
1

Fuzzy Logic As-a-Service for Ambient Intelligence
Environments

Amir Pourabdollah, Member, IEEE, Christian Wagner, Senior Member, IEEE,
Giovanni Acampora, Senior Member, IEEE and Ahmad Lotfi, Senior Member, IEEE

Abstract—Fuzzy Logic Systems (FLSs) are normally associ-
ated with dedicated hardware/software systems. However, the
distributed and pervasive architecture of many modern hard-
ware/software systems is driving increasing interest in pervasive,
distributed FLSs. Achieving this vision will require the design
of FLS implementations which support client-server models and
more specifically, cloud-computing and service-oriented solutions.
Here, FLSs become a globally accessible service that enables
openness, device independence, load balancing, resource sharing
and ultimately cost effectiveness. In this paper, the recently
standardised fuzzy mark-up language (IEEE-1855) and proposed
extensions are used for designing Web Services for FLS computa-
tions. The novelty of this approach is in integrating different FLS
components (input collection, processing and output) into a single
web service platform which uses a well specified language for
communication over the Web via HTTP request/responses. The
utility of this approach is shown in the context of implementing
FLSs in Ambient Intelligent Environments.

I. INTRODUCTION

Advances in Ambient Intelligence (AmI) and intelligent en-
vironments require artificial intelligence tools and techniques
to be accessible by a large number of networked devices,
ranging from small and low-power sensors to embedded
devices to PCs and large servers. The distributed architecture
that is preferred for the ambient computing systems implies
that the sensors, processes and output devices/actuators can be
physically distributed in the environment. Fuzzy Logic Sys-
tems (FLSs), are potentially considered to be computationally
intensive, particularly when it comes to multi-input, multi-
output and multi-rule FLSs [1]. Moreover, recent advances in
Type-2 and non-singleton fuzzy logic systems requires even
more computational power than standard type-1 systems [2]–
[6]. Many designers avoid designing advanced forms of FLSs
because of the increased complexity. While small or embedded
devices, such as wearable or pervasive devices, are specially
designed for networking and data communication, they are not
capable of undertaking intense computation.

A common solution for the case of non-mobile computer
systems is to offload the complex logic from the clients to
specialised servers in a client-server model. However, recent
advances in Cloud Computing, the Internet of Things (IoT)
and Service-Oriented Architectures (SOAs) have led to a

Amir Pourabdollah and Ahmad Lotfi are with the School of Science
and Technology, Nottingham Trent University, Nottingham, UK. Christian
Wagner is with Lab for Uncertainty in Data and Decision Making (LU-
CID), at the School of Computer Science, University of Nottingham, UK.
Giovanni Acampora is with University of Naples Federico II, Napoli, Italy.
(email: amir.pourabdollah@ntu.ac.uk, christian.wagner@nottingham.ac.uk,
giovanni.acampora@unina.it and ahmad.lotfi@ntu.ac.uk)

Fig. 1. The outline of a cloud-based model for distributed FLS computations.

move from the classical client-server model to a service-
oriented model for ambient intelligence [7], [8]. By applying
this approach for FLSs, fuzzy logic can be viewed as-a-
service, which, if held in a cloud-based architecture, enables
for computation to be offloaded and hidden from the devices
in an ambient intelligent environment.

The aim of this paper is to introduce a service-oriented
model for FLS computations so that design and implemen-
tation of complex FLSs become more practical and cost
effective. As will be shown, designing distributed architectures
or client-server models for FLSs is a fairly new area with
only very limited advances. The novelty of this paper is to
move towards an open service-oriented design. This openness
can be achieved by designing the system to be totally web-
based and device-independent, particularly establishing data
exchange formats which are both standardised and as human-
readable as possible.

The application of this approach is not only limited to
embedded systems and intelligent environments, but also to
any situation where the processing logic of a FLSs needs
to be abstracted from its data and presentation logics. For
example, an individual client computer can define its required
FLS (fuzzy sets, rule-base, etc.) on a server. Them, the same
or even another client computer(s) can provide input data for
the defined system, and finally the same or other client(s) can
retrieve the computed output as illustrated in Fig. 1.

