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ABSTRACT 24 

Understanding brain signals as an outcome of brain’s information processing is a 25 

challenge for the neuroscience and neuroengineering community. Rodents sense and explore the 26 

environment through whisking. The local field potentials (LFPs) recorded from the barrel 27 

columns of the rat somatosensory cortex (S1) during whisking provide information about the 28 

tactile information processing pathway. Particularly when using large-scale high-resolution 29 

neuronal probes, during each experiment many single LFPs are recorded as an outcome of 30 

underlying neuronal network activation and averaged to extract information. However, single 31 

LFP signals are frequently very different from each other and extracting information provided by 32 

their shape is a useful way to better decode information transmitted by the network. In this work, 33 

we propose an automated method capable of classifying these signals based on their shapes. We 34 

used template matching approach to recognize single LFPs and extracted the contour information 35 

from the recognized signal to generate a feature matrix, which is then classified using the 36 

intelligent K–means clustering. As an application example, shape specific information (e.g., 37 

latency, and amplitude) of LFPs evoked in the rat somatosensory barrel cortex and used in 38 

decoding the rat whiskers information processing pathway is provided by the method.  39 

40 

41 

42 
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1. Introduction46 

During the last decade many researchers took their interest in deciphering brain activity 47 

as an outcome of the activation of underlying neuronal networks. To do so, they have developed 48 

high resolution neuronal probes capable of providing unprecedented information about neuronal 49 

circuits [1]. These recording tools deliver huge amount of recordings containing spiking activity 50 

as well as field potentials generated in the brain area under investigation. To understand the 51 

signal propagation among different cortical layers and the information processing pathways, 52 

scientists have relied on the local field potentials (LFPs). Due to the fact that the scientists use 53 

stimulus–locked field potentials to assess and understand the effect of stimuli on a brain area(s), 54 

the LFPs provide a ‘fingerprint’ of the stimuli’s effect on activity propagation in neuronal 55 

networks of the brain region under study [2]. The conventional way of analyzing these LFPs is to 56 

record for a period of time and then obtain a stimulus–locked average. However, experimental 57 

studies have shown that the individual information provided by a single sweep may disappear if 58 

one considers an average over several runs under the same stimulus conditions [3]. Furthermore, 59 

to understand certain issues of the brain (for example, signal processing pathway and cortical 60 

layer activation order [8]) and for certain operations (for example, current source density analysis) 61 

signal shape plays an important role [4]. It is thus implied that different shapes in the single 62 

sweep signals denote different neuronal network activity. Therefore, a shape based classification 63 

method is required to extract different LFP shapes present in a pool of single LFPs to decipher 64 

the neuronal network activity from the LFPs. A wide range of research has been conducted in 65 

detection and sorting of neuronal spikes [5], but till date there is no method capable of 66 

performing similar sorting for the single LFPs. 67 
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In this work, we present a method for single LFPs classification based on the shape of the 68 

signals. This method exploits information about the signal contour to perform the classification. 69 

The terms classification, signal sorting and clustering will be used synonymously throughout the 70 

text.  71 

As the method uses the shape information of the LFPs for the classification, it is worth 72 

taking a look to the contour characteristics of the signals. The LFPs recorded from a barrel 73 

column of the rat S1 cortex by stimulating the corresponding whisker can be differentiated by 74 

their specific characteristics based on the depth or layer they are recorded from, thanks to the 75 

existing research on the rat barrel cortex. Figure 1 shows a depth profile during one of our 76 

experiments. The signals were recorded equidistantly at 90 μm pitch from the cortical surface to 77 

deep cortical layer, but only representative signals from each layer are shown. 78 

As illustrated by Ahrens and Kleinfeld [6] and Kublik [7], the cortical LFPs can be 79 

characterized by four consecutive events. Event 1 (E1): a small positive / negative peak; event 2 80 

(E2): a dominant negative peak; event 3 (E3): a slow positive peak; and event 4 (E4): a slow 81 

negative peak. Usually in upper cortical layers (I, II) the signals are expected to have positive E1 82 

followed by the E2, E3 and E4. In the signals recorded from the middle layers (III, IV, and V) 83 

the E1 is absent and they are expected to have the E2, followed by the E3 and E4. In deeper brain 84 

cortex (layer VI), the E2 becomes smaller and usually gets divided into two smaller negative 85 

peaks (negative E1, and E2), followed by E3 and E4 [8]. These characteristics of the signals and 86 

with the a priori information about the recording position are used in generation of the template. 87 

