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Abstract 1 

Introduction Prosthetic ankle-foot devices incorporating a hydraulic articulation between the 2 

pylon and prosthetic foot have been shown to be beneficial to the gait of more active individuals 3 

with unilateral transtibial amputation (UTA). However, the functional benefits of using hydraulic 4 

ankle-foot devices to less active individuals with UTA are yet to be determined. The aim of the 5 

current study was to investigate the effects on gait performance of using a non-ESR foot with a 6 

hydraulic attachment, compared to an identical, rigidly attached foot during overground walking 7 

in less active individuals with UTA. 8 

Materials and Methods Kinematic and kinetic data were recorded while five individuals with 9 

UTA, deemed K2 activity level by their prescribing physician, performed two-minute walk tests 10 

(2MWT) and ten overground gait trials, in two conditions; using a hydraulically articulating ankle 11 

foot device (HYD) and using a rigidly attached ankle foot device (RIG).  12 

Results Walking speed during the 2MWT was increased by 6.5% on average, in the HYD (1.07 13 

m/s) condition, compared to the RIG (1.01 m/s) condition (Cohen’s d = 0.4). Participants displayed 14 

more symmetrical inter-limb loading (d = 0.8), increased minimum forward centre of pressure 15 

velocity (d = 0.8), increased peak shank rotational velocity (d = 1.0) and decreased prosthetic 16 

energy efficiency (d = 0.7) when using the HYD compared to RIG device.  17 

Conclusions Individuals with lower activity levels walk faster and therefore further when, using a 18 

foot with a hydraulically articulating attachment, in comparison to a rigid attachment. A reduced 19 

braking effect in early stance phase, as a result of the action of the hydraulic component present in 20 

the articulating attachment, partially explains the improvement in walking performance. 21 

Keywords Lower-limb amputation, Prosthetics, Foot device, Ankle, hydraulic. 22 
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 24 

Introduction 25 

Prosthetic ankle-foot devices that incorporate hydraulically damped articulation between 26 

the pylon and prosthetic foot are a relatively new development in prosthetic technology, having 27 

only been widely commercially available for approximately ten years. Feet such as the Kinterra 28 

(Freedom Innovations, Morgan, CA), Echelon (Chas. A Blatchford & Sons, Basingstoke, UK) and 29 

MotionFoot (Fillauer, Chattanooga, TN) combine a hydraulic articulation unit with an energy 30 

storing and returning (ESR) foot, and are primarily intended for use by individuals with higher 31 

levels of mobility, such as those classified as being at least K3 on the Medicare Scale. The 32 

hydraulic dashpots present in the articulation mechanism of such prosthetic ankle-foot devices 33 

cause the ankle-foot system to absorb more and return less energy during stance than an identical, 34 

rigidly attached, foot [1]. In addition, due to the hydraulic component, such ankle-foot devices also 35 

weigh more than comparable, rigidly attached, feet.  36 

 37 

Despite these apparent drawbacks, it has been reported that hydraulic ankle-foot devices 38 

provide functional benefits during walking, when compared to feet that are either attached without 39 

articulation, or attached via an elastic articulation device. The primary reported functional benefit, 40 

when using a hydraulic ankle-foot device, in more active (K3) individuals with lower limb 41 

amputation, is an increase in the individual’s walking speed [1-4]. Walking speed is a primary 42 

measure of gait function in individuals with lower-limb amputation [5]. Furthermore, for 43 

individuals with a lower-limb amputation, an increase in walking speed reflects improved gait 44 

function during and following rehabilitation [6-8], and is also associated with decreased temporal 45 

asymmetry [9]. This increase in walking speed, when using a hydraulic ankle-foot device, appears 46 
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to be driven by a reduction in inappropriate fluctuations of centre of pressure progression during 47 

prosthetic-limb stance [2], where the centre of pressure becomes stationary or travels backwards 48 

beneath the prosthetic hind and/or mid foot [10,11]. In addition to this, hydraulic articulation has 49 

been found to result in increased forwards angular velocity of the prosthetic shank during early 50 

stance [2]. These effects occur despite the devices’ hydraulic dashpots dissipating energy during 51 

stance, resulting in reduced energetic efficiency compared to that of a rigidly attached foot [1]. 52 