The main standard for implementing such an architecture
is a web-based data language for FLS definitions [9]. The
IEEE Standard 1855 (2016) [10] for Fuzzy Markup Language
(also known as FML) is the current standard for such a
purpose. IEEE-1855 is an XML-based data language that
allows modelling a FLS in a human-readable and hardware
independent way. In this paper IEEE-1855 will be used as the



2

basic design standard and the extensibility of this standard is
a key in developing the architecture.

Following this introduction, related work will be reviewed
in Section II in order to clarify the position of this paper. Then
the requirements for a service-oriented architecture of FLSs,
the proposed model and the details of a sample implementation
will be explained in Section III. Finally, the paper is concluded
and future research directions are outlined in Section IV.

II. BACKGROUND

A. Motivation

The motivation behind a service-oriented solution for FLSs
is based on the potential and increasing interest in employing
FLSs in an AmI and distributed context. Several specific
aspects are reviewed below.

1) Distributed Architecture of Ambient Intelligence: In the
ambient intelligence paradigm, the components of a FLS are
physically distributed in the environment designed for ambient
intelligence. In such an environment, sensors which collect
the input data for the FLS, processors which execute the FLS
and output devices (such as actuators) are distributed within
and beyond the environment. From an efficiency, flexibility
and redundancy point of view, it is desirable for not only
input/output devices to be distributed, but that also the required
processing power be distributed among a number of servers.
This paradigm requires a dynamic balance of tasks between
the three components which is not possible with fixed hard-
ware/software designs.

2) High-Power Computation Requirement: The computa-
tional power is a known bottleneck for FLS implementations
(e.g. the complexity of type-2 FLS defuzzification [2]). The
complexity of FLSs can increase drastically when the number
of inputs, outputs and rules are increased. Many advanced
FLS architectures, such as non-singleton or type-2 FLSs are
not used because of their high computational complexity. A
cloud-based solution that can dynamically allocate memory
and processors to a particular FLS application is preferred
over fixed hardware solutions.

3) Reuse of Computation Results: In order to avoid re-
peated computations, a server can keep track of the inputs
coming from, and the output sent to, different input/output
devices for a single FLS. For example, if the inputs from a
device A have been already processed in the (recent) past,
the saved outputs can be used as a response (i.e. using a
lookup table). Moreover, the definition of a single FLS for
a particular application may be shared and reused by different
other applications in some other environments. This however
is only be possible if a FLS servers can be queried for FLSs’
definitions and their input/output history.

4) Openness and Accessibility: This is a general motivation
for any type of FLS application, not limited to ambient
intelligence. Currently, the available tools for FLS compu-
tations are mostly fitted to single-station purposes. For ex-
ample, special tools and libraries are developed for fuzzy
logic computation in MATLAB and R (e.g. [11], [12]). A
web-based solution where the FLS server is available on a
web-server can help users through platform-independence and

avoiding the need to use/install certain tools or programming
languages for FLS computations. This is particularly relevant
for research or educational purposes where access to and
sharing of both resources and results are important. As an
example, JuzzyOnline [13] provides a browser-based GUI for
FLS design and computation, avoiding the need for special tool
availability on the client-side. For its server-side programming,
it uses Juzzy [14] which is an open-source Java library for
FLS computation, making it particularly suitable for the Web
programming purposes.

5) Advances in Cloud Computing and the Internet of Things
(IoT): The cloud Computing can be considered as a useful
extension of the fixed-hardware client-server architecture, in
order to make the system resources more flexible to be
allocated, depending on the needed computational power for
a particular FLS. This will make the FLS computation as-
a-service that can be accessed from any devices. Having
this accessibility range, an FLS server can also be used in
the context of the IOT, by any IOT device located at any
geographical location.

B. IEEE-1855 (Fuzzy Mark-up Language)

Introduced in [15] and standardised in [10], IEEE-1855
is an XML-based language that allows modelling a FLSs
in a human-readable and hardware independent way. We do
not review its features and the range of applications here (a
complete coverage can be found in [16]). Prior to this, a part of
IEC 61131 [17] which was dedicated to fuzzy controllers could
be used for defining a limited range of fuzzy logic systems
(also called Fuzzy Control Language - FCL).

