
Page 1 of 45

Cite as:

Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S. SigMate: A Matlab-

based automated tool for extracellular neuronal signal processing and analysis. (2012)

Journal of Neuroscience Methods, 207 (1), pp. 97-112. DOI:

10.1016/j.jneumeth.2012.03.009

Copyright © 2012 Elsevier B.V. All rights reserved.

SigMate: A MATLAB–based automated tool for extracellular

neuronal signal processing and analysis

Mufti Mahmud a, c, Alessandra Bertoldo b, Stefano Girardi a, Marta Maschietto a, Stefano

Vassanelli ∗,a

a NeuroChip Laboratory, Department of Human Anatomy and Physiology,
University of Padova, via f. Marzolo 3, 35131 Padova, Italy

b Department of Information Engineering, University of Padova,
via Gradenigo 6/B, 35131 Padova, Italy

c Institute of Information Technology, Jahangirnagar University,
Savar, 1342 Dhaka, Bangladesh

Abstract

Rapid advances in neuronal probe technology for multisite recording of brain activity have

posed a significant challenge to neuroscientists for processing and analyzing the recorded

signals. To be able to infer meaningful conclusions quickly and accurately from large

datasets, automated and sophisticated signal processing and analysis tools are required.

This paper presents a MATLAB–based novel tool, “SigMate”, incorporating standard methods

to analyze spikes and EEG signals and in–house solutions for local field potentials (LFPs)

analysis. Available modules at present are – 1. In–house developed algorithms for: data

display (2D and 3D), file operations (file splitting, file concatenation, and file column

rearranging), baseline correction, slow stimulus artifact removal, noise characterization and

Page 2 of 45

signal quality assessment, current source density (CSD) analysis, latency estimation from

LFPs and CSDs, determination of cortical layer activation order using LFPs and CSDs,

single LFP clustering; 2. Existing modules: spike detection, sorting and spike train analysis,

and EEG signal analysis. SigMate has the flexibility of analyzing multichannel signals as well

as signals from multiple recording sources. The in–house developed tools for LFP analysis

have been extensively tested with signals recorded using a standard extracellular recording

electrode, and planar and implantable Multi Transistor Array (MTA) based neural probes.

SigMate will be disseminated shortly to the neuroscience community under the open–source

GNU–General Public License.

Key words: Neuronal signal analysis, neuronal signal processing, EOSFET, neuronal signal

analysis software, brain–machine interfacing, local field potential.

* Corresponding author. Tel.: +39 049 8275337; fax: +39 049 8275301.

Email address: stefano.vassanelli@unipd.it (Stefano Vassanelli)

Page 3 of 45

1. Introduction

Understanding neuronal networks functionality from brain signals recorded by means of

neuronal probes require rigorous processing and analysis. Advances in microelectronics and

microelectrodes technology have enabled scientists to record from hundreds of neurons and

simultaneously from a number of channels (Buzsaki, 2004; Prochazka et al., 2001; Wise et

al., 2004). Inferring meaningful conclusions by analyzing this massive amount of data

recorded from noisy experimental conditions is a big challenge for the neuroscience and

neuroengineering community (Buzsaki, 2004). Though individual tools are available to

perform processing of EEG signals and neuronal spikes, yet no software is available which

integrate signal processing and analysis of various types of signals including LFPs (Kwon et

al., 2011; Quiroga et al., 2004).

There are a number of existing tools developed for academic and commercial purposes

(Bokil et al., 2010; Bologna et al., 2010; Bonomini et al., 2005; Cui et al., 2008; Delorme and

Makeig 2004; Egert et al., 2002; Goldberg et al., 2009; Gunay et al., 2009; Hazan et al.,

2006; Herz et al., 2008; Huang et al., 2008; Kwon et al., 2011; Magri et al., 2009; Morup et

al., 2007; Novellino et al.,2009; Quiroga et al., 2004; Smith and Mtetwa, 2007; Vargas-Irwin

and Donoghue, 2007; Vato et al., 2004; Versace et al., 2008; Wagenaar et al., 2005).

However, these tools mainly deal with data visualization, spike detection and sorting, spike

train analysis, EEG signal analysis, and cross–software framework to include different

software tools.

