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Abstract 

Rapid advances in neuronal probe technology for multisite recording of brain activity have 

posed a significant challenge to neuroscientists for processing and analyzing the recorded 

signals. To be able to infer meaningful conclusions quickly and accurately from large 

datasets, automated and sophisticated signal processing and analysis tools are required. 

This paper presents a MATLAB–based novel tool, “SigMate”, incorporating standard methods 

to analyze spikes and EEG signals and in–house solutions for local field potentials (LFPs) 

analysis. Available modules at present are – 1. In–house developed algorithms for: data 

display (2D and 3D), file operations (file splitting, file concatenation, and file column 

rearranging), baseline correction, slow stimulus artifact removal, noise characterization and 
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signal quality assessment, current source density (CSD) analysis, latency estimation from 

LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs, 

single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis, 

and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well 

as signals from multiple recording sources. The in–house developed tools for LFP analysis 

have been extensively tested with signals recorded using a standard extracellular recording 

electrode, and planar and implantable Multi Transistor Array (MTA) based neural probes. 

SigMate will be disseminated shortly to the neuroscience community under the open–source 

GNU–General Public License. 

Key words: Neuronal signal analysis, neuronal signal processing, EOSFET, neuronal signal 

analysis software, brain–machine interfacing, local field potential. 
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1. Introduction 

Understanding neuronal networks functionality from brain signals recorded by means of 

neuronal probes require rigorous processing and analysis. Advances in microelectronics and 

microelectrodes technology have enabled scientists to record from hundreds of neurons and 

simultaneously from a number of channels (Buzsaki, 2004; Prochazka et al., 2001; Wise et 

al., 2004). Inferring meaningful conclusions by analyzing this massive amount of data 

recorded from noisy experimental conditions is a big challenge for the neuroscience and 

neuroengineering community (Buzsaki, 2004). Though individual tools are available to 

perform processing of EEG signals and neuronal spikes, yet no software is available which 

integrate signal processing and analysis of various types of signals including LFPs (Kwon et 

al., 2011; Quiroga et al., 2004). 

There are a number of existing tools developed for academic and commercial purposes 

(Bokil et al., 2010; Bologna et al., 2010; Bonomini et al., 2005; Cui et al., 2008; Delorme and 

Makeig 2004; Egert et al., 2002; Goldberg et al., 2009; Gunay et al., 2009; Hazan et al., 

2006; Herz et al., 2008; Huang et al., 2008; Kwon et al., 2011; Magri et al., 2009; Morup et 

al., 2007; Novellino et al.,2009; Quiroga et al., 2004; Smith and Mtetwa, 2007; Vargas-Irwin 

and Donoghue, 2007; Vato et al., 2004; Versace et al., 2008; Wagenaar et al., 2005). 

However, these tools mainly deal with data visualization, spike detection and sorting, spike 

train analysis, EEG signal analysis, and cross–software framework to include different 

software tools. 

A couple of open platforms are under development to promote sharing of different 

laboratory–developed tools across the World Wide Web (Lidierth, 2009; Meier et al., 2008). 

Frequently, when neuronal signals are recorded using a software different from the one to be 

used for analysis, data format conversion is required. To address this issue, there exists an 

interface called “Neuroshare API” for standardizing file-formats and creating low-level 

handling and processing tools for neurophysiological experiment data 

(http://www.neuroshare.org/). The initiative is divided into two phases to obtain its goals: the 
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first phase targets to create open library and format standards for the experimental data, and 

the second phase aims on developing free and open-source tools for low-level handling and 

processing of the data. The vendors provide Neuroshare libraries for their data formats to be 

used to read from their data files and analyze them. Though very useful, the Neuroshare’s 

limitations are that not all platforms are supported, and data access is limited to the data 

items specified by the current standard. Continuous inclusion of vendor specific information 

to the proprietary data files makes them even harder to access. 

Another initiative, the Neurophysiology Data Translation Format (NDF) developed at the 

CARMEN project (http://carman.org.uk/) aims to provide a means of sharing 

neurophysiology data (Fletcher et al., 2008; Watson et al., 2010). As per the specification 

(NDF, 2012), the NDF specifies a uniform file and format structure for data sharing and inter-

application data communication using XML based configuration file to manage a variable 

amount of host data files. The NDF also specifies a set internal data types with the most 

commonly used experimental data entities applicable to signal or image processing 

applications, and include continuous time series, fixed/arbitrary length time series segments 

and spike times (e.g. events). NDF may be extended arbitrarily to accommodate other data 

entities. 

Nevertheless, application of multiple packages on a single dataset to perform different 

operations becomes time consuming and cumbersome. An “umbrella” tool is required to 

perform these operations (Mahmud et al., 2010b). Table 1 provides a comparative study of 

available features among a few popular neuronal signal analysis tools. 

Table 1: Comparison of available features in leading neuronal signal analysis tools  

Tools 

Features 

DV FO Spike 
LFP EEG 

NC SAR CSD LC CLAOD LFPC SA CS RDF E/C L SM TFT 

Chronux (Bokil 
et al., 2010) 

Y N Y N N N N N N Y Y Y N N N 

SPYCODE 
(Bologna et al., 

2010) 
Y N Y N N N N N N Y Y N N N N 

DATA-MEAns 
(Bonomini et 

al., 2005) 
Y N Y N N N N N N N N N N N N 

BSMART (Cui 
et al., 2008) 

Y N N N N N N N N Y Y Y N N N 
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EEGLAB 
(Delorme and 
Makeig 2004) 

Y N N N N N N N N N N N Y Y Y 

MEA-Tools 
(Egert et al., 

2002) 
Y 

format  

conversi
on 

Y N N N N N N N N N N N N 

STAToolkit 
(Goldberg et al., 

2009) 
Y N Y N N N N N N N N N N N N 

Klusters, 
NeuroScope, 
NDManager 
(Hazan et al., 

2006) 

Y 

format  

conversi
on 

Y N N N N N N Y Y N Y N N 

NeuroQuest 
(Kwon et al., 

2011) 
Y N Y N N N N N N N N N N N N 

SigMate 
(Proposed 
package) 

Y Y 

Y 
(Adapted 

from 
Quiroga et 
al., 2004) 

Y Y Y Y Y Y 
Y (Adapted from  

Bokil et al., 2010) 

Y (Adapted from 
Delorme and Makeig 

2004) 

Legends: DV (Data Visualization), FO (File Operations, particularly – file splitting, concatenation, column rearranging), Spike (includes Spike 

Detection, Sorting, and Train Analysis), NC (Noise Characterization), SAR (Stimulus Artifact Removal), LC (Latency Calculation), CLAOD 

(Cortical Layer Activation Order Detection), LFPC (LFP Classification), SA (Spectral Analysis), CS (Correlation Studies), RDF (Regression Data 

Fitting), E/C L (Event/Channel Localization), SM (Source Modeling), TFT (Time Frequency Transform). ‘Y’ denotes availability of a feature, and ‘N’ 

denotes absence of a feature. 