As far as server-side programming is concerned, IEEE-
1855 has the great advantage of being directly convertible to
programming logic. Using an Extensible Stylesheet Language
Translator (XSLT), a FLS described in IEEE-1855 can be
instantly transformed to a number of different programming
language codes (e.g. Java) [18] so minimal server-side effort is
required for encoding a FLS definition in local program logic.
IEEE-1855 even allows an FLS definition to be controlled
from different locations by different agents, interacting with
the environment, as shown in [19]. As we will see in this
paper, although IEEE-1855 can be used for defining a fuzzy
logic system, it does not fully cover all of the proposed
model’s requirements. Some additional data elements need to
be developed on top of the standardised language for purposes
such as exchanging input/output data to or from the defined
FLS. The extensibility of this language conveniently provides
the possibility to add the additional required data elements.

C. Related Works on Distributed FLS Architectures

A number of research papers have focussed on Service-
Oriented Architectures (SOAs) for FLSs. A group of software
architectures under the name of Collaborative Architecture
for Fuzzy Modelling are reviewed in [20]. In another SOA
approach to fuzzy computing, a similar solution is proposed
for Distributed Fuzzy Decision Making System (D-FDMS)
purposes [21]. Also in [22] a multi-agent method is developed
for neuro-fuzzy computations based on the IEEE-1855. In



3

the mentioned works, the proposed architectures are either
not based on a totally service-oriented paradigm or not on
a standardised data exchange format.

This paper in part builds on the proposal of ubiquitous
fuzzy computing for AmI presented in [23]. Here, a dis-
tributed service-oriented architecture is proposed having four
subsystems for design, run-time, service retrieval and fuzzy-
controlled AmI environments. IEEE-1855 is used as a data
exchange language for describing a FLS in design envi-
ronment, but the communication format between the other
subsystems, particularly between the fuzzy-controlled AmI
and run-time environments is based on direct TCP/IP socket
communications in a user-defined data exchange format.

In order to make the architecture components less coupled
and the data language more device-independent, open and
human-readable, this paper proposes a novel approach where
all data communications within the service-oriented architec-
ture are web-based and exchanged via HTTP in XML format.

III. A NEW SERVICE-ORIENTED ARCHITECTURE

A service-oriented architecture (SOA) is defined as a
collection of self-contained, networked, loosely-coupled and
reusable software components, that are commonly used by
clients with no or minimum dependency in respect to their
hardware or software platforms [24], [25]. In a SOA for FLSs,
the main services are distributed among one or more servers
being contacted by a number of clients. In the following sub-
sections, firstly the main required functionalities for such an
architecture are discussed together with the proposed solutions
for each one, then the extended IEEE-1855 schema and a
sample implementation of the solution are explained.

A. Required Functionality
A number of tasks are considered as the main functional

requirements for developing the solution. For each function,
a Web service invocation through API is designed which
includes a request and a response. A summary of these invo-
cations is shown in Fig. 2 as a sequence of requests/responses
between the client and the server sides. Since the FLS design
parameters, inputs and outputs are being reused in the system,
it is necessary to store them in a database. It is also noticeable
that the solution is currently limited to type-1 singleton FLSs.
The other FLS types will be considered as part of future work.

1) Creation of a Fuzzy Logic System: This function –
CreateFLS – is required when a FLS is designed for the first
time or edited by the client(s) which are in charge of the
FLS design. The pieces of information that are required to be
stored for a particular FLS include the variables for input(s)
and output(s), the associated fuzzy terms including fuzzy set
parameters for each term, the fuzzy rule-base including rules’
antecedent(s) and consequent(s), and methods of inference and
defuzzification for each output.

IEEE-1855 can be used for this purpose since its standard
XML schema (listed in [10]) allows the above pieces of
information to be exchanged. A sample FLS definition is
listed below for the known example of a restaurant tipping
problem. Note that namespaces in XML tags are not used in
the following listings for the sake of simplicity.

Fig. 2. The sequence diagram of the five types of client-server communica-
tions through the API. The clients shown on the left and the right to illustrate
their logical roles, however they can be the same or different client in practice.
The left-side clients are those used by FLS designers (e.g. human-operated
PCs) and the right-side ones usually have an I/O role (e.g. embedded systems).