A couple of open platforms are under development to promote sharing of different

laboratory–developed tools across the World Wide Web (Lidierth, 2009; Meier et al., 2008).

Frequently, when neuronal signals are recorded using a software different from the one to be

used for analysis, data format conversion is required. To address this issue, there exists an

interface called “Neuroshare API” for standardizing file-formats and creating low-level

handling and processing tools for neurophysiological experiment data

(http://www.neuroshare.org/). The initiative is divided into two phases to obtain its goals: the

Page 4 of 45

first phase targets to create open library and format standards for the experimental data, and

the second phase aims on developing free and open-source tools for low-level handling and

processing of the data. The vendors provide Neuroshare libraries for their data formats to be

used to read from their data files and analyze them. Though very useful, the Neuroshare’s

limitations are that not all platforms are supported, and data access is limited to the data

items specified by the current standard. Continuous inclusion of vendor specific information

to the proprietary data files makes them even harder to access.

Another initiative, the Neurophysiology Data Translation Format (NDF) developed at the

CARMEN project (http://carman.org.uk/) aims to provide a means of sharing

neurophysiology data (Fletcher et al., 2008; Watson et al., 2010). As per the specification

(NDF, 2012), the NDF specifies a uniform file and format structure for data sharing and inter-

application data communication using XML based configuration file to manage a variable

amount of host data files. The NDF also specifies a set internal data types with the most

commonly used experimental data entities applicable to signal or image processing

applications, and include continuous time series, fixed/arbitrary length time series segments

and spike times (e.g. events). NDF may be extended arbitrarily to accommodate other data

entities.

Nevertheless, application of multiple packages on a single dataset to perform different

operations becomes time consuming and cumbersome. An “umbrella” tool is required to

perform these operations (Mahmud et al., 2010b). Table 1 provides a comparative study of

available features among a few popular neuronal signal analysis tools.

Table 1: Comparison of available features in leading neuronal signal analysis tools

Tools

Features

DV FO Spike
LFP EEG

NC SAR CSD LC CLAOD LFPC SA CS RDF E/C L SM TFT

Chronux (Bokil
et al., 2010)

Y N Y N N N N N N Y Y Y N N N

SPYCODE
(Bologna et al.,

2010)
Y N Y N N N N N N Y Y N N N N

DATA-MEAns
(Bonomini et

al., 2005)
Y N Y N N N N N N N N N N N N

BSMART (Cui
et al., 2008)

Y N N N N N N N N Y Y Y N N N

Page 5 of 45

EEGLAB
(Delorme and
Makeig 2004)

Y N N N N N N N N N N N Y Y Y

MEA-Tools
(Egert et al.,

2002)
Y

format

conversi
on

Y N N N N N N N N N N N N

STAToolkit
(Goldberg et al.,

2009)
Y N Y N N N N N N N N N N N N

Klusters,
NeuroScope,
NDManager
(Hazan et al.,

2006)

Y

format

conversi
on

Y N N N N N N Y Y N Y N N

NeuroQuest
(Kwon et al.,

2011)
Y N Y N N N N N N N N N N N N

SigMate
(Proposed
package)

Y Y

Y
(Adapted

from
Quiroga et
al., 2004)

Y Y Y Y Y Y
Y (Adapted from

Bokil et al., 2010)

Y (Adapted from
Delorme and Makeig

2004)

Legends: DV (Data Visualization), FO (File Operations, particularly – file splitting, concatenation, column rearranging), Spike (includes Spike

Detection, Sorting, and Train Analysis), NC (Noise Characterization), SAR (Stimulus Artifact Removal), LC (Latency Calculation), CLAOD

(Cortical Layer Activation Order Detection), LFPC (LFP Classification), SA (Spectral Analysis), CS (Correlation Studies), RDF (Regression Data

Fitting), E/C L (Event/Channel Localization), SM (Source Modeling), TFT (Time Frequency Transform). ‘Y’ denotes availability of a feature, and ‘N’

denotes absence of a feature.

In this paper we present a comprehensive software package, “SigMate”, including our

in–house algorithms to process and analyze LFPs along with standard packages for spike

train and EEG signal analysis. Developed in MATLAB (version 7.9, R2009b,

http://www.mathworks.com/) and tested in Windows 32 and 64–bit versions, this represents

a versatile multipurpose package for processing and analyzing signals recorded using

neuronal probes. A Graphical User Interface (GUI) environment facilitates the access to non-

programming background users. The use case diagram of the software package can be

seen in figure 1.

