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Abstract—This paper investigates the challenges in developing 
a semantic-based Dementia Care Decision Support System based 
on the non-intrusive monitoring of the patient’s behaviour. 
Semantic-based approaches are well suited for modelling 
context-aware scenarios similar to Dementia care systems, where 
the patient’s dynamic behaviour observations (occupants 
movement, equipment use) need to be analysed against the 
semantic knowledge about the patient’s condition (illness history, 
medical advice, known symptoms) in an integrated 
knowledgebase. However, our research findings establish that the 
ability of semantic technologies to reason upon the complex 
interrelated events emanating from the behaviour monitoring 
sensors to infer knowledge assisting medical advice represents a 
major challenge.  We attempt to address this problem by 
introducing a new approach that relies on propositional calculus 
modelling to segregate complex events that are amenable for 
semantic reasoning from events that require pre-processing 
outside the semantic engine before they can be reasoned upon. 
The event pre-processing activity also controls the timing of 
triggering the reasoning process in order to further improve the 
efficiency of the inference process. Using regression analysis, we 
evaluate the response-time as the number of monitored patients 
increases and conclude that the incurred overhead on the 
response time of the prototype decision support systems remains 
tolerable. 

Keywords—Semantic Web; Dementia;, decision support; 
remote healthcare; knowledge Inference; context awareness; 
complex event processing 

I. INTRODUCTION 
Cognitive decline and the related diseases such as 

Dementia and Alzheimer’s disease (AD) are becoming 
increasingly common in the geriatric population. Worldwide, 
34 million people suffer from Dementia and in UK alone this 
figure is nearly 700,000 [1]. The cost of Dementia to the UK 
economy is approximately 17 billion GBP each year [2] and is 
expected to rise significantly with the aging population trend; 
the number of people over the age of 60 is expected to rise 
from 33% of those aged between 15 and 60 in 2001 to 55% in 
early 2030s[3]. 

In the present scenario, care is given to Dementia sufferers 
by NHS in the form of personal attendants such as nurses and 

social workers. Reducing the amount of personal care devoted 
to early Dementia sufferers by means of remotely monitoring 
their condition not only reduces the pressure on NHS 
resources, but also promotes good quality independent living of 
the Dementia sufferer. 

Remote healthcare for Dementia suffers has attracted a lot 
of investment. A large body of commercial and research efforts 
in the field concentrated mainly on memory loss, which is a 
main characteristic of Dementia. Such systems offer guidance 
to the patients in their day-to-day activities such as reminding 
the patients to take medicine [4][5]. Our research subscribes to 
the more challenging efforts that deploy sensory devices to 
monitor the activities of daily living of early Dementia suffers, 
and then analyse the sensory output to identify deviations from 
normal behavioural patterns that can indicate a deterioration in 
the Dementia condition such as restlessness and wandering, 
and subsequently advise intervention from the caregivers or the 
health clinicians. In this paper we argue that knowledge-based 
systems are well-suited for analysing the recorded patients’ 
behaviour, and offer advice to a corresponding Dementia Care 
Decision Support Systems (DCDSS) about  probable 
deterioration in the condition. In the long term, the 
knowledgebase can provide new insight into the data resulting 
from correlating information from different/multiple sources, 
such as inferring the impact of a new drug by reasoning over 
recorded patient’s behaviour. 

The research documented in this paper investigates the 
feasibility, from a technical viewpoint, of utilising Semantic 
Web technologies to develop a knowledge-based approach to 
Dementia care decision support. Based on earlier effort 
published in [6] that studied Semantic Web reasoning over 
simple (atomic) events for context-aware DCDSS, the research 
reported in this paper focuses on the interactivity dynamics of 
the semantic reasoning engine with the complex events 
streamed from the sensory equipment, in order to support 
knowledge inference that fulfils the requirements for remote 
healthcare decision support.  