In this paper we present a comprehensive software package, “SigMate”, including our 

in–house algorithms to process and analyze LFPs along with standard packages for spike 

train and EEG signal analysis. Developed in MATLAB (version 7.9, R2009b, 

http://www.mathworks.com/) and tested in Windows 32 and 64–bit versions, this represents 

a versatile multipurpose package for processing and analyzing signals recorded using 

neuronal probes. A Graphical User Interface (GUI) environment facilitates the access to non-

programming background users. The use case diagram of the software package can be 

seen in figure 1. 

Due to the increasing usage of MATLAB in neuroinformatics research and selection of 

prototyping method for the development life-cycle, we decided to use MATLAB as a means of 

preliminary development platform for SigMate. However, future development plans include 

translation of SigMate as libraries for Python (http://www.python.org/) and platform 

independent executable files. 
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Figure 1: Use case diagram of SigMate. This diagram provides an overview of the various 

modules present within the package. 

2. Design and input–output 

2.1. SigMate design 

SigMate is designed through prototyping method using a multi–layered approach. 

 

Figure 2: Three–layered architecture of the SigMate software package. 
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➢ Presentation layer (top layer): This is the topmost level of the application. The 

presentation layer contains the GUIs of the application. It communicates with the middle 

layer by requesting the user commands. 

➢ Application layer (business logic, logic layer, or middle layer): The logic layer is 

separated from the presentation layer and here an application’s functionality is controlled 

by performing detailed processing and analysis. 

➢ Data layer (bottom layer): This layer consists of databases and/or storages. Here 

information is stored and retrieved. This layer keeps data neutral and independent from 

applications or business logic. Giving data its own layer also improves scalability and 

performance. In SigMate, no databases are required, rather secondary storage devices 

are used to store the signals in files. 

This type of three–layered architecture is a client-server architecture in which the user 

interfaces, functional process logic (“business logic”), computer data storage and/or data 

access are developed and maintained as independent modules. Apart from the usual 

advantages of modular software with well–defined interfaces, the three–layer architecture is 

intended to allow any of the three layers to be upgraded or replaced independently as 

requirements change. For example, a change of GUI design in the top layer would not affect 

the bottom two layers (Eckerson, 1995). 

The figure 2 shows a diagram depicting the three-layered architecture of the SigMate 

software package. In the individual module descriptions (see Sec. 3) the communication 

diagrams are shown as a part of the method development. 

2.2. Input–output and GUI handling 

All the modules of SigMate are designed to accept ASCII text files containing data values 

separated by tabs. Although the ASCII format text files are heavier in size compared to many 

proprietary file types, we selected this file type due to its universal acceptance. Moreover, 

SigMate aims to provide a platform independent framework (not limited by the signal 
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acquisition hardware) which can be achieved using the ASCII file type as most of the data 

acquisition systems allow their data to be saved, exported or converted to ASCII files. 

The data values in a file should be stored in columns with the first column as the time 

vector and the other columns as recorded data values from different channels. For example, 

if a file contains recordings from a neuronal probe containing four recording sites or 

channels, the file is expected to have five columns: the first one is the recording times, and 

the other four are the recorded values by each site or channel. At the moment, SigMate 

modules can handle files containing simultaneous recordings from maximum five channels 

which will be extended to large numbers of channels in future releases. 

Each GUI is having some common and useful features (as an example the data 

visualization GUI can be seen in figure 5B): 1) a dropdown box for selection of signal source, 

2) a number of check boxes for channel selection, 3) a listbox to show the selected files, 4) a 

browse button to let the program select a folder whose contents can be seen in the listbox, 

6) a display pane (with zoom, pan and data cursor add-ins) to visualize the selected signal 

file(s) from the listbox, 7) a remove file button to remove selective files from the listbox, 8) a 

load data button to load the signal files present in the listbox, and 9) module specific buttons 

and fields. 

The selection of multiple signal files provides the flexibility for performing batch 

processing. At the moment it can handle signals from two possible signal acquisition 

sources: 1) single site neuronal probes (e.g., micropipettes, metal electrodes, etc.), and 2) 

multisite neuronal probes. In principle, during the processing and analysis, signals recorded 

using the single site neuronal probes can be treated as a special case of the multisite 

neuronal probes. However, frequently it is found that signals recorded using multisite 

neuronal probes are more prone to noise contamination compared to the conventional single 

site probes. For this reason, we treated signals coming from the two different sources 

differently. 
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Each module expects that the signals to be analyzed are stored in a folder which can be 

indicated to through the ‘browse’ button of a GUI. As an example, we illustrate below how a 

user can calculate the layer activation order from the recorded LFPs using the latency 

estimation module. 

 

Figure 3: An example of the GUI handling calculation of the latencies in LFPs to determine the 

cortical layer activation order (see section 3.5 for detailed information on the algorithm). The 

numbered marks (the red ovals) indicate the basic execution order of the program to be followed 

for performing the analysis. 1. Signal source selection (from the signal source dropdown list. In 

this case, ‘micropipette recordings’ was selected), 2. Browse for the signal directory (a directory 

containing the signal files. In this case, there were 20 files each one corresponding to a recording 

position and containing two columns: first one is the recording time and the second one is the 

recorded data), 3. Click ok in the browse window, 4. Channel selection (using the ‘select channel’ 

checkboxes, one channel was selected as micropipettes provide single channel recordings), 5. 

Clicking on each recording in the listbox displays the signal in the display pane, 6. Files can be 

removed from the listbox using the ‘remove file’ button, thus, excluding them from analysis, 7. 

Click the ‘Calculate Latency’ button which calls a function capable of detecting events present in 

each of the files and of calculating and saving their latencies, and 8. The cortical layer activation 
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order is determined using the ‘Calculate Layer Activation Order’ button and displayed in a new 

window. 

 

3. Methods 

The software package is designed to perform various processing and analysis on the 

neuronal signal files. The functionalities of the software includes adoption of existing popular 

tools for spike train analysis (‘Wave_Clus’ by Quiroga et al., 2004) and EEG signal analysis 

(‘EEGLAB’ by Makeig, 2004), in-house developed tools for processing and analysis of LFPs, 

and three more LFP analysis features (spectral analysis, correlation studies, and regression 

data fitting) from Bokil et al., 2010. The in-house developed algorithms for file operations and 

LFP analysis are described in detail in the subsections 3.1 to 3.6. The non-exhaustive list 

(due to continuous inclusion of new features) of features present at the moment are: data 

display / visualization (2D and 3D) with zooming, panning and data cursor options, slow 

stimulus artifact removal (including baseline correction), noise characterization and signal 

quality assessment with noise estimation, file operations (including file splitting, file 

concatenating and file column rearranging), latency estimation (in LFPs and CSDs) with the 

possibility to detect the cortex layer activation order, and single LFP sorting. These features 

were extensively tested with event related neuronal signals recorded using conventional 

single site probes (standard borosilicate micropipette), and Electrolyte-Oxide-Semiconductor 

Field Effect Transistor (EOSFET) based multisite neuronal probes from anesthetized rats 

(see supplementary document for details on signal acquisition techniques and Felderer and 

Fromherz 2011; Hierlemann et al., 2011; Hutzler et al., 2006; Lambacher et al., 2011; 

Vassanelli and Fromherz 1997, 1998, 1999; and Vassanelli et al., 2012 for examples of 

signals acquired by transistor based probes). However, the stimulus artifact removal, and 

baseline correction may be used with non-triggered signals. The following subsections 

describe the in-house developed LFP analysis algorithms (a conceptual schematic diagram 

can be seen in figure 4) of the individual modules in greater details. 
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Figure 4: Conceptual schematic diagram of the in-house algorithms outlining major steps for 

each operation. 