Accordingly, the increased walking speed appears to be due to a reduced ‘braking effect’ [12], 53 

rather than increased propulsion, allowing the transfer of weight onto the prosthetic limb to occur 54 

more smoothly [2]. Another effect of using a hydraulic ankle-foot device is a reduction in load-55 

bearing asymmetry during walking [1], that possibly contributes to a reported reduction in in-56 

socket pressures, due to reduced loading rates [13]  57 

 58 

The effects of using a hydraulic ankle-foot device have been observed in individuals with 59 

both unilateral transtibial (UTA) and transfemoral amputation [14] although, again, only in 60 

patients who are described as being at least K3 on the Medicare Mobility Scale. Individuals who 61 

are less mobile are seldom prescribed ESR feet, and therefore, rarely use feet with hydraulic 62 

‘ankle’ function. However, the apparent benefits of using hydraulic ankle-foot devices observed 63 

in more mobile individuals may also occur in the less active. This suggestion is supported by a 64 

low-activity group self-reporting improvements in their gait and prosthesis satisfaction when their 65 

prosthetic prescription was changed to include a hydraulic ankle-foot device [15].  66 

 67 

Therefore, the aim of this study was to investigate the effects, of using a non-ESR foot with 68 

a hydraulic attachment, during overground walking, compared to an identical, rigidly attached 69 
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foot, in individuals with UTA, described as being K2 on the Medicare scale. It was hypothesized 70 

that, (1) when using the hydraulic ankle-foot device, individuals would walk faster compared to 71 

when using an identical, rigidly attached foot device. It was expected that any increase in walking 72 

speed would be due to the same drivers previously reported in more active individuals when using 73 

a prosthetic ankle-foot device that incorporates a hydraulically articulating attachment. Thus, it 74 

was also hypothesized that, (2) there would be an increased minimum forwards/peak backwards 75 

velocity of centre of pressure progression beneath the prosthetic foot, increased angular velocity 76 

of the prosthetic shank during early stance and a reduction in stance phase load bearing asymmetry 77 

between the intact and residual limbs when using the hydraulic compared to rigidly attached ankle-78 

foot device. Finally, it was expected that these effects would occur despite a reduction in efficiency 79 

of the ankle-foot device, due to the hydraulic unit dissipating energy during stance. 80 

 81 

Methods 82 

Participants 83 

 Five individuals with UTA, currently assessed as being K2 on the Medicare scale by their 84 

prescribing physician, were recruited from the same prosthetic limb and rehabilitation centre. All 85 

provided written informed consent prior to participation in the study, which was approved by the 86 

Nottingham Trent University Human Research Ethics Committee (Table 1). 87 

 88 

***Insert Table 1 here*** 89 

 90 

Participants were recruited and included, if they: 1) were community living adults aged between 91 

18 and 65 years of age; 2) were able to walk without walking aids for periods of at least two 92 
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minutes; 3) partook in physical activity at least once a week for 30 minutes; 4) had good (corrected, 93 

if necessary) vision and 5) had no unresolved health issues, as determined using a health screening 94 

questionnaire. Individuals were excluded, if they: 1) had experienced an unintentional fall in the 95 

previous 12 months; 2) experienced undue pain while walking; 3) were current smokers or 4) were 96 

currently taking five or more prescribed medications. 97 

 98 

Experimental Design 99 

Participants were required to complete the below described walking tasks while using the 100 

same habitual socket/liner and same non-ESR foot, attached under two different conditions: (1) 101 

using a hydraulically articulating attachment (HYD - AvalonK2) and (2) using a rigid non-102 

articulating attachment (RIG - Navigator; both Chas A. Blatchford & Sons, Basingstoke, UK; 103 

Figure 1). These feet were chosen as they are identical, save for the nature of attachment to the 104 

prosthetic pylon. In order to ameliorate any order effects, the order in which participants completed 105 

walking tasks were counterbalanced across participants according to which was their habitual 106 

device, regardless of whether this was the RIG or HYD. For each condition participants initially, 107 

completed a familiarisation trial followed by a measured trial of the two-minute walk test (2MWT). 108 

The 2MWT comprised two 15m straight sections with a 180 degree turn at either end, in order to 109 

mitigate the effects of turning on walking test performance [16] [17]. Participants then completed 110 