We facilitate the utilisation of Semantic Web Rule 
Language SWRL [7] in complex event processing by adopting 
a new approach that relies on propositional calculus modelling 
to segregate complex events that are amenable for semantic 



reasoning from events that require pre-processing outside the 
semantic engine before they can be reasoned upon, and 
perform experimental analysis that deploy regression analysis 
to evaluate the performance of the semantic reasoning process.  

The rest of this paper is organised as follows: section 2 
presents the motivation behind undertaking this research. 
Section 3 details our semantic modelling and knowledge 
mapping approach. The challenges of complex event 
processing in Semantic Web systems are discussed in section 
4, leading to presentation of the framework for semantic 
decision support framework in section 5. The following section 
details the presentation and evaluation of the experimental 
results, and section 7 concludes the paper and presents our 
plans for further work. 

II. MOTIVATION 
Ongoing investigation in our research group is involved in 

developing an Intelligent Inhabited Environment (IIE) 
infrastructure with the purpose of monitoring the activities of 
daily living of elderly occupants and assisting them in leading 
a good quality independent living [8]. The architecture of the 
IIE is illustrated in Fig 1, where the data collected from the 
sensor network are wirelessly communicated with a base 
station and eventually stored in a central database. The IIE 
relies solely on non-intrusive sensors such as door and infrared 
motion sensors; research has proven that the use of intrusive 
technology such as surveillance cameras for patient monitoring 
is generally not accepted [9]. The sensors produce long series 
of binary multidimensional data that are difficult to analyse and 
manipulate manually, so a combination of Principal 
Component Analysis and Fuzzy Rule-based Systems are 
applied to process the data and identify and also predict 
deviations from normal behaviour pattern [10], which are 
relayed to the health clinicians and the patient carer. 

Fig. 1. An overview of the IIE architecture with the semantic decision 
support extension 

The research documented in this paper attempts to correlate 
the identified behavioural patterns to the symptoms of 

Dementia with the long term objective of developing a 
semantically-enabled Dementia care decision support system 
(DCDSS) that can aid health clinicians in the remote 
assessment of the patients’ condition, and thus reduce the 
demand for on-site care and support longer independent living 
for the Dementia sufferers. To achieve this, the decision 
support software needs to not only posses a human-like 
understanding of the complex concepts of the domains 
involved in a remote care system such as sensory movement 
information, human behaviour, disease diagnoses, and clinical 
guidelines, but also be able to intelligently interrelate these 
concepts to assist medical advice. Semantic Web technologies 
are ideally suited to model such complex systems; In contrast 
to static terminology structures used for knowledge reference, 
semantic ontologies allow to describe at the taxonomy level the 
concepts and sophisticated relationships between the concepts 
(subsumption, cardinality, jointness, etc.), thus allowing for 
knowledge inference and reasoning [11]. Semantic 
knowledgebases are also inherently extensible [12] compared 
to traditional RDBS, which is again very useful for the ever-
evolving medical domains. 

III. SEMANTIC APPROACH TO MODELLING CONTEXT-
AWARE DEMENTIA CARE DECISION SUPPORT SYSTEM 

Our approach to modelling the Dementia Care Decision 
Support System (DCDSS) is based on the premise that 
dynamic changes in the patients situational conditions 
(Context) such as room occupancy and movement within the 
living environment has to be analysed against the semantic 
knowledge about the condition’ symptoms and the patient’s 
related profile (medical history, age, etc.) in order to interrelate 
them to Dementia conditions such as restlessness. 

Hence we can accurately describe our DCDSS as context-
aware and knowledge-based. The use case examined in this 
study captures change in the situational conditions such as 
shorter room occupancy and more frequent movement between 
the rooms, which is analysed against the knowledge of the 
patient history of restlessness and inferred as deterioration in 
the patient’s Dementia condition. Moreover, as more patients 
are diagnosed with Dementia, recording the patients’ data in an 
intelligent semantic knowledgebase becomes increasingly 
important. In contrast to the temporal advise of traditional 
decision support systems, such knowledgebase can provide for 
inference over data that is collected over longer periods and 
covering a larger population of Dementia sufferers. Such 
inference can, for instance, provide new insight into the long-
term impact of certain medicine on the well being of the 
patient. 

