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Avalanche statistics of various threshold activated
dynamical systems are known to depend on the
magnitude of the drive, or stress, on the system. Such
dependencies exist for earthquake size distributions,
in sheared granular avalanches, laboratory scale
fracture and also in the outage statistics of power
grids. In this work we model threshold-activated
avalanche dynamics and investigate the time required
to detect local variations in the ability of model
elements to bear stress. We show that the detection
time follows a scaling law where the scaling exponents
depend on whether the feature that is sought is
either weaker, or stronger, than its surroundings.
We then look at earthquake data from Sumatra and
California, demonstrate the trade-off between the
spatial resolution of a map of earthquake exponents
(i.e. the b-values of the Gutenberg-Richter law) and the
accuracy of those exponents, and suggest a means to
maximise both.

1. Introduction
Catastrophic breakdowns can occur as events in widely
disparate situations, from laboratory scale fracture, to
the collapse of buildings or bridges, outages in power
grids or high magnitude earthquakes. However, there
is a common theme binding together these phenomena,
which occur at various length and energy scales: they
all represent threshold-activated intermittent dynamics,
powered by a relatively slow external drive and having
some form of internal dissipation [1]. The past decades
of research in these fields have revealed the connection
between the statistics of their intermittent responses and
the physics of self-organised criticality (SOC) [2]. In a
self-organised critical system, external drive, for example
slow (∼mm/year) tectonic movements for earthquakes,
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and dissipation can conspire to generate an attractive fixed point at the critical state of the system.
Consequently, large-scale correlations develop, which are used to explain the universal nature of
these phenomena of vastly different origins.

An unwelcome consequence of the critical nature of these problems is that their system-wide
catastrophic failure is much more likely than if they were far from criticality. Particularly, for SOC
the size distributions of avalanche events are known to scale as P (S)∼ S−B , where S is the size of
any rapid avalanche of activity and P (S) is the cumulative size distribution of those avalanches.
For earthquakes, this is known as the Gutenberg-Richter law [3,4], and similar laws are also valid
for laboratory scale fracture [5], outages in power grids [6] etc. Much of the damage caused by
intermittent failure events is naturally associated with the extreme tail of their size distributions
i.e. the large-scale events such as devastating earthquakes or nation-wide blackouts. Therefore,
considerable research effort has been spent on finding ways to forecast such major events, from
the time series of any system activity that precedes them.

One such series of efforts has led to the awareness that the exact value of the exponent, B,
depends on the magnitude of the forcing on the system [7]. For example, in the case of earthquakes
the distribution of seismic activity in regions of higher tectonic stress shows a lower B value than
occurs on average [8–12]. Since a lower B value translates into a higher risk of larger events, i.e. a
higher risk of large-magnitude earthquakes, several authors have compiled maps of B values for
their use as statistical hazard assessments (e.g. see References [10–13]). Similar stress dependencies
are also observed for sheared granular media [14], the collapse of cliffs [15] and in power grid
outages [16].

A common difficulty in this forecasting process, however, lies in the resolution and extent
of the data. Resolution limits can be due to the accuracy of the instruments used to locate
an avalanche, or they may be due to choices made in how the data was stored. For example,
corrections are required when delving deep into the historical earthquake record, as detection
equipment has evolved over time [17]. Alternatively, for power outages, public data reports are
often limited to the resolution of the nearest city [18]. This scale may be small compared to the
total spread of the event across the power grid, but remains large compared to the individual
locations of failed lines. Another limitation is in the number of observations that can be collected,
as often large numbers of events need to be analysed before any significant statement about the
size distribution exponent,B, can be made. The spatial and temporal limitations in making a risk-
map are also intimately connected. While a larger number of observations can more accurately
determine the B value relevant to any particular location, for any finite data set this will create
the need to draw these data from a larger sampling region, thus resulting in a loss of spatial
resolution.

In this work we investigate how much data is required to detect a local variation in the stress
profile of a disordered system. Within a simple discrete model, we initially study the number of
observations required to uniquely distinguish one part, or region, that has a different relative load
from the rest of the system. We arrive at the counterintuitive result that the scaling of the number
of events required for such distinction is different depending on whether the part considered is
stronger or weaker than its surrounding, even by the same magnitude. We then look at how the
measured exponent, B, varies with distance away from an embedded inhomogeneity. Finally,
using earthquake data for the Sumatra region, we demonstrate how the uncertainty of a B-value
measurement depends only weakly on the number of events used to determine it. We use this
result to explore the interplay between the spatial resolution of a B-value map, and its accuracy.