Due to the increasing usage of MATLAB in neuroinformatics research and selection of

prototyping method for the development life-cycle, we decided to use MATLAB as a means of

preliminary development platform for SigMate. However, future development plans include

translation of SigMate as libraries for Python (http://www.python.org/) and platform

independent executable files.

Page 6 of 45

Figure 1: Use case diagram of SigMate. This diagram provides an overview of the various

modules present within the package.

2. Design and input–output

2.1. SigMate design

SigMate is designed through prototyping method using a multi–layered approach.

Figure 2: Three–layered architecture of the SigMate software package.

Page 7 of 45

➢ Presentation layer (top layer): This is the topmost level of the application. The

presentation layer contains the GUIs of the application. It communicates with the middle

layer by requesting the user commands.

➢ Application layer (business logic, logic layer, or middle layer): The logic layer is

separated from the presentation layer and here an application’s functionality is controlled

by performing detailed processing and analysis.

➢ Data layer (bottom layer): This layer consists of databases and/or storages. Here

information is stored and retrieved. This layer keeps data neutral and independent from

applications or business logic. Giving data its own layer also improves scalability and

performance. In SigMate, no databases are required, rather secondary storage devices

are used to store the signals in files.

This type of three–layered architecture is a client-server architecture in which the user

interfaces, functional process logic (“business logic”), computer data storage and/or data

access are developed and maintained as independent modules. Apart from the usual

advantages of modular software with well–defined interfaces, the three–layer architecture is

intended to allow any of the three layers to be upgraded or replaced independently as

requirements change. For example, a change of GUI design in the top layer would not affect

the bottom two layers (Eckerson, 1995).

The figure 2 shows a diagram depicting the three-layered architecture of the SigMate

software package. In the individual module descriptions (see Sec. 3) the communication

diagrams are shown as a part of the method development.

2.2. Input–output and GUI handling

All the modules of SigMate are designed to accept ASCII text files containing data values

separated by tabs. Although the ASCII format text files are heavier in size compared to many

proprietary file types, we selected this file type due to its universal acceptance. Moreover,

SigMate aims to provide a platform independent framework (not limited by the signal

Page 8 of 45

acquisition hardware) which can be achieved using the ASCII file type as most of the data

acquisition systems allow their data to be saved, exported or converted to ASCII files.

The data values in a file should be stored in columns with the first column as the time

vector and the other columns as recorded data values from different channels. For example,

if a file contains recordings from a neuronal probe containing four recording sites or

channels, the file is expected to have five columns: the first one is the recording times, and

the other four are the recorded values by each site or channel. At the moment, SigMate

modules can handle files containing simultaneous recordings from maximum five channels

which will be extended to large numbers of channels in future releases.

Each GUI is having some common and useful features (as an example the data

visualization GUI can be seen in figure 5B): 1) a dropdown box for selection of signal source,

2) a number of check boxes for channel selection, 3) a listbox to show the selected files, 4) a

browse button to let the program select a folder whose contents can be seen in the listbox,

6) a display pane (with zoom, pan and data cursor add-ins) to visualize the selected signal

file(s) from the listbox, 7) a remove file button to remove selective files from the listbox, 8) a

load data button to load the signal files present in the listbox, and 9) module specific buttons

and fields.

The selection of multiple signal files provides the flexibility for performing batch

processing. At the moment it can handle signals from two possible signal acquisition

sources: 1) single site neuronal probes (e.g., micropipettes, metal electrodes, etc.), and 2)

multisite neuronal probes. In principle, during the processing and analysis, signals recorded

using the single site neuronal probes can be treated as a special case of the multisite

neuronal probes. However, frequently it is found that signals recorded using multisite

neuronal probes are more prone to noise contamination compared to the conventional single

site probes. For this reason, we treated signals coming from the two different sources

differently.

Page 9 of 45

Each module expects that the signals to be analyzed are stored in a folder which can be

indicated to through the ‘browse’ button of a GUI. As an example, we illustrate below how a

user can calculate the layer activation order from the recorded LFPs using the latency

estimation module.

