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A phase-space boundary integral method is developed for modelling stochastic high-
frequency acoustic and vibrational energy transport in both single and multi-domain 
problems. The numerical implementation is carried out using the collocation method in 
both the position and momentum phase-space variables. One of the major developments 
of this work is the systematic convergence study, which demonstrates that the proposed 
numerical schemes exhibit convergence rates that could be expected from theoretical 
estimates under the right conditions. For the discretisation with respect to the momentum 
variable, we employ spectrally convergent basis approximations using both Legendre 
polynomials and Gaussian radial basis functions. The former have the advantage of being 
simpler to apply in general without the need for preconditioning techniques. The Gaussian 
basis is introduced with the aim of achieving more efficient computations in the weak 
noise case with near-deterministic dynamics. Numerical results for a series of coupled 
domain problems are presented, and demonstrate the potential for future applications to 
larger scale problems from industry.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Noise and vibration simulations for mechanical structures are commonly performed using numerical solvers for linear 
wave equations [1,2]. The underlying numerical technologies are typically based on finite element methods, finite volume 
methods, boundary element methods or a variety of spectral methods. There are, however, two fundamental limitations 
when numerically approximating the solutions of wave equations directly in this manner. Firstly, the size of the numerical 
models required to obtain reliable results will eventually grow large enough to become computationally prohibitive when 
the local wavelengths become significantly smaller than the dimensions of the physical system. Secondly, the modal den-
sity increases with the frequency and, as a consequence, the vibrational responses of “identical” manufactured structures 
from the same production line can differ greatly in the high frequency regime. That is, uncertainties play a more impor-
tant role when the structural modes become sufficiently dense that they can exchange positions due to small structural 
differences within standard manufacturing tolerances. For these reasons statistical methods for predicting averaged energy 
distributions, such as Statistical Energy Analysis (SEA) [3], have become popular tools for high frequency noise and vibration 
simulations [4]. However, the underlying assumptions of SEA are often hard to verify a-priori, and the method only provides 
a coarse description of the structure under consideration since constant energy levels are assumed throughout relatively 
large substructures of the overall model [5].
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An alternative framework that can provide a more detailed description of the vibrational or acoustic energy distribution is 
to model wave energy transport at high frequencies via a geometrical ray description, which neglects interference and other 
wave effects. The underlying wave problem is then reduced to tracking densities of rays or particles in phase-space and 
becomes part of a wider class of mass, particle or energy transport problems driven by an underlying deterministic velocity 
field. The computational cost of direct ray or beam tracing methods, based on following rays or beams from a source to 
a receiver, scales with the number of paths that must be modelled. For complex domains including many reflections, the 
number of paths can grow so rapidly that applications in room acoustics are typically limited to including at most second 
order reflections [6]. Furthermore, in complex structures there may additionally be mode conversion and refraction effects 
to take into account. In these circumstances, indirect methods based on conservation laws such as the Liouville equation 
can provide a more practical alternative by propagating ray densities (instead of the rays themselves) through phase-space 
[7–10]. The deterministic propagation of ray densities according to the Liouville equation can be expressed using a transfer 
operator, known as the Frobenius–Perron operator [11], which transports ray densities along the trajectories of a dynamical 
system in general (in our case a Hamiltonian ray flow). These ideas have also found their way into the literature in computer 
graphics [12] and room acoustics [13] amongst others, where the corresponding transfer operator equation is often labelled 
the rendering equation.

A variety of techniques have been proposed for the discretisation of the Frobenius–Perron operator, with the aim of de-
veloping efficient numerical tools for practical applications. Domain based transfer operator approaches involve subdividing 
the phase-space and approximating the transition rates between these subdivided regions. One of the simplest approaches of 
this type is known as the Ulam method [14]. For a discussion of convergence properties of the Ulam method in one and sev-
eral dimensions, see Refs. [15] and [16], respectively. One shortcoming of the Ulam method is that it typically only exhibits 
sub-linear convergence rates. As a result of this slow convergence and the high-dimensionality of the phase-space, these 
methods have typically found only limited applications. In order to reduce memory costs and/or speed up the convergence, 
both wavelet and spectral methods have been proposed [17,18]. A boundary integral reformulation of the Frobenius–Perron 
operator for a ray flow is derived in Ref. [10], which can be used to determine the stationary ray density (in the long-time 
limit) corresponding to the high-frequency asymptotic solution of a frequency-domain wave problem. This has the advan-
tage of reducing the dimensionality from a full phase-space model to the Birkhoff coordinates for the phase-space on the 
boundary.

In this work we consider the ray dynamical modelling of wave energy transport through uncertain structures, which 
leads instead to a stochastic velocity field driving the energy transport. We propagate ray densities using the corresponding 
conservation law, here provided by the Fokker–Planck equation for the stochastic evolution of ray densities in phase-space 
under the action of a noisy flow [11,19]. Direct treatment of the Fokker–Planck equation is often considered infeasible [20], 
and in this work we will apply a boundary integral formulation of the Fokker–Planck equation for a Hamiltonian flow, where 
the associated boundary integral operator will take the form of a stochastic evolution operator. Through this approach we 
achieve a reduction in dimensionality to the boundary phase-space, which makes the corresponding numerical models both 
smaller and simpler to implement. Stochastic evolution operators have been extensively studied over the last twenty years 
via periodic orbit techniques [21–25]. Initial work focused on determining spectral properties of the Fokker–Planck operator 
for Langevin flows in the weak noise limit. However, more recent work has considered higher dimensional cases [26] and 
the estimation of stationary distributions [27]. Modified Ulam-type methods have also been devised for stochastic transfer 
operators, see for example Refs. [28,29].

The approach taken here will be based on a modification of a recently-proposed boundary integral reformulation of a 
stochastic evolution operator, for the case when the noisy flow has been replaced by a noisy boundary map [30]. The re-
sulting boundary integral operator is described in Sect. 2. The modified formulation proposed here has the advantage that 
it can be generalised from single to multi-domain problems by restricting the range of the noisy boundary map to the edge 
where the corresponding deterministic map arrives; see Sect. 2.3 for further details. In general, the spatial domain is rela-
tively complex (including corners) compared to the momentum domain, which simply corresponds to the range of angles 
pointing into the spatial domain at any given boundary point. Note also that highly peaked solutions with respect to the 
momentum variable are commonplace in ray tracing problems, whereas the solutions typically exhibit a milder dependence 
on the spatial variable. A local and low order approximation scheme in the spatial variable using piecewise constant col-
location is therefore appropriate and furthermore, leads to simplifications in the implementation of the boundary integrals 
as detailed in Sect. 3.1. For the approximation with respect to the momentum variable we consider two different possi-
bilities for a spectral collocation method in Sect. 3.2; a well-conditioned basis approximation using Legendre polynomials 
and a radial basis approximation using Gaussian functions. Despite requiring additional preconditioning strategies in order 
to obtain convergence, the latter has the advantage of providing an exact representation of the typical initial conditions 
in our proposed model and has the potential for computational cost savings in the case of near-deterministic propagation. 
These phase-space collocation schemes are detailed throughout Sect. 3 and have the advantage that we can demonstrate 
the consistency of our numerical implementation with theoretical convergence results for second-kind integral equations 
with bounded operators [31], as discussed in Sect. 4. We note that these results do not carry over to the Nyström method 
based discretisation applied in Ref. [30]. Finally, we detail a series of numerical experiments for multi-domain problems in 
Sect. 5, demonstrating the potential of the proposed methods to model built up structures from industrial applications in 
high-frequency structural vibrations and acoustics.
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2. Stochastic propagation of phase-space densities: a boundary integral approach

In this section we describe a boundary integral model for the stochastic propagation of phase-space densities in both 
single and multi-domain problems.