3.1. Data display 

This is the initial GUI, i.e., the application is launched using this GUI. It contains the 

menu bar incorporating links to other modules of the SigMate. Its functionality does not only 

provide the user with the flexibility in viewing the signals in 2D and 3D, but also provide the 

possibility to perform averaging of single sweep signals, estimate the noise, perform ± 

averaging, and calculate the mean square (MS) and root mean square (RMS) of the signals. 

Noise estimation through RMS and MS is used to gain preliminary noise information on the 

signals. A dedicated module for noise characterization and signal quality assessment is also 

included in the package (see sec. 3.4). The communication diagram and the GUI can be 

seen in figure 5. 
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Figure 5: A: Communication diagram of the data display module. B: GUI of the data display 

module and its possible operations. The menu bar contains menus that are linked to the other 

modules of the package. 

3.2. File operations 

Basic file operations are being incorporated in the software package that are often time 

consuming for the scientists who use different software for signal recording and performing 

signal processing and analysis. As different tools require signal files to be formatted in their 

particular ways, this module performs three basic and important formatting operations: file 

splitting (splits a multi–sweep file into single–sweeps based on the sampling frequency), file 

concatenation (concatenates multiple single–sweep files into a multi–sweep file), and file 

column rearranging (retains only the selected channels and eliminates the unselected ones). 

Figure 6 shows the communication diagram of the module. 
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Figure 6: Communication diagram of the file operation module. 

3.3. Slow stimulus artifact removal  

In general, neuronal signals can be contaminated with two different types of stimulus 

artifacts: slow and fast. Usually, frequency components of the fast artifacts are in range of 1–

3 kHz, whereas slow artifacts lay below 100 Hz overlapping with frequency components of 

typical LFPs. The slow stimulus artifact removal module performs slow artifacts removal and 

baseline correction of the cortical surface recorded signals. In our recordings, a slow artifact 

was caused by the bath modulation during application of air–puff stimulation and laid within 

the range of 8–12 Hz. As the frequency of the artifact overlapped with the response, the 

method used control signals (recorded after the brain activity was suppressed) to remove the 

artifacts from the signals with evoked responses. 

The removal is performed using an in–house algorithm (listed in appendix A.1). This 

algorithm detects the peaks and valleys in a signal (Sorg). For each peak there is a 

corresponding valley which constitutes a peak–valley pair for a tiny signal part. Once all 

peak–valley pairs in a signal are detected, their average provides an estimation of the signal 

(Sest). The mean of this estimated signal (μs-est) is subtracted from the original signal for 

baseline correction (Sorg – μs-est). The estimated signal (Sest-ctrl) calculated using the control 

signal (Sctrl) is subtracted from the evoked signal to remove artifact from the evoked signal, 

i.e., Sartifact-removed = Sorg – Sest-ctrl (Mahmud et al., 2009a). Figure 7 shows the communication 
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diagram and the GUI of the module and figure 8 shows flowchart of the artifact removal 

method. 

 

Figure 7: A: Communication diagram of the artifact removal module. B: GUI of the artifact 

removal module offering the possibility to perform artifact removal on single signal files or batch 

processing of multiple files. 
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Figure 8: Flowchart of the artifact removal method. 

3.4. Noise characterization and signal quality assessment  

The noise characterization module is designed to be able to assess the quality of the 

recorded signals and quantify the noise. It uses in–house algorithms to detect the first 

steady–state (FSS, the pre–response portion of the signal), and the second steady–state 

(SSS, the post–response portion of the signal). After fitting polynomial models to the 

detected steady–states, it calculates the measurement error (ME) present in the signal 

(Mahmud et al., 2009b; 2011d). Statistical information (mean and standard deviation, SD) 
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and distribution of the ME are used in quantifying the noise, thus providing an assessment of 

the signal quality (Bowman and Azzalini, 1997). The algorithms of ME calculation, FSS and 

SSS detection are listed in appendices A.2, A.2.1 and A.2.2, respectively.  

3.4.1. Signal quality assessment using measurement errors (MEs)  

The signal quality assessment starts with the hypothesis that the noise present in the 

signal is of Gaussian distribution with zero mean. Therefore, mathematically the noisy part of 

the signal can be represented by the equation 1 (Dodge, 2003). 

z(t) = y(t, p)+e(t)           (1)  

where z(t) are the measured values, e(t) are the noise, and y is the mathematical 

representation of the true values. Here, y is a function of time (t) and depends on the 

parameter vector p = [p1, …, pn, pn+1]
T 

. In this kind of representation, time is the only 

independent variable and the measurements are made precisely at known times, ti, i =1, …, 

N.  

The steady–state portions of the signal are represented by an n–order polynomial model 

whose coefficients (in form of parameter vector, p) are calculated using weighted least 

square using QR decomposition of the Vandermonde matrix constructed from t and stored in 

descending order of powers. 

Weighted residual sum of squares (WRSS) is used in estimating the y(t, p). The 

parameter estimation is obtained by minimizing the weighted sum of squared difference 

between the observed z(t) and the model predictions y(t, p) for a number of candidate 

models (j=1,…,m). The weights (w) are calculated using the variance 
2

ji , with
21/ji jiw    

(Landlaw and DiStefano, 1984).  

However, for each of the m candidate models of order n, the parameter vector p, the 

predicted data y(t, p), and the WRSS are calculated. Then, to select the optimal model in 

terms of polynomial order (that best fits the data) from a set of possible candidate models, 

the Akaike information criterion (AIC) is applied (Akaike,1974).  
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The minimal AIC value represents the optimal model with order n and parameter p, and 

implies that the model with this set of parameters will provide best results in calculating the 

ME using equation 1.  

3.5. Latency estimation 

There are two different modules for the latency estimation. The first one calculates 

latencies in LFPs by detecting various signal events. The other one first derives the CSDs 

from the LFPs and then detects the first sinks’ peaks for the latency calculation. For both the 

LFPs and CSDs, the latencies are calculated as differences between the stimulus–onset and 

the respective events. 

Neuroscientists often rely on barrel cortex LFPs to investigate the somatosensory 

system of some rodents (Ahissar and Knutsen, 2008; Diamond et al., 2008). For cortical 

signals, latencies provide information about the propagation time required for a stimulus 

evoked event to reach a cortical position. We used the latencies to determine the layer 

activation order from LFPs and CSDs. The estimation of latencies requires detection of 

events to be treated as reference points. For the cortical LFPs, the layer specific 

characteristics or events are explored using an in-house signal derivative based algorithm 

(Mahmud et al., 2011a). The latency of an event is calculated as the difference between the 

event’s occurrence time and the stimulus-onset. The layer activation order is calculated 

using the latencies of the most prominent events across different cortical depths. For the 

CSDs calculated from the LFPs, we consider the first occurring sink as the reference event 

and calculate the latencies as the difference between the first sink’s peak and stimulus-

onset. For both LFPs and CSDs, the calculated latencies are associated with recording 

depths known a-priori and grouped into layers based on the depth information. The minimum 

latency from each layer is found and sorted in ascending order to obtain the layer activation 

order. The method is discussed in detail in the following subsections. 