Figure 3: An example of the GUI handling calculation of the latencies in LFPs to determine the

cortical layer activation order (see section 3.5 for detailed information on the algorithm). The

numbered marks (the red ovals) indicate the basic execution order of the program to be followed

for performing the analysis. 1. Signal source selection (from the signal source dropdown list. In

this case, ‘micropipette recordings’ was selected), 2. Browse for the signal directory (a directory

containing the signal files. In this case, there were 20 files each one corresponding to a recording

position and containing two columns: first one is the recording time and the second one is the

recorded data), 3. Click ok in the browse window, 4. Channel selection (using the ‘select channel’

checkboxes, one channel was selected as micropipettes provide single channel recordings), 5.

Clicking on each recording in the listbox displays the signal in the display pane, 6. Files can be

removed from the listbox using the ‘remove file’ button, thus, excluding them from analysis, 7.

Click the ‘Calculate Latency’ button which calls a function capable of detecting events present in

each of the files and of calculating and saving their latencies, and 8. The cortical layer activation

Page 10 of 45

order is determined using the ‘Calculate Layer Activation Order’ button and displayed in a new

window.

3. Methods

The software package is designed to perform various processing and analysis on the

neuronal signal files. The functionalities of the software includes adoption of existing popular

tools for spike train analysis (‘Wave_Clus’ by Quiroga et al., 2004) and EEG signal analysis

(‘EEGLAB’ by Makeig, 2004), in-house developed tools for processing and analysis of LFPs,

and three more LFP analysis features (spectral analysis, correlation studies, and regression

data fitting) from Bokil et al., 2010. The in-house developed algorithms for file operations and

LFP analysis are described in detail in the subsections 3.1 to 3.6. The non-exhaustive list

(due to continuous inclusion of new features) of features present at the moment are: data

display / visualization (2D and 3D) with zooming, panning and data cursor options, slow

stimulus artifact removal (including baseline correction), noise characterization and signal

quality assessment with noise estimation, file operations (including file splitting, file

concatenating and file column rearranging), latency estimation (in LFPs and CSDs) with the

possibility to detect the cortex layer activation order, and single LFP sorting. These features

were extensively tested with event related neuronal signals recorded using conventional

single site probes (standard borosilicate micropipette), and Electrolyte-Oxide-Semiconductor

Field Effect Transistor (EOSFET) based multisite neuronal probes from anesthetized rats

(see supplementary document for details on signal acquisition techniques and Felderer and

Fromherz 2011; Hierlemann et al., 2011; Hutzler et al., 2006; Lambacher et al., 2011;

Vassanelli and Fromherz 1997, 1998, 1999; and Vassanelli et al., 2012 for examples of

signals acquired by transistor based probes). However, the stimulus artifact removal, and

baseline correction may be used with non-triggered signals. The following subsections

describe the in-house developed LFP analysis algorithms (a conceptual schematic diagram

can be seen in figure 4) of the individual modules in greater details.

Page 11 of 45

Figure 4: Conceptual schematic diagram of the in-house algorithms outlining major steps for

each operation.

3.1. Data display

This is the initial GUI, i.e., the application is launched using this GUI. It contains the

menu bar incorporating links to other modules of the SigMate. Its functionality does not only

provide the user with the flexibility in viewing the signals in 2D and 3D, but also provide the

possibility to perform averaging of single sweep signals, estimate the noise, perform ±

averaging, and calculate the mean square (MS) and root mean square (RMS) of the signals.

Noise estimation through RMS and MS is used to gain preliminary noise information on the

signals. A dedicated module for noise characterization and signal quality assessment is also

included in the package (see sec. 3.4). The communication diagram and the GUI can be

seen in figure 5.

Page 12 of 45

Figure 5: A: Communication diagram of the data display module. B: GUI of the data display

module and its possible operations. The menu bar contains menus that are linked to the other

modules of the package.

3.2. File operations

Basic file operations are being incorporated in the software package that are often time

consuming for the scientists who use different software for signal recording and performing

signal processing and analysis. As different tools require signal files to be formatted in their

particular ways, this module performs three basic and important formatting operations: file

splitting (splits a multi–sweep file into single–sweeps based on the sampling frequency), file

concatenation (concatenates multiple single–sweep files into a multi–sweep file), and file

column rearranging (retains only the selected channels and eliminates the unselected ones).