As demonstrated in the use cases discussed in this section, 
the value proposition of a knowledge-based approach is in 
applying intelligent reasoning to a domain in order to solve a 
problem that would otherwise require considerable effort and 
expertise. Building the knowledgebase requires mapping 
domain knowledge to the requirements of the problem, and 
then using the mapped knowledge to acquire additional 
information about the problem domain and infer new facts that 
aid the solution [13]. Hence, we initially make the following 
assumptions about the system requirements: 

Semantic Support 
Correlate behaviour to 
Dementia Symptoms 



• The primary end-users of the system are health 
clinicians: doctors, nurses, and carers, who monitor the 
condition of the patient remotely.  

• The system should differentiate between alarming and 
critical anomalies in patient behaviour with critical 
anomalies being informed with a higher priority and in 
a way that demands quicker response. 

• The Dementia patient is the sole occupier of the 
monitored residence. This significantly simplifies the 
movement and occupancy analysis. 

• The Dementia residence consists of four rooms, a 
lounge, bedroom, kitchen, and bathroom with one main 
exit door. 

Guided by the above requirements we gathered the domain 
knowledge, aided by external sources such as the Alzheimer’s 
Association’s ‘2010 Alzheimer’s disease facts and figures [14], 
and also by eliciting knowledge from a specialist psychiatrist 
who had the practical experience in managing the care for 
Dementia patients and can also represent the prime beneficiary 
of the envisaged DCDSS. The gathered knowledge was 
conceptualised using a concept map as illustrated in Fig 2, 
which was later translated into formal semantic ontology 
representation. 

Fig. 2. Concept Map for the Semantic-Driven Decision Support System  

The “Semantic Health Care DSS” uses various sensors to 
capture ‘events’ related to the monitored patent’s behaviour 
(such as room occupancy and equipment use) to determine the 
context of the patient. The system then performs context-aware 
patient data analysis on the captured events and produces 
health advice. Therefore, it is clear that event processing is a 
critical process in the decision support system. 

In contrast to works that provide for reasoning over atmoic 
events such as in [22], in this work we investigate reasoning 
over a stream of complex interrelated events, which represents 
a major challenge for the Semantic Web technology [15] that is 
primarily geared to model static knowledge. The findings of 
our earlier research published in [6] established that Semantic 
rules such as SWRL can be seamlessly integrated into the 
semantic ontologies but do not support the event workflow 

capabilities of external Event Processing languages such as EP-
SPARQL [16], which on the other hand add to the complexity 
of building the decision support system. The research approach 
reported in this work advocates the deployment of an external 
proprietary events’ pre-processor that can efficiently handle the 
temporal attributes of events outside the semantic 
knowledgebase. 

IV. INVESTIGATION OF COMPLEX EVENT PROCESSING IN 
SEMANTIC WEB SYSTEMS 

In this section, we introduce a new approach for handling 
complex event processing within the Semantic Web 
framework. We intend to deploy propositional calculus 
modelling to segregate complex events that are amenable for 
semantic reasoning from events that require pre-processing 
outside the semantic engine before they can be reasoned upon.  

A. Event metadata 
Complex events can be generated from atomic events by 

combining them in different ways. When combining multiple 
events, various event metadata are processed such as the event 
type, occurrence time and location, which form part of the 
event context. This work is concerned with the following 
metadata of events: 

Event attributes 

• E1: Timestamp of an event 
• E2: Location of an event (the context) 
Relationships between events: 

• E3: Time interval between any two events 
• E4: Change in context between any two events 
We also introduce another special type of event, which is 

the passage of time. This event, termed ‘E5’, is generated every 
‘n’ seconds in order to aid in determining the time intervals of 
interest. 