3.5.1. Barrel cortex LFPs 
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The LFPs recorded from a barrel column of the rat S1 cortex by stimulating the 

corresponding whisker can be differentiated by their specific characteristics based on the 

depth or layer they are recorded from. It’s worth mentioning here that, barrel cortex LFPs 

can be represented using a template of four subsequent events (E1–E4) (Ahrens and 

Kleinfeld, 2004; Alloway, 2008; Kublik, 2004; and Mahmud et al., 2011a). These events are 

automatically detected and used in automated estimation of latencies. A representative 

signal depth profile recorded from the rat barrel cortex can be found in the accompanying 

supplementary document. 

3.5.2. Event detection and latency estimation from LFPs 

The event detection for each barrel cortex LFP is performed automatically using an in–

house algorithm (Mahmud et al., 2010a). The algorithm is based on derivative calculation 

and detects in each file: the stimulus–onset, the response–onset, and the four events 

representing the barrel cortex LFPs (E1, E2, E3, and E4). Once the events are detected, 

latencies are calculated by subtracting the occurrence time of the events from the stimulus–

onset time and are saved in a file for further processing (Mahmud et al., 2011a). 

3.5.3. CSD calculation and latency estimation in CSDs 

Due to the widespread use of CSD analysis in the neuroscience community, we have 

included a module to calculate the CSD profile from the recorded LFP profile (Armstrong–

James et al., 1992; Castro–Alamancos and Oldford, 2002; Di et al., 1990; Einevoll et al., 

2007; Jellema et al., 2004; Kaur et al., 2004; Megevand et al., 2009; Mitzdorf and Singer, 

1980; Mitzdorf, 1985; Rappelsberger et al., 1981; Staba et al., 2004; Swadlow et al., 2002; 

Szymanski et al., 2009). The CSD computation is adapted from Pettersen et al., 2006 to 

compute CSD using four different methods (standard, delta–inverse, step–inverse, and 

spline–inverse CSD methods). The δ-Source Inverse CSD method (δ-Source iCSD) and its 

application to barrel cortex LFPs are explained in detail in a previous publication (Mahmud et 

al., 2011a). 
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After the CSD profile is computed, the sources and sinks for the individual recording site 

can easily be viewed. The calculation of the sinks’ latencies is done by subtracting the time 

instance of the stimulus–onset from the time instance of the peak of the first sink. 

3.5.4. Layer activation order detection 

An important feature of the latency estimation module is that it can automatically 

calculate the cortical layer activation order based on the estimated latencies from the LFPs 

and the CSDs. Once the latencies are determined from the LFP profile and its respective 

CSD profile, they are lalyerwise grouped based on a-priori information regarding signal’s 

recording positions. The latency of E2 is used in calculating the layer activation order from 

the LFPs. The ascending sequence of the layerwise minimum latencies provided the layer 

activation order. 

3.6. Clustering of single LFP signals 

The LFPs provide a finger–print of the stimuli’s effect on signal generation and 

propagation of neuronal networks in the brain region under study (Legatt et al., 1980). 

Conventionally, these LFPs are recorded for a period of time and then a stimulus–locked 

average is obtained for analysis. However, previous studies show that averaging single 

LFPs causes information loss in the averaged LFP (Van Hemmen and Ritz, 1995). Also, to 

investigate certain brain functional properties (for example, signal processing pathways) and 

for certain operations (for example, current source density analysis) signal shape plays an 

important role (Okun et al., 2010; Mahmud et al., 2011a). As different shapes in the single 

LFP signals denote different neuronal network activities, a shape based classification 

method is necessary. 

The method performs the clustering in three major steps: (i) smoothing / estimation of 

single LFPs and template generation, (ii) single LFP recognition, and (iii) classification of 

recognized single LFPs. 
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The single LFPs contain spontaneous brain activity along with the stimulus evoked 

response. To remove the oscillatory spontaneous brain activity, smoothing / estimation is 

performed using nonlinear least square estimation. The main reasons behind performing the 

estimation are two folds. Firstly, reduction of noise without distorting the shape information 

often caused by filtering, and secondly, facilitating the recognition of signal characteristics to 

be used as the base for selecting the feature vector for the clustering algorithm. Once the 

signals are estimated, the starting and end of the response is determined (response part) by 

truncating the pre-stimulus and post-response (the part after response till the end of the 

signal) parts. An average of these response subsets is usually considered as a template for 

single LFP recognition. This method makes use of contour matching for recognition of the 

single LFPs. The contour of the generated template is compared to each of the single LFP’s 

contour with a predefined boundary condition. The single sweeps that fall within the 

boundary condition are considered to be recognized. Once the single LFPs are recognized, 

intelligent K–means clustering is applied on the recognized signals to classify them 

according to their shapes. The classified or clustered single sweeps are then locally 

averaged and saved for further processing (Mahmud et al., 2010c; 2011c). 

3.6.1. Signal smoothing / estimation and template generation 

Precise information about the signal events are often obscured by spontaneous neural 

oscillations and noise present in the single LFPs. To get rid of these oscillations and noise, 

nonlinear least square method is used for smoothing / estimating the single LFPs. 

Using least square, for a given vector function f: ℜ n → ℜ m 

with m ≥ n, we want to 

minimize ||f(x)|| or equivalently find:  

* ( )}{xx argmin F x           (2) 

Where x* is the local minimizer of F(x). For a set of arguments, x*, the value of F(x) is kept 

minimal within the range of a very small positive integer, δ (Madsen et al., 2004). The F(x) 

can be calculated using: 
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ii
F x f x f x f x f x


        (3) 

Now considering a model to calculate the prediction error () (equation 4) and adding the 

covariance matrix of this prediction error () as a weight function to equation 2 and 3, an 

analytical solution of the problem can be obtained (equation 5). 

 *x y x              (4) 

 
1

* 1 1T Tx y y y x 


             (5) 

The nonlinear problem then can be solved using first order Taylor’s expansion around 

the initial value of the parameter vector (
* ,  0kx k  ):  

*Δ Δx P x              (6) 

Here, P is the partial derivative matrix with the predicted values using the initial set of 

parameters. A linear formula now can be used to estimate these parameters (equation 7) 

and to calculate the new parameter vector (equation 8). This iterative process is repeated 

until the cost function stabilizes or falls below a threshold. 

 
1

* 1 1Δ Σ ΣT Tx P P x 


           (7) 

* * *

1 Δk k kx x x              (8) 

The estimated signals are scanned for occurrences of the events (E1–E4). From each 

signal the part from the stimulus–onset till the E4 are extracted for the calculation of the 

template. These extracted parts are usually different in lengths, thus, to obtain parts with 

same length, the longest part is selected and the rest are zero–padded. The average of all 

these parts provides the template. 

