, {0}, {72.5,77.5}
6 {75,80,0,90,95,0} 701.5 701.75 {72.5,78.5}, {0}, {92.5,97.5,0}
7 {93.33,98.33,0,108,34,0}, {85,0} 798.59 804.46 {72.5,78.5}, {0}, {73.33,78.33,83.33,0}
8 {75,80,0,90,95,0}, {75,0} 860.75 861 {72.5,78.5}, {0}, {92.5,97.5,0}, {75,0}
9 {75,80,0,90,95,0}, {75,0}, {80} 1024.75 1025 {72.5,78.5}, {0}, {92.5,97.5,0}, {75,0}, {80}

10 {75,80,0,90,95,0}, {90,0,100,0} 1092 1092.25 {72.5,78.5}, {0}, {92.5,97.5,0}, {90,0,100,0}
11 {75,80,0,90,95,0}, {98.75,0,108.75,113.75,118.75} 1613.82 1614.06 {72.5,78.5}, {0}, {92.5,97.5,0}, {98.75,0,108.75,113.75,118.75}
12 {75,80,0,90,95,0}, {98.75,0,108.75,113.75,118.75}, {75} 1770.06 1770.31 {72.5,78.5}, {0}, {92.5,97.5,0}, {98.75,0, 108.75,113.75,118.75}, {75}

Table 3
Illustrative example showing solutions of heuristics H1–H6 (m¼ 1;w1

t ¼w¼ 0:01; ht ¼ h¼ 0:1; r1t ¼ r ¼ 2;Kt ¼ 100 for all tAf1;…; Tg).

T Q ð1Þ
T Heuristic H1 f ð1ÞT f ð4ÞT Q ð4Þ

T Heuristic H4

1 {50} 125 125 {50}
2 {50}, {100} 325 314.88 {72.5,77.5}
3 {50}, {100}, {0} 325 314.88 {72.5,77.5}, {0}
4 {50}, {100}, {0}, {70} 474 463.88 {72.5,77.5}, {0}, {70}
5 {50}, {100}, {0}, {70}, {80} 638 627.75 {72.5,77.5}, {0}, {72.5,77.5}
6 {50}, {100}, {0}, {70}, {120,0} 722 701.5 {75,80,0,90,95,0}
7 {50}, {100}, {0}, {70}, {120,0}, {45} 842.25 821.75 {75,80,0,90,95,0}, {45}
8 {50}, {100}, {0}, {70}, {120,0}, {75,0} 881.25 860.75 {75,80,0,90,95,0}, {75,0}
9 {50}, {100}, {0}, {70}, {120,0}, {75,0}, {80} 1045.25 1024.75 {75,80,0,90,95,0}, {75,0}, {80}

10 {50}, {100}, {0}, {70}, {120,0}, {75,0}, {115,0} 1117 1092 {75,80,0,90,95,0}, {90,,0,100,0}
11 {50}, {100}, {0}, {70}, {120,0}, {75,0}, {115,0},{250} 1842 1669.14 {88.57,93.57,0,103.57,108.57,0,118.57,0,128.57,0,138.57}
12 {50}, {100}, {0}, {70}, {120,0}, {75,0}, {115,0}, {325,0} 2280.75 1892.53 {99.29,104.29,0,114.29,119.29,0,129,29,0,139.29,0,149.29,0}

T Q ð2Þ
T Heuristic H2 f ð2ÞT f ð5ÞT Q ð5Þ

T Heuristic H5

1 {50} 125 125 {50}
2 {96.82,53.18} 326.71 314.88 {72.5,77.5}
3 {95.35,54.65}, {0} 325.31 314.88 {72.5,77.5}, {0}
4 {95.74,95.74,0,28.51} 504.34 463.88 {72.5,77.5}, {0}, {70}
5 {96.08,96.08,0,96.08,11.77} 698.17 627.75 {72.5,77.5}, {0}, {72.5,77.5}
6 {95.86,95.86,0,95.86,52.42,0} 726.84 701.50 {75,80,0,90,95,0}
7 {95.74,95.74,0,95.74,95.74,0,2.03} 898.90 821.75 {75,80,0,90,95,0}, {45}
8 {95.50,95.50,0,95.50,95.50,0,32.99,0} 1010.52 960.75 {75,80,0,90,95,0}, {75,0}
9 {95.74,95.74,0 95.74,95.74,0,95.74,0,16.29} 1108.92 1024.75 {75,80,0,90,95,0}, {75,0}, {80}

10 {95.59,95.59,0 95.59,95.59,0,95.59,0,52.04,0} 1135.02 1092.00 {75,80,0,90,95,0}, {90,0,100,0}
11 {96.65,96.65,0 96.65,96.65,0,0,96.65,96.65,0,200.10} 1714.97 1657.07 {87.86,92.86,0,102.86,107.86,0,0,122.86,127.86,0,137.86}
12 {96.67,96.67,0 96.67,96.67,0,0,96.67,96.67,0,200.01}, {75} 1871.09 1813.32 {87.86,92.86,0,102.86,107.86,0,0,122.86,127.86,0,137.86}, {75}

T Q ð3Þ
T Heuristic H3 f ð3ÞT f ð6ÞT Q ð6Þ

T Heuristic H6

1 {50} 125 125 {50}
2 {50}, {100} 325 314.88 {72.5,77.5}
3 {50}, {100}, {0} 325 314.88 {72.5,77.5}, {0}
4 {50}, {100}, {0}, {70} 474 463.88 {72.5,77.5}, {0}, {70}
5 {50}, {100}, {0}, {70}, {80} 638 627.75 {72.5,77.5}, {0}, {70}, {72.5,77.5}
6 {50}, {100}, {0}, {70}, {120,0} 722 701.50 {75,80,0,90,95,0}
7 {50}, {100}, {0}, {80}, {85,0} 814.75 804.46 {72.5,77.5}, {0}, {73.33,78.33,83.33,0}
8 {50}, {100}, {0}, {80}, {115,0,0} 880.75 863.46 {72.5,77.5}, {0}, {83.33,88.33,93.33,0,0}
9 {50}, {100}, {0}, {80}, {85,0}, {110,0} 1043.75 1031.38 {72.5,77.5}, {0}, {77.5,82.5,87.5,0,97.5,0}

10 {50}, {100}, {0}, {80}, {115,0,0}, {115,0} 1116.5 1098.88 {72.5,77.5}, {0}, {85,90,95,0,0,110,0}
11 {50}, {100}, {0}, {80}, {115,0,0}, {115,0}, {250} 1841.5 1680.79 {89.29,94.29,0,104.29,109.29,114.29,0,0,129.29,0,139.29}
12 {50}, {100}, {0}, {80}, {115,0,0}, {115,0}, {250}, {75} 1997.75 1837.04 {89.29,94.29,0,104.29,109.29,114.29,0,0,129.29,0,139.29}, {75}
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5. Numerical study

In this section, we present and discuss our findings in a
numerical study.