2.1. Governing boundary integral equations

Consider phase-space in two-dimensions with position vector r ∈ R
2 and momentum (or slowness) vector p ∈ R

2. Let 
� ⊂ R

2 denote a finite domain with an associated speed of propagation c. The Hamiltonian Ĥ = c|p| = 1 describes the ray 
trajectories within � between reflections at the boundary � = ∂� [8]. Note that this Hamiltonian can be applied directly for 
ray tracing approximations of acoustic waves and in-plane wave modes in plates; modifications are necessary for modelling 
flexural plate motion since the associated dispersion relation changes from linear to quadratic in |p| [32]. The stochastic 
propagation of a density g through phase-space is described by an operator of the form

Lσ g(X) =
∫
Q

fσ (X − ϕ(Y ))g(Y )dY . (1)

Here Q = � × (−c−1, c−1) denotes the phase-space on the boundary and the corresponding coordinates X ∈ Q are written 
in the form X = (s, p), where s is an arc-length parametrisation of � and p = c−1 sin(θ) is the tangential component of 
the momentum vector p at the point s. The angle θ ∈ (−π/2, π/2) is formed between the trajectory leaving the boundary 
at s and the normal vector to � (also at s). The deterministic boundary map ϕ : Q → Q maps a vector Y = (t, q) ∈ Q
to ϕ(Y ) ∈ Q , and corresponds to the composition of a translation in the spatial coordinate and a rotation to the direction 
corresponding to a specular reflection. The kernel of the boundary integral operator (1) is given by a probability density 
function (PDF) fσ such that∫

Q

fσ (X − ϕ(Y ))dY = 1, (2)

for all X ∈ Q and σ is a parameter set controlling its shape.
With reference to applications in vibroacoustics, this probabilistic behaviour could be attributed to, for example, un-

certain fluctuations in the propagation speed c, roughness of the reflecting boundary or uncertainties in the boundary 
conditions/source terms. Note that in contrast to the models considered in [21,24], the range of integration in the domains 
considered here is in general bounded, which has implications for the choice of suitable PDFs fσ as discussed in the next 
section. For simplicity, we will also restrict to convex domains � to avoid complications related to the incorporation of 
visibility functions.

For an initial boundary density ρ0 on Q , the final stationary density distribution ρ including contributions from arbi-
trarily many reflections may be computed using the following boundary integral equation (see for example [30,9])

(I −Lσ )ρ = ρ0. (3)

The invertibility of the operator (I −Lσ ), as well as bounds on the norm of the inverse, may be established using a Neumann 
series argument as discussed in Appendix A. Equation (3) is, in fact, derived from the series

ρ =
∞∑
j=0

(Lσ )( j) ρ0, (4)

where the superscript ( j) denotes that we apply the operator Lσ j times. For the sum (4) to converge, energy losses 
must be introduced into the system, which could take place at the boundaries, or along the trajectories. In this work 
we apply viscous damping, which is a standard damping model for vibration problems and corresponds to friction with 
the surrounding gas or fluid. For acoustic problems, simpler boundary absorption type conditions are more common. The 
damping is incorporated by introducing a weight factor w(X, Y ), including a dissipative term, inside the integral in the 
definition of Lσ . For viscous damping we apply a factor of the form exp(−μd(s, t)), where μ ≥ 0 is the (viscous) damping 
parameter and d(s, t) denotes the Euclidean distance between the boundary points s and t . The damping factor therefore 
introduces a dependence on the trajectory length and the density ρ decays exponentially along this length with decay 
rate μ. For the extension to coupled convex domains connected along a common interface, then w(X, Y ) will also contain 
reflection/transmission probabilities at the interface.

Once the final boundary density ρ (from summing infinitely many iterates of Lσ ) has been found using equation (3), 
the stationary interior density ρ� is calculated via (see [10] for further details)

ρ�(r) = 1

c2

∫
ρ(s, p)

cos(ϑ(s, r))

|r − rs| e−μ|r−rs| ds, (5)
�
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Fig. 1. Tracking ray trajectories in a multi-domain problem via a boundary map with added noise (sε , pε), where sε has infimum/supremum given by s± .

where r ∈ � is a prescribed solution point and rs denotes the Cartesian coordinates of the point s ∈ �. The angle ϑ(s, r) is 
formed between the normal vector to � at s and the direction vector pointing towards the point r from the point s ∈ �.

2.2. On the choice of probability density function fσ

We may interpret the evolution given by the operator in equation (1) as originating from a stochastic boundary map ϕσ

with added noise, that is,

ϕσ (Y ) = X

= ϕ(Y ) + Xε,
(6)

where Xε = (sε, pε) are random variables drawn from the PDF fσ . For X ∈ Q given, we enforce that ϕ(Y ) = X − Xε is in 
the range of the deterministic map ϕ . We express ϕ = (ϕs, ϕp) in terms of its position and momentum components and 
again write the initial coordinate as Y = (t, q). For a single domain, the range of ϕs(Y ) consists of all points on � except 
those on the edge E(t) containing the point t and ϕp(Y ) ∈ (−c−1, c−1), see Fig. 1. We therefore restrict the ranges from 
which Xε are sampled to ensure ϕ(Y ) ∈ (� \ E(t)) × (−c−1, c−1) in equation (6). In fact, the support of the PDF in the 
spatial variable shown in Fig. 1 will be restricted to the target edge of the stochastic boundary map ϕσ in order to facilitate 
a direct extension to problems on built up domains as described in Sect. 2.3.

Denoting the finite support of the PDF by (X−, X+), where X± = (s±, p±), we note that X± depends on the arrival 
coordinate X as detailed in Ref. [30], but the explicit dependence is suppressed in the notation here for brevity. In this 
work, the support of the PDF in the spatial variable is restricted to the target edge and hence one difference from the 
model presented in Ref. [30] is that there is no longer any dependence of s± on the initial edge E(t). We will base our 
model on a truncated normal distribution and define the corresponding PDF to be

fσ (Xε; X−, X+) = fσ1(sε; s−, s+) fσ2(pε; p−, p+),

:=

⎛
⎜⎜⎝

χ(sε; s−, s+)exp

(
− s2

ε

2σ 2
1

)
√

2πσ1ψσ1(s−, s+)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

χ(pε; p−, p+)exp

(
− p2

ε

2σ 2
2

)
√

2πσ2ψσ2(p−, p+)

⎞
⎟⎟⎠ ,

(7)

where σ = (σ1, σ2) represents the standard deviation of the underlying bivariate and uncorrelated normal distribution with 
mean 0 = (0, 0). Note that χ is simply a cut-off function for restricting fσ to (X−, X+) as follows

χ(sε; s−, s+) = H(s+ − sε) − H(s− − sε),

where H is the Heaviside step function. A normalisation to ensure the conservation of probability (2) is defined through the 
functions ψσ1 and ψσ2 , and is given by

ψσ1(s−, s+) = 1

2

(
erf

(
s+

√
2σ1

)
− erf

(
s−

√
2σ1

))
, (8)

where ψσ2 is defined analogously.
The choice of PDF (7) offers greater flexibility in terms of uncertainty modelling compared with an SEA-type model, 

which corresponds to a simple uniform distribution [30], as well as having a number of favourable properties. In particular, 
taking the limit as σ → 0, then the distribution becomes increasingly sharp and the PDF (7) tends to a two-dimensional 
delta distribution localised around Xε = X − ϕ(Y ) = 0, which leads to a deterministic model. On the other hand, as σ1
and σ2 tend to ∞ then the PDF (7) simplifies to the uniform distribution. Therefore a stochastic propagation model based 
on the PDF (7) can capture both the near deterministic case for small σ , as well as increasingly random propagation as 
the parameters σ are increased. The application of this framework for modelling uncertain fluctuations in the propagation 
speed c, roughness of the reflecting boundary and uncertainties in the boundary conditions or source terms has been 
discussed in Ref. [33].
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Fig. 2. An illustration of a rectangular domain with the boundary subdivided into eight elements. Spatial collocation points indicated by dots are located at 
the centre of each element. Arrows indicate collocation points in the direction variable p.