3.6.2. Single sweep recognition  

After the template’s generation, boundary conditions are imposed on it and its contour is 

used to recognize the single LFPs. The upper and lower bounds are calculated using 

equations 9 and 10.  
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      
1/2

( )tmpUp k Temp k a V k b           (9) 

      
1/2

( )tmpLow k Temp k a V k b                  (10) 

with a, b are constants; the values of a, b are determined empirically (a = σ(Temp), and b 

=3× σ(Temp)), and Vtmp is the template’s variance vector (equation 9). 

  2

1

1
[ ( )]

N

tmp ii
V Sw k Temp k

N 
                (11) 

where Sw is the zero–padded and truncated single sweeps and Temp is the template. 

A signal is considered to be recognized, if and only if all of its data points lie within the 

range of the boundary conditions.  

3.6.3. Clustering the recognized sweeps 

For our purpose we used the intelligent K–means (iK–Means) method of classifying 

recognized sweeps (Chiang and Mirkin, 2010). It is an updated version of the classical K–

means (Bock, 2007; Macqueen, 1967). In the rest of the text the words classification and 

clustering are used synonymously. 

The K–means method usually is applied to a dataset involving a set of N entities, I, a set 

of M features, V, and an entity–to–feature matrix Y=(yiv), where yiv is the value of feature v ∈ 

V at entity i ∈ I. The method produces a partition S = {S1, S2, …, SK} of I, an M dimensional 

vector in the feature space (k=1, 2,··· , K), in K non–overlapping classes Sk (referred to as 

clusters) with centroids ck=(ckv). The centroids form a set C={c1, c2, …, cK} and the clusters 

are decided basing on a minimization criterion of within–cluster distance to centroids 

(equation 12). 

 
1

,  ( , )
k

K

kk i S
W S C d i c

 
                  (12) 

with d is the square of calculated Euclidean distance. 

Given K M–dimensional vectors with ck as cluster centroids, the algorithm updates 

clusters Sk according to the Minimum distance rule: for each entity i in the data table, its 
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distances to all centroids are calculated and the entity is assigned to its nearest centroid. 

Given clusters Sk, centroids ck are updated according to the distance d in equation 12. 

Specifically, ck is calculated as the vector of within–cluster averages as d in equation 12 is 

Euclidean distance squared. This process is reiterated until clusters Sk stabilize. 

The method uses an anomalous pattern (AP) based algorithm to find out the appropriate 

number of clusters at the beginning of the clustering (Chiang and Mirkin, 2010). The AP 

algorithm starts with an entity as the initial centroid c which is the farthest from the origin. 

After that, a one–cluster version of the generic K–Means is utilized. The current AP cluster S 

is defined as the set of all those entities that are closer to c than to the origin, and the next 

centroid c is defined as the center of gravity of S. This process is iterated until convergence. 

Finally, when the single sweeps are classified into their respective clusters, they are 

cluster–wise averaged for further processing. 

4. Results and discussion 

The features of the package were tested with datasets recorded using three different 

recording methods. 1) Using standard borosilicate micropipettes as extracellular single–site 

electrodes; 2) using EOSFET based planar multi transistor array chips; and 3) using 

EOSFET based implantable chips. The supplementary document contains detailed 

description about the setup and the recording methods. As the spike and EEG analysis 

modules were adapted from popular and widely tested tools, we just provided interfaces 

between SigMate and those tools. Each of the in–house modules contain a GUI and they all 

are kept user friendly so that the operations can be performed easily even by non–

programming background users rather than typing commands in the command line. The 

following subsections demonstrate the features workability on representative datasets. 

4.1. Artifact removal 
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The figure 9 shows the estimation of a control signal calculated by the peak–valley 

detection algorithm described in the appendix A.1. The offset of this control signal was 

corrected using the mean of its estimation. 

 

Figure 9: Control signal and its estimation through peak–valley detection using the signal‟s 

standard deviation as threshold. 

Figure 10 shows the traces before and after stimulus artifact removal. The top trace is 

the artifact, the middle trace shows the evoked signal contaminated by artifact, and the 

bottom trace is the signal after artifact removal. The air–puff stimulation is shown at the 

bottom. 

 

Figure 10: Traces of control signal (gray), evoked potential with artifact (red), artifact removed 

evoked potential (green), and the stimulus. 

This method was also applied on a number of signals to perform batch processing. The 

figure 11(a) shows a 3D plot of simultaneously recorded signals from 13 EOSFETs with 

stimulus artifact (the two arrows point the artifact region). The figure 11(b) shows the 3D plot 

of the same signals after artifact removal by batch processing of the artifact removal module. 
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Figure 11: 3D signals before and after stimulus artifact removal. The color–bars show the 

amplitude intensity of the signals. (a) Raw signals recorded from 13 EOSFETs. The two arrows 

show the stimulus artifact region. (b) Signals without stimulus artifact as a result of batch 

processing. 

4.2. Noise characterization and signal quality assessment 

The method was tested on different datasets for a range of candidate models (m = 6) 

and order (n = 2 to 7). Except for a few signals it could calculate the steady–states 

accurately and provide successful signal quality assessment. In case of highly oscillatory 

signals with a high SD, the method failed to calculate the accurate response–onset, thus, the 

steady–states. In a pool of 65 different datasets, the algorithm failed to detect the exact 

evoked response for 5% of the signals. During an experiment, the multisite neuronal probes 

acquire signals simultaneously with an assumption that the experimental conditions for all 

the sites are similar. Considering this hypothesis, the quality of the recordings from an 

experiment can be assessed neglecting the failed cases. 
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Figure 12: Left: figure showing the raw trace (black solid line); the detected FSS (grey dot-dash 

line); the SSS (grey solid line); fitted polynomial model, SSS–Fit (black dot-dot-dash line); and 

the SSS‟s ME, SSS–ME (dashed grey line). Right: histogram of statistical distribution of SSS‟s 

ME and its estimated density function (Gaussian). 

Figure 12 shows representative result of FSS and SSS’s detection (left). It depicts the 

raw trace (in black solid line) with detected FSS (gray dot–dash line), the FSS fit to facilitate 

the detection of the response–onset (dashed black line), the SSS (gray solid line), the 

polynomial model fitted to the SSS (black dot–dot–dash line), and the ME of the SSS 

(dashed gray line). The fitted polynomial model is seen as an oscillating wave as the post–

response portion of the signal usually contained spontaneous oscillatory brain activity 

uncorrelated to the given stimuli. The ME calculated from the SSS had a Gaussian 

distribution as hypothesized. 

Table 2 reports the means and SDs of the FSSs and the SSSs and their respective MEs. 

The steady−states were calculated using the algorithm listed in appendix A.2. Analyzing 

these results we noticed that the means of the MEs for all the signals (μme−fss and μme−sss) 

were very close to zero and the SDs of these MEs (σme−fss and σme−sss) were consistent 

around 0.01. 