For our numerical study, we considered a problem horizon of
T¼300 periods. Period demands are generated randomly from
normal distribution with mean μAf50;100;200g and standard
deviation sð ¼ 40Þ; negative demand values have been replaced
by zero demands. We denote the three demand patterns by d1, d2
and d3. All other system parameters are stationary. We set unit
holding cost rate, ht ¼ h¼ 1 and setup cost is selected as a function

of the mean demand rate, Kt ¼ K ¼ ½J2=2�μ where J may be viewed
as a proxy for the average length of a production lot if production
costs were linear as in the classical lot-sizing problem. We have
JAf0;2;3;4;5g with J¼0 corresponding to zero setup cost. The
production cost structure was chosen with m¼1 and r1t ¼ rZ1.
This corresponds to the Cobb–Douglas type economic production
function with convex costs. We selected rAf1;1:1;1:5;2:0;2:2g;
note that r¼1 corresponds to the classical lot sizing setting used as
a benchmark. To select the cost coefficient w1

t ¼w, we considered
the variable cost of production per unit when a production
quantity equals the average demand per period, c where
c ¼ ½wμr �=μ¼wμr�1. Then, letting a¼ h=c , we have w¼ hμ=ðaμrÞ
with aAf0:02;0:05;0:1;0:2g. Note that the resulting variable cost
for a production quantity of q units is given by ½hμ=a�ðq=uÞr , and
that, as a increases c decreases since we hold h equal to unity.
Overall, our experimental set contains 120ð ¼ 5� 4� 6Þ parameter
instances for each of the three levels of demand mean. For visual
displays, we used a shorthand notation to denote an experiment
instance, diKjanrs, where, for example, d3K2a1r4 corresponds to
the parameter values, μ¼200, J¼2, a¼0.02 and r¼2.0. For each
particular experiment instance we generated 10 demand stream
replications. The average fraction of zero demand values in the
generated replication streams for each demand pattern is approxi-
mately 11%, 0.67% and 0%, respectively with resulting means of
51.9, 100.4 and 200.7.

Next, we discuss our findings from our numerical study. We
first report our findings on the relative performance of the
proposed heuristics in comparison with the benchmark forward
DP solution. Then, we provide our sensitivity analysis on the basis
of the solutions obtained by the benchmark DP algorithm.

5.1. Comparison of heuristics

We conducted our numerical study to investigate the follow-
ing: (i) percentage deviation from the benchmark minimum cost
for each heuristic; (ii) dominance of heuristics among themselves;
(iii) impact of the cost parameter values and demand patterns on
performances of the heuristics. All heuristic comparisons have
been performed on a static basis (when demands for the entire
problem horizon are known at the beginning of the problem
horizon.) For our numerical study, we considered the same
experimental set described above. The rationale for this set has
been the earlier performance studies for the classical problem
setting; in particular, Simpson (2001).

We use as the benchmark the best solution to problem ðPÞ by
means of the forward DP solution algorithm discussed above. The
total cost over the problem horizon under a particular heuristic is

denoted by f ðjÞT and the best solution with the forward DP is

denoted by ~f T . For computing the total cost under a particular
heuristic for a problem instance, we used the corresponding
algorithm provided in Appendix. For each experiment instance,
we measure the performance of heuristic Hj in terms of

percentage deviations from ~f T as follows:

Δj%¼ f ðjÞT � ~f T
~f T

� 100

We discuss the performance of heuristics H1–H3 and heuristics
H4–H6 separately. For each heuristic, we report (i) the minimum,
maximum, median and average percentage deviations, and (ii) the
number of instances for which zero or negative deviations have been
obtained for three different demand variance levels across all 1000
experiment instances. A negative deviation implies that a better
solution has been found by the heuristic than the forward DP
algorithm.

We begin our discussion of the heuristic performances with
their overall behavior. In Table 4, we report the performance
statistics for heuristics H1–H3 for 1000ð ¼ 10� 100Þ experiment
instances for each of the three different demand patterns. We see
that as the demand variance decreases (from d1 to d3), percentage
deviations also decrease for all heuristics. All heuristics have left-
skewed performance distributions for all demand variance levels.
Heuristic H3 (that is, solving the problem in a forward DP
algorithm while imposing demand integrality) turns out to be
the best performer except for high variance levels on average. It is
followed very closely by Heuristic H2. The high performance of
heuristic H3 is due to the fact that the problem is solved optimally
albeit under the restriction of demand integrality. Note that 564
ð ¼ 124þð161þ8Þþð235þ36ÞÞ out of 3000ð ¼ 3� 1000Þ cases
have resulted in zero deviations from the best solution with the
forward DP (N(0) column in Table 4), implying that demand
integrality was preserved in the best forward DP solution for such
instances. For the remaining instances, the deviations obtained
under heuristic H3 may be viewed as the impact of not smoothing
the production across successive periods within a generation. The
second-best performance of heuristic H2 points to the fundamen-
tal trade-offs captured by Harris's formula; and, being a single step
heuristic, its performance is excellent. The number of instances for
which this heuristic resulted in the same solution as the forward
DP also increases as demand variance decreases, as expected. The
Silver–Meal heuristic (the original on which our versions are
based) typically performs well in the classical setting. It is
surprising that heuristic H1 did not do as well following H2 and
H3 with a relatively large gap. As demand variance decreases,
allowing for production smoothing seems to be counter-
productive. This may explain the performance of heuristics H2
and H3 for d3; after all, both preserve demand integrality by
construct. None of the heuristics in this group resulted in a
solution better than the benchmark forward DP algorithm. (See
N(�) in Table 4.) Next, we look at sensitivity of heuristic perfor-
mance with respect to the fixed setup cost K and the production
cost nonlinearity measured through r. In Table 6, we present the
minimum, maximum, median and average percentage deviations

Table 4
Percentage deviation statistics for heuristics H1–H3.