10 discrete overground walking trials along a 15m instrumented walkway including two force 111 

plates. Participants were instructed for all tests to walk as they would normally. The same highly 112 

experienced prosthetist made all necessary adjustments to all participants’ prostheses, when 113 

changing between prosthetic conditions. Other than different ankle-foot device attachment, there 114 

was no difference in the prostheses between conditions. Participants were asked to complete the 115 
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Activities-specific Balance Confidence Scale (ABC)  [18], the Houghton Scale of Prosthetic Use 116 

(Houghton) [19] and the Prosthetic Limb Users Survey of Mobility (Plus-M 12) [20] which are 117 

self-report questionnaires providing information on participants self-perception of balance 118 

confidence, prosthetic use and mobility, respectively. Higher scores on these scales reflect 119 

increased balance confidence (ABC), prosthesis use (Houghton) and mobility (Plus-M 12). 120 

***Insert Figure 1 here*** 121 

 122 

Experimental Protocol 123 

 Participants attended data collection sessions wearing comfortable clothing and their 124 

normal everyday shoes. In order to define a seven segment model of the lower limbs (feet, thighs, 125 

shanks) and pelvis, reflective markers (14 mm diameter) were affixed bilaterally to participants at 126 

the following locations: 1st and 5th distal metatarsal heads, lateral border and anterior aspect of 127 

the foot, calcaneus, medial and lateral malleoli and femoral epicondyles and anterior and posterior 128 

superior iliac spines. A rigid cluster of four markers was also affixed to the lateral side of each 129 

shank segment. Foot markers were placed over the shoes. Marker placement on the 130 

residual/prosthetic limb was estimated from anatomical landmarks on the intact limb [6] with the 131 

prosthesis being modelled as a unified deformable segment [21]. Participants commenced each 132 

2MWT trial by standing at the end of the walkway and were free to self-select a turning direction. 133 

The number of strides taken by each participant during the 2MWT were recorded by an 134 

investigator using a hand tally counter and the two-minute walk distance (2MWD) was recorded. 135 

Participants then completed the overground walking trials at a self-selected speed, for which start 136 

positions were adjusted to ensure a clean contact with the forces platforms without any obvious 137 

targeting or adjustment to stride pattern. A nine-camera motion capture system (Oqus 400, 138 



7 

 

Qualisys AB, Gothenburg, SE) and two force plates (OR6-7, AMTI, Watertown, MA, US) 139 

recorded kinematic and kinetic data at 100Hz and 500Hz, respectively. A static calibration was 140 

performed by collecting kinematic data of each participant standing in the anatomical position. 141 

Participants were afforded rest breaks as and when required. 142 

 143 

Data Analysis 144 

Each 2MWT trials yielded outcome measures of two-minute walk distance (2MWD), 145 

walking speed (m/s), determined by dividing the recorded 2MWD by 120 seconds, and the number 146 

of strides (stride count). To obtain other variables, biomechanical data for the 10 overground 147 

walking trials were analysed. The raw kinematic data were interpolated using a cubic spline 148 

algorithm and both the kinematic and kinetic data were smoothed using a zero-lag Butterworth 149 

filter with a 6 Hz cut-off frequency (Visual3D, C-Motion, Germantown, USA). Heel strike and toe 150 

off were defined as ascending and descending thresholds of 20 N in the vertical component of the 151 

ground reaction force, respectively. The following biomechanical outcome measures were 152 

calculated: 1) Load bearing symmetry; defined as the ratio of the peak vertical component of the 153 

ground reaction force during intact and prosthetic limb stance, 2) peak shank rotational velocity; 154 

defined as the peak angular velocity of the prosthetic shank in the sagittal plane from prosthetic 155 

heel strike until intact toe off, 3) minimum centre of pressure (COP) velocity; defined as the 156 

minimum forwards or peak backwards (in the direction of travel) velocity of the COP during 157 

prosthetic limb stance, and 4) prosthetic energetic efficiency; defined as the ratio of energy 158 

absorbed and energy returned by the prosthetic foot device during prosthetic limb stance. Energy 159 

absorbed and returned were defined as the positive and negative integrals, respectively, of unified 160 

deformable segment power during prosthetic limb stance [21]. For each participant, the outcome 161 
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variables were calculated for each trial, in each prosthetic condition, and the mean for each 162 

condition was computed using the results from each trial. No inferential statistical analyses were 163 

made, rather, the results for each participant, in each prosthetic condition are presented. This 164 

approach was taken due to participants’ reaction to altered prosthetic componentry being an 165 

individual response [4] and the small group size. Effect sizes (Cohen’s d) were calculated using 166 

group mean and standard deviation differences between prosthetic conditions [22]. An effect size 167 