2.3. Extension to multi-domain problems

A generalisation to multi-domain problems, with convex sub-domains �α , α = 1, . . . , N� , follows by introducing a multi-
domain boundary integral operator

Lα,β
σ g(Xα) =

∫
Q β

wα,β(Xα, Y β) fσ (Xα − ϕα,β(Y β))g(Y β)dY β . (9)

The operator Lα,β
σ transports a phase-space density g from the boundary phase-space of �β (denoted Q β ) to the boundary 

phase-space of �α via the multi-domain boundary map ϕα,β . We have also introduced the notation Xα = (sα, pα) and 
Y α = (tα, qα) for the phase-space coordinates on the boundary of �α . The domain � = ∪N�

α=1�α becomes the union of all 
sub-domains and � becomes the union of all sub-domain boundaries, thus � = ∪N�

α=1∂�α . The global stochastic propagation 
operator Lσ is then constructed from the set of inter-domain operators Lα,β

σ . Note that the case of transporting the density 
within a sub-domain is included in this formulation when α = β . Otherwise, the direct transfer of the energy via the 
density ρ will only take between neighbouring sub-domains with a common boundary region or interface through which 
the density can be transported.

If the properties of two neighbouring sub-domains �α and �β are different, for example if cα 
= cβ , where cα is the 
propagation speed in �α (likewise for cβ in �β ), then reflection/transmission probabilities λα,β (or even mode conversion 
probabilities for vectorial elasticity problems) must be included in the weight function wα,β to account for the probabil-
ity of transmission or reflection at the common interface. The reflection/transmission probability term λα,β thus satisfies 
λα,β = 1 − λβ,β at the interface between the sub-domains �α and �β , see Fig. 1. For propagating scalar waves, the re-
flection/transmission probabilities correspond to the well-known Fresnel equations from optics together with Snell’s Law of 
refraction, see for example [34,35]. For given Y β on the boundary of �β , we may again interpret the evolution given by the 
operator Lα,β

σ as originating from a stochastic (multi-domain) boundary map ϕα,β
σ defined by

ϕ
α,β
σ (Y β) = Xα

= ϕα,β(Y β) + Xα
ε ,

where Xα
ε = (sαε , pα

ε ) are random variables drawn from the PDF fσ for the sub-domain �α . For simplicity, we will restrict 
to the case that all sub-domains have the same PDF.

3. Discretisation

In this section we detail the discretisation of the boundary integral equation (3) using the collocation method. For 
illustration purposes we consider a single polygonal domain, such as the rectangle depicted in Fig. 2. Here, the spatial 
collocation points have been indicated by dots at the centre of each element and the arrows show the collocation directions 
taken for the momentum variable p. The phase-space ray flow map ϕ will be discontinuous at corners of � and hence a 
piecewise constant basis approximation is employed in the spatial variable s. The approximation of the energy density ρ(X)

on the boundary � may therefore be written in the form

ρ(X) ≈
n∑

j=1

b j(s)ρ j(p), (10)

where n is the total number of boundary elements, b j(s) = 1 if s lies on the jth element and is zero elsewhere, and ρ j(p)

are a set of p-dependent functions. Substituting the approximation (10) for ρ into (1) in place of the density g and then 
applying a quadrature method with respect to the variable p would lead to a Nyström method in the momentum variable 
as studied in Refs. [36,30]. The size of the matrix representation of the operator Lσ will be proportional to the number 
of quadrature nodes in this case. In this work we instead apply the collocation method to discretise with respect to the 
variable p, which has the advantage that we can separate the dependence of the matrix size (which now instead depends 
on the number of collocation points) from the number of quadrature nodes used to approximate the integral. This may be 



J. Bajars, D.J. Chappell / Journal of Computational Physics 373 (2018) 130–147 135
particularly favourable in the small σ regime close to the deterministic dynamics, where the integral kernel fσ in Eq. (7)
undergoes a singular perturbation and will hence require a large number of quadrature nodes in general.

3.1. Phase-space collocation method

The collocation method is now applied in the variable p by making a finite dimensional basis approximation of the 
directionally dependent functions ρ j(p) appearing in (10). That is

ρ j(p) ≈
N+1∑
l=1

ρ j,lφl(p), (11)

where ρ j,l are the unknown basis expansion coefficients to be determined and φl(p), l = 1, . . . , N + 1 denotes the set of 
p-dependent basis functions. Substituting the full basis approximation (10)–(11) for ρ into (1) in place of the density g we 
obtain

Lσ ρ(X) ≈
n∑

j=1

N+1∑
l=1

ρ j,l

⎡
⎢⎣∫

Q

fσ (X − ϕ(Y ))b j(t)φl(q)dY

⎤
⎥⎦

=
n∑

j=1

N+1∑
l=1

ρ j,l

⎡
⎢⎣

c−1∫
−c−1

φl(q)

⎡
⎢⎣∫

I j

fσ (X − ϕ(Y ))dt

⎤
⎥⎦ dq

⎤
⎥⎦ ,

where I j denotes the jth boundary element. Substituting in the formula (7) for the PDF fσ leads to

Lσ ρ(X) ≈
n∑

j=1

N+1∑
l=1

ρ j,l

⎡
⎢⎣

c−1∫
−c−1

φl(q) fσ2(pε)

⎡
⎢⎣∫

I j

fσ1(sε)dt

⎤
⎥⎦ dq

⎤
⎥⎦ ,

=
n∑

j=1

N+1∑
l=1

ρ j,l

⎡
⎢⎣

c−1∫
−c−1

φl(q) fσ2(pε)

[
− 1

2ψσ1

erf

(
s − ϕs(t)√

2σ1

)∣∣∣∣
tmax(q)

tmin(q)

]
dq

⎤
⎥⎦ ,

(12)

where the spatial integral has now been expressed analytically as a function of q. The limits tmin and tmax lie at the 
end points of (or inside) the jth boundary element I j ; if the limit is inside the element then it corresponds to the pre-
image of a vertex of the domain for rays with direction q. Note that the spatial integral can also be treated analytically 
(by parts) in terms of the error function erf if we include an additional spatially dependent damping factor of the form 
exp(−μd(ϕs(t), t)), with notation as in Sect. 2. This is a consequence of the fact that the Euclidean distance d(ϕs(t), t)
between two points on the boundary of a polygon may be expressed as a linear function of t when q is fixed. In what 
follows, we denote the spatial integral over the jth boundary element as S j

μ . Unfortunately, the analytical expression for S j
μ

when μ > 0 is not always numerically robust for all geometries and values of σ1. In such cases the spatial integral can be 
well approximated by high order quadrature methods. Note also that the analytical expression for S j

μ remains bounded for 
σ1 = 0, even though the PDF fσ is unbounded in this case.