Demand Algorithm Min Max Median Average N(0) N(�)

d1 H1 1.23 89.23 17.97 24.43 0 0
H2 0.08 65.03 6.24 12.47 0 0
H3 0 65.03 5.01 12.76 124 0

d2 H1 0.79 28.2 10.72 11 0 0
H2 0 19.9 3.24 4.71 8 0
H3 0 19.9 1.58 4.16 161 0

d3 H1 0.5 7.59 3.18 3.33 0 0
H2 0 7.4 1.69 1.99 36 0
H3 0 5.37 0.44 1.04 235 0
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for the heuristics for different demand patterns and cost para-
meters. (See also Figs. 1 and 2 for pictorial depictions.) The
performances of the heuristics are roughly similar for different
measures (minimum, maximum percentage deviations, etc.);
hence, we focus on the average percentage deviations. On average,
the performances of heuristics H1–H3 deteriorate as demand
variance increases. The performance also worsens as the non-
linearity in production cost (r) increases for moderate and high
demand variances (d1 and d2). For low variance (d3), the perfor-
mances of all heuristics lie within the 4% band with those of
heuristics H1 and H3 being relatively less sensitive to r. The
performance gap among the three heuristics gets smaller for large
r values. With respect to the fixed setup cost, the performances of
heuristics H1 and H3 improve as K increases for all demand
patterns. The performance of heuristic H2 improves for moderate
and high variance levels but worsens slightly for d3. Although,

heuristic H3 was deemed to be the best performer in general, it
does not do so well in comparison with H2 for large r values. As
the production cost becomes more and more nonlinear, this
heuristic starts to underperform especially as demand variance
increases. This is due to the fact that heuristic H2 allows for
demand splitting while heuristic H3 cannot smooth the produc-
tion over successive periods. Heuristics H2 and H3 have similar
performances for low and moderate values of fixed setup cost, but
the former performs slightly better for large K values. Once again,
this indicates that the variant of Harris's formula captures the
fundamental trade-offs. Worst case performance is also of theore-
tical and practical interest. In terms of maximum percentage
deviations, heuristic H1 always results in the maximum percen-
tage deviations. Heuristic H3 clearly dominates H2 for small
nonlinearity in production cost but their performance gaps
decrease as r and K get large. Although H3 is the best performer
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Fig. 1. Average percentage deviation of heuristics versus production cost convexity levels for d1, d2 and d3.
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in this group and may result in zero deviation from the benchmark
solution in a large portion of the solutions, it is still important to
point out that imposing demand integrality may cause very large
deviations (up to 65%) in certain cases. The performance deterio-
rates rapidly with large production cost nonlinearity and low
setup costs. As we discuss below for the G-class heuristics,
exploiting the optimal generation structures for given production
period decisions does improve the solutions significantly. The last
group of heuristics (H4–H6) results in significant improvements
over the first group. In some cases, the average improvements are
about 20-fold. Actually, the large performance difference between
the heuristic groups directly implies the importance of class G
production plans in a solution and points to the impact of
production cost non-linearity. In Table 5, we report the perfor-
mance statistics for this group for 1000(¼10�100) experiment
instances for each of the three different demand patterns. Note
that in some experiment instances, heuristics H5 and H6 obtained

better solutions than the benchmark forward DP rendering mini-
mum deviations negative. Also, the number of instances for which
the forward DP solution was obtained increases with this group;
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Fig. 2. Average percentage deviation of heuristics versus setup cost levels for d1, d2 and d3.

Table 5
Percentage deviation statistics for heuristics H4–H6.

Demand Algorithm Min Max Median Average N(0) N(�)

d1 H4 1.09 44.17 13.06 15.39 0 0
H5 0.06 18.87 1.8 3.36 0 0
H6 �0.01 18.87 1.73 3.68 157 2

d2 H4 0.79 15.84 6.78 6.63 0 0
H5 �0.01 2.28 0.29 0.4 65 5
H6 �0.01 2.37 0.19 0.34 223 3

d3 H4 0 7.04 1.37 1.94 114 0
H5 0 1.29 0 0.17 636 0
H6 0 0.65 0 0.02 808 0
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1188(¼157þ223þ808) instances for heuristic H6, 701(¼65þ636)
instances for H5 and 114 instances for H4. The number of zero
percentage deviation solutions increases as the demand variance
gets smaller. In this group, two subgroups emerge: The pair of
heuristics H5 and H6, and H4. The former pair dominates the latter
in all performance measures by a relatively large margin. Heur-
istics H5 and H6 perform almost equally well; the magnitude of
deviations is small when they differ most for low demand
variance. In Table 7, we present the performance statistics with
respect to r and K. (See also Figs. 1 and 2 for pictorial depictions.)
With respect to nonlinearity in production cost, the behavior of
the heuristics are not monotone. However, overall, there is a
tendency for the performances to deteriorate as r gets large.
Likewise, demand variance impacts the performances negatively.
An interesting observation is that, with large demand variance, r
impacts performances negatively whereas with low demand
variance, all heuristics tend to converge to the benchmark. (See
Fig. 1(f).) The effect of the fixed setup cost K is similar to that
observed for the first group but with smaller deviations. For
Heuristics H5 and H6, the improvement of performance for smaller
demand variances becomes more pronounced than those of their
counterparts H2 and H3. Lastly, we should mention the computa-
tional efficiency achieved by the proposed heuristics. As discussed
above, the backward DP formulation which guarantees optimality

is prohibitively slow and memory-inefficient for practical use. The
computational times statistics measured in seconds for each
heuristic and the benchmark forward DP algorithm for different
demand patterns are presented in Table 8. As expected, heuristics
H1–H3 have similar and the smallest run times, and H4–H6 have
relatively larger and similar times but are still reasonably fast. The
benchmark forward DP algorithm solves on average in roughly four
to six minutes. Note that the times for pre-processing (arising from
solving by H1–H3) needed for H4–H6 are included in the computa-
tional times. The statistics provided for the heuristics have been
obtained for a 2.3 GHz processor whereas those for the benchmark
have been obtained for a 3.3 GHz processor. To conclude, our
numerical comparison of the heuristics reveals that (i) imposing
demand integrality (using H3) may result in large deviations,
especially in the presence of large production nonlinearities and
low setup costs, (ii) a variant of Harris's formula that captures the
fundamental trade-offs among setup costs, inventory holding costs
and production costs provides a quick and reasonably good heur-
istic (H1), (iii) construction of G-class subplans (using heuristics H4–
H6) is essential in developing heuristic solutions for the dynamic lot
sizing problem in the presence of production cost nonlinearities,
(iv) the computational time improvements through the proposed
heuristics are justifiably significant, and finally (v) among all the
proposed heuristics, H6 and, then, H5 are, by far, the best ones.

Table 6
Percentage deviation statistics of heuristics H1–H3.