≥ 0.4 was operationally defined as being clinically meaningful in the current study [23]. 168 

 169 

Results 170 

Two-minute walk test outcome measures 171 

During the 2MWT, participants walked, on average, with a 6.5% increase in self-selected 172 

walking speed (d = 0.4, Figure 2), and thus an increased 2MWD (d = 0.4, Table 2), when using 173 

the HYD compared to the RIG device. This increase in walking speed and 2MWD using the HYD 174 

device was present across all participants. The number of strides taken during the 2MWT also 175 

increased using the HYD, when compared to the RIG device in all participants, although not to the 176 

same extent as the walking speed, with, on average, a 3.9% increase (d = 0.3, Table 2).  177 

 178 

***Insert Figure 2 here*** 179 

***Insert Table 2 here*** 180 

 181 

Biomechanical outcome measures 182 

All participants’ load bearing was more symmetrical between limbs (d = 0.8, Table 3) when 183 

using the HYD compared to RIG device. Similarly, peak shank rotational velocity (d = 1.0, Table 184 
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3) increased for all participants except one, and minimum forward COP velocity (d = 0.8, Table 185 

3) increased for all, when using the HYD compared to RIG device. The HYD device tended to 186 

absorb more, and return less, energy during stance phase, which resulted in a reduced prosthetic 187 

energy efficiency for all participants, when using the HYD device compared to the RIG device (d 188 

= 0.7, Table 3). 189 

 190 

Discussion 191 

The aim of the current study was to investigate the effects of using a hydraulically 192 

articulating ‘ankle’ attachment versus a rigid non-articulating attachment with a non-ESR 193 

prosthetic foot, on gait performance during level gait in individuals with UTA, described as being 194 

K2 on the Medicare scale by their physician. The first hypothesis, that when using the hydraulic 195 

ankle-foot device, individuals would walk faster compared to when using an identical, rigidly 196 

attached foot device, was supported. Every participant in the current study walked more quickly, 197 

and thus on average 7.8m further, during the 2MWT when using the hydraulic ankle-foot device 198 

compared to when using the rigidly attached foot. Additionally, post-hoc analysis indicated that 199 

during the 10 discrete trials, participants mean (SD) walking speed was greater using the hydraulic 200 

ankle-foot device compared to using the rigidly attached foot (HYD, 1.19 (0.09) m/s, RIG, 1.16 201 

(0.10) m/s). In addition, walking speed was greater in both prosthetic conditions during discrete 202 

trials compared to during the 2MWT. This observation of increased walking speeds during discrete 203 

trials vs. continuous walking in the current study are consistent with previous reports from healthy 204 

individuals [24]. Increases in walking speed have been previously demonstrated in individuals 205 

with UTA with higher levels of physical function [1-4]. One cohort study of more active 206 

individuals [2] reported a 7% increase (d = 0.5) in self-selected walking speed when using a 207 
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hydraulic ‘ankle’ device, which is similar to the results of the current study (6.5% increase, d = 208 

0.4). Thus, we feel that, despite the current study being a case-series rather than cohort study, it 209 

demonstrates that hydraulic ‘ankle’ function also appears to benefit those defined as having a 210 

relatively low level of activity. 211 

 212 

Increased walking speed is positively correlated with improved self-efficacy of gait among 213 

individuals with lower-limb amputation [25]. Every participant in the current study walked more 214 

quickly with the HYD and stated a preference for using the HYD rather than the RIG device. This 215 

preference corroborated a previous report of improved user satisfaction when using an AvalonK2 216 

ankle-foot device [15]. Following data collection, all were offered whichever ankle-foot device 217 