Recall that the spatial basis approximation uses piecewise constant functions defined according to a decomposition of 
� into boundary elements and therefore only one collocation point per element is required. We choose these points to 
be located at the centre of the corresponding boundary element as shown in Fig. 2, and denote them si , i = 1, ..., n. The 
collocation points in the direction variable are taken to be the Chebyshev points

pk = c−1 cos

(
2k − 1

2(N + 1)
π

)
, k = 1, ..., N + 1,

which leads to equi-distributed direction angle collocation points

θk = π

2
− 2k − 1

2(N + 1)
π.

The choice of Chebyshev collocation points minimises the effect of Runge’s phenomenon, see for example [37], Ch. 5. The 
full collocation discretisation of equation (1) for the density g = ρ is therefore given by (Lσ ρ)(si, pk) ≈ Lρ , where the 
vector ρ = [ρ1,1 ρ1,2 · · ·ρ1,N+1 ρ2,1 · · ·ρn,N+1]T is formed from the coefficients ρ j,l and the entries of the matrix L are 
given by
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L(i,k),( j,l) = c−1

π/2∫
−π/2

φl(q(θ ′)) fσ2(pε(pk, θ
′))S j

μ(si,q(θ ′)) cos(θ ′)dθ ′, (13)

with pε(pk, θ ′) = pk − c−1 sin(θ ′) for i, j = 1, ..., n and k, l = 1, ..., N + 1. Note that we have changed the integration variable 
from q(θ ′) = c−1 sin(θ ′) to the direction angle θ ′ . In the multi-domain case we would additionally include reflection/trans-
mission probabilities λα,β inside the integral in (13) when the collocation point si is on the common interface between two 
neighbouring sub-domains.

We apply adaptive Clenshaw–Curtis quadrature for computing the integrals over θ ′ in (13). We find that Clenshaw–Curtis 
quadrature exhibits spectral convergence, even in the case of small σ values, provided that a careful subdivision procedure 
is implemented to ensure the smoothness of each sub-integrand. The polygonal nature of the computational domain and 
the piecewise constant approximation in space mean that the direction dependent function S j

μ will become discontinuous 
at a finite number of discrete points, but is piecewise smooth away from these points. Therefore we subdivide the integral 
over θ ′ for the jth boundary element into subintervals with respect to the directions from the endpoints of the element j
to all vertices of the polygon � and all spatial collocation points.

The discretised form of equation (3) can now be written as a linear system

(K − L)ρ = Kρ0. (14)

Here K is an n(N + 1) × n(N + 1) interpolation matrix, which maps the basis coefficients ρ to the values of the density ρ
at the collocation points. Hence the right hand side of (14) corresponds to the source density evaluated at the collocation 
points in both position and direction, where ρ0 is the vector of basis coefficients for the projection of the source density 
onto the finite dimensional space spanned by the spatial and momentum basis functions. Explicitly, K takes the form of a 
sparse block matrix

K =

⎡
⎢⎢⎢⎣

� 0 · · · 0
0 � · · · 0
...

...
. . .

...

0 0 · · · �

⎤
⎥⎥⎥⎦

consisting of n identical (N + 1) × (N + 1) blocks � along the diagonal (and zeros otherwise) where

�k,l = {φl(pk)} for k, l = 1, ..., N + 1. (15)

In the next section we discuss different options for the choice of basis functions φl .

3.2. Basis approximation in the direction variable

Orthogonal polynomials, such as Legendre or Chebyshev polynomials, are popular choices for approximating smooth 
functions on finite intervals due to their spectral convergence [38]. In what follows we restrict our discussion to Legendre 
polynomials; initial tests conducted with Chebyshev polynomials did not lead to any qualitative differences in the numerical 
results.

In general it will be more computationally expensive to obtain accurate results in the small σ regime close to the de-
terministic dynamics, where the integral kernel fσ in Eq. (7) undergoes a singular perturbation. As an alternative approach, 
we will therefore consider Gaussian radial basis functions of the form

φl(pk) = exp

(
− (pk − pl)

2

2σ 2
2

)
, l = 1, ..., N + 1, (16)

for given pk , where k = 1, ..., N + 1 and σ2 is as before. The potential appeal of this choice of basis stems from the fact that 
directionally uncertain (Gaussian distributed) boundary conditions can be represented exactly in this basis, see Sect. 4, and 
therefore it may be possible to achieve reasonable accuracy for small σ2 values relatively efficiently. In addition, the inter-
polation of smooth functions with Gaussian radial basis functions may also exhibit spectral convergence [39]. Furthermore, 
the interpolation matrix K for the Gaussian radial basis functions is symmetric and positive definite providing a unique so-
lution. However, the local interpolation matrix � (15) is numerically ill-conditioned and hence preconditioning is required, 
particularly for high orders of approximation and/or large values of σ2 ([39], Ch. 2). We address this issue in the following 
section.

3.3. Preconditioning for Gaussian radial basis functions

In this section we discuss how we construct a preconditioning matrix for the Gaussian radial basis functions introduced 
in the last section. We define a preconditioning matrix P in the same block form as the interpolation matrix K . In this case 
we label the n non-zero blocks of size (N + 1) × (N + 1) located along the diagonal as M , that is
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Algorithm 1 Construct the preconditioning matrix M .

1: Perform the eigen-decomposition � = X�X−1 and initialise M(0) = I .
2: Find λmax = max{�} and λmin = min{�}.
3: Solve

1 − (1 − λmax)
2κ

1 − (1 − λmin)2κ =
√

λmax

λmin

to find the optimal positive integer value for κ .
4: for l = 1, ..., κ do
5: Compute M(l) = M(l−1)(2I − �M(l−1)).
6: end for
7: Update the preconditioner M(κ) ← X M(κ) X−1.
8: return M

P =

⎡
⎢⎢⎢⎣

M 0 · · · 0
0 M · · · 0
...

...
. . .

...

0 0 · · · M

⎤
⎥⎥⎥⎦ .

The preconditioned linear system is written as

(K − L)P ρ̃ = K P ρ̃0,

where the solution of the original system (14) can be recovered via ρ = P ρ̃ and likewise, ρ0 = P ρ̃0. We note that due to 
the sparse repeated block structure of both K and P , the preconditioning can be performed most efficiently by working 
locally and block-wise. To do this we instead solve the equivalent system

(I − L̃)ρ̃ = ρ̃0,

with the modified transfer operator matrix L̃ = (K P )−1L P . The block structure of K and P means that the matrix L̃ may be 
assembled from n2 sub-blocks of size (N + 1) × (N + 1) by pre-multiplying the corresponding sub-block of L by (�M)−1

and post-multiplying by M , meaning that the global matrices K and P are never formed.
We now follow the approach presented in Ref. [40] and choose M as a truncated Neumann series with an integer 

parameter κ thus:

M := M(κ) =
2κ−1∑
m=0

(I − �)m. (17)

Notice that if κ = 0 then M = I and in the limit when κ → ∞ we obtain M = �−1, where � is given by (15). Neither 
of these limit cases are suitable for the choice of preconditioning. Thus we need to find an optimal value for κ such that 
condition number of the matrix �M approximately coincides with the condition number of the matrix M . This is because 
the matrix P also enters the computation of the matrix system via L̃ = (K P )−1L P and therefore may affect the accuracy. 
The ideal number of iterations κ can be estimated by solving the non-linear equation

1 − (1 − λmax)
2κ

1 − (1 − λmin)2κ =
√

λmax

λmin
,

where λmin, λmax > 0 are the minimal and maximal eigenvalues of the matrix �, respectively. The procedure is listed in 
Algorithm 1, where one eigenvalue decomposition of the matrix � is required to find the optimal κ , while at the same 
time replacing matrix multiplication operations by vector products to obtain the preconditioning matrix M . The appearance 
of 2κ − 1 (rather than simply κ ) as the upper limit of the summation in (17) is a consequence of the fact that we employ 
the accelerated iterative strategy presented in Ref. [40] to form M , see steps 4 to 6 of Algorithm 1. If the same directional 
collocation points are used on each element and the values of c and σ2 are kept constant, then the computation of the 
matrix M is required only once during the preprocessing. Importantly, Algorithm 1 converges only if ‖�‖ < 1 and, in 
general, scaling must therefore be applied before the algorithm can be implemented. For more details see Ref. [40].