Figure 6 shows the communication diagram of the module.

Page 13 of 45

Figure 6: Communication diagram of the file operation module.

3.3. Slow stimulus artifact removal

In general, neuronal signals can be contaminated with two different types of stimulus

artifacts: slow and fast. Usually, frequency components of the fast artifacts are in range of 1–

3 kHz, whereas slow artifacts lay below 100 Hz overlapping with frequency components of

typical LFPs. The slow stimulus artifact removal module performs slow artifacts removal and

baseline correction of the cortical surface recorded signals. In our recordings, a slow artifact

was caused by the bath modulation during application of air–puff stimulation and laid within

the range of 8–12 Hz. As the frequency of the artifact overlapped with the response, the

method used control signals (recorded after the brain activity was suppressed) to remove the

artifacts from the signals with evoked responses.

The removal is performed using an in–house algorithm (listed in appendix A.1). This

algorithm detects the peaks and valleys in a signal (Sorg). For each peak there is a

corresponding valley which constitutes a peak–valley pair for a tiny signal part. Once all

peak–valley pairs in a signal are detected, their average provides an estimation of the signal

(Sest). The mean of this estimated signal (μs-est) is subtracted from the original signal for

baseline correction (Sorg – μs-est). The estimated signal (Sest-ctrl) calculated using the control

signal (Sctrl) is subtracted from the evoked signal to remove artifact from the evoked signal,

i.e., Sartifact-removed = Sorg – Sest-ctrl (Mahmud et al., 2009a). Figure 7 shows the communication

Page 14 of 45

diagram and the GUI of the module and figure 8 shows flowchart of the artifact removal

method.

Figure 7: A: Communication diagram of the artifact removal module. B: GUI of the artifact

removal module offering the possibility to perform artifact removal on single signal files or batch

processing of multiple files.

Page 15 of 45

Figure 8: Flowchart of the artifact removal method.

3.4. Noise characterization and signal quality assessment

The noise characterization module is designed to be able to assess the quality of the

recorded signals and quantify the noise. It uses in–house algorithms to detect the first

steady–state (FSS, the pre–response portion of the signal), and the second steady–state

(SSS, the post–response portion of the signal). After fitting polynomial models to the

detected steady–states, it calculates the measurement error (ME) present in the signal

(Mahmud et al., 2009b; 2011d). Statistical information (mean and standard deviation, SD)

Page 16 of 45

and distribution of the ME are used in quantifying the noise, thus providing an assessment of

the signal quality (Bowman and Azzalini, 1997). The algorithms of ME calculation, FSS and

SSS detection are listed in appendices A.2, A.2.1 and A.2.2, respectively.

3.4.1. Signal quality assessment using measurement errors (MEs)

The signal quality assessment starts with the hypothesis that the noise present in the

signal is of Gaussian distribution with zero mean. Therefore, mathematically the noisy part of

the signal can be represented by the equation 1 (Dodge, 2003).

z(t) = y(t, p)+e(t) (1)

where z(t) are the measured values, e(t) are the noise, and y is the mathematical

representation of the true values. Here, y is a function of time (t) and depends on the

parameter vector p = [p1, …, pn, pn+1]
T

. In this kind of representation, time is the only

independent variable and the measurements are made precisely at known times, ti, i =1, …,

N.

The steady–state portions of the signal are represented by an n–order polynomial model

whose coefficients (in form of parameter vector, p) are calculated using weighted least

square using QR decomposition of the Vandermonde matrix constructed from t and stored in

descending order of powers.

Weighted residual sum of squares (WRSS) is used in estimating the y(t, p). The

parameter estimation is obtained by minimizing the weighted sum of squared difference

between the observed z(t) and the model predictions y(t, p) for a number of candidate

models (j=1,…,m). The weights (w) are calculated using the variance
2

ji , with
21/ji jiw 

(Landlaw and DiStefano, 1984).

However, for each of the m candidate models of order n, the parameter vector p, the

predicted data y(t, p), and the WRSS are calculated. Then, to select the optimal model in

terms of polynomial order (that best fits the data) from a set of possible candidate models,

the Akaike information criterion (AIC) is applied (Akaike,1974).