Heuristic Statistic Production cost exponent levels Setup cost levels

r1 r2 r3 r4 r5 k1 k2 k3 k4 k5

H1 Min 1.23 1.48 2.92 8.77 9.65 8.59 2.23 1.23 1.25 1.24
(d1) Max 12.99 25.76 40.07 74.28 89.23 89.23 83.29 79.88 74.21 68.06

Median 3.09 9.65 20.38 42.87 49.27 30.19 21.94 18.83 14.14 9.65
Average 4.67 10.5 19.14 40.31 47.47 36.36 27.95 23.06 18.96 15.75

H2 Min 0.08 0.51 1 1.6 1.64 0.08 0.3 0.25 0.4 0.65
Max 11.81 9.41 17.54 48.4 65.03 65.03 57.72 53.51 48.26 41.64
Median 2.12 2.87 4.98 23.07 29.91 11.39 7.66 6.28 4.94 4.46
Average 3.61 3.3 6.14 21.21 28.03 19.19 13.98 11.7 9.6 7.83

H3 Min 0 0 0.03 2.26 3.49 0.08 0 0 0 0
Max 1.94 6.86 17.54 48.4 65.03 65.03 58.47 55.12 50.89 46.09
Median 0.01 1.08 6.03 25.47 33.35 11.39 7.01 5.29 3.75 2.15
Average 0.25 1.68 6.28 23.91 31.6 19.19 14.64 12.21 9.85 7.83

H1 Min 0.79 1.12 2.05 4.74 5.15 8.06 2.17 0.93 0.79 0.97
(d2) Max 11.15 17.48 21.35 25.67 28.2 28.2 28.03 27.56 25.63 24.95

Median 2.42 7.94 11.72 15.56 16.99 14.8 12.58 10.14 7.67 6.19
Average 4.14 7.74 11.29 14.9 16.91 15.49 12.73 10.56 8.77 7.43

H2 Min 0 0.14 0.52 0.75 0.94 0 0.19 0.12 0.51 0.18
Max 8.86 6.66 5.06 14.76 19.9 19.9 18.91 17.78 16.09 14.19
Median 2.09 1.3 2.51 7.1 10.08 3.05 3.65 3.77 3.12 2.46
Average 2.78 2.12 2.5 6.79 9.34 5.73 5.26 4.79 4.16 3.57

H3 Min 0 0 0 0.77 1.41 0 0 0 0 0
Max 0.44 1.82 5.06 14.76 19.9 19.9 19.14 18.29 17.2 15.9
Median 0 0.27 1.92 7.99 10.85 3.05 2.48 1.85 1.24 0.8
Average 0.06 0.5 2.04 7.6 10.56 5.73 4.85 4.11 3.36 2.71

H1 Min 0.5 0.69 0.88 0.79 1.06 0.79 0.83 0.71 0.58 0.5
(d3) Max 7.32 7.59 6.2 5.05 6.36 7.32 7.02 7.59 6.83 5.58

Median 1.92 4.33 3.81 2.81 3.19 3.89 3.59 3.01 2.8 2.76
Average 2.92 4.07 3.57 2.83 3.27 4.01 3.74 3.25 2.94 2.72

H2 Min 0 0 0.08 0.46 0.41 0 0.02 0.03 0.17 0.09
Max 7.4 6.43 4.29 3.94 5.37 5.37 7.4 7.07 6.58 6.7
Median 1.84 0.3 0.77 2.18 2.55 0.53 1.27 2.05 1.91 1.69
Average 2.38 1.72 1.18 2.04 2.61 1.28 1.94 2.25 2.31 2.15

H3 Min 0 0 0 0.36 0.81 0 0 0 0 0
Max 0.09 0.39 1.26 3.94 5.37 5.37 5.17 4.94 4.64 4.31
Median 0 0.06 0.45 1.79 2.6 0.53 0.47 0.36 0.47 0.34
Average 0.01 0.11 0.48 1.87 2.74 1.28 1.13 1.01 0.93 0.84
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5.2. Sensitivity analysis

We study the impact of experiment parameters through (i) the
average minimum total cost over the horizon, (ii) the average

number of generations over the problem horizon, (iii) the average
percentage of production periods, and (iv) the average percentage
of generations of certain types. All findings are based on the
benchmark solutions.

Average minimum total cost. The minimum total costs behave as
expected. (See Fig. 3(a) and (b) for an illustration of costs averaged
over replications and all r and a values and selected two K, values.)
As K decreases and a increases, the minimum total cost decreases.
The impact of non-linearity in variable production costs (measured
through r) becomes more pronounced with larger K. The para-
meters a and r interact in the variable production cost component.
That is, the same cost can be obtained by distinct pairs of a and r;
smaller a and r in one, and larger a and r in the other. Furthermore,
the average total cost is not monotone in r.

Average number of generations. In Fig. 3(c) and (d), we illustrate
the number of generations in the optimal solution for P1;T

averaged over the 10 replications for all r and a values and
K ¼ fK1;K5g. We begin our discussion with zero setup costs. For
K1 and linear variable production cost (r0), the Lot-for-Lot (LFL)
solution is obtained. In this case, the solution is insensitive to a
values as total production cost over the horizon is constant,
ðh=aÞD1;T . As r increases, the solution deviates from LFL, splitting
some production quantities over a number of periods in order to
exploit the marginal cost structure. This smoothes out the

Table 7
Percentage deviation statistics of heuristics H4–H6.

Heuristic Statistic Production cost exponent levels Setup cost levels

r1 r2 r3 r4 r5 k1 k2 k3 k4 k5

H4 Min 1.09 1.32 1.93 3.5 4.04 7.98 2.22 1.23 1.13 1.09
(d1) Max 12.94 22.12 31.05 41.25 44.17 44.17 40.22 38.75 35.25 32.28

Median 2.88 8.35 15.64 26.45 26.33 24.84 17.02 12.16 7.59 4.88
Average 4.47 9.23 14.87 23.83 24.52 24.59 17.92 14.23 11.23 8.95

H5 Min 0.06 0.08 0.24 0.3 0.45 0.07 0.06 0.06 0.07 0.13
Max 5.22 3.3 7.15 15.29 18.87 18.87 15.08 13.76 12.78 10.82
Median 0.64 0.84 1.41 6.06 6.66 4.65 1.44 1.61 1.5 1.33
Average 1.02 1.05 2.07 5.88 6.77 5.75 3.37 2.92 2.56 2.18

H6 Min �0.01 0 0 0.47 0.75 0.07 0 �0.01 �0.01 0
Max 1.11 3.3 7.15 15.29 18.87 18.87 15.47 15.05 13.77 13.45
Median 0 0.36 1.89 7.8 8.77 4.65 1.79 1.78 1.22 0.73
Average 0.13 0.68 2.24 7.21 8.12 5.75 3.78 3.44 2.95 2.43