<FuzzyController name="newSystem" ip="localhost">
<KnowledgeBase>
<FuzzyVariable name="food" domainleft="0.0"
domainright="10.0" scale="" type="input">
<FuzzyTerm name="badFoodMF" complement="false">
<TriangularShape Param1="0.0" Param2="0.0"
Param3="10.0" />
</FuzzyTerm>
... [other fuzzy variables/terms for input here]
</FuzzyVariable>
<FuzzyVariable name="tip" type="output"
scale="Euro" domainright="30.0" domainleft="0.0"
accumulation="MAX" defuzzifier="COG"
defaultValue="0.0">
<FuzzyTerm name="lowTipMF" complement="false">
<GaussianShape Param2="6.0" Param1="0.0"/>
</FuzzyTerm>
... [other fuzzy variables/terms for output here]
</FuzzyVariable>
</KnowledgeBase>
<RuleBase name="Rulebase1" activationMethod="MIN"
andMethod="MIN" orMethod="MAX" type="mamdani">
<Rule name="reg1" connector="and" operator="MAX"
weight="1.0">
<Antecedent>
<Clause>
<Variable>food</Variable>
<Term>badFoodMF</Term>
</Clause>
... [other rule’s clauses here]
</Antecedent>
... [other antecedents here]
<Consequent>
<Clause>
<Variable>tip</Variable>
<Term>lowTipMF</Term>
</Clause>
... [other rule’s clauses here]
</Consequent>
... [other consequents here]
</Rule>
... [other rules here]
</RuleBase>
</FuzzyController>



4

In response, the server creates/recreates a FLS (i.e.
makes/edits a record of the FLS in the database) and assigns a
unique id to it, then acknowledges the FLS creation by sending
back the id to the client together with a confirmation message.
A sample response is shown below.

<FuzzyController>
<FLSResponse id="55" type="CreateFLS">
<Message>FLS is created successfully.</Message>
</FLSResponse>
</FuzzyController>

The XML schema of the above response (and the responses
shown in the next functions) is different from IEEE-1855
schema. The schema extension discussed in the next sub-
section will show how the newly required elements are dealt
with.

2) Query Fuzzy Logic System: Different types of clients
may need to retrieve the information stored on the server about
the status of a FLS. The FLS’s status includes its existence and
the parameters or the current input values stored for it. This
functionality is implemented as a multi-purpose invocation
named as QueryFLS. Having a particular FLS id, The client
may request for the FLS design and/or for the last collected
input(s) to the system to be retrieved (also see the SetInput
description below). A sample QueryFLS request is listed here:

<FuzzyController>
<FLSRequest id="55" type="QueryFLS"/>
</FuzzyController>

If the requested FLS exists within the server’s database, the
server response will includes the FLS definitions (as already
defined in IEEE-1855 by CreateFLS) in addition to the last
stored inputs (if already defined by SetInput). It is valid to
query a FLS which is already defined but where one or more
inputs are not set yet, in which case no input will be returned
for the unknown inputs. A sample response is:

<FuzzyController>
... [IEEE-1855 elements for FLS description]
<FLSResponse id="55" type="QueryFLS">
<Input name="food">8</Input>
<Input name="service">9</Input>
... [same for all the known inputs]
</FLSResponse>
</FuzzyController>

3) Set Input: The clients must be able to set individual
values for the FLS inputs. It is also expected that a single
invocation by a particular client device may include any
number of inputs. This will balance the data collection load by
enabling the system to collect the individual or grouped inputs
from different devices. The clients invoke SetInput to send
one or more input values to the server. The design ultimately
enables for inputs to be set either as a fuzzy set (i.e. a non-
singleton input) or a crisp value, however for simplicity in this
paper, we consider the inputs to be crisp values. A sample
listing is provided here:

<FuzzyController>
<FLSRequest id="55" type="SetInput">
<Input name="food">8</Input>
... [same for all the known inputs to the device]
</FLSRequest>
</FuzzyController>

If the inputs are valid, the server will store the input values
in the database, and will send an acknowledgement message
to the client, similar to the Output element introduced by
CreateFLS.