Page 17 of 45

The minimal AIC value represents the optimal model with order n and parameter p, and

implies that the model with this set of parameters will provide best results in calculating the

ME using equation 1.

3.5. Latency estimation

There are two different modules for the latency estimation. The first one calculates

latencies in LFPs by detecting various signal events. The other one first derives the CSDs

from the LFPs and then detects the first sinks’ peaks for the latency calculation. For both the

LFPs and CSDs, the latencies are calculated as differences between the stimulus–onset and

the respective events.

Neuroscientists often rely on barrel cortex LFPs to investigate the somatosensory

system of some rodents (Ahissar and Knutsen, 2008; Diamond et al., 2008). For cortical

signals, latencies provide information about the propagation time required for a stimulus

evoked event to reach a cortical position. We used the latencies to determine the layer

activation order from LFPs and CSDs. The estimation of latencies requires detection of

events to be treated as reference points. For the cortical LFPs, the layer specific

characteristics or events are explored using an in-house signal derivative based algorithm

(Mahmud et al., 2011a). The latency of an event is calculated as the difference between the

event’s occurrence time and the stimulus-onset. The layer activation order is calculated

using the latencies of the most prominent events across different cortical depths. For the

CSDs calculated from the LFPs, we consider the first occurring sink as the reference event

and calculate the latencies as the difference between the first sink’s peak and stimulus-

onset. For both LFPs and CSDs, the calculated latencies are associated with recording

depths known a-priori and grouped into layers based on the depth information. The minimum

latency from each layer is found and sorted in ascending order to obtain the layer activation

order. The method is discussed in detail in the following subsections.

3.5.1. Barrel cortex LFPs

Page 18 of 45

The LFPs recorded from a barrel column of the rat S1 cortex by stimulating the

corresponding whisker can be differentiated by their specific characteristics based on the

depth or layer they are recorded from. It’s worth mentioning here that, barrel cortex LFPs

can be represented using a template of four subsequent events (E1–E4) (Ahrens and

Kleinfeld, 2004; Alloway, 2008; Kublik, 2004; and Mahmud et al., 2011a). These events are

automatically detected and used in automated estimation of latencies. A representative

signal depth profile recorded from the rat barrel cortex can be found in the accompanying

supplementary document.

3.5.2. Event detection and latency estimation from LFPs

The event detection for each barrel cortex LFP is performed automatically using an in–

house algorithm (Mahmud et al., 2010a). The algorithm is based on derivative calculation

and detects in each file: the stimulus–onset, the response–onset, and the four events

representing the barrel cortex LFPs (E1, E2, E3, and E4). Once the events are detected,

latencies are calculated by subtracting the occurrence time of the events from the stimulus–

onset time and are saved in a file for further processing (Mahmud et al., 2011a).

3.5.3. CSD calculation and latency estimation in CSDs

Due to the widespread use of CSD analysis in the neuroscience community, we have

included a module to calculate the CSD profile from the recorded LFP profile (Armstrong–

James et al., 1992; Castro–Alamancos and Oldford, 2002; Di et al., 1990; Einevoll et al.,

2007; Jellema et al., 2004; Kaur et al., 2004; Megevand et al., 2009; Mitzdorf and Singer,

1980; Mitzdorf, 1985; Rappelsberger et al., 1981; Staba et al., 2004; Swadlow et al., 2002;

Szymanski et al., 2009). The CSD computation is adapted from Pettersen et al., 2006 to

compute CSD using four different methods (standard, delta–inverse, step–inverse, and

spline–inverse CSD methods). The δ-Source Inverse CSD method (δ-Source iCSD) and its

application to barrel cortex LFPs are explained in detail in a previous publication (Mahmud et

al., 2011a).

Page 19 of 45

After the CSD profile is computed, the sources and sinks for the individual recording site

can easily be viewed. The calculation of the sinks’ latencies is done by subtracting the time

instance of the stimulus–onset from the time instance of the peak of the first sink.

3.5.4. Layer activation order detection

An important feature of the latency estimation module is that it can automatically

calculate the cortical layer activation order based on the estimated latencies from the LFPs

and the CSDs. Once the latencies are determined from the LFP profile and its respective

CSD profile, they are lalyerwise grouped based on a-priori information regarding signal’s

recording positions. The latency of E2 is used in calculating the layer activation order from

the LFPs. The ascending sequence of the layerwise minimum latencies provided the layer

activation order.