The single signal sorting is done in four steps: (1) smoothing of single LFPs within 88 

individual recording sweeps; (2) template generation; (3) single LFP recognition through 89 
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template matching and (4) clustering of recognized single signals. The smoothing is performed 90 

using nonlinear least square estimation to remove the spatial oscillations and noise in the single 91 

LFPs. Once the signals are estimated, for each signal the starting and end of the response is 92 

determined as the stimulus–onset and end of signal, respectively. An average of the response part 93 

is considered as a template to be used for signal recognition. This method matches the contour of 94 

the template for recognition of the single signals which is compared to each of the single LFP’s 95 

contour with a predefined boundary condition. If the single LFP falls within the boundary 96 

condition, the single signal is considered to be recognized. Once the single LFP recognition is 97 

over, intelligent K–means clustering is applied on the recognized LFPs to classify them 98 

according to their shapes. The classified or clustered single LFPs are then locally averaged. In 99 

agreement with previously reported results [9] averaged local LFPs show different shape and 100 

amplitude characterizing those signals. These parameters provide insights about underlying 101 

neuronal network activity and on the whiskers signal processing pathways. However, clustered 102 

averages of the single LFPs revealed differences in event latencies and amplitudes, thus 103 

demonstrating differentiated network activity within the same cortical area at different times but 104 

after the same stimulus. 105 

2. Materials and Methods106 

I. Clustering Method107 

A. Template Generation108 

The first step of the template generation is smoothing. As the single LFPs contain 109 

spontaneous neural oscillations and noise, it is often difficult to have precise information about 110 

the individual signal events. Thus, removal of oscillations and noise is required. In case of spike 111 
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signals detection it would be possible to use a high pass filter to get rid of slow oscillations, but 112 

as our signals contain mainly LFPs (in the range of 1 to 100 Hz) using a simple filter will distort 113 

the response. Therefore, we removed oscillations and noise through smoothing / estimation using 114 

the Gauss–Newton based nonlinear least square method. 115 

To estimate the single sweep signals we considered a generalized measurement error 116 

based model (eq. 1).  117 

118 

(1) 119 

where the model parameter, x* = [x*1,x*2, …, x*M]
T
 is a vector and t is the time, with k=1,…,N120 

and N being the total data points present in a single sweep signal. As per this model, the recorded 121 

signal at time tk is an integrated sum of the model’s response (yk) and the measurement error (νk), 122 

under the assumption that the measurement error is additive, zero mean and Gaussian in 123 

distribution. It is further assumed that time is the only independent variable and the 124 

measurements are done precisely at known times, tk. 125 

The estimation parameter vector is calculated based on the minimization of the prediction 126 

error, e(x*). When the true value of x* is unknown, a generic value of x* is used that minimizes 127 

the difference between the data vector and the model prediction for that particular value of x*, 128 

i.e., e(x*) = x – g(t, x*). The optimal x* value is chosen iteratively based on the smallest129 

possible value of e(x*). The goodness of the chosen x* value is thus given by the Euclidean 130 

norm of a generic vector R = [r1, …, rN]
T
 and is given by:131 
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132 

And the weighted Euclidean norm is given by: 133 

134 

where Φ is defined as a positive square matrix of N × N dimension. 135 

If the above formalism of parameter estimation fails to provide satisfactory smoothing, a 136 

non–linear least square method is used, which is more effective, but computationally expensive. 137 

This validation is done through detection of the prestimulus part of a signal and comparing the 138 

standard deviation before and after smoothing. It has been empirically found that if the 139 

difference of standard deviations between pre- and post-smoothing is more than half of the 140 

standard deviation of the original signal, a more sophisticated smoothing technique is required.  141 

From the definition of least square [10], for a given vector function  with 142 

, we want to minimize the norm of the function  or equivalently find: 143 

(2) 144 

Where x* is a local minimizer for F(x) meaning that for a set of arguments x*, the F(x) is kept 145 

minimal within a range δ, with δ being a small positive number. 146 

(3)147 
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Now adding a weight function (the covariance matrix of the prediction error, ) to eq. 3 148 

and rewriting the model of eq. 1 to eq. 4 to calculate the prediction error, an analytical solution 149 

of the problem (in eq. 5) can be obtained. 150 

151 

(4) 152 

(5) 153 

where y is the model prediction with x* set of parameters and x is the actual measured values. 154 