Finally, we model the response time to the occurrence of 
the event as follows: 

• T1: Events that need an immediate response as soon as 
they are detected 

• T2: Events that require response after a certain time 
interval (E5) from the moment they are detected 

To summarise, any event has two dimensions, the metadata 
of the event, and the relationship of the event to other events 
including the time passage event. 

B. Use-cases for patients with Dementia (PWD) 
This section associates specific event types related to the 

PWD use-case with the event metadata identified in the 
previous section. There are events that will trigger response 
from the decision support system with out the need to evaluate 
the E1-E5 event metadata; for instance, an ‘accidental fall’ 
would trigger response from the system irrespective of the time 
and location at which the event occurred. 

Below we consider events (such as opening main door at 
night, weight loss, etc.) that require the evaluation of a single 
or combination of the modelled event metadata (E1-E5). 



E1 - These are events that become significant because of 
the time at which they occur; for instance: 

• Opening the main door (event type) at midnight (E1: 
event timestamp). PWD tend to wander outside at night, 
which is widely accepted as an abnormal and a 
potentially dangerous situation that needs to be avoided. 

E2 - These are events where the location of the event is of 
significance that become significant because of location at 
which they occur, similar to: 

• Prolonged stay (event type) inside bathroom (E2) 
E3, E4 - These are events that take a combination of the 

change in time intervals and the change in contexts between 
events, such as: 

• Restlessness (event type) is calculated by determining 
quick (E3) changes in contexts (E4) 

• Restlessness (complex event type) followed by main 
door open (event type). This is significant because 
PWDs tend to become aggressive and attack passers-by 

• Frequent bathroom usage (complex event type using E3 
and E4) with or without high diabetes level (event type) 

E1, E5 - This combination is used to determine if, from the 
set of events (event types) that occurred (E1) during a specific 
time interval (E5), the desired event was present or not. 
Example of events that fall under this class: 

• Forgetting to take medicines. In order to determine this, 
we need to know what events occurred (event types) 
along with their timestamps (E1) during a specific time 
interval (E5). From this we shall determine, if the 
desired event occurred or not.  

While above we used events to determine if the desired 
event occurred or not, the combination of E1 and E5 can also 
be used to identify and avoid any untoward incident. For 
instance: 

• Forgetting to close the main door after opening it 
• Forgetting to turn off the iron box after turning it on 

C. Complex Event Detection 
We formalise the identification of complex events using 

propositional calculus, which streamlines translating the 
events’ condition-action into the Semantic Rules’ first 
predicate logic [17]. In the list below, we exemplify the  
narration of each complex event or combination of events (Ei 
as explained above), and provide the formal propositional logic 
representation. 

Event type (E1) - Open main door at midnight. Let t stand 
for the time at which the event occurs, e for the event type and 
c for the required complex event, then the condition that 
determines this complex event is: 

 [(e = “Main Door Open ”)∧(0:00≤t≤8:00)]→(c="Open Main 
Door at Night") 

Event type (E2) - Accidental fall inside bathroom. Here, we 
assume that a sensor capable of determining accidental fall as 

an atomic event is available. Let e stand for the event type, l for 
the event location and c stand for the required complex event, 
then the condition that determines this complex event is: 

[(e="Accidental Fall\" )∧(l="Bathroom" )]→(c="Accidental Fall 
Inside Bathroom") 

Event type (E3, E4) - Frequent bathroom usage with or 
without high diabetes level. Let  l1,l2,l3 be events that 
correspond to the “Entered Bathroom”;  t1,t2,t3 be the 
timestamps of these events; ε be a fixed number, let h 
correspond to the historical patient data that says “High 
Diabetes Level” and let  be the required complex event, then: 

[(e1=e2 = e3 = … = "Entered Bathroom" )∧(t2-t1<ε)∧(t3-t2<ε)∧
(t4-t3<ε)…∧(h="High Diabetes Level")]→(c="Frequent 

Bathroom Usage") 