H4 Min 0.79 1.09 1.28 1.89 1.95 4.43 2.17 0.93 0.79 0.95
(d2) Max 11.15 15.84 15.3 12.88 11.46 15.84 14.35 14.58 13.46 11.5

Median 2.29 6.43 9.19 7.53 6.68 10.02 7.89 6.18 4.17 2.76
Average 3.98 6.76 8.38 7.29 6.73 10.15 7.96 6.25 4.87 3.91

H5 Min 0 0 0 0 �0.01 0 �0.01 �0.01 �0.01 �0.01
Max 2.28 1.68 1.21 1.17 1.56 1.56 1.24 1.96 2.16 2.28
Median 0.38 0.13 0.21 0.32 0.35 0.21 0.17 0.25 0.35 0.38
Average 0.55 0.36 0.31 0.37 0.42 0.33 0.27 0.4 0.48 0.54

H6 Min 0 0 �0.01 0 �0.01 0 �0.01 0 0 �0.01
Max 0.08 0.29 0.89 2 2.37 1.56 1.32 1.61 2.24 2.37
Median 0 0.05 0.2 0.56 0.69 0.21 0.17 0.19 0.21 0.17
Average 0.01 0.07 0.24 0.63 0.75 0.33 0.27 0.35 0.37 0.37

H4 Min 0.5 0.69 0.7 0 0 0 0 0 0 0
(d3) Max 7.04 6.19 4.32 2.1 1.54 7.04 6.13 6.19 5.35 4.04

Median 1.83 3.89 2.47 0.54 0.25 1.86 2.57 1.6 1.24 1.13
Average 2.79 3.47 2.43 0.65 0.36 2.58 2.38 1.9 1.54 1.32

H5 Min 0 0 0 0 0 0 0 0 0 0
Max 1.29 1.24 1.03 0.76 0.51 0.04 0.99 1.16 1.09 1.29
Median 0.26 0 0 0 0 0 0 0 0.16 0.27
Average 0.32 0.26 0.16 0.08 0.04 0 0.09 0.2 0.26 0.31

H6 Min 0 0 0 0 0 0 0 0 0 0
Max 0.04 0.09 0.19 0.5 0.65 0.04 0.02 0.12 0.5 0.65
Median 0 0 0 0 0 0 0 0 0 0
Average 0 0.01 0.02 0.05 0.04 0 0 0.01 0.04 0.07

Table 8
Execution time statistics for the entire experiment set measured in seconds.
(’0’ indicates run time less than 1 ms.)

H1 H2 H3 H4 H5 H6 DP

d1
Min 0 0 0.07 0.16 0.36 0.21 0
Max 0.02 0.02 0.34 13.48 17.68 13.54 359.64
Median 0 0 0.08 0.47 1.77 0.64 254.26
Average 0 0 0.1 1.03 2.39 1.27 207.87

d2
Min 0 0 0.08 0.16 0.38 0.23 0
Max 0.02 0.02 0.36 13.7 8.69 7.43 329.89
Median 0 0 0.09 0.56 1.62 0.69 284.87
Average 0 0 0.11 0.92 1.79 1.01 230.56

d3
Min 0 0 0.08 0.16 0.39 0.24 0
Max 0.03 0.02 0.26 3.32 3.86 4.85 373.74
Median 0 0 0.08 0.53 1.78 0.7 254.31
Average 0 0 0.09 0.61 1.67 0.79 240.08
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production plan resulting in longer generations on average. As
demand's coefficient of variation increases, this effect increases.
Increasing a, which decreases cost for a production quantity
allowing for larger production quantities at the same cost, coun-
ters the advantages of smoothing out. As setup costs increase,
batching effects dominate extending the generations lengths
resulting in a smaller average number of generations in the
solution. (Compare overall tendencies for K1 and K5.) However,
the interaction between the setup cost and the variable production
cost component is not simple. As K increases, on one hand, it is
desirable to increase the quantity qt in a production period to
compensate for the fixed cost; on the other hand, increasing
quantities result in a tendency to split/smooth out production as
observed before.

The percentage of production periods. The percentage of produc-
tion periods is of interest from a number of perspectives: It stands
for the number of setups needed over a problem horizon; it can be
used as a proxy for the average quantity produced over a problem
horizon; and finally, it is a measure for utilization of production
assets which is of managerial concern. For zero setup costs and r0,
there is production only in periods with non-zero demands. As
rð41Þ increases, it becomes more advantageous to do a new setup
due to increasing marginal production costs. Thus, smoothing out
of production occurs resulting in larger percentages of production
periods. For positive setup costs, batching effects emerge reducing
the percentage but the effect of r is as for zero setup costs. For a
given rð41Þ, the percentage of production periods decreases as a
increases. This arises from the fact that lower a values allow for
producing in larger quantities at the same cost levels. The effect of
a becomes more pronounced with increasing fixed setup costs, as
K exacerbates batching effects. As the demand patterns change
from d1 to d3, the percentage of production periods increases. This
is due to two reasons. First, the average demand per period μ
increases, rendering a new setup more economical to do than to

incur increasing marginal production costs. Second, the variability
of demand (measured either as fraction of zeros or coefficient of
variation) decreases that allows for smoother production plans.

Percentage of different types of production sequences. In our
problem, a production sequence may have four forms: (i) A single
period in which no production is done (a generation with zero
demands). (ii) A single period in which the production equals that
period's demand (LFL). (iii) A single production period followed by
a number of no-production periods; the production quantity
covers the total demand in the generation (Wagner–Whitin type).
Finally, (iv) a combination of production and no-production
periods, to which we refer as non-Wagner–Whitin type. In regard
to the occurrence of these types, the overall findings can be
summarized as follows. As fixed setup cost K increases, production
quantities tend to increase to compensate for the fixed cost. This
results in longer generations as more demands of future periods
are covered by production in a particular period. As r increases, the
tendency to split production over periods (production smoothing)
increases. This also results in longer generations on average.
Finally, as the ratio of holding cost to mean production cost per
unit a increases, production quantities tend to increase since larger
lots can be produced at the same cost. The result is again longer
generations on average. The two fundamental tendencies – batch-
ing and production smoothing – manifest themselves in the
production sequence types. When the batching effect is more
dominant, more LFL or Wagner–Whitin type sequences occur in
the optimal production plan. When production smoothing effect is
more dominant, the optimal production plan consists of more
non-Wagner–Whitin type production sequences of class G.