Table 2: Mean and SD of FSS, SSS with their MEs  

FET µfss σfss µme-fss σme-fss µsss σsss µme-sss σme-sss 

FET01 0.0067 0.0123 0.0831 × 10-3 0.0118 0.0016 0.0153 9.397 × 10-15 0.0108 

FET02 0.0038 0.0114 0.0618 × 10-3 0.0109 0.0038 0.0118 1.091 × 10-12 0.0110 

FET03 0.0013 0.0105 0.0750 × 10-3 0.0101 0.0068 0.0101 1.513 × 10-13 0.0096 
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FET04 0.0098 0.0144 0.0036 × 10-3 0.0139 0.0014 0.0144 1.612 × 10-14 0.0119 

FET05 0.0044 0.0133 0.0045 × 10-3 0.0128 0.0038 0.0140 9.183 × 10-15 0.0120 

FET06 0.0056 0.0126 0.1397 × 10-3 0.0121 0.0012 0.0117 7.995 × 10-9 0.0111 

FET07 0.0012 0.0089 0.0394 × 10-3 0.0086 0.0004 0.0085 2.580 × 10-10 0.0082 

FET08 0.0038 0.0098 0.0935 × 10-3 0.0095 0.0019 0.0104 1.268 × 10-13 0.0093 

FET09 0.0062 0.0118 0.0671 × 10-3 0.0113 0.0027 0.0110 2.213 × 10-15 0.0092 

FET10 0.0015 0.0104 0.0404 × 10-3 0.0100 0.0023 0.0107 2.356 × 10-15 0.0101 

FET11 0.0134 0.0133 0.0068 × 10-3 0.0128 0.0007 0.0146 8.215 × 10-15 0.0116 

FET12 0.0004 0.0109 0.0183 × 10-3 0.0107 0.0028 0.0139 5.100 × 10-13 0.0119 

FET13 0.0029 0.0108 0.0545 × 10-3 0.0104 0.0010 0.0122 6.045 × 10-15 0.0108 

FET14 0.0060 0.0113 0.0293 × 10-3 0.0108 0.0007 0.0101 9.123 × 10-9 0.0101 

FET15 0.0079 0.0102 0.1083 × 10-3 0.0098 0.0063 0.0009 6.182 × 10-8 0.0110 

FET16 0.0083 0.0118 0.1523 × 10-3 0.0112 0.0088 0.0108 5.653 × 10-16 0.0099 

Legend: FET: Field Effect Transistor, µfss: mean of the FSS, σfss: SD of the FSS, µme-fss: mean of the ME calculated from FSS, σme-fss : SD of the 

ME calculated from FSS, µsss: mean of the SSS, σsss: SD of the SSS, µme-sss: mean of the ME calculated from SSS, σme-sss: SD of the ME 

calculated from SSS. 

 

Figure 13: Graphs showing means of FSSs and their MEs (left); SSSs and their MEs (right). The 

y–axis scale is log10 based. 

Figure 13 compares the means of FSS and SSS with their respective MEs from another 

dataset. The results are comparable to table 2, i.e., the means of the MEs were significantly 

small compared to those of the steady–states (the y–axis scale is log10 based). Also, their 

standard deviations were stable in the range of 0.01 to 0.015. 

Furthermore, the means of the averaged steady–states (obtained by averaging the FSSs 

and the SSSs across a number of signals) and averaged MEs (obtained by averaging the 

MEs of FSSs and the MEs of SSSs across a number of signals) were very close to zero and 

their standard deviations were steady around 0.012 (similar to the ones calculated from 

single signals) as seen in figure 14. 
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Figure 14: Left: means of averaged FSS and SSS with their respective MEs. Right: Standard 

deviations of Averaged FSS, SSS, and their respective MEs. 

The results presented above illustrate that the MEs’ means are almost zero and the 

signals satisfy the assumption of Gaussianity, thus implying a good quality of the recorded 

signals. Therefore, the noise characterization and signal quality assessment performed by 

the module helps the user to estimate signal quality easily and quickly. Also, analyses 

presented above show the module’s reliable workability for cortical signals. 

4.3. Latency calculation and layer activation order detection 

The module was applied to a number of datasets recorded using borosilicate 

micropipettes and implantable EOSFET based chips. We report here results obtained by 

applying the method on signals recorded using micropipettes. The method found to be 

working well except a few situations (2% of occurrence rate) with an error of ± 300 μs in 

latency calculation. Particularly, this error occurred in case of signals containing slow 

stimulus artifacts (with frequency components less than 250 Hz). As calculated latencies 

were in terms of a few milliseconds up to hundreds of milliseconds, this error can be 

considered negligible. Figure 15 shows representative signals and their respective detected 

events after a run of the method. 
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Figure 15: LFP depth profile with detected events using the method. The signals were recorded 

equidistantly (90 μm pitch). For better visualization only representative signals from each layer 

are shown. 

To check the accuracy of the automated latency calculation, the LFP based latencies 

were also compared with the manually calculated latencies and the results were found to be 

similar (in table 3). ‘M’ denotes manual computation by hand and ‘A’ denotes automated 

calculation using the method. In table 3 the ‘E1’, ‘E2’, ‘E3’ and ‘E4’ are the latencies of the 

respective events. Furthermore, table 4 reports average latencies for 3 different experiments 

evaluated manually and by the program with their root mean square errors (RMSE). In table 

4 the ‘E1’, ‘E2’, ‘E3’ and ‘E4’ are averaged latencies and RMSE of the respective events. 

The low RMSE indicates that the calculation of latencies using the automated method is 

accurate. The tables report data corresponding to representative signal(s) from depth(s) 

within each layer. 

Table 3: Comparison of manual and automatic calculation of latencies  

Depth Mode 
Latencies (ms)  

E1 E2 E3 E4  

90 µm  M 5.384 19.784 42.934 144.954 
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A 5.655 19.564 42.742 143.393 

180 µm  
M Absent  19.745 60.055 174.215 

A  Absent  19.416 59.259 174.023 

270 µm  
M  Absent  19.905 64.795 180.965 

A  Absent  19.615 63.513 183.733 

450 µm  
M  Absent  20.215 69.395 232.835 

A  Absent  20.228 70.32 232.836 

540 µm  
M  Absent  20.075 74.205 221.595 

A  Absent  20.216 74.124 222.021 

720 µm  
M  Absent  20.645 79.895 283.305 

A  Absent  20.565 78.228 282.532 

990 µm  
M  Absent  19.375 87.805 220.125 

A  Absent  19.464 87.887 175.475 

1260 µm  
M  Absent  18.585 96.025 238.595 

A  Absent  18.213 96.046 239.489 

1620 µm  
M  16.115 38.925 110.835 202.635 

A  16.116 38.785 112.562 198.448 

1800 µm  
M  10.175 38.585 118.825 234.975 

A  10.311 38.584 118.568 234.784 

 
 

Table 4: Average latencies of events using manual and automatic calculation with RMSE  

Depth Mode 
Average Latencies (ms) RMS Errors (ms) 