Event type (E1, E5) - Forgetting to take medicine. 
Assuming the alarm needs to be raised when the patient forgets 
to take medicine at a particular time, then they need to be 
informed. Here, we need a special type of event, which is the 
passage of time. Let t0 stand for the current time and t1 and t2 
represent the interval between which the patient should have 
had his meal and let e1,e2,e3 be the sequence of events that 
occurred between t1 and t2, then the condition that determines 
this complex event is: 

[(e1≠"Take medicine" ∧ " e2≠"Take medicine" ∧ " e3≠"Take 
medicine" … ∧ ( t1 < t0 < t2 )]→(c = " Forgot to Take medicine") 

D. Complex events pre-processing 
The aim of this section is to determine which complex 

events can be evaluated using the Semantic Web Rule 
Language SWRL rules in the ontology. As argued in our 
previous publication [6], SWRL satisfies the reasoning 
requirements for our use-case, and its rules can be encoded 
with the ontology for efficient, direct evaluation by the 
underlying semantic reasoning engine. Hence, our goal, where 
possible, is to hardwire the reasoning rules in the ontology. 
Otherwise, complex event pre-processor will be deployed that 
prepares/adapts the rules consumption by the semantic 
reasoning engine.  

SWRL is a union of Horn Logic and OWL. Horn logic uses 
propositional calculus, and since we modelled our use-case 
events using propositional logic, this would aid in determine 
what can technically be implemented using SWRL rules. We 
need to be able to chronologically order the propositional 
variables either in order to determine the reoccurrence 
frequency of the same event or capture the ordered occurrence 
of a number of interdependent ones. For example, consider the 
complex event 3 (E3, E4) below: 

[(e1=e2=e3=e4=…="Entered Room")∧(l1≠l2 )∧(l2≠l3 )∧(l3≠l4 )…
∧(t2-t1< ε)∧(t3-t2<ε)∧(t4-t3<ε)…]→(c="Restlessness") 

Here we need to be able to capture the difference of 
consecutive time intervals in Entering Room in order to check 
whether if it is less than a fixed value (threshold)  [(t2-t1< ε)



∧(t3-t2<ε)∧(t4-t3<ε)…] that might indicate Restlessness. 
We can store each event in the ontology along with an 
associated data type property that specifies the timestamp. 
Then in order to calculate the difference of consecutive time 
intervals, we have to first sort the events in chronological order 
before the difference can be calculated. However, there is no 
provision in SWRL for sorting the propositional variables. 
Hence, this sort of this complex event would have to be 
handled by a complex events’ pre-processor at a preparatory 
stage preceding the semantic reasoning. 

Similarly, we need to check whether the locations of any 
two consecutively occurring events are the same [(l1≠l2 ) ∧ 
(l2≠l3 )∧(l3≠l4 )…]. We can store the locations of events as 
data type properties associated with each event. As in the case 
above, we have to first sort the events before the required 
condition can be evaluated. Since there is no provision in 
SWRL for sorting propositional variables, this type of complex 
events will also need to be pre-processed. 

Reasoning similarly, we can conclude that frequent 
bathroom usage should be handled at the pre-processor level. 

V. THE SEMANTIC DECISION SUPPORT FRAMEWORK 
The framework’s architecture is illustrated in Fig 3 below. 

The core part of our system, which is the ontology, contains all 
the taxonomy, the relations (object and data properties) and the 
reasoning rules. The semantic repository is accessed via a 
custom built Semantic Access API. All RDF triples are 
inserted into and accessed from the ontology by the pre-
processor through this API. All that the pre-processor checks 
which events were atomic and which were complex before 
processing complex events and populating the ontology with 
both atomic / complex events (which can abstractly be thought 
of as alerts/triggers) into the ontology as RDF triples. The pre-
processor is also responsible for invoking the reasoning engine 
and use the inferred triples to raise alarms such as 
isRestlessness and alarming isFrequentBathroomUsage, which 
are inferred based on the specific patient’s context. 

Fig. 3. System Framework 

The input to the pre-processor is an event stream, which in 
our use-case is mainly composed of the patients’ room 
occupancy data. As outlined in the previous section, initially 

the events are represented using propositional logic in order to 
identify those parts of these events that need to be processed at 
the pre-processor-level as outlined in the previous section. This 
solution is not just simple but is also mathematically precise. 