2. Model
The model used here is similar to that in Ref. [16], which we use to model the dynamics of power
outages, and which is, in turn, adapted from a class of similar models [19–21]. Specifically, we
consider a set of L× L elements arranged in a square lattice. Every element is assigned a load,
σl, and a failure threshold, or a maximum capacity to bear load, σth. The simulation starts with a
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Figure 1. Model schematic, showing the distribution of failure locations in a single example avalanche event. (a) A system

of sizeL is randomly loaded. Most elements have an average excess capacity to bear load of s= s2, while elements on a

sub-region of size d are assigned a different average excess capacity s= s1. This embedded region can thus be stronger

(s1 > s2) or weaker (s1 < s2) than its surroundings. The scatter of red points shows the locations of failed elements, for

an avalanche triggered by the failure of a single randomly chosen site. (b) We convolve the resulting failure activity with

a window of size `, to reflect any observational uncertainties. This blurs the avalanche pattern, as in the example here.

The results are then split into grid cells, also of size d, and the avalanche size distribution in each grid region is measured

separately.

stable configuration given by

σith = σil + εis, (2.1)

where s represents the average excess capacity of the system to bear load, σil is the load on the
ith element and εi is a random variable. The individual values of σl and ε are both taken from a
uniform distribution in the range [0, 1]. To start the dynamics, a single randomly chosen element
is broken, i.e. its threshold is set to zero, and its entire load is redistributed to the rest of the system,
such that an element at a Euclidean distance r (assuming periodic boundary conditions) receives
a fraction proportional to 1/r2. This long-range redistribution is used to reflect the long-range
nature of the interactions present in many systems, including in earthquakes [22], fracture [1] and
power grids [23]. Specifically, the inverse square law reflects the stress field near an Inglis crack
within an elastic solid [24], or the electric field near a defect (or crack) embedded in a conducting
material [25]. The redistribution can raise other elements above their thresholds, such that they
also fail: if so, their loads are then redistributed to their own surroundings, in turn. This process
continues until the avalanche of failures ends by either reaching a stable configuration, or by
breaking all the elements on the lattice. The long-range nature of the load redistribution means
that the individual failures in an avalanche do not need to be spatially connected. Indeed, this
is known to be the case in the remote triggering of both earthquakes [26] and power outages
[27]. The number of elements breaking, before the system stabilises, determines of the size of one
avalanche. Every element in the lattice is then refreshed and reset with new randomly chosen
variables, satisfying Eq. 2.1, ready to simulate another avalanche.

In the present version we make two modifications to this model. First, in order to simulate
places of relative weakness or strength, we allow the value of s to depend on location. Specifically,
we set s= s2 everywhere, except for a particular region, of size d× d, where s= s1. A lower value
of s means that the system is closer to its threshold, so a weak or damaged area can be simulated
by setting s1 < s2. The opposite condition, s1 > s2, would represent a particularly strong section
of the system. This is a way of formulating stress heterogeneity in the system. We note that in some
other models, including the Burridge-Knopoff and Olami-Feder-Christensen models, nucleation
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Figure 2. Avalanche statistics for uniform systems, where s1 = s2 = s, show scale-free behaviour. (a) When arranged

in rank by size, the distribution of avalanches shows a power-law tail. For small events, the blurring of the event location

leads to a systematic flattening of the distribution. (b) By fitting a power-law to the tail of these distributions, we extract

the exponent B, which decreases in magnitude as the critical point of s= 0.5 is approached. A similar, roughly linear,

dependence of B on local levels of stress is known to occur for earthquakes [8,9].

centres are dynamically generated (see e.g. [28,29]). In the present context, however, we introduce
an asperity like behaviour in the construction of the model itself.

The second modification involves how the avalanche locations are recorded. Here, we blur the
location of each failed element by convolving the final distribution of failure events with a square
mask of size `× `. This process is illustrated in Fig. 1, and is intended to reflect any observational
uncertainties of the activity in a system. Therefore, with this model we can investigate how long
it takes to detect any spatial heterogeneities in a near-critical set of elements, given an imprecise
knowledge of the avalanche locations.