We report the percentage of LFL production sequences over all
generations in the optimal solution for P1;T averaged over the 10
replications for all r and a values and selected two K values in
Fig. 3(e) and (f). For zero setup costs and r0, all production
sequences are LFL, as expected. As rð41Þ increases, production

Fig. 3. Impact of system parameters on average total cost ((a), (b)), average number of generations ((c), (d)), and average percentage of LFL generations ((e), (f)) for K1 and K5
over 10 replications.
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smoothing tendency increases and generations with class G
production sequences emerge resulting in decreasing LFL percen-
tages. As a increases, variable production cost decreases allowing
for larger production quantities for a given rð41Þ value. Hence, we
see non-decreasing LFL percentages for a given rð41Þ as a
increases. As K increases, it is desirable to increase the quantity
qt in a production period to compensate for the fixed cost; hence,
LFL structure becomes less desirable resulting in lower percen-
tages of LFL generations. Likewise, increasing quantities result in a
tendency to split/smooth out production as observed before. The
confounded effect can easily be seen throughout the figure.
Comparing the figure, we see a striking increase in the cases with
zero LFL generations. For zero setup costs, percentage of LFL
generations increases as the demand pattern changes from d1 to
d2 to d3; but, the same does not hold for positive K. We observe
wider ranges with respect to rð41Þ as demand pattern changes
from d1 to d3. The same behavior appears also as a increases,
especially for large setup costs (K5).

6. Conclusion

In this work, we considered the dynamic lot-sizing problem for
a single item with deterministic demands and non-linear produc-
tion costs that arise from well-known economic production
functions (e.g., Cobb–Douglas and Leontieff functions) and extern-
alities in the production activity such as pollution control efforts.
The optimal solution with convex production functions exhibits
behavior dissimilar to that in the classical lot-sizing problem. In
particular, it is now possible to produce in a period even if its net
demand is zero, and to produce part of the demand of a produc-
tion period at an earlier time. We characterized the structure of
the optimal policy for zero and positive setup costs. We provided
further results that enabled us to develop a forward DP algorithm
which guarantees optimality with OðT22T Þ run time complexity for
the problemwith horizon length T. For the case of zero setup costs,
it reduces to OðT2Þ complexity. The fundamental property of the
optimal solutions is that production subplans exhibit a specific
structure – herein referred to as G-class subplans. This property is
retained for positive setup cots, as well. Based on this property, a
version of the forward DP algorithm for positive setup costs was
developed that employs three simple rules conjunctively to gen-
erate production sequences has computational complexity of OðT4Þ
and it performed well in numerical tests. We also proposed six
heuristics to solve the problem. The first three of them are single
step heuristics. The remainder are two-step heuristics that
improve on an initial solution obtained by the first group. They
exploit the G-class production subplans and outperform the first
group significantly. The best single step heuristic is a variant of the
Wagner–Whitin solution algorithm in which demand integrality is
imposed on the production quantities. The best G-class heuristic is
its improved version. The computational time improvements
through the proposed heuristics are justifiably significant. In our
numerical study, we also investigated the sensitivity of the optimal
production plans to the non-linearity in production functions, the
average unit cost of production and setup costs. Our findings
revealed the fundamental trade-offs between the batching and
production smoothing tendencies. Production smoothing that is
observed in our problem has important managerial implications.
In an ERP (enterprise resources planning) setting, the same level
resource requirements such as labor are also smoothed out. Also
higher level requirements become less lumpy (more uniform)
allowing for simpler and steady delivery schedules and possible
cost advantages. Capacity utilization rates also increase. Although
we have considered an uncapacitated problem, production
smoothing also has a positive impact on investment needs as

capacity requirements per period are reduced. Overall, our model
and results obtained for a single echelon may be viewed as a
building block for analysis of such and other managerial issues in
richer, multiple echelon settings.
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Appendix

Proof of Theorem 2. (i) Directly follows from the definition of a
generation. (ii) If rnt r1 for tA ½u; v�, then the production costs are
concave. The problem reduces to the classical lot-sizing problem
and the result follows. (iii) From Theorem 1, Qn

u;v can be found by
solving Pu;v independently. The proof rests on obtaining the
optimal solution for the sub-problem Pu;v. Similar to Eq. (1a), we
can write the total cost over the generation 〈u; v〉, guv as follows:

guv ¼ ∑
tA SðQn

uvÞ
Ktþ ∑

v

t ¼ u
∑
v

i ¼ t
hi

 !
qtþ ∑

m

n ¼ 1
wn

t q
rnt
t

" #
� ∑

v

t ¼ u
htDu;t

Note that guv is convex in the production quantities, and that the
feasible region defined by Eqs. (1b) and (1c) is regular. Construct-
ing the Lagrangian Luv for Pu;v, we have

Luv ¼ guv� ∑
v

t ¼ u
λt ∑

t

i ¼ u
qi� ∑

t

i ¼ u
di

 !
þμtqt

" #

where λt and μt denote the shadow prices of the constraints. From
the first order optimality (Karush–Kuhn–Tucker) conditions, we
have, for tASðQn

uvÞ,
μtq

n

t ¼ 0; ð7Þ

λt ∑
t

i ¼ u
qn

i � ∑
t

i ¼ u
di

 !
¼ 0; ð8Þ

∂L
∂qt

����
qt ¼ qn

t

¼ ∑
m

n ¼ 1
rnt w

n
t q

n

t r
n
t
�1þ ∑

v

i ¼ t
ðhi�λiÞ�μt ¼ 0: ð9Þ

Since in a generation, It ¼ ð∑t
i ¼ uqi�∑t

i ¼ udiÞ40 for tAfu;…;

v�1g, (8) implies that

λnt ¼ 0; tAfu;…; v�1g: ð10Þ
Substituting (10) into (9) we find

∑
m

n ¼ 1
rnt w

n
t q

n

t r
n�1
t ¼ λv� ∑

v

i ¼ t
hiþμt 8 tASðQn

uvÞ ð11Þ

Now, qn
t 40 for 8 tASðQn

uvÞ together with (7) implies that μn
t ¼ 0

for tASðQn

uvÞ. Hence, writing (11) for io j, i; jASðQn

uvÞ gives
∑m

n ¼ 1r
n
i w

n
i q

n

i r
n�1
i ¼ λv�∑v

s ¼ ihs and ∑m
n ¼ 1r

n
j w

n
j q

n

j r
n�1
j ¼ λv�∑v

s ¼ jhs.