E1 E2 E3 E4 E1 E2 E3 E4 

90 µm 
M 

A 

6.019 

6.592 

19.784 

19.564 

42.450 

42.201 

139.014 

140.047 
0.542 0.081 0.024 0.315 

180 µm 
M 

A 

Absent 

Absent 

19.745 

19.416 

67.547 

68.974 

178.850 

175.654 
Absent 0.092 0.021 0.221 

270 µm 
M 

A 

Absent 

Absent 

28.517 

28.428 

62.574 

65.051 

183.015 

187.373 
Absent 0.026 0.032 0.254 

450 µm 
M 

A 

Absent 

Absent 

25.591 

25.675 

74.102 

77.108 

221.301 

203.952 
Absent 0.062 0.028 0.253 

540 µm 
M 

A 

Absent 

Absent 

18.175 

18.318 

71.214 

72.980 

231.595 

213.741 
Absent 0.059 0.046 0.477 

720 µm 
M 

A 

Absent 

Absent 

20.145 

19.619 

72.985 

73.428 

210.745 

271.659 
Absent 0.048 0.094 0.351 

990 µm 
M 

A 

Absent 

Absent 

21.937 

22.121 

84.862 

90.957 

192.251 

183.241 
Absent 0.095 0.392 0.853 

1260 µm 
M 

A 

Absent 

Absent 

18.985 

19.018 

91.213 

91.478 

210.021 

228.674 
Absent 0.036 0.095 0.764 

1620 µm 
M 

A 

11.152 

10.920 

26.132 

25.925 

110.835 

112.562 

192.380 

181.154 
0.152 0.071 0.93 0.429 

1800 µm M 9.631 35.585 117.241 221.341 0.821 0.087 0.034 0.762 
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A 9.927 35.885 113.231 214.114 

From the CSD profile the latencies were calculated as the difference between the first 

sink’s peak and stimulus–onset. Figure 16 shows a comparison of the cortical layer 

activation order using LFPs and CSDs (Mahmud et al., 2011a). 

 

Figure 16: Comparison of cortical layer activation order obtained from LFPs and CSDs. 

Basing on these evidences, we can assert that the latency estimation module can 

calculate the latencies, and, in turn, that the activation order of layers in the barrel columns is 

calculated accurately. Both the approaches (using LFP or CSD) provide similar results which 

are justifiable using a simple barrel cortex network model from Fox, 2008. Thus, it is the 

user’s choice which one of the two approaches to use (Mahmud et al., 2011a). 

 

Figure 17: Layer activation order using latencies calculated from LFPs averaged across 

experiments and CSDs calculated from them are depicted in (a) and (b), respectively. 
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Application of the method on averaged signals across experiments (n=3) provided a 

temporal order of layer activation comparable with previous studies done by Armstrong-

James et al., 1992; Di et al., 1990; and Einevoll et al.,2007. Figure 17 shows the layer 

activation order using LFPs averaged across experiments and CSDs derived from them, 

respectively. 

4.4. Clustering of single LFPs 

The module was validated on a number of datasets recorded with borosilicate micropipettes. 

Results were found satisfactory except some cases, where signal morphology was highly 

atypical (occurrence rate of 1%). Each dataset comprised recordings from about 20 different 

depths, and each of them contained as many as 100 single sweeps. Except to demonstrate 

the distribution of single LFPs to different clusters, we present clustering results related to a 

representative set of single LFPs. 

In figure 18 we can see the raw single LFPs and their average signal (left), and the 

estimated single sweeps and their average signal (right). 

 

Figure 18: Left: raw sweeps (without estimation) with average in red. Right: estimated sweeps 

with average in red. The noise in the raw single sweeps is evident in the left figure. 
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Figure 19: The template (in red), the upper and lower bounds (in green), and the single sweeps 

truncated to the size of the template. It also shows the recognized single LFPs using contour 

comparison of the template (blue). 

 

Figure 20: Result of the clustering. Single sweeps (in grey) and their respective averages (in red) 

depict the clear difference in the inter–cluster signal shapes. 
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Figure 19 shows single sweeps truncated to the size of template, the upper and lower 

bounds of the template. Each single LFP that fell within these bounds was considered to be 

recognized. 

Figure 20 shows the various clusters of signals with their respective averages. The 

recognized N single LFPs were classified using the iK–means clustering method to obtain 

different shape based clustering. 

Table 5: Total Recognized Sweeps and Single LFP Allocation to Clusters 

Depth RS 
Clusters 

1 2 3 4 5 6 7 8 9 10 

90 µm 90 5 6 12 11 11 7 8 12 6 12 
180 µm 86 11 17 10 17 18 13 – – – – 
270 µm 87 8 8 8 11 15 7 4 10 10 6 
360 µm 80 7 10 7 14 13 9 11 9 – – 
450 µm 78 10 9 11 4 7 15 9 13 – – 
540 µm 86 9 8 16 9 9 2 9 8 7 9 
630 µm 85 16 6 15 14 17 17 – – – – 
720 µm 93 6 18 17 16 7 16 13 – – – 
810 µm 92 10 9 13 9 13 8 14 6 10 – 
900 µm 97 11 15 6 8 14 10 6 9 9 9 
990 µm 96 19 15 15 10 5 17 15 – – – 
1080 µm 92 12 12 9 9 12 9 8 10 11 – 
1170 µm 99 8 13 13 9 6 11 10 9 10 10 
1260 µm 100 11 20 13 16 7 7 16 10 – – 
1350 µm 100 18 13 19 19 19 12 – – – – 
1440 µm 98 13 10 16 8 16 14 7 5 9 – 
1530 µm 100 7 9 18 7 14 7 10 16 12 – 
1620 µm 99 10 5 16 10 11 8 10 12 11 6 
1710 µm 99 10 12 20 13 14 12 18 – – – 
1800 µm 100 10 12 5 15 16 14 9 19 – – 

Table 5 tabulates the recording depths, total number of recognized LFPs, and single LFP 

signal distribution among different clusters. This table shows that the single LFPs were well 

classified into different clusters. In the table, ‘RS’ denotes total number of recognized signals 

in one recording position, ‘1’ to ‘10’ are the cluster numbers, and ‘–’ means no clusters 

Once the single sweep clusters were formed, the program computes local averages of 

each cluster for further processing. Analyses of these local averages (the signal amplitudes 

of the E2 and the calculated latencies based on the signal events) revealed that the 

activation of underlying neuronal network generating the signal might be different even if the 

signals were recorded from the same recording site with the same stimulus (figure 21 and 

figure 22). 
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Figure 21: Latency variation among different clusters local averages. Each bar corresponds to a 

local average of a cluster and each color corresponds to a recording depth consisting of a 

number of clusters. 

 

Figure 22: Amplitude variation among different clusters local averages. 

From these variations in the latency and the amplitude it can be asserted that different 

neuronal networks near the recording electrode were activated during the whisker 

stimulation at different times. 

5. Conclusion 

To understand brain activities with an unprecedented level, parallel high resolution 

recordings are required. This paper presents a report on the SigMate software package. As 

with the growth of multisite neuronal probes, amount of acquired data are increasing, the 

need of one single software package performing all necessary processing and analysis on 
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the data has become crucial. This is the first step towards meeting that need. As the 

software has been extensively tested with two possible sources of data, we believe that once 

it is disseminated to the community (which will happen in the near future) it will serve a good 

deal in analyzing extracellular neurophysiological signals (Mahmud et al., 2010b; 2011b). 