3.6. Clustering of single LFP signals

The LFPs provide a finger–print of the stimuli’s effect on signal generation and

propagation of neuronal networks in the brain region under study (Legatt et al., 1980).

Conventionally, these LFPs are recorded for a period of time and then a stimulus–locked

average is obtained for analysis. However, previous studies show that averaging single

LFPs causes information loss in the averaged LFP (Van Hemmen and Ritz, 1995). Also, to

investigate certain brain functional properties (for example, signal processing pathways) and

for certain operations (for example, current source density analysis) signal shape plays an

important role (Okun et al., 2010; Mahmud et al., 2011a). As different shapes in the single

LFP signals denote different neuronal network activities, a shape based classification

method is necessary.

The method performs the clustering in three major steps: (i) smoothing / estimation of

single LFPs and template generation, (ii) single LFP recognition, and (iii) classification of

recognized single LFPs.

Page 20 of 45

The single LFPs contain spontaneous brain activity along with the stimulus evoked

response. To remove the oscillatory spontaneous brain activity, smoothing / estimation is

performed using nonlinear least square estimation. The main reasons behind performing the

estimation are two folds. Firstly, reduction of noise without distorting the shape information

often caused by filtering, and secondly, facilitating the recognition of signal characteristics to

be used as the base for selecting the feature vector for the clustering algorithm. Once the

signals are estimated, the starting and end of the response is determined (response part) by

truncating the pre-stimulus and post-response (the part after response till the end of the

signal) parts. An average of these response subsets is usually considered as a template for

single LFP recognition. This method makes use of contour matching for recognition of the

single LFPs. The contour of the generated template is compared to each of the single LFP’s

contour with a predefined boundary condition. The single sweeps that fall within the

boundary condition are considered to be recognized. Once the single LFPs are recognized,

intelligent K–means clustering is applied on the recognized signals to classify them

according to their shapes. The classified or clustered single sweeps are then locally

averaged and saved for further processing (Mahmud et al., 2010c; 2011c).

3.6.1. Signal smoothing / estimation and template generation

Precise information about the signal events are often obscured by spontaneous neural

oscillations and noise present in the single LFPs. To get rid of these oscillations and noise,

nonlinear least square method is used for smoothing / estimating the single LFPs.

Using least square, for a given vector function f: ℜ n → ℜ m

with m ≥ n, we want to

minimize ||f(x)|| or equivalently find:

* ()}{xx argmin F x (2)

Where x* is the local minimizer of F(x). For a set of arguments, x*, the value of F(x) is kept

minimal within the range of a very small positive integer, δ (Madsen et al., 2004). The F(x)

can be calculated using:

Page 21 of 45

          2 2

1

1 1 1
(()) || () ||

2 2 2

m T

ii
F x f x f x f x f x


   (3)

Now considering a model to calculate the prediction error () (equation 4) and adding the

covariance matrix of this prediction error () as a weight function to equation 2 and 3, an

analytical solution of the problem can be obtained (equation 5).

 *x y x   (4)

 
1

* 1 1T Tx y y y x 


    (5)

The nonlinear problem then can be solved using first order Taylor’s expansion around

the initial value of the parameter vector (
* , 0kx k ):

*Δ Δx P x   (6)

Here, P is the partial derivative matrix with the predicted values using the initial set of

parameters. A linear formula now can be used to estimate these parameters (equation 7)

and to calculate the new parameter vector (equation 8). This iterative process is repeated

until the cost function stabilizes or falls below a threshold.

 
1

* 1 1Δ Σ ΣT Tx P P x 


  (7)

* * *

1 Δk k kx x x   (8)

The estimated signals are scanned for occurrences of the events (E1–E4). From each

signal the part from the stimulus–onset till the E4 are extracted for the calculation of the

template. These extracted parts are usually different in lengths, thus, to obtain parts with

same length, the longest part is selected and the rest are zero–padded. The average of all

these parts provides the template.

3.6.2. Single sweep recognition

After the template’s generation, boundary conditions are imposed on it and its contour is

used to recognize the single LFPs. The upper and lower bounds are calculated using

equations 9 and 10.