The user front-end serves two purposes, updating the 
reasoning engine with new rules/constraints, and subscribing to 
certain alerts from the Dementia care decision support system. 

 

A. The dynamics of the complex events ontology 
A detailed view of the ‘Events’ ontology class is shown in 

Fig 4. The class comprises two event sub-classes, 
‘AtomicEvents’ and ‘ComplexEvents’. These classes in turn 
have further sub-classes corresponding to various types of 
events. The reason for giving names like ‘AtomicEvents’ and 
‘ComplexEvents’ is to demonstrate how to create the ontology 
for Semantic Complex Event Processing. Real-life project 
would have more realistic names. All atomic events are 
inserted as individuals of the sub-classes of the ‘AtomicEvent’. 
There is no additional processing performed by the pre-
processor on these atomic events. Atomic events are inserted 
into the ontology as and when the pre-processor receives them. 
However, those events that cannot be calculated by SWRL 
rules (complex events) are processed by the pre-processor and 
inserted as individuals of the sub-classes of the class 
‘ComplexEvents’. Once all the individuals are inserted, the 
classification in the ontology is solely performed by the rules. 

An important subclass of events is ‘TimePassageEvent’. 
This class has a single individual ‘i_CurrentTime’, which 
stores the current time through the data type property 
‘hasDP_Time’. The current time is populated by the pre-
processor and is used by the semantic rules to classify some of 
the events. This is important for time-dependant events such as 
prolonged stay in a specific room. 

During classification, the rules use each patient’s medical 
history as well for classifying the atomic / complex events. 
Each patient’s medical history is stored in the second section, 
which is the class ‘PatientHistory’. 

The other subclass is ‘AlarmingEvents’. All other classes 
are internal to the ontology and required only by the rules. This 
is the only class required by the external application making 
use of the classification. This class has various subclasses, 
which are used to insert the asserted triples. Thus there is a 
subclass called ‘ForgotToTurnOffGas’. If an event instance 
comes under this class then that the event instance is an 
alarming event and means the patient associated with the event 
forgot to turn off gas. 

The Patient class enables the ontology to be multi-patient. 
All instances of this class are patients and every event 
corresponds to a unique patient by using object properties. 
Thus an event called ‘i_Door_SuganthRamaswamy’ may be 
associated with the patient ‘i_SuganthRamaswamy’ through 
the object property ‘hasOP_EventDoor’. 

Finally, the ‘System’ class has a single instance ‘i_System’, 
which stores a single data type property that specifies the 
update frequency. The pre-processor uses the value of this 
property to set the frequency of its timer variable, which in turn 
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determines how often the pre-processor populates the ontology 
and invokes the reasoning engine. 

Fig. 4. Events ontology top-level view 

B. Semantic rules for the decision support process 
The core reasoning activity of the DCDSS was 

implemented using SWRL. Below we exemplify how the 
propositional logic statement representing ‘prolonged use of a 
room’ was translated into a SWRL Rule. 

[(e1="Entered Room") ∧ (l1="Bathroom") ∧ "t0-t1 "> ε)]  →   
(c=" Forgot to Close Main Door") 

The above propositional statement is translated into a 
SWRL rule as follows:  

 

Below is a functional description of the above rule: 

1. EnterRoom(?er): Retrieve all room events and store 
them in the variable ‘er’ 

2. TimePassageEvent(?tp): Retrieve the special time 
passage event and store it in the variable ‘tp’ 

3. hasDP_Location(?er, ?erl): Retrieve the location of 
the room events and store them in the variable ‘erl’ 

4. hasDP_Time(?er, ?ert): Retrieve the time of the room 
events 

5. hasDP_Time(?tp, ?tpt): Retrieve the current time 
6. subtract(?diff, ?tpt, ?ert): Store the difference between 

the current time and the time of room events in the 
variable ‘diff’ 