(HYD or RIG) they preferred (if it was not their currently prescribed device), to be provided to 218 

their prosthetist for subsequent fitting. Four of the five participants, whose currently prescribed 219 

device was the RIG, opted for the HYD. The fifth participant, who used a HYD prior to data 220 

collection, retained that device. Anecdotal, but interesting nonetheless, following data collection 221 

all participants were asked whether they had felt as if they were walking faster when using one 222 

ankle-foot device in particular and all said no. It is well documented that self-selected walking 223 

speed is related to minimising energy expenditure (e.g. [26]). Although joint kinetics were not 224 

outcome variables in the current study, previously it has been reported that use of a similar HYD, 225 

but with an ESR foot, resulted in a reduction in mechanical work per metre travelled at the intact 226 

limb in more active individuals [2], which possibly contributed to a significant reduction in 227 

metabolic cost due to the function of the HYD [14]. Although no supporting data is presented from 228 

the current study it may be postulated that, given the increase in walking speed and lack of 229 
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awareness of such among participants, use of a HYD device has similar effects in less mobile 230 

individuals too. This suggestion should certainly be the subject of future research. 231 

 232 

The second hypothesis related to the biomechanical explanation of the predicted increased 233 

walking speed associated with the hydraulically articulating ankle-foot device. The hypothesis that 234 

there would be an increased minimum forwards/peak backwards COP velocity beneath the 235 

prosthetic foot, increased angular velocity of the prosthetic shank during early stance and a 236 

reduction in stance phase inter-limb load bearing asymmetry was supported in the majority of 237 

participants. These findings were consistent with those previously reported in higher activity 238 

individuals with the same level of amputation walking using devices with similar functions [1,2] 239 

and go some way in explaining the increases in walking speed observed in the current study. The 240 

increased energy absorbed and dissipated, rather than returned, by the hydraulic dashpot present 241 

in the HYD may have allowed the individuals to load the residual limb to a greater extent. This 242 

was reflected in the increase in inter-limb loading symmetry, without the requirement for this 243 

energy to be attenuated by deformation in the remaining proximal biological joints and/or 244 

structures e.g. biological knee joint, residuum-socket interface. There are no supporting data, thus 245 

it is speculation, but this could be the driver of reduced in-socket pressures reported when using a 246 

hydraulic ankle-foot device [13]. In addition, the improved forward COP progression and shank 247 

angular velocity (that was displayed in all participants except P1) when using the hydraulic ankle-248 

foot device, reflected smoother centre of mass progression during prosthetic stance. The increase 249 

in minimum forward COP velocity in all participants (including P2, though remaining marginally 250 

negative) also reflected a reduction in the ‘dead spot’ reported by some individuals with lower 251 

limb amputation, as progression over the prosthetic limb is interrupted during stance phase. When 252 
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considered together, these factors point to an overall reduced ‘braking effect’ [12], particularly 253 

during early stance, when using the hydraulic ankle-foot device. It would seem that shifting the 254 

functional requirements from the biological structures to the mechanical device during early stance 255 

is potentially beneficial, where individuals exchange the static stability of the non-articulating rigid 256 

ankle-foot device for the dynamic ability of the hydraulically articulating ankle-foot device. Future 257 

research should attempt to investigate whether similar effects are observed in the same patient 258 

group when performing other, commonly encountered activities of daily living such as stepping, 259 

stair ascent/descent and walking on slopes and uneven surfaces. 260 

 261 

There were only five participants in the current study, however research has shown that 262 

reactions to a change of prosthetic device are specific to the individual [4]. Often within a cohort 263 

study, a significant group effect is observed between conditions, while some individuals within 264 

the group display no, or the opposite reaction. The increased walking speed, when using the HYD, 265 

was present for all participants. Likewise, the biomechanical differences that occurred between 266 

device conditions were consistent, and almost ubiquitous, across participants. Only one individual 267 

did not present increased angular velocity of the prosthetic shank when using the HYD. All others 268 

responded as hypothesised across all outcome variables. Therefore, despite the small sample size, 269 

we feel that the findings from the current study are of clinical relevance at both the individual level 270 

and also to national health care providers. The demonstrated increases in walking speed suggest 271 

that improved mobility in an individual may be achieved via prescription. This increased mobility 272 

could possibly lead to subsequent improved completion of daily tasks and/or engagement in social 273 

activities. In addition, given that patients themselves previously reported a perceived benefit of 274 

such devices to mobility and prosthetic satisfaction [15], this could suggest that widespread use of 275 
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such devices may be beneficial to the wider body of less active individuals living with unilateral 276 

transtibial amputation. However, prior to the widespread adoption of such devices, the long-term 277 

effects and potential benefits to both the individual and healthcare systems of such hydraulically 278 

articulating ankle-foot devices must be established and should be the focus of future investigation. 279 