4. Implementation and convergence of the collocation method

In this section we study the implementation of the collocation method described above, initially via a simple intuitive 
example, before we proceed with a more detailed convergence study. We perform numerical tests for a rectangular domain 
consisting of the points r = (r1, r2) ∈ (0, a) × (0, 0.25) with an uncertain boundary source
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Fig. 3. Logarithm of the energy density inside a rectangular domain obtained from a deterministic (top left) and uncertain (others) boundary source 
prescribed at the left edge of the rectangle. Top left: exact ray solution when σ1 = σ2 = 0. Others: numerical results when σ1 = 0, σ2 > 0, n = 16 and 
N = 256. Parameter values: ω = 200π , c = 1 and η = 0.01.

ρ0(s, p) = exp
(−p2/(2σ 2

2 )
)
χ{r1(s)=0}(s)√

2πσ 2
2 erf

(
1/(

√
2σ2c)

) , (18)

where χ{r1(s)=0} is used to denote the restriction of the source density to the left hand edge at r1 = 0. In particular, since 
s is used to denote the position coordinate on the boundary parametrised by arc-length, then here s ∈ [0, 2a + 0.5) and 
if we take s = 0 at the origin then χ{r1(s)=0} = 0 unless s ∈ [2a + 0.25, 2a + 0.5) ∪ {0}, where χ{r1(s)=0} = 1. For small σ2, 
then (18) corresponds to a unit boundary density propagating (on average) in the direction p = 0, that is, in the direction 
of the interior unit normal vector at s. For large σ2 it corresponds to randomly directed propagation from the boundary. 
A homogeneous Neumann boundary condition will be assumed over the rest of the boundary �. This problem possesses an 
analytical ray tracing solution for the interior density ρ� when σ → 0, which is given by

ρ�(r) = e−μr1 + e−μ(2a−r1)

1 − e−2μa
. (19)

Here μ = ηω/(2c) is a frequency-dependent dissipation rate with (hysteretic) loss factor η and angular frequency ω. In 
what follows we choose c = 1, a = 0.75, η = 0.01 and ω = 200π unless otherwise specified.

The upper-left plot of Fig. 3 shows the exact ray solution (19), whilst in the other plots we illustrate our numerical 
approximations of the (logarithm of the) interior energy density (5) for different values of σ2 and with σ1 = 0. In the nu-
merical simulations here we used n = 16 spatial collocation points and a Legendre polynomial basis with 257 collocation 
points (N = 256) for the discretisation with respect to the momentum variable. A high degree polynomial approximation in 
momentum is required to accurately model the propagation described by the Gaussian fσ2 , since fσ2 develops an increas-
ingly sharp peak when σ2 becomes very small. We will see in Sect. 4.2 that this situation can be improved to some extent 
by employing a Gaussian radial basis approximation instead.

The effect of taking σ2 > 0 is that the rays then begin to reflect from the upper and lower edges of the rectangle, 
increasing the average total length of a trajectory traversing between the left and right edges and meaning that trajectories 
leaving the left edge boundary source will stay relatively close to the left edge for longer. Since dissipation has been applied 
in the form of an exponential decay factor along the trajectory length, then it is clear why larger values of σ2 lead to faster 
decay of the ray density from left to right and a greater ray density close to the boundary line source on the left; this 
is illustrated by the colour scales in Fig. 3. Note that larger values of σ2 not only increase the spreading of rays from the 
boundary source, but also increase the uncertainty in the direction of each subsequent reflection at the boundary. Fig. 3
therefore demonstrates the transition in the solution behaviour from the deterministic directivity of the upper-left plot, to 
a random reflection model in the lower-right plot.

4.1. Convergence rates for the approximation of the boundary density

In this section we study the convergence properties of the bivariate collocation method detailed above. Equation (3) is 
a Fredholm integral equation of the second kind on the boundary phase-space Q . Hence we can make use of the theory 
presented in Ref. [31] to estimate the convergence rate for our bivariate collocation scheme on polygonal domains �. In 
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Fig. 4. The L2 error of the stationary boundary density ρ versus the number of spatial collocation points n estimated using the difference between the 
solutions computed with n and 2n boundary elements. The results have been computed on a rectangular domain with three different σ1 values and a 
fixed number of collocation points in the momentum discretisation. Parameter values: N = 64, σ2 = 0.1, ω = 200π , c = 1 and η = 0.01. Left: orthogonal 
Legendre polynomial basis approximation in momentum. Right: Gaussian radial basis approximation in momentum.

particular, since the PDF fσ (7) is bounded on Q for fixed σ1, σ2 > 0, then the operator Lσ : L2(Q ) → L2(Q ) is bounded. 
Let us denote the multivariate collocation projection operator as Pn , where n = (n, N). Under the assumptions that I −Lσ

is invertible and ‖Lσ − PnLσ ‖ → 0 as n, N → ∞, then based on Theorem 3.1.1 of Ref. [31] we can expect the solution to 
the discretised problem (14) to converge at the same rate as the projection

(Pnρ)(s, p) =
n∑

j=1

N+1∑
l=1

ρ j,lb j(s)φl(p) (20)

converges to the true solution ρ ∈ L2(Q ). The norm notation here refers to the L2(Q ) → L2(Q ) operator norm. Hence 
for our combined space and momentum discretisation scheme we could expect first order convergence with respect to 
the mid-point collocated piecewise constant approximation in space [31] and potentially even spectral convergence for the 
approximations in momentum described in Sect. 3.2. We note that the invertibility assumption will follow via a Neumann 
series argument provided that ‖Lσ ‖ < 1, which is true given a large enough dissipation/damping factor μ > 0. More details 
on the necessary assumptions are provided in Appendix A. We note also that the theory in Sect. 3.6.1 of Ref. [31] may be 
applied to study the conditioning of the matrix equation (14). In particular, an upper bound on the condition number for 
the collocation method is established, which includes a factor of the matrix norm of the inverse interpolation matrix K −1. 
It is this term that can grow large for the Gaussian radial basis and thus necessitates a preconditioning strategy, such as the 
one detailed in Sect. 3.3. In the remainder of this section we investigate the convergence rates for the proposed phase-space 
collocation method in practice, through a series of numerical experiments.