Equating the two expressions via λv, ∑m
n ¼ 1r

n
i w

n
i q

n

i r
n�1
i ¼

∑m
n ¼ 1r

n
j w

n
j q

n

j r
n�1
j �∑j�1

s ¼ ihs. Clearly, this is a production plan of

class G. Hence, the result. □

Proof of Theorem 3. Let Qn

u;v0 be the optimal production plan for
½u; v0�. If qn

vþ1 ¼ 0, the result follows immediately. Otherwise,
consider the modified feasible production plan Q 0

u;v0 ¼ ðq0u;…; q0v0 Þ
such that q0l ¼ qn

l þϵ, q0vþ1 ¼ qn

vþ1�ϵ and q0t ¼ qn
t for tAfu;uþ

1;…; l�1; lþ1;…; v; vþ2;…; v0g where ϵ40. Due to the optimality
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of Qn

u;v0 we have

∑
v0

i ¼ u
∑
m

n ¼ 1
wn

i q
n

i r
n
i þhiIi

� �
r ∑

l�1
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i q
n

i r
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i þhiIi
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þ ∑
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i ¼ l
hiðIiþϵÞ
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vþ1�ϵÞrnvþ 1 þhvþ1Ivþ1
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which implies ∑m
n ¼ 1½wn

vþ1q
n

vþ1r
n
vþ1�wn

vþ1ðqn

vþ1�ϵÞrnvþ 1 �r∑m
n ½wn

l ðqn

l þϵÞrnl
�wn

l q
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l r
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Dividing both sides by ϵ and taking the limit ϵ-0, we get

∑
m

n ¼ 1
wn

vþ1
d

dqvþ1
q
rnvþ 1
vþ1jqvþ 1 ¼ qn

vþ 1
r ∑

m

n ¼ 1
wn

l
d
dql

q
rnl
l jql ¼ qn

l
þðhlþ⋯þhvÞ

which becomes

∑
m

n ¼ 1
rnvþ1w

n
vþ1q

n

vþ1r
n
vþ1�1r ∑

m

n ¼ 1
rnl w

n
l q

n

l r
n�1
l þðhlþ⋯þhvÞ: □

Proof of Lemma 2. Proof by contradiction. We first establish that
qn

tþ140. Suppose that in the subplan Qu;v, qt40 and qtþ1 ¼ 0. We
will show that this subplan can be improved. To do so, consider
the feasible subplan Q 0

u;v ¼ ðq0u;…; q0vÞ with q0t ¼ qt�ϵ, q0tþ1 ¼ ϵ and
q0i ¼ qi for iAfu;…; vg\ft; tþ1g such that 0oϵominfIt ; qt ;1g. By
definition of a generation, It is positive and qt is positive by
assumption. Therefore, such a positive ϵ which guarantees the
feasibility of Q 0

u;v always can be found. We denote the correspond-
ing costs of these two subplans by π and π0

~π�π0 ¼ ∑
m

j ¼ 1
wj

tq
rjt
t þhtIt

" #
� ∑

m

j ¼ 1
wj

tðqt�ϵÞrjt þhtðIt�ϵÞþ ∑
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j ¼ 1
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tþ1ϵ
rjt þ 1

" #
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rjt
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j ¼ 1
wj

tþ1ϵ
rjt þ 1 ¼ ϵ ht� ∑
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tþ1ϵ
rjt þ 1 �1

 !
:

The inequality above follows from nonnegativity of the parenthe-

tical term in the former expression. Letting wtþ1 ¼maxjfwj
tþ1g

and rtþ1 ¼minjfrjtþ1g, the last expression is positive for any

ϵo ht=wtþ1
� �1=ðr t þ 1 �1Þ if ht is positive. If ht¼0, then

π�π0 ¼ ∑
m

j ¼ 1
½wj

tq
rjt
t �� ∑
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j ¼ 1
½wj

tðqt�ϵÞrjt þwj
tþ1ϵ

rjt þ 1 �

¼ ∑
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j ¼ 1
wj

t ½q
rjt
t �ðqt�ϵÞrjt �� ∑
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j ¼ 1
wj

tþ1ϵ
rjt þ 1 :

Consider the function f ðxÞ ¼ qx�ðq�ϵÞx. Derivative of this function
with respect to x is f 0ðxÞ ¼ lnðqÞqx� lnðq�ϵÞðq�ϵÞx which is always
positive for ðq4ϵÞ. Therefore, f(x) is an increasing function of x for
ðq4ϵÞ. Let ⌊xc be the greatest integer equal to or less than x. Then,

wj
t ½q

rjt
t �ðqt�ϵÞrjt �Zwj

t ½q
⌊rjtc
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ϵo1. Then, wtþ1ϵ
rjt þ 1 owtþ1ϵ

⌊rjt þ 1c for all j, as well. Therefore,
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where Mj
1 ¼wj

t⌊r
j
tcq

⌊rjtc�1
t ð40Þ and Mj

2 ¼max2r ir ⌊rjtc
wj

tð⌊r
j
tc
i Þ

n
q⌊r

j
tc� i

t þwj
tþ1g ð40Þ for j¼ 1;…;m. The last expression is positive

for ϵominjfðMj
1Þ=ðMj

1þMj
2Þg.

Hence, by choosing any positive ϵ less than
minfIt ; qt ;1; ðht=wtþ1Þ1=ðr t þ 1 �1Þ;minjfðMj

1Þ=ðMj
1þMj

2Þgg the subplan
Qu;v can always be improved and, hence, it is not optimal. Having
established the result for t and tþ1, it can be extended to the
remaining periods similarly by induction over periods tþ2 to v. □

Proof of Theorem 4.

(i) We construct the optimal production plan of P1;t by changing
Qn

1;t . First we construct the new G-class production subplan

for ½tk; t�, Q tk ;t . If ∑m
n ¼ 1r

n
tk �1w

n
tk �1q

n

tk �1ðrntk �1�1Þ þhtk �1Z

∑m
n ¼ 1r

n
tk
wn

tk
q
ðrntk �1Þ
tk

, then Q
n

1;t is optimal with i¼k. Otherwise,
we can improve it by transferring some portion of the total
demand of ½tk; t�, say ϵ, to the period tk. However, this results in

∑m
n ¼ 1r

n
tk �2w

n
tk �2q

n
tk� 2

rntk �2�1þhtk �2rrntk �1w
n
tk �1ðqn

tk �1þϵÞr
n
tk� 1 � 1

which implies that it can be improved again. By a similar
argument, transferring some positive portion of x to all
periods within ½tk�1; tk�1� gives a better objective cost. We
continue this procedure in a backward way until we reach
to period ti such that after augmenting qn

ti
to qti ¼ qn

ti
þϵti we

still have the optimality inequality of Theorem 3, that is,

∑m
n ¼ 1r

n
ti �1w

n
ti �1q

n
ti r

n
ti �1�1 þhti �1Z∑m

n ¼ 1r
n
tiw

n
ti q

rnti
�1

ti and no
further improvement can be made. Hence optimal augmen-
tation of the old production quantities gives a new G-class
production subplan and it stops in one of the ti, iAf1;…; kg.