7. greaterThanOrEqual(?diff, 8.0): Check if the 
difference calculated above is greater than or equal to 
8 hours 

8. stringEqualIgnoreCase(?erl, "Bedroom"): Also check 
if the location of the event is bathroom 

9. ProlongedUsageOfBedroom(?er): If all of the above 
conditions match then, classify the events as 
prolonged usage of bathroom 

 
Example of Further SWRL rules that were integrated into 

the ontology are illustrated in Fig 5 below. It is worth noting 
that some of the events are simply classified without any 
further processing. These are complex events that are 

calculated and populated in the ontology by the pre-processor. 
Although the pre-processor could have placed them under 
AlarmingEvents directly, the solution is not elegant. For 
example, in the future if we had to do some further processing 
on these events, then the approach that has been taken here 
would result in minimal modification to the ontology.  

 

Fig. 5. SWRL Rules View 

VI. EXPERIMENTATION AND EVALUATION 

A. Experimental Setup 
Jena [18] was the API of choice for accessing the Semantic 

repository as it has built-in facility to execute SWRL rules. 
Jena is supported by an open-source RDF repository, Jena 
TDB [19] that despite lagging in performance in comparison 
with other commercial RDF repositories [20], its RDF storage 
and query capabilities are adequate for the complexity of our 
use-case, in additional to the critical factor of full support for 
SWRL. The experiments were carried out on a Mac Mini 
workstation, with 2.4 GHz Intel Core 2 Duo processor and 
8GB DDR3 memory. 

B. Evaluation Criteria 
The response times for various numbers of patients were 

gathered in the previous phase, which were then analysed 
during the experimentation, and the evaluation phase. We 
mainly evaluated the systems response time, taking into 
consideration the knowledgebase reasoner warm-up time. In 
each case, experiments were carried out for a number of 
patients between 10-120, which is estimated to be satisfactory 
for our DCDSS. Five different samples were collected and 
their averages were taken to perform the analysis. 

C. Statistical Data Analysis  
It was important to evaluate the results obtained using a 

statistical data analysis tool in order to verify the significance 
of the results derive an equation to predict the response-time of 
the system if the number of patients in the system changed via 
regression analysis methods. 

Minitab, a popular statistical software program that 
provides a wide range of basic and advanced capabilities for 
statistical analysis [21], which is capable of evaluating the 
significance of the results obtained as well perform regression 
analysis. 

EnterRoom(?er), TimePassageEvent(?tp), hasDP_Location(?er, ?erl), 
hasDP_Time(?er, ?ert), hasDP_Time(?tp, ?tpt), greaterThanOrEqual(?diff, 
8.0), stringEqualIgnoreCase(?erl, "Bedroom"), subtract(?diff, ?tpt, ?ert) -> 
ProlongedUsageOfBedroom(?er) 



In statistics, linear regression analysis is a technique that is 
widely used for prediction and forecasting. Linear regressions 
analysis helps one to understand how the dependent variable in 
an equation varies if one or more of the independent variables 
change. The equation we are talking about is essentially a 
linear equation that matches the graph obtained in the closest 
manner possible. 

Following is some terminology related to regression 
analysis: 

• p-value: This is the significance value that says that if it 
is less than 0.05, then the results are significant. 

• Adjusted R-Squared value: The adjusted R-squared 
value describes how closely the straight-line 
represented by the linear equation matches the graph. 
The closer it is to 100%, the closer the match is. 

In all our tests, the p-value was 0.000 on Minitab, which 
means that the results were all significant, and the adjusted R-
Squared values were all either greater than 85% or were greater 
than 90%. 

D. Response Time 
This represents the response time without including the 

warm-up time. Every time the reasoning engine is invoked for 
the first time, the time taken to reason is higher than the time 
taken to reason in the later invocations so long as the 
connection to the semantic repository is not closed. It is 
important to determine the response time sans warm-up time 
because many applications load the repository once and then 
invoke the reasoning engine over and over again without 
closing the connection to the repository. When applications 
invoke the reasoning engine several tens or hundreds of times, 
the response time will approximately average out to the one 
without warm-up time. 