The data are typically analysed by rank plots, where events S are arranged in descending order
of their size, so that S1 ≥ S2 ≥ S3 · · · ≥ Sn. The kth ranked element has size Sk. For events with a
probability distribution p(S), the number of events having size greater than or equal to Sk is now∫∞

Sk

p(S)dS = k. (2.2)

However, the left hand side of this equation is a cumulative distribution that is assumed to follow
a power-law, P (S)∼ S−B (dropping the index k). Therefore, if the events follow a self-similar
distribution, then k∼ S−Bk , and this relationship will be used to determine the exponent B [30].

3. Results
For earthquakes there is a negative correlation between the scaling exponent of the rank-plot
of earthquake magnitudes, and the stress in the region under study [4,8,9]. We can capture this
motivating result in our model by setting s1 = s2, so that nothing distinguishes different regions
of the system. The avalanche-size distribution of this homogeneous system now depends only on
its relative load and capacity. Figure 2(a) shows such distributions for four such cases, in a system
of size L= 200. Here, a higher relative stress is equivalent to a smaller excess capacity, or smaller
value of s. We find that the rank-plots of the system-wide activity show a similar dependence
to those of earthquakes, and decrease in slope with decreasing s, representing increasing stress.
As shown in Fig. 2(b), the value of B varies continuously with s, until the critical point s= 0.5

is reached. This critical point was empirically determined as the average capacity below which a
systemwide failure becomes the favoured result following a single broken element, as also occurs
in e.g. Ref. [31].
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Figure 3. Avalanche size distributions for all the gridded regions are shown, after 10 000 events. The colours indicate

the average distance of each grid cell to the centre of the embedded region. (a) For a weaker or damaged inclusion, the

avalanche size distribution there is clearly shallower than elsewhere. However, nearby regions, indicated by darker lines,

also show lower exponent values than the average. (b) If s1 = s2 there is no distinction between regions, and a random

spread in distributions is seen, due only to random sampling errors. (c) For a stronger inclusion, the scaling exponent on

that grid cell is noticeably higher than elsewhere. The neighbouring regions are also affected by the inclusion.

(a) Temporal resolution
The first question that we address is how long it will take to unambiguously identify a patch of
weaker or stronger material, embedded in a larger system, by analysing the statistics of avalanche
events. We consider a lattice of 200× 200 elements, containing a block of size d= 20 on which
s= s1, and where s= s2 elsewhere. The strength of the local inhomogeneity is thus∆s= s2 − s1,
such that ∆s< 0 represents a strong patch, for example. For simplicity, and to avoid introducing
multiple independent length scales into the analysis, we also mask the resulting activity with
a window of size `= 20. The whole system is then divided up into 100 different grid cells
containing 20× 20 elements, and the scaling coefficient B is calculated for the activity on each
different grid cell, by a least-squares fit to the rank-size distribution. Similar results are also found
if the maximum likelihood estimator (MLE) method [32] is used.

The limitation in the resolution (both spatial and temporal) comes from the facts that (i) the
locations of individual avalanches are imprecisely known, as the the exact locations are convolved
with a mask of size `, and (ii) the system is divided into several (in this case 100) observation
boxes. It is important to note that the observation of a “sub-sample" within the whole sample is
not the same as a finite size scaling analysis [33]. Particularly in cases such as the present one,
where the coupling (load redistribution range) is long-range, a part of the whole system will be
strongly affected by the regions surrounding it.

In Fig. 3 we show three sets of results, where s2 = 0.6, and s1 = 0.3, 0.6, and 0.9. In other words,
situations where the embedded region is respectively weaker than, identical to and stronger than
the rest of the system. Note that the blurring and subdivision of the activity data means that the
minimum size of an event that can be detected in a region is only 1/d2 = 0.0025. In each case
10 000 avalanche events are monitored. The figure shows the natural spread of avalanche size
distributions, due to the finite sample size. However, the lines there are coloured to represent the
relative positions of the different observation windows. The darkest line represents the distinct
patch, on which s= s1, and the colours get lighter as the grid cells get further away from this
region. It can be seen that, due to the long-range nature of the stress redistribution rule, a large
area surrounding the embedded region gets affected by its different relative strength. Specifically,
when s1 6= s2, a gradient in the colour of the lines can be seen to be associated with the variation
in the slopes of those lines. This effect will be explored further in Section 3(b).