To solve the nonlinearity, the initial value at  is assigned to the parameter vector. 155 

Then, the model is linearized around the initial value using the first order Taylor’s expansion. 156 

Thus the problem can be represented by eq. 6. 157 

(6) 158 

where P is a partial derivative matrix of N ×  M size with predicted values using the initial 159 

condition ( ). 160 

Now, the linear formula can be used to estimate the parameters as in eq. 7 and a new 161 

parameter vector is obtained by eq. 8. This iterative process is repeated until the cost function 162 

stabilizes or falls below a threshold. 163 

(7) 164 

(8)165 
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The estimated signals are scanned for occurrence of the aforementioned events. In usual 166 

cases, the stimulus–onset defines the starting point and the end of response defines the end of the 167 

template. As all the signals don’t have the same end of response, signals are zero–padded and 168 

averaged to obtain a template. 169 

B. Single Sweep Recognition170 

Once the template is generated, the contour of the template is used to recognize the single 171 

signals. Boundary conditions (lower and upper bounds) are imposed to facilitate the recognition 172 

process and for calculating the boundary conditions. 173 

(9) 174 

where Sw is the zero–padded and truncated single LFPs and Temp is the template. 175 

The upper and lower bounds are calculated using eq. 10 and eq. 11. 176 

(10) 177 

(11) 178 

where a, b are constant; the values of a, b (a = STD(Temp), and b = 3*STD(Temp)) are 179 

determined empirically and STD standing for standard deviation. 180 

A signal is considered as recognized (following the contour of the template), if and only 181 

if all of its data points lie within the range of the boundary conditions.  182 

C. Clustering the Recognized LFPs183 
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Once the single LFP signals are recognized, they are individually scanned for events (E1–184 

E4) that characterize the LFPs. For this event detection purpose we used an in–house algorithm 185 

[8]. These shape characterizing events of the signal recorded from a particular cortical position 186 

are used to form the feature matrix to be clustered. For our clustering algorithm we used a feature 187 

matrix of size 200 × N, i.e., from each single sweep we extracted 200 points related to the events. 188 

However, as the shape information is important for the clustering, these 200 points were not 189 

selected as evenly distributed among the whole signal; rather more points were selected around 190 

the events to represent the signal shape characteristics at a higher resolution. 191 

For our purpose of clustering we used the ‘intelligent K–means method’ of classifying 192 

the feature matrix generated from the recognized LFPs, which is an updated version of the 193 

classical K–means method [11–12].  194 

The K–means method usually is applied to a dataset involving a set of N entities, I, a set 195 

of M features, V, and an entity–to–feature matrix Y=(yiv), where yiv is the value of feature vV at 196 

entity iI. The method produces a partition S={S1, S2,…, SK} of I in K non–overlapping classes 197 

Sk, referred to as clusters, each with a centroid ck=(ckv), an M–dimensional vector in the feature 198 

space (k=1,2,…K). Centroids form set C={c1, c2,…, cK}. The criterion, minimized by the method, 199 

is the within–cluster summary distance to centroids: 200 

(12) 201 

where d is the squared Euclidean distance. 202 

Given K M–dimensional vectors ck as cluster centroids, the algorithm updates clusters Sk 203 

according to the Minimum distance rule: for each entity i in the data table, its distances to all 204 
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centroids are calculated and the entity is assigned to its nearest centroid. Given the clusters Sk, 205 

centroids ck are updated according to the distance d in eq. 12, k=1, 2,…, K. Specifically, ck is 206 

calculated as the vector of within–cluster averages as d in eq. 12 is the squared Euclidean 207 

distance. This process is reiterated until clusters Sk stabilize. 208 

However, this approach has as a severe drawback that the cluster number, K, is required 209 

to be supplied before start of the classification. To overcome this, we adapted the intelligent K–210 

Means (iK–Means) clustering method as proposed in [13]. This iKMeans method uses an 211 

anomalous pattern (AP) to find out the appropriate number of clusters. 212 

The AP algorithm starts from an entity, which is the farthest from the origin, as the initial 213 

centroid c. After that, a one–cluster version of the generic K–Means is used. The current AP 214 

cluster S is defined as the set of all those entities that are closer to c than to the origin, and the 215 

next centroid c is defined as the center of gravity of S. This process is iterated until convergence. 216 