Limitations 280 

 There are a number of limitations to the current study, the most obvious of which is the 281 

size of the sample, which was limited to include only individuals who used the specified 282 

components in order to prevent any differences being due to the foot, itself, rather than the change 283 

in attachment. Although the sample size was only five individuals, prosthetic prescription is made 284 

on an individual basis. For every participant in the current study, large and consistent effects were 285 

observed, thus authors feel that the presented results are still valid. Authors do, however, 286 

acknowledge that confirmatory future research should attempt to assess whether these magnitudes 287 

of effect are maintained in the wider patient population. Also, the effects observed in the current 288 

study were acute (same day) and do not speak to any long-term effects. This begs the question as 289 

to whether these difference would be maintained over longer periods of time and what the 290 

subsequent influences would be on physical activity and quality of life. This not answerable by the 291 

current study but warrants further investigation. Finally, a highly experienced prosthetist with 292 

knowledge of all of the components, made all adjustments in the current study. However, where 293 

this is not possible, it remains to be seen if similar effects would be observed. 294 

 295 

Conclusion 296 

 Individuals with unilateral transtibial amputation who are described as K2 by their 297 

prescribing physician walk faster when using a non ESR-foot with a hydraulically articulating 298 
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attachment when compared to an identical foot with a rigid, non-articulating attachment. This 299 

improvement in walking performance can be partially explained by a reduced ‘braking effect’ in 300 

early stance as a result of the action of the hydraulic component present in the articulating 301 

attachment. 302 

 303 

Acknowledgements 304 

 Authors would like to thank Chas. A. Blatchford and Sons for providing prosthetic 305 

components and prosthetist assistance in the current study. Chas. A. Blatchford and Sons had no 306 

role in the study design; data collection, analysis and interpretation; manuscript writing or decision 307 

to submit for publication. 308 

 309 

Declaration of Interest 310 

The authors report no conflicts of interest. The authors alone are responsible for the content 311 

and writing of the paper. 312 

 313 

References 314 

[1] AR De Asha, L Johnson, R Munjal, J Kulkarni, JG Buckley. Attenuation of centre-of-315 

pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic 316 

ankle attachment compared to fixed attachment, Clin.Biomech. 28 (2013) 218-224.  317 

[2] AR De Asha, R Munjal, J Kulkarni, JG Buckley. Walking speed related joint kinetic 318 

alterations in trans-tibial amputees: impact of hydraulic'ankle’damping, Journal of 319 

neuroengineering and rehabilitation. 10 (2013) 107.  320 

[3] Johnson, L, De Asha, AR, Munjal, R, Kulkarni, J and Buckley, JG. Toe clearance when 321 

walking in people with unilateral trans-tibial amputation: Effects of passive hydraulic ankle, 322 

Journal of Rehabilitation Research and Development. 51 (2014) 429-438.  323 



15 

 

[4] AR De Asha, CT Barnett, V Struchkov, JG Buckley. Which Prosthetic Foot to Prescribe?: 324 

Biomechanical Differences Found during a Single-Session Comparison of Different Foot Types 325 

Hold True 1 Year Later, JPO: Journal of Prosthetics and Orthotics. 29 (2017) 39-43.  326 

[5] RL Waters, J Perry, D Antonelli, H Hislop. Energy cost of walking of amputees: the 327 

influence of level of amputation, J.Bone Joint Surg.Am. 58 (1976) 42-46.  328 

[6] C Barnett, N Vanicek, R Polman, A Hancock, B Brown, L Smith, et al. Kinematic gait 329 

adaptations in unilateral transtibial amputees during rehabilitation, Prosthet.Orthot.Int. 33 (2009) 330 

135-147.  331 

[7] CT Barnett, RC Polman, N Vanicek. Longitudinal kinematic and kinetic adaptations to 332 

obstacle crossing in recent lower limb amputees, Prosthet.Orthot.Int. (2013).  333 

[8] C Barnett, R Polman, N Vanicek. Longitudinal changes in transtibial amputee gait 334 

characteristics when negotiating a change in surface height during continuous gait, 335 

Clin.Biomech. 29 (2014) 787-793.  336 

[9] L Nolan, A Wit, K Dudziński, A Lees, M Lake, M Wychowański. Adjustments in gait 337 

symmetry with walking speed in trans-femoral and trans-tibial amputees, Gait Posture. 17 (2003) 338 