Thus, for a long enough observation period and a large enough difference, ∆s, the exponent
values of different regions are clearly distinguishable. Such distinctions are harder to observe
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Figure 4. The temporal evolution of the avalanche size distributions is shown. (a) Although the relative loads on the

defect and elsewhere are very different, for small numbers of avalanches (e.g. 100 or even 1000) such distinctions are

not reflected in the avalanche size distributions. Only after 5000 steps can the exponent at the defect location be clearly

discerned from its neighbours. (b) The measured exponent values at the defect and the rest of the system are shown

with time, for three different situations. While initially it is not possible to distinguish the defect region, at later times the

distinction becomes clear, supporting the graphical measure shown in (a).

when the number of observed avalanches, or events, is few. This is demonstrated in Fig. 4(a),
where the same distributions are shown after 100, 1000, and 5000 avalanches have been recorded.
In spite of a large difference between the relative loads, i.e. ∆s= 0.3, little clear difference can be
seen in the regional avalanche size distributions, up to observations of about 1000 events. This
is relevant for analysing real data sets, as we will demonstrate in Section 4 with the Sumatra
earthquake catalogue. In other words, it can take a large number of observations before even a
relatively prominent defect cannot be reliably located, as the noise of near-critical fluctuations can
introduce false signals.

To study the question of detection time more clearly, we varied the value of s1 for a given
background s2 and measured the time required for unique detection. This is taken to be the
earliest time, i.e. number of avalanches, beyond which the average avalanche size in the modified
grid cell is consistently the largest or smallest in the entire system, depending on whether that
region is weaker or stronger than its surroundings. In other words, it represents the number of
observations required before the activity in the embedded patch will be able to stand out from
its surroundings. This definition of detection time will depend weakly on system size, and will
diverge when the difference between the average strength of the defect and the rest of the system
vanishes. However, it is also consistent with other related metrics, such as the number of events
required before the measured B value of the embedded region is measurably distinct from its
surroundings (see Fig. 4(b)).

Figure 5 shows how the detection time of our system depends on the difference between the
average strengths of the embedded region, and the rest of the system, i.e. ∆s. To further analyse
the behaviour of the detection time, we note that the response on either side of ∆s= 0 shows two
different exponents, and is not symmetric. Specifically, a scaling is seen of the form

τ ∼F
(
∆s

sα2

)
, (3.1)

where

F(x)∼ x−θ. (3.2)

For small |∆s| the detection time saturates due to finite system size. However, for a large enough
system, and sampling time, it should naturally diverge as ∆s approaches zero. Interestingly, we
can now see that the exponents θ and α depend on the sign of ∆s, i.e. whether the detection time
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Figure 5. The time required to uniquely identify the location of a heterogeneity is plotted as a function of the relative

variation of its sites, ∆s, and the excess capacity of its surroundings, s2. Generally, the closer the system is to criticality,

the more activity there is, and the easier detection becomes. This is captured by the different scaling behaviours for the

detection time, which is not symmetric around ∆s= 0. While for an infinite system the detection time should diverge as

∆s approaches zero, for a finite system and observation time this simply converges to a large value.

is for a weaker patch on a stronger background or a stronger patch on a weaker background. This
is demonstrated in Fig. 6, which shows the collapse of the two branches of detection time results,
for different exponent choices.

While an analytical estimate for θ andα appears challenging, there is a scaling relation between
the sets of exponents on either side of ∆s. The detection times on either side of ∆s= 0 should
converge to the same value for small ∆s. This is because, when s1 and s2 are very close, the
probabilities that the average avalanche size at the defect is lower or higher than average are
equal (the whole system is homogeneous). By extension, therefore, the probability and the time-
scale for which the defect is detected as the weakest or the strongest are also equal. This implies
that for a small enough magnitude of x,

τ(x) = τ(−x), (3.3)

giving

∆s0
−θ1

s−α1θ1
2

=
∆s0

−θ2

s−α2θ2
2

, (3.4)

where ∆s0 is a small constant. This limit must remain valid for all choices of s2, which can only
happen when

α1θ1 = α2θ2. (3.5)

From the fits to the data in Fig. 6, we estimate α1 = 2.1± 0.05, θ1 = 2.4± 0.05, α2 = 3.8± 0.05,
and θ2 = 1.3± 0.05, giving α1θ1 = 5.04± 0.23 and α2θ2 = 4.94± 0.26. Given the quality of the
data, the scaling relation is valid within the numerical accuracy.
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Figure 6. The detection time collapses onto two master curves, depending on whether the embedded region is (a) weaker,

or (b) stronger than its surroundings. The data collapse is done in both cases following the form of Eq. 3.1. The values for

the set of the exponents α, θ are different for the two cases s1 < s2 and s1 > s2 and the two branches are related via

the relationship given in Eq. 3.5 to within the measured numerical accuracy.