Finally, when the single LFPs are classified into their respective clusters, they are 217 

cluster–wise averaged for further processing. 218 

II. Neurosurgery and Signal Acquisition219 

A. Animal Preparation220 

All procedures followed Italian Ministry of Health Guidelines and were approved by the 221 

Eithical Committee of the University of Padova, Italy. P30–P40 male rats were anesthetized with 222 

an induction mixture of Tiletamine (2 mg/100 g weight) and Xylazine (1.4 g/100 g weight). The 223 

anesthesia level was monitored throughout the experiment by testing eye and hind–limb reflexes, 224 

respiration and checking the absence of whiskers’ spontaneous movements. Whenever necessary, 225 
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additional doses of Tiletamine (0.5 mg/100 g weight) and Xylazine (0.5 g/100 g weight) were 226 

provided.  227 

During the surgery and the recording section, animals were kept on a common stereotaxic 228 

apparatus under a stereomicroscope and fixed by teeth– and ear–bars. The body temperature was 229 

constantly monitored with a rectal probe and maintained at about 37°C using a homeothermic 230 

heating pad. Heart beat was assessed by standard ECG. To expose the cortical area of interest, 231 

anterior–posterior opening in the skin was made along the medial line of the head, starting from 232 

the imaginary eyeline and ending at the neck. While the skin was kept apart using halsted–233 

mosquito hemostats forceps, the connective tissue between skin and skull was gently removed by 234 

means of a bone scraper. Thus, the skull over the right hemisphere was drilled to open a window 235 

in correspondence of the S1 cortex (–1 ÷ –4 AP, +4 ÷ +8 ML) [14]. Meninges were then 236 

carefully cut by means of forceps at coordinates –2.5 AP, +6 LM for the subsequent insertion of 237 

the recording micropipette. 238 

Throughout experiment, the brain was bathed by a standard Kreb’s solution (in mM: 239 

NaCl 120, KCl 1.99, NaHCO3 25.56, KH2PO4 136.09, CaCl2 2, MgSO4 1.2, glucose 11), 240 

constantly oxygenated and warmed at 37° C. At the end of the surgery, contralateral whiskers 241 

were trimmed at about 10 mm from the mystacial pad.  242 

B. Whiskers Stimulation and Recording243 

The recording of LFPs from S1 was performed by means of borosilicate micropipettes (1 244 

M resistance), filled with Kreb’s solution. The pipette was fixed to a micromanipulator at 45°–245 

tilted respect to the vertical axis of the manipulator, thus being inserted perpendicularly to S1 246 
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cortex surface. Figure 2 outlines the various parts of the signal acquisition setup during our 247 

experiment. 248 

LFPs were evoked by single whiskers mechanical stimulation performed with a custom–249 

made speaker that provides dorsal–ventral movements through a connected tube. The speaker 250 

was driven by a waveform generator (Agilent 33250A 80 MHz, Agilent Technologies) providing 251 

1 ms, 10 V square stimuli with 150 ms delay. Each whisker, starting from the posterior group, 252 

was individually inserted into the tube and the corresponding response was checked at –750 m 253 

depth (cortical layer IV), in order to find the most responsive whisker for the selected recording 254 

point in the cortex. The so–called “principal whisker” was then chosen for the recording, and the 255 

evoked LFPs are recorded from all the cortical layers with a 90 m recording pitch. For each 256 

depth, 100 single LFPs with 500 ms duration were recorded at 20 kHz sampling rate. An open 257 

source software, ‘WinWCP’ (Version: 4.1.0) developed by the SIPBS, University of Strathclyde, 258 

UK (http://spider.science.strath.ac.uk/sipbs/software_ses.htm) was used for recording the signals. 259 

3. Results and discussion260 

The method was implemented in MATLAB (Version: 7.9, release: 2009b, website: 261 

http://www.mathworks.com). As the method was designed keeping in mind all kinds of users 262 