142-151.  339 

[10] HS Ranu. An evaluation of the centre of pressure for successive steps with miniature triaxial 340 

load cells, J.Med.Eng.Technol. 12 (1988) 164-166.  341 

[11] M Schmid, G Beltrami, D Zambarbieri, G Verni. Centre of pressure displacements in trans-342 

femoral amputees during gait, Gait Posture. 21 (2005) 255-262.  343 

[12] AK Silverman, RR Neptune. Muscle and prosthesis contributions to amputee walking 344 

mechanics: a modeling study, J.Biomech. 45 (2012) 2271-2278.  345 

[13] S Portnoy, A Kristal, A Gefen, I Siev-Ner. Outdoor dynamic subject-specific evaluation of 346 

internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to 347 

conventional energy-stored prosthetic feet, Gait Posture. 35 (2012) 121-125.  348 

[14] AR De Asha, R Munjal, J Kulkarni, JG Buckley. Impact on the biomechanics of overground 349 

gait of using an ‘Echelon’hydraulic ankle–foot device in unilateral trans-tibial and trans-femoral 350 

amputees, Clin.Biomech. 29 (2014) 728-734.  351 

[15] R Moore. Patient Evaluation of a Novel Prosthetic Foot with Hydraulic Ankle Aimed at 352 

Persons with Amputation with Lower Activity Levels, JPO: Journal of Prosthetics and Orthotics. 353 

29 (2017) 44-47.  354 

[16] C Barnett, M Bisele, J Jackman, T Rayne, N Moore, J Spalding, et al. Manipulating walking 355 

path configuration influences gait variability and six-minute walk test outcomes in older and 356 

younger adults, Gait Posture. 44 (2016) 221-226.  357 



16 

 

[17] D Brooks, J Parsons, JP Hunter, M Devlin, J Walker. The 2-minute walk test as a measure 358 

of functional improvement in persons with lower limb amputation, Arch.Phys.Med.Rehabil. 82 359 

(2001) 1478-1483.  360 

[18] LE Powell, AM Myers. The Activities-specific Balance Confidence (ABC) Scale, 361 

J.Gerontol.A Biol.Sci.Med.Sci. 50A (1995) M28-34.  362 

[19] M Devlin, T Pauley, K Head, S Garfinkel. Houghton scale of prosthetic use in people with 363 

lower-extremity amputations: reliability, validity, and responsiveness to change, 364 

Arch.Phys.Med.Rehabil. 85 (2004) 1339-1344.  365 

[20] BJ Hafner, IA Gaunaurd, SJ Morgan, D Amtmann, R Salem, RS Gailey. Construct Validity 366 

of the Prosthetic Limb Users Survey of Mobility (PLUS-M) in Adults With Lower Limb 367 

Amputation, Arch.Phys.Med.Rehabil. (2016).  368 

[21] KZ Takahashi, TM Kepple, SJ Stanhope. A unified deformable (UD) segment model for 369 

quantifying total power of anatomical and prosthetic below-knee structures during stance in gait, 370 

J.Biomech. 45 (2012) 2662-2667.  371 

[22] J Cohen. Statistical power analysis for the behavioral sciences . Hillsdale, NJ: Lawrence 372 

Earlbaum Associates, Inc, Publishers. (1988).  373 

[23] P Page. Beyond statistical significance: clinical interpretation of rehabilitation research 374 

literature, Int.J.Sports Phys.Ther. 9 (2014) 726-736.  375 

[24] MJ Brown, LA Hutchinson, MJ Rainbow, KJ Deluzio, AR De Asha. Comparison of self-376 

selected walking speeds and walking speed variability when data are collected during repeated 377 

discrete trials and during continuous walking, Journal of applied biomechanics. (2017) 1-14.  378 

[25] WC Miller, M Speechley, B Deathe. The prevalence and risk factors of falling and fear of 379 

falling among lower extremity amputees, Arch.Phys.Med.Rehabil. 82 (2001) 1031-1037.  380 

[26] R McNeill Alexander. Energetics and optimization of human walking and running: the 2000 381 

Raymond Pearl memorial lecture, Am.J.Hum.Biol. 14 (2002) 641-648.  382 

 383 