<FuzzyController>
<FLSResponse id="55" type="SetInput">
<Message>Input(s) are set successfully.</Message>
</FLSResponse>
</FuzzyController>

Any collected input can be stored in the database but only
the last set will be used during FLS execution. In future,
additional functions will enable the deletion of unwanted
historical input/output data based on user request or a timer,
without affecting FLS definitions.

4) Get Output: The client devices must also be able to
receive the output value(s) of the FLS by request. It is
preferred that the server(s) can send back the requested output
either as a fuzzy sets or as a defuzzified value, however for
simplicity, in this paper we limit the requirement to defuzzified
values. A sample request is as follows:

<FuzzyController>
<FLSRequest id="55" type="GetOutput">
<Output name="tip" />
... [same for all the required outputs]
</FLSRequest>
</FuzzyController>

Being able to request any number of output values prac-
tically means that the system can avoid unnecessary compu-
tation for unwanted outputs. In a complex FLS computation
scenario, the same FLS can be defined on a number of servers,
but each server may provide a part of the output.

In this scenario, the sensors may send their data to mul-
tiple servers but an output device may selectively request its
required data from a single server - while the other servers are
busy providing data for other output devices. This scenario has
been illustrated in Figure 3.

Also as mentioned before, the system has access to the pre-
vious FLS runs, so that it can avoid repeating the computation
if the same FLS has already been run with the same inputs
in the past. If the requested output can be either calculated or
retrieved, the system will respond to the client, similar to the
following listing:

<FuzzyController>
<FLSResponse id="55" type="GetOutput">
<Output name="tip">8.4555</Output>
... [same for all the required outputs]
</FLSResponse>

</FuzzyController>

5) Deletion of Fuzzy Logic System: Finally, the clients must
be able to request for removing a FLS from the list of the
defined FLSs in the database, if neither the FLS definition nor
its past input/output history are needed anymore. The system
may optionally be designed to remove the FLSs after a certain
inactivity lifetime.

A sample request for deleting a particular FLS indicated by
its id is as follows:

<FuzzyController>
<FLSRequest id="55" type="DeleteFLS" />
</FuzzyController>



5

Fig. 3. In a complex computation scenario, output devices may request data
from different servers which has the same FLS definition stored. The servers
receive input data from all the sensors but process them according to the
requested output. This will balance the processing load by specialising the
output generation.

Additionally, this is an example of the system response, if
the deletion is successful:

<FuzzyController>
<FLSResponse id="55" type="DeleteFLS">
<Message>The FLS is deleted successfully</Message>
</FLSRequest>
</FuzzyController>

B. Extending IEEE-1855 Schema

The XML schema of the requests and response described
previously is different from IEEE-1855 schema. It is notice-
able that the newly added XML elements are inside the two
main elements FLSRequest, FLSResponse which are delib-
erately put inside the IEEE-1855’s root element (FuzzyCon-
troller). This means that FLSRequest, FLSResponse and their
sub-elements are candidate extensions to the original IEEE-
1855 schema. It also means that all the requests and responses
to/from the server can be validated using a single schema.

By merging the schema for the new required elements
and the standard IEEE-1855 schema, an extended schema
is produced. This schema has the same root element from
the original schema (FuzzyController). In addition to the
original sub-elements (such as KnowledgeBase, RuleBase etc.
as defined in [10]), two additional complex-type elements for
handling FLS requests and responses are added (FLSRequest,
FLSResponse) under the root element. According to the re-
quirements discussed in this section, the extended IEEE-1855
schema is designed as listed in Figure 4.

C. A Sample Implementation

Following the above design, a cloud-based server has been
developed that can send and receive the required HTTP
messages to/from clients. The cloud server is provided by
Microsoft Azure so that the computational resources, includ-
ing processors, hard disk and memory can be dynamically
allocated or released based on the requirements and FLSs’
complexities. The server uses Apache Tomcat as a standard
implementation of Java Servlet. The server is programmed in
Java, and for fuzzy logic computation, the open-source Java
library (Juzzy [14]) is used. This server-side setting can fit
to a wide range of applications, particularly where the client-
side agents are sensors and/or actuators in ambient intelligent
environments.