(with or without programming experience), an easy to use Graphical User Interface (GUI) was 263 

also included to encapsulate the coding for the non–programming background users. The GUI is 264 

shown in figure 3.  265 

To check the method’s workability it was applied on a number of datasets and the results 266 

were found satisfactory except some exceptional cases, when the signal morphology was 267 

completely different from that of the barrel cortex. As seen in figure 1, each depth profile or 268 
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dataset recorded from an experiment comprised of recordings from about 20 different cortical 269 

positions, and each of them contained as many as 100 single sweep LFPs. In addition, to 270 

demonstrate the distribution of single LFPs in different clusters, we also present clustering 271 

results related to a representative set of single LFPs. However, the usefulness of this method is 272 

evidenced through experimental findings. 273 

In figure 4 we can see the raw single LFPs and their average signal (left) and the 274 

estimated single LFPs and their average signal (right). The arrow indicates the stimulus–onset 275 

which is the starting point of the template. The main reasons behind performing the estimation 276 

are two folds. Firstly, reduction of noise and oscillations without filtering out vital signal 277 

information; secondly, as the single sweep signals contain heavy oscillations, the signal 278 

characteristics (E1–E4) are often hidden. Thus, the smoothing facilitates the recognition of these 279 

events to be used as the basis for generating the feature vector for the iK–means clustering.  280 

After generation of the template, each single sweep signals were truncated to the size of 281 

the template. This was done to facilitate the recognition process as each single sweep signal was 282 

checked for their conformity within the specified bounding conditions. The figure 5 shows the 283 

single LFPs truncated and zero–padded to the size of the template (in blue), the upper and lower 284 

bounds of the template (in green), and the template itself (in red). We can also see the recognized 285 

signals which were within the upper and lower bounds. The classification method provided two 286 

means to perform the signal recognition: Contour Matching, and Matched Filter. The method 287 

was applied on a dataset using both the methods. When compared, the results of the single sweep 288 

recognition varied for both the methods as reported in figure 6. In case of the signals recorded 289 

from the upper cortical layers (layer I and II) the matched filter could recognize more signals, but 290 
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in general the contour matching method provided a better signal recognition considering all the 291 

recording positions. 292 

The N recognized single LFPs, each represented by 200 feature points, generate a feature 293 

matrix of size 200 ×  N. The features of each single sweep were selected based on the detected 294 

events (E1–E4, see Section 1, paragraph 4) in combination with the stimulus–onset and the end 295 

of response. Within the range of these six points 194 more points were selected. To retain more 296 

information regarding the signal shape, relatively more points were selected near the events’ 297 

peaks than in distant locations (in a range of 5 ms from each event’s peak one point every 250 298 

µs was selected). Furthermore, clustering with a feature matrix of size 400 ×  N was also done 299 

and not much difference in terms of signal classification was noticed. This feature matrix was 300 

then classified using the iK–means clustering and the result on a representative dataset is shown 301 

in figure 7. In the figure we can see that the single LFPs were classified as per their shape into 302 

seven different clusters, also, the averages (in red) of each cluster contained significant shape 303 

difference. 304 

To check the automatic and intelligent assignment of the total cluster number by the 305 

method, we tabulated in Table I the recording depths, total number of recognized signals, and 306 

single sweep distribution among different clusters. This table shows that the feature matrix was 307 

well classified into different clusters using the iK–means clustering. 308 

Once the single sweep clusters were formed, the program computed local averages of 309 

each cluster for further processing. Analyses of these local averages (e.g., event latency, and 310 

amplitude calculation) have revealed that the underlying neuronal network generating the signal 311 

may be different even if we are recording signals from the same recording site under the same 312 
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stimulus. Figures 8 and 9 show different latencies and amplitude differences calculated from the 313 

various clusters’ local averages. These differences in latencies and amplitudes clearly specify the 314 

shape variations of among the local averages. 315 

Also, the latencies and amplitudes of E2 in each recognized and clustered single LFPs 316 

were calculated. The mean latencies and amplitudes of the E2 among different clusters showed 317 

variations as seen in figure 10. The variations may as well indicate that the signals were recorded 318 

from neuronal populations of different distance from the recording electrode. As the position of 319 

the recording electrode was fixed, we may conclude that the signals were generated by activation 320 

of different neuronal networks close to the recording electrode.  321 

Basing on these evidences, we can assert that the automated method can cluster the single 322 

sweep LFPs successfully basing on their different shapes. The results on the latency and 323 

amplitude of local averages and individual clusters demonstrate the reliability and usefulness of 324 

the method. 325 

4. Conclusions326 

Through whisking rats perform very fine discrimination of the environment. To better 327 