(b) Spatial resolution
Given sufficient time, the avalanche activity in inherently stronger or weaker region will allow
it to be detected. Due to the correlated, and long-range nature of avalanches, this time can be
surprisingly long, requiring analysis of several thousands of events to come to an unambiguous
conclusion, which is often not possible with data from various real situations, for example, power
outages. Other than insufficient observation time, the detection of a defect location is dependent
on the spatial extent and relative strength of the defect with respect to that of the observation grid.
It is also dependent on the location of the observation window with respect to the actual defect.
Here, in preparation for looking at a real earthquake record, we will briefly consider the spatial
distribution of events around the embedded region.

In Fig. 7 we plot the exponent value noted in one grid point as it is shifted away from the
location of the defect. The figure at the bottom shows a function of the form

F (δ) =
B −B2

B1 −B2
, (3.6)

where B1 and B2 are the exponent value when the grid coincides with the defect and the grid
is far away from the defect, respectively. A collapse of the curves show that the variation of the
exponent from a lower to a higher magnitude depends only on ∆s, when we have kept s1 < s2.
As mentioned in Section 3(a), due to the long range load redistribution rule of the model, the
exponent values in the region surrounding the defect, where the relative strength is higher, are
also affected by the presence of the defect. The decay of the function F (δ) sets the detection scale
of a defect embedded in a long range interacting system.
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Figure 7. The spatial variations in avalanche size exponents are shown. Panel (a) shows how the exponent of the

avalanche size distribution is enhanced in a wide region around an inclusion with a different relative strength. (b) The

curves for different combinations of s1 and s2 values collapse onto one master curve when their variations are scaled by

the difference of the exponents in the limiting cases (see Eq. 3.6). In other words, long-range correlations in avalanche

behaviour means that the effects of embedding a region of distinct strength can be felt relatively far away from that region.

(c) Earthquake data
Finally, we look at how temporal and spatial resolution affects the mapping of variations in stress
levels in real earthquake data. For this we choose (i) the 11628 events in the USGS earthquake
catalogue from the Sumatra region, between 10◦S to 15◦N latitude and 90◦E to 100◦E longitude,
in the period from 2000 through 2010, inclusive, and (ii) the 9987 events in the USGS catalogue
from the California region (32-42◦N and 117-125◦W) for the same period of time. The first case
gives a comparable data set to that studied in Ref. [13], which demonstrated regional variations in
the scaling exponent, b, of the Gutenburg-Richter (GR) law, or magnitude-frequency distribution,
of earthquakes there. It is worth mentioning that this data also contains the magnitude 9.1 event
on December 26th, 2004. In fact, the fifteen largest earthquakes occurring in the data set all show
a lowering of the b value, as reported in [13]. As earthquake magnitude is reported in terms of
energy, we note that b= 2B/3 [4]. Similar studies have been performed on different scales and
across the globe, including around the L’Aquila fault in Italy [10], in California [12] and in the
NW Himalayas [11].

Our measurement procedure for the b value is similar to that used in Ref. [13]. For each case,
we impose a grid of size 0.25◦ × 0.25◦ on the whole region. Centring on each of the grid points, a
growing circular region was considered until a given number of events, n, was captured within.
For large n this circle may be considerably larger than the grid resolution, and its size will also
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Figure 8. Optimising uncertainty in b-value determination. (a) The average error in fitting the b-values of the exponent

of the Gutenberg-Richter law is plotted against the number of events considered for that estimate, n, for the earthquake

data covering the Sumatra subduction zone and California region. For several decades the error decreases as a power

law with an exponent of −0.27± 0.01 for Sumatra and with −0.25± 0.01 in California. This is considerably shallower

than would be the case for random, uncorrelated events. The average error, in the limit n→ 11628 tends to the value

of ±0.01 noted in Ref. [13] for the entire Sumatra data set. (b) The product of the average error, ε̄(n) and the average

distance from the centre each grid point required to find n events, d̄(n), is plotted as a function of n, and represents

the total uncertainty in each measurement. The variation for the Sumatra region is more or less constant up to n= 100,

and beyond that it increases rapidly, but has a weak minimum around n= 50. For the California region, the variation is

qualitatively similar, while the constant part of the curve is somewhat more extended.