Modules for coherence and correlation based analysis to obtain more information about the 

brain’s functionality from the recorded signals, neuronal network based on different stimuli to 

be able to predict the signals a priori and compare them with the recorded signals, and 

understand the activation of underlying neuronal networks generating the signals are under 

development. Also, in the near future we will convert SigMate to perform online signal 

processing and analysis. 

 

Acknowledgments 

This work was carried out as a part of the European Commission funded CyberRat 

project under the Seventh Framework Programme (ICT-2007.8.3 Bio-ICT convergence, 

216528, CyberRat). We express our sincere gratitude to the anonymous referees for their 

fruitful comments to improve the quality of the paper. 



Page 37 of 45 

 

A. Algorithms  

A.1. Peak–valley detection  

The following algorithm is used for the detection of peaks–and–valleys of the signal to have an estimation of the artifact 

signal.  

Function: Detect Peak-Valley()  

Input: Signal file, whose peaks and valleys are to be found.  

Output: Peaks-and-valleys of the input signal.  

Method:  

1. Initialize, S:=signal; and Threshold:=Standard-deviation(S);  

2. Set, Peak:=infinity; Valley=-infinity; and Flag:=True;  

3. Current:=Current element of S;  

4. if (Current > Peak), Reset, Peak:= Current; end if ;  

5. if (Current < Peak), Reset, Valley:= Current; end if ;  

6. if (Flag is True)  

if (Current <(Peak − Threshold))  

Add Current to Peaks; and  

Reset, Flag:=False;  

end if ;  

if (Current >(Valley + Threshold))  

Add Current to Valleys; and  

Reset, Flag:=True;  

end if;  

end if;  

7. Repeat step 3 to 6 for every element of the signal.  

8. Return Peaks and Valleys.  

A.2. Calculation of measurement errors  

The following algorithm is used in calculating the MEs. As described in section 3.4, the MEs are calculated after having 

detected the FSS and the SSS. Thus, this method calls two other methods which detect the FSS and the SSS.  

Function: MeasurementErrors()  

Input: Signal files containing time and data.  

Output: Statistical information (µ, σ and distribution) of the data.  

Method:  

// this is for the single sweep approach.  

1. for each signal file  

a. Load time(t) and data(s);  

b. firstSteadyState[fssT, fssS]:=Call the findFirstSteadyState(t, s);  
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c. secondSteadyState[sssT, sssS]:=Call the findSecondSteadyState(t, s, firstSteadyState);  

d. Fit mathematical models to the firstSteadyState and secondSteadyState;  

e. Calculate the data bounds around the firstSteadyState and secondSteadyState;  

f. Box data points based on the data bound, i.e., boxing the data around ±2σ from the straight line;  

g. Calculate MEs for first and SSSs using equation(1);  

h. Characterize MEs by calculating µ and σ;  

i. Plot the distribution of MEs using histogram and estimate the distribution using smoothing function;  

end for  

// this is for the averaged steady–state approach.  

2. Calculate the average of the all FSSs;  

3. Fit mathematical model to the average of the FSSs;  

4. Calculate the ME of the average using equation (1);  

5. Characterize error by calculating µ and σ;  

6. Calculate the average of the all SSSs;  

7. Fit mathematical model to the average of the SSSs;  

8. Calculate the ME of the average using equation (1);  

9. Characterize error by calculating µ and σ;  

10. Plot the distribution of ME using histogram and estimate the distribution using a smoothing function;  

// this is for the averaged ME approach.  

11. Calculate average of all MEs for the FSS;  

12. Characterize error by calculating µ and σ;  

13. Plot the distribution using histogram and estimate the distribution using a smoothing function;  

14. Calculate average of all MEs for the SSS;  

15. Characterize error by calculating µ and σ;  

16. Plot the distribution using histogram and estimate the distribution using a smoothing function;  

A.2.1. Detecting the first–steady–state  

The following algorithm is used in detecting the first–steady state.  

Function: findFirstSteadyState()  

Input: The time(t) and data(s).  

Output: The FSS of the signal (firstSteadyState).  

Method:  

1. firstPart:=the first 10 ms of the signal, s;  

2. stdFirst:=std(firstPart); stdS:=std(s);  

3. intervalInt:= 3 ms; newS:=rest of the signal;  

4. Divide newS into intervals of length intervalInt;  

5. Initialize, newPartS:=[]; newPartT:=[]; flag:=1;  

6. while currInterval isn’t in evoked response 
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fitLine:=Fit a straight line to currInterval;  

sdNew:=std(currInterval);  

if (sdNew ≥ stdCheck && flag)  

add currInterval to newPartS;  

add currIntervalTime to newPartT;  

stdCheck:= sdNew; flag:= 1;  

else  

flag:=0;  

add currInterval to newPartS;  

add currIntervalTime to newPartT;  

if (last point of fitLine > stdS)  

remove currInterval from newPartS;  

remove currIntervalTime from newPartT;  

end if;  

end if;  

end while;  

7. Return firstSteadyState:=[newPartT,newPartS];  

A.2.2. Detecting second–steady–state  

The following algorithm detects and returns the second–steady–state.  

Function: findSecondSteadyState(t, s,fsState)  

Input: Signaltime(t) anddata(s), and theFSS(fsState).  

Output: TheSSS ofthe signal(secondSteadyState).  

Method:  

1. fsStateLength:=length(fsState); fsStateStd:=standard deviation(fsState);  

2. sToAnalyse:=s(fsStateLength to length(s));  

3. sToAnalyseT:=t(fsStateLength to length(s));  

4. numDiv:=floor(length(s)/fsStateLength);  

5. sToAnalyseRev:=Reverse(sToAnalyse);  

6. sToAnalyseRevT:=Reverse(sToAnalyseT);  

7. Initialize, ssStateS:=[]; ssStateT:=[]; flag:=0;  

8. Find which part of sToAnalyseS has to be considered as SSS  

for i:=1 to numDiv  

currInterval:=sToAnalyseRev[i];  

currIntervalTime:=sToAnalyseRevT[i];  

stdCurrInterval:=std(currInterval);  

if stdCurrInterval < fsStateStd  
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add the currInterval to ssStateS;  

add the currIntervalTime to ssStateT;  

else  

if (i==1)  

add currInterval to ssStateS;  

add the currIntervalTime to ssStateT;  

end if;  

flag:=flag+1;  

if (flag<=2) &&(length(sToAnalyseRev) < length(fsState))  

nextInterval:= sToAnalyseRev[i+1];  

nextIntervalT:=sToAnalyseRevT[i+1];  

stdNextInterval:=std(nextInterval);  

 if (stdNextInterval <= fsStateStd)  

add the nextInterval to ssStateS;  

add the nextIntervalT to ssStateT;  

end if;  

else  

exit the loop;  

end if;  

end if;  

end for;  

9. sssRevT:=Reverse(ssStateT); sssRevS:=Reverse(ssStateS);  

10. Return secondSteadyState:=[sssRevT, sssRevS];  
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