understand the tactile information processing pathway, scientists frequently rely on LFPs as their 328 

shapes  work as ‘fingerprints’ of the neural network activities near the recording electrode. To 329 

assess multiple networks’ activity at one position, it is necessary to distinguish between the 330 

different shapes of signals recorded at a single recording site. Till date scientists have relied on 331 

single conventional average. Based on previous work and on results presented in this paper, it 332 

can be seen that under the same stimulation condition different signal processing pathways can 333 

get activated within the neuronal networks close to the recording electrode. Our automated 334 
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detection method will therefore facilitate the dissection of real network activity from averaged 335 

responses. This module is a part of the SigMate software package, which will soon be made 336 

available to the research community [15]. 337 

338 
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FIGURE CAPTIONS 385 

Figure 1: Depth profile of LFPs recorded from the E1 barrel column by stimulating the E1 386 

whisker where the different features of the signals can be easily seen. Each LFP shown 387 

here is average of 100 single signals. 388 

Figure 2: Signal acquisition setup showing its different components (top). The stimulus is shown 389 

at the bottom which is used in driving the speaker. 390 

Figure 3: The GUI of the LFP sorting method with its components. The plotted 100 single sweep 391 

LFPs of a recording session give an idea about the varied shapes that may be present in 392 

recordings. 393 

Figure 4: Single LFPs: on left, raw LFPs without smoothing or estimation with average (in red) 394 

and on right, estimated LFPs with average (in red). The arrow shows the stimulus–395 

onset i.e., the starting point of the template. The noise in the raw single LFPs is evident 396 

in the left figure. 397 

Figure 5: The template (in red), the upper and lower bounds (in green), and the single LFPs 398 

truncated to the size of the template (in blue). Also the recognized single signals whose 399 

data points fall within the bounds can be seen.  400 

Figure 6: Comparison of single sweep matching using contour matching method and matched 401 

filter method. 402 

Figure 7: Clustering result using iK–means clustering method. Single LFPs (in blue) and their 403 

respective averages (in red) depict clear differences in the shapes among signals of 404 

different clusters. 405 
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Figure 8: Latency variation among different clusters local averages. Each bar corresponds to a 406 

local average of a cluster and each color corresponds to a recording depth consisting of 407 

a number of clusters. 408 

Figure 9: Amplitude variation among different clusters local averages. 409 

Figure 10: Cluster-wise mean latency (top) and mean amplitude (bottom) of signals recorded 410 

from 720 µm. The error bars indicate the standard deviation. 411 

412 

413 

TABLE CAPTIONS 414 

Table I: Total recognized single LFPs, and single sweep allocation to different clusters. “--” 415 

denotes no clusters. 416 

417 

418 
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Figures: 419 
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Figure 5 441 

442 

443 
444 

445 

446 

Figure 6 447 
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Figure 7 456 
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Figure 9 466 
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Tables: 480 

481 

Table I 482 

483 

Recording 

Depth [µm] 

Recognized 

Single LFPs 

Clusters Numbers 

1 2 3 4 5 6 7 8 9 10 

90 90 5 6 12 11 11 7 8 12 6 12 

180 86 11 17 10 17 18 13 -- -- -- -- 

270 87 8 8 8 11 15 7 4 10 10 6 

360 80 7 10 7 10 13 9 11 9 -- -- 

450 78 10 9 11 4 7 15 9 13 -- -- 

540 86 9 8 16 9 9 2 9 8 7 9 

630 85 16 6 15 14 17 17 -- -- -- -- 

720 93 6 18 17 16 7 16 13 -- -- -- 

810 92 10 9 13 9 13 8 14 6 10 -- 

900 97 11 15 6 8 14 10 6 9 9 9 

990 96 19 15 15 10 5 17 15 -- -- -- 

1080 92 12 12 9 9 12 9 8 10 11 -- 

1170 99 8 13 13 9 6 11 10 9 10 10 

1260 100 11 20 13 16 7 7 16 10 -- -- 

1350 100 18 13 19 19 19 12 -- -- -- -- 

1440 98 13 10 16 8 16 14 7 5 9 -- 

1530 100 7 9 18 7 14 7 10 16 12 -- 

1620 99 10 5 16 10 11 8 10 12 11 6 

1710 99 10 12 20 13 14 12 18 -- -- -- 

1800 100 10 12 5 15 16 14 9 19 -- -- 
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