We first study the convergence of the spatial discretisation in isolation with a fixed truncation at N = 64 for the mo-
mentum basis using both Legendre polynomials and Gaussian radial basis functions. We consider the rectangular domain 
from before with the uncertain boundary source (18) for σ2 = 0.1 and three different values of σ1, including σ1 = 0 when 
the convergence theory from Ref. [31] no longer applies. Fig. 4 shows the L2 norm of the difference between the stationary 
boundary density solutions ρ computed with n and 2n boundary elements, for a range of values of n.

The error plots in Fig. 4 indicate that the collocation method in space is converging approximately linearly as expected for 
the piecewise constant basis approximation. We observe a similar rate of convergence for both choices of momentum basis, 
but with lower error values for the Gaussian basis. Note that there is also only a very minor slow down in the convergence 
rate for the case when σ1 = 0 and the error values themselves are almost indistinguishable from the case when σ1 = 0.01. 
This suggests that the predicted linear convergence rates also hold even for σ1 = 0 when fσ becomes unbounded. The 
lowest errors are found in the case when σ1 = 0.1. This is most likely due to the higher level of uncertainty in the spatial 
propagation leading to a more even spreading of the rays across the domain, and hence the ray density exhibits a slower 
spatial variation that can be better represented by the piecewise constant basis approximation.

We now consider the convergence of the direction approximation by repeating the previous set of numerical experiments 
for a fixed number of spatial collocation points n = 16. Fig. 5 shows the L2 norm of the difference between the stationary 
boundary density solutions ρ computed with N + 1 and 2N + 1 collocation points in direction, for a range of values of N . 
We perform the study for both the Legendre polynomial basis and the Gaussian radial basis, as before.

The error plots in Fig. 5 indicate that the collocation method in direction is converging spectrally as we conjectured 
for the two choices of basis expansion considered. For the Gaussian radial basis approximation, the errors for smaller 
numbers of collocation points are lower compared to the corresponding errors using Legendre basis functions. This can 
be attributed to the fact that boundary source (18) for this example is exactly represented by the Gaussian radial basis 
functions (16) when pl = 0. On the other hand, the numerical simulations using Gaussian radial basis functions do not 
converge to machine precision due to the presence of conditioning errors, despite the preconditioning process. The error 
values do however reach single precision, which is sufficient for most engineering applications. A further interesting feature 
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Fig. 5. The L2 error of the stationary boundary density ρ versus the number of collocation points for the momentum discretisation estimated using the 
difference between the solutions computed with N + 1 and 2N + 1 collocation points. Results have been computed on a rectangular domain with three 
different σ1 values and a fixed number of spatial collocation points. Parameter values: n = 16, σ2 = 0.1, ω = 200π , c = 1 and η = 0.01. Left: orthogonal 
Legendre polynomial basis approximation in momentum. Right: Gaussian radial basis approximation in momentum.

of the results for the Gaussian basis is the increase in the error between N = 8 and N = 16. This can also be identified 
as a conditioning error since for small N , the conditioning of the system is relatively good and the optimal value of the 
parameter κ is zero for N = 4, 8, meaning that no preconditioning is necessary. For N > 8, the conditioning becomes worse 
and leads to an increase in the error that is reduced, but not fully eradicated, by the preconditioning. Note that once again, 
the convergence rates appear to be independent of the σ1 values. In the next section we consider the behaviour of the 
collocation discretisation as σ → 0 with reference to the exact solution when σ = 0.

4.2. Convergence to the interior density when σ → 0

In the previous section we demonstrated the convergence properties of the collocation method for the boundary den-
sity ρ . In this section we study convergence to the exact ray tracing solution (19) for the interior density ρ� when σ → 0, 
and compare the Legendre and Gaussian basis approximations. The convergence properties for ρ�, which is computed 
from the boundary density ρ via equation (5), are considered at three arbitrarily chosen interior points: A = (0.1, 0.2), 
B = (0.4, 0.1) and C = (0.6, 0.15). Note that due to its one-dimensional nature, the exact solution is constant along the left 
and right edges of the rectangle and zero along the upper and lower boundary edges. Hence we employ a relatively coarse 
boundary element mesh with only n = 8 piecewise constant boundary elements. In addition, we set σ1 = 0 and consider 
only the limit σ2 → 0.

Fig. 6 shows the discrepancy between the numerical solution for the interior density with different values of σ2 > 0
and the exact solution for σ = 0. We note that this discrepancy is computed as a relative error for different numbers 
of collocation points N for the momentum discretisation relative to the exact solution by taking the absolute value of 
the discrepancy and dividing by the absolute value of the exact solution. In the left column we show the results for the 
Legendre basis approximation, while in the right column we show the results for the Gaussian radial basis approximation. 
The discrepancy plots for fixed values of σ2 will eventually flatten as the number of collocation points is increased, and 
the difference between the numerical and analytical solutions then remains approximately constant for all larger values 
of N . The value of this constant reflects the true discrepancy between the exact solution for σ2 = 0 and the numerical 
solution for σ2 > 0. Note that for the smaller choices of σ2, the relative errors (or discrepancies) are still several orders of 
magnitude smaller than those typically attained using the corresponding deterministic transfer operator model with σ2 = 0; 
see Ref. [41] for a three-dimensional realisation of this same (effectively one-dimensional) example. It should be noted that 
in this case the corresponding boundary transfer operator is non-compact and the corresponding convergence theory is far 
less developed.

From Fig. 6 we notice that the discrepancies for large values of N appear to be almost identical for both choices of the 
basis functions. We would expect this to be the case since both basis approximations should converge to the same numerical 
solution for each σ2 > 0. We also observe that the numerical solutions are converging to the exact ray tracing solution (19)
when σ → 0 since the values of the large N discrepancies are decreasing as σ2 → 0. We notice that the gradual convergence 
for small N values often becomes a sharp drop as N is increased, again suggesting a super-algebraic convergence rate. 
However, it is also clear that for smaller values of σ2 we must employ more collocation points to observe this convergence. 
For small N we find that the discrepancies are much lower for the Gaussian radial basis approximation, even by as much as 
five orders of magnitude when N = 4. The small N errors for the Gaussian basis are particularly impressive for the smaller 
σ2 values where the Legendre basis performs relatively badly. The performance of the Gaussian basis can be attributed to 
the fact that the Gaussian radial basis functions represent the uncertain boundary source term (18) exactly when pl = 0 in 
equation (16), including the sharp peak when σ2 is small. This leads to solutions with acceptable engineering level accuracy 
using relatively few basis functions since one obtains convergence to the numerical solution for σ2 > 0 with small N (this 
can be observed by comparison to the minimal discrepancy provided by the Legendre basis for a particular σ2 > 0 and 
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Fig. 6. Convergence of the interior density to the exact ray tracing solution with σ = 0 at three points A = (0.1, 0.2), B = (0.4, 0.1) and C = (0.6, 0.15). Note 
that for the discrepancy between the numerical solution and the exact solution to decay we need to both decrease σ2 and increase N . Left: Legendre basis 
approximation in momentum. Right: Gaussian radial basis approximation in momentum. Parameter values: n = 8, σ1 = 0, ω = 200π , c = 1 and η = 0.01.

large N). On the other hand, as σ2 is decreased and the peak at pk = 0 increases in height and narrows in width, the low 
order polynomial interpolation provided by the Legendre basis for small N will perform progressively worse.