(ii) If dtþ1 is such that ∑m
n ¼ 1r

n
t w

n
t q

n
t r

n
t �1þhtZ∑m

n ¼ 1r
n
tþ1w

n
tþ1

d
rnt þ 1 �1
tþ1 , the given plan Qn

1;tþ1 is optimal with i¼ kþ1 and the
new period is itself a generation. Otherwise, the rest of the

proof follows from part (i) by considering x¼ dtþ1� ~d where
~d solves ∑m

n ¼ 1r
n
t w

n
t q

n
t r

n
t �1þht ¼∑m

n ¼ 1r
n
tþ1w

n
tþ1ð ~dÞr

n
t þ 1 �1. □

Proof of Lemma 3. The proof rests on standard optimization
techniques. We first solve for the extrema that satisfy the first
order condition. We have ðd=dQ ÞTCðQ Þ ¼ TC0ðQ Þ ¼ �KD=

Q2þh=2�½∑m
n ¼ 1w

nQrn �D=Q2þ½∑m
n ¼ 1r

nwnQrn �1�D=Q ¼ 0 )
Kþ∑m

n ¼ 1ð1�rnÞwnQnrn ¼ ðh=2DÞQn2

) KD¼ h
2
Qn2�D ∑

m

n ¼ 1
ð1�rnÞwnQnrn ð12Þ

where Qn denote(s) the extremum(a). Considering the second
derivative evaluated at the extrema, we have

d
dQ

TC0ðQ Þ ¼ TC″ðQ Þ ¼ 2KD=Q3þ ∑
m

n ¼ 1
ðrn�2Þðrn�1ÞwnQrn �3

� �
D

where at the critical point(s) of TC since (12) holds, we have

TC″ðQnÞ ¼ hQn2�2D ∑
m

n ¼ 1
ð1�rnÞwnQnrn

� �
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þD ∑
m

n ¼ 1
ðrn�2Þðrn�1ÞwnQrn �3

� �

¼ hQn2þD ∑
m

n ¼ 1
ð�2þ2rnþrn2�3rnþ2ÞwnQnrn
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¼ hQn2þD ∑
m

n ¼ 1
rnðrn�1ÞwnQnrn

� �
40:

So the function is convex in its all critical points and therefore, is a quasi-convex. Therefore, it has a unique extremum point. □

Algorithm 1. Forward DP and heuristic algorithms

Require: Problem instance, Algorithm name
Ensure: Computes solution for P1;T

1: function FORWARD_ZEROSETUP()
2: for i¼1 to T do
3: f i ¼ f i�1þgi;i
4: RegPðiÞ’i ▹ RegPðiÞ ¼ first period of the generation including i
5: clrp’i ▹ clrp¼candidate last regeneration point
6: while clrp41 and feasible_class-G_exists do
7: if class-G sequence for the segment ðclrp; iÞ is feasible then
8: f i ¼ f clrp�1þgclrp;i
9: RegPðiÞ ¼ clrp

10: else
11: feasible_class-G_exists’False
12: end if
13: clrp�1’RegPðclrp�1Þ
14: end while
15: end for
16: end function
17:
18: function H1()
19: while irT do
20: l’�1
21: repeat
22: l’lþ1
23:

until
g1i;iþ l
l rg1i;iþ lþ 1

lþ1

	 

or (iþ lZTÞ

24: qi’Di;iþ l

25: i’iþ lþ1
26: end while
27: end function
28:
29: function H2()
30: ~Q

n

’arg min ~Q 40TCð ~Q Þ
31: Ds’D1;T : Total remaining demand
32: for i¼1 to T do
33: update net demand: d̂
34: qi ¼minðDs;maxðd̂i; ~Q

nÞÞ
35: Ds’Ds�qi
36: end for
37: end function
38:
39: function H3()
40: f 0’0
41: for i¼1 to T do
42: f i ¼ f i�1þg3i;i; qi’Di;i

43: for j¼ i�1 down to 1 do
44: if f j�1þg3j;io f i then f i’f j�1þg3j;i; qi’Di;j

45: end for
46: end for
47: end function
48:
49: function INCLUSIONEXCLUSION ðj; iÞ
50: for n¼1 to 3 do ▹ method selection : n
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51: for nn¼1 to Nrand do ▹ number of randomizations : Nrand
52: if n¼1,2 then
53: S¼ fj;…; ig
54: else
55: S’fjg
56: end if
57: Qj;i’ class-G sequence induced by S
58: if Qj;i is infeasible then
59: Qj;i’ðdj; djþ1;…; diÞ
60: end if
61: gji’ cost of Qj;i

62: repeat
63: Improvement_Observation ’False
64: switch n
65: case 1 klow¼ j, kup¼ i ▹ greedy exclusion heuristic
66: case 2 klow¼ Random index from fj;…; ig\S, kup¼klow ▹ random exclusion heuristic
67: case 3 klow¼ Random index from S, kup¼klow ▹ random inclusion heuristic
68: for k¼klow to kup do
69: if k=2S and n¼1,2 S0 ¼ S [ fkg
70: else S0 ¼ S\fkg
71: end if
72: Q 0

j;i’ class-G sequence induced by S0

73: g0j;i’ cost of Q 0
j;i

74: if Q 0
j;i is feasible and g0j;iogji then

75: candidate’j, Improvement_Observation’True
76: gji’g0j;i, Qj;i’Q 0

j;i

77: end if
78: end for
79: S’S0

80: until Improvement_Observation¼False
81: end for
82: end for
83: end function
84:
85: function G-HEURISTICS_AND_FORWARDDP (algName)
86: f 0’0 ▹ algNameAfH4;H5; H6; ForwardDPg
87: if algName¼Hk then ▹ HkAfH4;H5;H6g
88: Call Hk�3 ▹ Hk�3AfH1;H2;H3g
89: Ω’ production period indices
90: end if
91: for i¼1 to T do
92: f i ¼ f i�1þgi;i
93: for j¼ i�1 down to 1 do
94: if algNameaForwardDP
95: S’ indices in ½j; i� \ Ω
96: Qj;i’ class-G sequence induced by S
97: else Call InclusionExclusionðj; iÞ
98: end if
99: if Qj;i is infeasible then gj;i’1 else gj;i’ cost of Qj;i

100: if f j�1þgj;io f i then f i’f j�1þgj;i
101: end for
102: end for
103: end function
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