For testing, a web-based application is developed on the
same server that handles the server input/output tasks in a GUI.
Finally, for storing the FLS definitions, inputs and outputs,
PostGreSQL is used as a general-purpose relational database.
During the test, the server was able to serve the HTTP requests
coming from different clients. The test was done using PCs and
smart phones as clients and based on a simple FLS application.

The test and its results are limited to a specific exemplar
scenario (the same example that is used in the provided
listings through this paper). It has been used as a proof-of-
concept in this paper, so that in future works the proposed
method will be applied in a practical problem, in which more
comprehensive testing will be done for real-world scenarios
where real sensors/output devices are being set up.

IV. CONCLUSIONS AND FUTURE WORKS

This paper provides a development road map for a web-
based service-oriented FLS architecture, as an example of
adopting the newly approved IEEE-1855 Standard. Although
the architecture is showcased in the context of AmI environ-
ments, it can be applied to a much wider area of applications,
i.e., anywhere the processing logic of a FLSs needs to be
abstracted from its data and presentation logics.

The main motivation is enabling the flexible distribution of
potentially complex computation required for FLSs from the
clients (sensors, actuators, embedded systems, etc.) to dedi-
cated servers. In particular, using virtualised cloud services
provides elasticity to the solution, effectively enabling fuzzy
logic as-a-service that is accessed universally.

Sharing resources, hardware/software independence, reuse,
load balancing among FLS devices and ultimately cost effec-
tiveness are the other advantages of such an architecture. IEEE
standard 1855-2016 [10] as the standardised data exchange
format for FLSs, has been used and extended in this proposal,
enabling not only data exchange related to FLS definitions, but
to also handle all requests and responses exchanged between
clients and servers, e.g. collecting inputs and distributing
outputs.

There are several aspects of extension for the proposed
system from a technical point of view and we encourage
the FLS community to engage and provide feedback with
the development, both in terms of prioritisation of features,
but also in supporting the collaborative development effort.



6

Fig. 4. The extended IEEE-1855 schema (in XSD) that can be used to validate all of the web-based input/output data exchanges in the proposed architecture.

Practically speaking, the system will be evaluated for real-
world FLS applications. This will give us the opportunity to
refine the proposed schema and/or the API invocation formats,
and to provide more in-depth technical recommendations for
implementing the architecture elsewhere.

It is noticeable that only a particular case of fuzzy logic
systems (namely, the rule-based systems) are addressed in
thie paper. In the future, other fuzzy services, such as fuzzy
querying over fuzzy databases or fuzzy ontologies may be
considered. Additionally, because of the close relation between
fuzzy mark-up language and fuzzy ontologies, extending the
web services to the Semantic Web will be an interesting option.

Finally, the work will lead to contributing to the develop-
ment of the next IEEE-1855 edition, not only by incorporating
the proposed extended schema, but also by including more
advanced FLS variations in the next schema release: non-
singleton and type-2 FLSs.

V. ACKNOWLEDGMENT

The authors would like to thank Mrs. Divya Rao for her
contribution to the system development discussed in this paper.
Also, the valuable comments from anonymous reviewers are
highly appreciated.

REFERENCES

[1] Y. H. Kim, S. C. Ahn, and W. H. Kwon, “Computational complexity of
general fuzzy logic control and its simplification for a loop controller,”
Fuzzy Sets and Systems, vol. 111, no. 2, pp. 215–224, 2000.

[2] R. John and S. Coupland, “Type-2 fuzzy logic: A historical view,” IEEE
computational intelligence magazine, vol. 2, no. 1, pp. 57–62, 2007.

[3] G. C. Mouzouris and J. M. Mendel, “Nonsingleton fuzzy logic systems:
theory and application,” IEEE Transactions on Fuzzy Systems, vol. 5,
no. 1, pp. 56–71, 1997.

[4] C. Wagner, A. Pourabdollah, J. McCulloch, R. John, and J. M. Garibaldi,
“A similarity-based inference engine for non-singleton fuzzy logic
systems,” in 2016 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), July 2016, pp. 316–323.