In summary, both choices of basis approximation in the direction variable can lead to spectral convergence and a 
Gaussian radial basis will be beneficial for source dominated problems with relatively simple directional dependence. In 
particular, the success of the Gaussian radial basis here is a direct consequence of the fact that it can exactly represent the 
source density (18) at very low truncation order. Whilst this could be viewed as a limitation of the proposed approach to 
source densities of the form (18), the principle on which the approach is based may be generalised: a basis that can exactly 
represent the source density at low order can potentially lead to a more efficient discretisation method. Furthermore, such 
an approach may be particularly appealing when the source is not efficiently represented by a conventional orthogonal 
polynomial basis, which is the case for the Gaussian source here when σ2 is very small. However, due to the simpler im-
plementation procedure, in the sequel we employ the Legendre polynomial basis for problems with point sources in more 
complex and irregular multi-domains where there will be no clear advantage in employing the Gaussian basis.

5. Numerical results for multi-domain problems

In this section we compute the acoustic energy density distribution given by our stochastic propagation model in a series 
of three coupled two-dimensional domains taken from Refs. [9,42]. An acoustic velocity potential point source is used as the 
excitation term for these problems, which gives rise to a corresponding phase-space energy density source on the boundary 
ρ0 given by [10]
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Table 1
Vertex and source point coordinates of the three coupled domain configurations. The interface be-
tween the sub-domains �1 (on the left) and �2 (on the right) is taken to be the line r1 = 0.

Configuration A Configuration B Configuration C

Vertex r1 r2 r1 r2 r1 r2

1 1.4564 0.40381 1.4564 0.40381 1.4564 0.40381
2 0.87 1.1027 0.87 1.1027 0.87 1.1027
3 0.0 0.6993 0.0 0.7993 0.0 0.9493
4 −0.83 1.1720 −1.503 0.7993 −0.83 1.1720
5 −1.048 0.3582 −1.503 0.1993 −1.048 0.3582
6 −0.28 0.0 0.0 0.1993 −0.28 0.0
7 0.0 0.2993 0.69 −0.1328 0.0 0.0493
8 0.69 −0.1328 0.69 −0.1328

Source −0.4 0.5 −1.4 0.4993 −0.4 0.5

ρ0(s, p; r0) = ωρ f cos(ϑ(s, r0))e−μ|rs−r0|

8π |rs − r0| δ(p − p0), (21)

where r0 is the position vector of the source point, ρ f is the density of the acoustic medium and ϑ(s, r0) is minus the angle 
that the vector from r0 ∈ � to s ∈ � makes with the interior unit normal vector at s. In addition, rs is the position vector 
of the point s ∈ �, p0 = sin(ϑ(s, r0))/c is the tangential component of the slowness vector (at s ∈ �) for the ray trajectory 
arriving from the source point r0 and μ = ηω/(2c) is the (viscous) damping factor as before.

The formula (21) assumes that the source has been transported deterministically from the source point to the boundary. 
If we instead transport the source to the boundary via propagation according to the probability density function (7) then 
we obtain

ρ0(s, p; r0) = ωρ f

8π

∫
�

e−μ|rt−r0|

|rt − r0| cos(ϑ(t, r0)) fσ (sε(t), pε(t))dt, (22)

where sε = s − t , pε = p − p0(t) and p0(t) = sin(ϑ(t, r0))/c. Note that in the special case when σ1 → 0, then the formula 
(22) reduces to

ρ0(s, p; r0) = ωρ f cos(ϑ(s, r0))e−μ|rs−r0|

8π |rs − r0|

exp

(
− (p − p0)

2

2σ 2
2

)
√

2πσ2ψσ2(p−, p+)
,

and it is clear that the original expression (21) is returned in the limit σ2 → 0.
We apply the point source expression (22) as our initial boundary density in the subsequent numerical studies. The 

vertices and source point coordinates for the three configurations considered are listed in Table 1. All three configurations, 
together with their corresponding numerical results, can be seen in Figs. 7 to 9. In each case we investigate the energy 
ratio between the left sub-domain �1 and the right sub-domain �2, and in particular its dependence on the frequency 
f = ω/(2π)Hz, as well as the values taken for the uncertainty parameters σ . The total energy in each sub-domain is given 
by

Pα =
∫

�α

ρ�(r)dr for α = 1,2,

where ρ� is the interior density (5). Thus the ratio of the total energies in each sub-domain is given by P1/P2. We note 
that the energy ratio between a pair of sub-domains is often a quantity of interest for high-frequency noise and vibration 
simulations in built-up structures since it gives a simple indicator for the extent to which the energy has spread between 
two given subdomains and correspondingly the strength of their coupling. Indeed, for SEA based models where a weak 
coupling assumption is implicit, then such ratios may be used to test the validity of the SEA model itself [9]. We also note 
that in SEA each subdomain (or subsystem) is modelled using only a single degree of freedom, that is the average vibrational 
or acoustic energy, and the detailed spatial resolution of the energy distribution given by the ray approach presented here 
is not available. Therefore, the energy ratios computed in this section may be used for a direct comparison between our ray 
based model and SEA, see for example Refs. [9,42] for an SEA analysis of the coupled domain configurations studied here.

In Fig. 7 we show the energy ratio in configuration A for four choices of σ with σ1 = σ2. For each choice of σ we refine 
the discretisation until we observe convergence in the energy ratio across the full range of frequencies considered. Here 
� indicates the minimal edge length present in each configuration and the average size of each boundary element for the 
spatial discretisation is quoted in the figure legend in terms of a fraction of �. In addition to the energy ratio plots, we also 
include plots of the logarithm of the interior density. All sub-plots in Fig. 7 use the same colour scale as indicated by the 
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Fig. 7. Energy ratio P1/P2 in configuration A for different values of the frequency f = ω/(2π) and σ . Parameter values are the same in both sub-domains: 
� = 0.4, η = 0.01, c1 = c2 = 1 and ρ f = ω−2.

Fig. 8. Energy ratio P1/P2 in configuration B for different values of the frequency f = ω/(2π) and σ . Parameter values are the same in both sub-domains: 
� = 0.6, η = 0.01, c1 = c2 = 1 and ρ f = ω−2.

single colour bar on the right. The interior energy density plots are given for the case of f = 70 Hz only and for the most 
accurate discretisation choice listed in the figure legend.

For the numerical study of configuration A shown in Fig. 7 we choose c1 = c2 = 1, where cα denotes the propagation 
speed in �α for α = 1, 2. Hence the transmission and reflection probabilities at the common edge are 1 and 0, respectively. 
However, for the larger values of σ considered, the interface acts as a ray scatterer due to uncertainties in both the position 
and the transmission angles. It is clear that in the simulations with σ 2

1 = σ 2
2 = 0.001, then the dynamics are very close to 

the deterministic case since we can identify a shadow zone in the lower part of �2. This shadowing effect is caused by 
the relative positions of the source point and the common interface, together with high damping when f = 70 Hz. The 
shadow zone disappears when the values of σ1 and σ2 are increased, as shown in the lower plots of Fig. 7. We do not 
observe significant differences between the energy ratios computed with different values of σ . This is in contrast with what 
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Fig. 9. Energy ratio P1/P2 in configuration C for different values of the frequency f = ω/(2π) and σ . Parameter values: � = 0.2843, η = 0.01 and ρ f
α =

(cα/ω)2 for α = 1, 2.

we observe for configuration B shown in Fig. 8, where the main difference is that �1 now has a regular geometry with 
integrable ray dynamics [43].