vary with event frequency. The exponent value at each grid point was then found by fitting the
magnitude-frequency distribution of those n closest events, using a least-squares fitting method
(n.b. as in section 3(a), similar results were also obtained for MLE fits). The error on the fit is also
recorded as ε. Evidently, if a larger n is chosen, then there are more data points to fit to the GR
law and hence a lower error estimate for b. On the other hand, to get a higher n the radius of
the observation window has to be larger. This then limits the spatial resolution of any possible b
value map of the region. Finally, as earthquake statistics are generally correlated in both space and
time, different events cannot truly be considered independent. This will affect the rate at which
uncertainties in b can be expected to decrease with the sample size.

In Fig. 8(a) we show how the mean fitting errors, ε̄, averaged over all the grid points along
the Sumatra subduction zone as well as the California region, change with the number of
events used to fit each exponent. It shows a power-law dependence on n, with an exponent
value of −0.27± 0.01 for the Sumatra region and −0.25± 0.01 for the California region. This is
considerably shallower than the relationship expected for independent random variables, namely
ε∼ n−0.5. However, this relationship need not hold for observations having correlation, and some
results to this effect are known from the analysis of GPS data [34,35]. Obviously, for larger n the
average radius d̄ of the observation window also increases. To maximise the information content
of a spatial risk map, or heat map, of seismic activity, one would aim to minimise the product
ε̄d̄. We therefore plot this metric in Fig. 8(b), as a function of n. It remains almost constant up to
n≈ 100, with a shallow dip near n= 50 and a significant increase above about n= 100 for the
Sumatra region, and the for the California region, the constant part is somewhat extended. In Fig.
9 we demonstrate this trade-off between the accuracy of the b-values and their spatial resolution,
by showing maps calculated with different values of n for the Sumatra subduction zone.

4. Conclusion
Variations in the exponent values that characterise the relative sizes of events in a driven
disordered system provide a useful method to forecast vulnerable regions of that system. This
method is relevant to evaluating risk in diverse situations, including earthquakes [8,9], power
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Figure 9. Maps of the fitted b-values in the region of the Sumatra subduction zone are shown for different choices of n, the

number of events used to measure the b value at a given grid point. Shown are the results for (a) n= 50, (b) 200 and (c)

800 events. As n increases, the effective spatial resolution in the maps drops, although the observed features are more

reliably reported. The map with n= 50 optimises the information displayed in the figure, by minimising the uncertainty in

the product ε̄d̄.

outages [16] and cliff failure [15]. Some challenges in applying it, however, are the limited size
of some of the most important data sets, such as earthquake or power outage records, and any
inherent observational resolution of that data. These limitations must be taken into account in the
construction of any possible risk-maps, as they affect the ability to forecast imminent large events.

In this work we have shown, using a discrete and minimal model for failure dynamics, that
the spatial and temporal resolutions of the rank-plot exponents are interrelated. By embedding
a region which differed from its surroundings in its capacity to bear load, we investigated how
many events needed to be recorded before we could unambiguously find that distinct patch of the
system. We found that the timescale required for detection followed power-laws that depended
on whether the embedded region was stronger or weaker than its surroundings. However, we
also described how the scaling exponents of the two cases are related, and demonstrated this
via data collapse. We then showed that spatial variations in the measured exponents across the
system can extend well beyond the borders of any distinct area, or inhomogeneity in the system’s
excess capacity to carry stress. Again, we demonstrated this via data collapse, in this case by
interpolating between the exponent values expected in the embedded region, and in areas far
from it.

Finally, we have shown the implications of this coupling of spatial and temporal resolutions
on the measurement of the b-values of the Gutenberg-Richter law. For this, we chose to map the
earthquake data of the Sumatra subduction zone, using different numbers of events to estimate
the scaling exponent of each map point. The accuracy of the b values was found to depend only
weakly on the number of events used in each fit, presumably due to correlations between the
events. As a result, we found that the product of the spatial resolution of such a fit, and the error
in determining its b values, can be used to produce a risk-map that attempts to maximise the
accuracy of the information presented.
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