[5] A. Pourabdollah, C. Wagner, J. H. Aladi, and J. M. Garibaldi, “Improved
uncertainty capture for nonsingleton fuzzy systems,” IEEE Transactions
on Fuzzy Systems, vol. 24, no. 6, pp. 1513–1524, Dec 2016.

[6] A. B. Cara, C. Wagner, H. Hagras, H. Pomares, and I. Rojas, “Mul-
tiobjective optimization and comparison of nonsingleton type-1 and
singleton interval type-2 fuzzy logic systems,” IEEE Transactions on
Fuzzy Systems, vol. 21, no. 3, pp. 459–476, June 2013.

[7] J. Cubo, A. Nieto, and E. Pimentel, “A cloud-based internet of things
platform for ambient assisted living,” Sensors, vol. 14, no. 8, pp. 14 070–
14 105, 2014.

[8] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Au-
tili, M. A. Gerosa, and A. B. Hamida, “Service-oriented middleware for
the future internet: state of the art and research directions,” Journal of
Internet Services and Applications, vol. 2, no. 1, pp. 23–45, 2011.



7

[9] B. N. Di Stefano, “On the need of a standard language for designing
fuzzy systems,” in On the Power of Fuzzy Markup Language. Springer,
2013, pp. 3–15.

[10] “IEEE standard for fuzzy markup language,” IEEE Std 1855-2016, pp.
1-89, May 2016.

[11] J. R. Jang, MATLAB: Fuzzy logic toolbox user’s guide: Version 1. Math
Works, 1997.

[12] C. Wagner, S. Miller, and J. M. Garibaldi, “A fuzzy toolbox for
the R programming language,” in Fuzzy Systems (FUZZ), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1185–1192.

[13] C. Wagner, M. Pierfitt, and J. McCulloch, “Juzzy online: An online
toolkit for the design, implementation, execution and sharing of type-1
and type-2 fuzzy logic systems,” in Fuzzy Systems (FUZZ-IEEE), 2014
IEEE International Conference on. IEEE, 2014, pp. 2321–2328.

[14] C. Wagner, “Juzzy - a java based toolkit for type-2 fuzzy logic,”
in Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), 2013 IEEE
Symposium on. IEEE, 2013, pp. 45–52.

[15] G. Acampora and V. Loia, “Fuzzy markup language: A new solution
for transparent intelligent agents,” in Intelligent Agent (IA), 2011 IEEE
Symposium on. IEEE, 2011, pp. 1–6.

[16] G. Acampora, V. Loia, C.-S. Lee, and M.-H. Wang, On the power of
fuzzy markup language. Springer, 2013.

[17] “IEC Standard for Programmable controllers,” IEC 61131-7 Part 7:
Fuzzy control programming, 2000.

[18] G. Acampora, “Fuzzy Markup Language: A XML Based Language for
Enabling Full Interoperability in Fuzzy Systems Design,” On the Power
of Fuzzy Markup Language, vol. 296, pp. 17–31, 2013.

[19] G. Acampora, V. Loia, and A. Vitiello, “Distributing fuzzy reasoning
through fuzzy markup language: An application to ambient intelligence.”
2013.

[20] W. Pedrycz, “Collaborative architectures of fuzzy modeling,” Computa-
tional Intelligence: Research Frontiers, pp. 117–139, 2008.

[21] K. K. Yuen and H. C. Lau, “Towards a distributed fuzzy decision making
system,” in KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications. Springer, 2008, pp. 103–112.

[22] G. Acampora, V. Loia, and A. Vitiello, “Using ANFIS and FML for
deploying transparent services in smart environments,” in Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012
Sixth International Conference on. IEEE, 2012, pp. 628–633.

[23] G. Acampora and V. Loia, “A proposal of ubiquitous fuzzy computing
for ambient intelligence,” Information Sciences, vol. 178, no. 3, pp. 631–
646, 2008.

[24] L.-J. Zhang, J. Zhang, and H. Cai, “Service-oriented architecture,”
Services Computing, pp. 89–113, 2007.

[25] K. B. Laskey and K. Laskey, “Service oriented architecture,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 1, no. 1, pp.
101–105, 2009.