In Fig. 8 we illustrate the numerical results for the energy ratios in configuration B . Once again we choose c1 = c2 = 1, 
but in this case we have chosen σ1 = 0 to compare directly with the results of Fig. 3. Recall that in Fig. 3 we observed 
increased energy levels to the left and decreased energy levels to the right of the rectangular domain for larger σ2 values. 
This is exactly the same result that we observe in Fig. 8, since the energy density in �2 is lower in the right sub-plots 
than the left sub-plots. For the upper sub-plots this effect can be observed via the higher energy ratios given when σ 2

2 = 1
compared with σ 2

2 = 0.01.
For our final numerical study, shown in Fig. 9, we consider configuration C and two scenarios. In the left column we 

show the results of simulations with c1 = c2 = 1 and do not observe any significant qualitative differences compared to the 
results presented in Fig. 7. Note that the increased length of the common interface has led to the loss of the shadowing 
area shown in Fig. 7, and also (unsurprisingly) resulted in lower energy ratios. In the right column of Fig. 9 we take c1 = 0.5
and c2 = 1, which leads to transmission probabilities defined by [35]

λα, β(ϑ) = 4zα zβ cos(ϑ ′) cos(ϑ)

(zα cos(ϑ) + zβ cos(ϑ ′))2
, (23)

for α, β = 1, 2, α 
= β . Here zα is the specific acoustic impedance (i.e. the product of fluid density ρ f and the propagation 
speed cα ) in �α . Also, ϑ is the incoming angle of a ray arriving at the interface with respect to the normal vector (of the 
interface edge), and ϑ ′ is the refracted angle of the transmitted ray given via Snell’s Law: cβ sin(ϑ ′) = cα sin(ϑ). The dis-
continuous change of propagation speed has a significant effect on the energy ratio values and we can observe a significant 
reduction of the total energy in �2. We note that we do not observe significant differences in the energy ratio values for 
different values of σ in either of the two scenarios.

6. Conclusions

We have presented a boundary integral model for the stochastic propagation of phase-space densities in both single and 
multi-domain problems. The collocation method has been applied in order to perform numerical experiments using piece-
wise constant basis functions in space and both Gaussian radial basis functions and Legendre polynomial basis functions in 
the direction variable. We have demonstrated the convergence properties of the collocation method and shown that they 
correspond to estimates that could be expected from the theory for second-kind integral equations. We have also studied 
convergence of the numerical scheme to an exact solution, which is available in the deterministic limit, and obtained better 
accuracy (with small fixed values of σ2) than typically arises using a deterministic transfer operator based model. Gaussian 
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radial basis functions have been shown to give an advantageous level of accuracy with very low numbers of basis functions 
for direction dominated problems, but this may be at the sacrifice of greater accuracy for large numbers of basis functions 
due to poor conditioning. The extension of the method to multi-domains is considered, together with a demonstration of 
the numerical results for three different coupled domain configurations. In this case we observe a greater sensitivity to the 
parameters σ in the PDF (7) when the geometry is regular with integrable ray dynamics and a lower sensitivity for irregular 
domains with more complex ray dynamics. That is, a careful treatment of uncertainties in ray propagation models is most 
important when the problem under consideration includes a regular structure or acoustic cavity.
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Appendix A. Convergence in L2( Q )

In this appendix we discuss convergence theory for second-kind Fredholm integral equations in L2(Q ), which can be 
applied directly to equation (3). In particular, we discuss the two assumptions required to apply Theorem 3.1.1 of Ref. [31], 
which tells us that the convergence rate for the collocation method solution to the integral equation (3) is the same as the 
convergence rate for the finite dimensional basis approximation of ρ .

Consider the boundary integral equation

(I − B)g = g0, (A.1)

posed on the boundary Q of a finite (phase-space) domain D , where B : L2(Q ) → L2(Q ) is an integral operator of the form

(Bg)(X) :=
∫
Q

b(X, Y )g(Y ) dY ,

I is the identity operator, and g0 ∈ L2(Q ) is a given boundary source term. The kernel function b is known and the goal is 
to solve (A.1) for g ∈ L2(Q ).

In the case of the integral equation (3), the kernel function b is a weighted and truncated Gaussian and so is bounded. 
Unfortunately since

b(X, Y ) = w(X, Y ) fσ (X − ϕ(Y ))

and the boundary map ϕ(Y ) undergoes a finite jump in the momentum component at corners of a polygon, then the 
function b(X, Y ) will be discontinuous as a function of Y . However, the following property of b is potentially beneficial for 
a convergence analysis in L2(Q ).

Definition 1. The kernel function b : Q × Q → C is called a Hilbert–Schmidt kernel if∫
Q

∫
Q

|b(X, Y )|2 dXdY < ∞.

A boundary integral operator B with a Hilbert–Schmidt kernel function is called a Hilbert–Schmidt operator.

It is easy to check that

0 ≤ w(X, Y ) fσ (X − ϕ(Y )) ≤ (2πσ1σ2ψσ1(X)ψσ2(X))−1

for all X, Y ∈ Q = � × (−c−1, c−1) and so it is straightforward to generate a finite upper bound for the integral in Defini-
tion 1. An important property of Hilbert–Schmidt operators is that they are compact. If for g ∈ L2(Q ) we additionally had 
that (Pn g) → g as n, N → ∞ then we could invoke ([31], Lemma 3.1.2), which gives ‖B −PnB‖ = ‖Lσ −PnLσ ‖ → 0 as n, 
N → ∞. Unfortunately there exist g ∈ L2(Q ) for which the projection (20) will not converge and we require more regularity 
than the Banach space L2(Q ) provides. We therefore merely conjecture that ‖Lσ −PnLσ ‖ → 0 as n, N → ∞ and note that 
the development of a more suitable function space framework for this analysis is an area for future work.

We now discuss the invertibility of the operator (I − B). We note that if the L2(Q ) → L2(Q ) operator norm ‖B‖ < 1
then the inverse is given by the Neumann series

(I − B)−1 =
∞∑

B j
j=0
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and is bounded by ‖(I −B)−1‖ ≤ (1 −‖B‖)−1. See for example [44], Theorem 2.14. It remains to justify that for the integral 
equation (3) we do indeed have ‖B‖ = ‖Lσ ‖ < 1. We make use of the property

‖Lσ ‖2 ≤
∫
Q

∫
Q

(w(X, Y ) fσ (X − ϕ(Y )))2 dY dX .

For single domain problems, the weight function w takes the form of a damping term w(X, Y ) = exp(−μd(ϕs(t), t)). Since 
0 < fσ (X − ϕ(Y )) ≤ (2πσ1σ2ψσ1 (X)ψσ2 (X))−1 then

‖Lσ ‖2 ≤ 1

(2πσ1σ2)2

∫
Q

1

ψσ1(X)2ψσ2(X)2

∫
Q

e−2μd(ϕs(t),t)dY dX .

It is clear from their definition that the scaling functions ψσ1 , ψσ2 are bounded below by constants 0 < m1, m2 < 1. We can 
therefore control the norm ‖Lσ ‖ using the decay rate parameter μ and hence ‖Lσ ‖ < 1 can be assured for large enough μ.
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[21] P. Cvitanović, C. Dettmann, R. Mainieri, G. Vattay, Trace formulas for stochastic evolution operators: weak noise perturbation theory, J. Stat. Phys. 93 

(1998) 981–999.
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[23] P. Cvitanović, N. Søndergaard, G. Palla, G. Vattay, C. Dettmann, Spectrum of stochastic evolution operators: local matrix representation approach, Phys. 

Rev. E 60 (1999) 3936–3941.
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