The table below shows the response time against the 
number of patients. Response time is the time taken to execute 
the rules and classify the individuals in the ontology. 

TABLE I.  RESPONSE-TIME 

Number of Patients Response-Time (msec) 
10 348.4 
20 476.6 
30 733 
40 724.2 
50 885.4 
60 1065.2 
70 1463.8 
80 1232 
90 1429.8 

100 1871.8 
110 2118.4 
120 2620 

 

The output from Minitab for the above data is shown in Fig 
6 below. The p-value obtained was 0.000, which means the 
results were significant. The linear equation that we got for the 
response time against the number of patients was: 

Response Time= 49.6+18.43*Number of Patients 

 
Fig. 6. Response-Time 

E. Response time at first run 
For completeness, we measured the response time the first 

time the reasoning engine is invoked, which is predictably 
significantly higher than subsequent invocations. This is 
important as in certain situations it may not be possible to keep 
the connection to the repository opened once and then invoke 
the reasoning engine over and over again. This can manifest if 
patient monitoring deploys a web-based connection (as 
opposed to dedicated, stream-based connection) to the decision 
support system, where the reasoning engine is invoked via a 
web-based method that is normally stateless. Every time the 
web method is called, the connection would have to be opened 
in the beginning and be closed before the web-method returns.  

The response time upon the first invocation of the 
reasoning engine is recorded in the table below. 

TABLE II.  RESPONSE TIME FOR 1ST INVOCATION OF REASONING ENGINE 

Number of Patients Response Time (msec) 
10 698 
20 1590 
30 2334 
40 2686 
50 4824 
60 3995 
70 4812 
80 4026 
90 5701 

100 5197 
110 5579 
120 6696 

 

The output from Minitab for the above data is shown in Fig 
7, where the p-value obtained was 0.000, which means the 
results were significant. The linear equation that we obtained 
for the warm-up time was as follows: 

Response Time=933.8+47.35*Number of Patients  
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Fig. 7. Response time upon first invocation of the reasoning engine 

VII. CONCLUSION AND FUTURE WORK 
The motivation for the research documented in this paper is 

that Semantic Web technologies can play a useful role in 
building Dementia care decision support systems by 
intelligently interrelating the abnormalities in patient behaviour 
captured by sensory devices to Dementia symptoms prescribed 
by clinical guidelines in order to assist medical advice. Our 
semantic-based approach integrates information about related 
sensory events, patient medical history, and Dementia 
symptoms into a semantic ontology that uses a rule-based 
system to infer knowledge about the Dementia patient medical 
state. We extensively investigate the role of semantic-based 
knowledge inference in remote healthcare decision support 
systems and contribute to the understanding of the required 
computational capacity, reasoning complexity, and interactivity 
dynamics of the semantic engine with the sensory equipment. 

Our investigation establishes that handling the interrelated 
complex events emanating from a Dementia patient monitoring 
system is challenging for semantic-based decision support, and 
concludes that both the basic semantic rules systems such as 
SWRL and the semantic complex event processing languages 
such as EP-SPARQL only partially fulfil the requirements of 
the intended remote healthcare decision support; hence, we 
introduced a new approach that relies on propositional calculus 
modelling to segregate complex events that are amenable for 
semantic reasoning from events that require pre-processing 
outside the semantic engine before they can be reasoned upon. 
The event pre-processing activity also controls the timing of 
triggering the reasoning process in order to further improve the 
efficiency of the inference process. The performance of the 
semantic-based decision support system is assessed using 
regression analysis, where the response-time is evaluated 
against the number of monitored patients, and it was concluded 
that the incurred overhead by the semantic reasoning process is 
tolerable within the context of Dementia care decision support. 

Our future work will focus on facilitating expert-free 
extension of the semantic ontology with new atomic/complex 
events and update/modification of the associated inference 
rules. 
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