Page 22 of 45

      
1/2

()tmpUp k Temp k a V k b    (9)

      
1/2

()tmpLow k Temp k a V k b    (10)

with a, b are constants; the values of a, b are determined empirically (a = σ(Temp), and b

=3× σ(Temp)), and Vtmp is the template’s variance vector (equation 9).

  2

1

1
[()]

N

tmp ii
V Sw k Temp k

N 
  (11)

where Sw is the zero–padded and truncated single sweeps and Temp is the template.

A signal is considered to be recognized, if and only if all of its data points lie within the

range of the boundary conditions.

3.6.3. Clustering the recognized sweeps

For our purpose we used the intelligent K–means (iK–Means) method of classifying

recognized sweeps (Chiang and Mirkin, 2010). It is an updated version of the classical K–

means (Bock, 2007; Macqueen, 1967). In the rest of the text the words classification and

clustering are used synonymously.

The K–means method usually is applied to a dataset involving a set of N entities, I, a set

of M features, V, and an entity–to–feature matrix Y=(yiv), where yiv is the value of feature v ∈

V at entity i ∈ I. The method produces a partition S = {S1, S2, …, SK} of I, an M dimensional

vector in the feature space (k=1, 2,··· , K), in K non–overlapping classes Sk (referred to as

clusters) with centroids ck=(ckv). The centroids form a set C={c1, c2, …, cK} and the clusters

are decided basing on a minimization criterion of within–cluster distance to centroids

(equation 12).

 
1

, (,)
k

K

kk i S
W S C d i c

 
  (12)

with d is the square of calculated Euclidean distance.

Given K M–dimensional vectors with ck as cluster centroids, the algorithm updates

clusters Sk according to the Minimum distance rule: for each entity i in the data table, its

Page 23 of 45

distances to all centroids are calculated and the entity is assigned to its nearest centroid.

Given clusters Sk, centroids ck are updated according to the distance d in equation 12.

Specifically, ck is calculated as the vector of within–cluster averages as d in equation 12 is

Euclidean distance squared. This process is reiterated until clusters Sk stabilize.

The method uses an anomalous pattern (AP) based algorithm to find out the appropriate

number of clusters at the beginning of the clustering (Chiang and Mirkin, 2010). The AP

algorithm starts with an entity as the initial centroid c which is the farthest from the origin.

After that, a one–cluster version of the generic K–Means is utilized. The current AP cluster S

is defined as the set of all those entities that are closer to c than to the origin, and the next

centroid c is defined as the center of gravity of S. This process is iterated until convergence.

Finally, when the single sweeps are classified into their respective clusters, they are

cluster–wise averaged for further processing.

4. Results and discussion

The features of the package were tested with datasets recorded using three different

recording methods. 1) Using standard borosilicate micropipettes as extracellular single–site

electrodes; 2) using EOSFET based planar multi transistor array chips; and 3) using

EOSFET based implantable chips. The supplementary document contains detailed

description about the setup and the recording methods. As the spike and EEG analysis

modules were adapted from popular and widely tested tools, we just provided interfaces

between SigMate and those tools. Each of the in–house modules contain a GUI and they all

are kept user friendly so that the operations can be performed easily even by non–

programming background users rather than typing commands in the command line. The

following subsections demonstrate the features workability on representative datasets.

4.1. Artifact removal

Page 24 of 45

The figure 9 shows the estimation of a control signal calculated by the peak–valley

detection algorithm described in the appendix A.1. The offset of this control signal was

corrected using the mean of its estimation.

Figure 9: Control signal and its estimation through peak–valley detection using the signal‟s

standard deviation as threshold.

Figure 10 shows the traces before and after stimulus artifact removal. The top trace is

the artifact, the middle trace shows the evoked signal contaminated by artifact, and the

bottom trace is the signal after artifact removal. The air–puff stimulation is shown at the

bottom.

Figure 10: Traces of control signal (gray), evoked potential with artifact (red), artifact removed

evoked potential (green), and the stimulus.

This method was also applied on a number of signals to perform batch processing. The

figure 11(a) shows a 3D plot of simultaneously recorded signals from 13 EOSFETs with

stimulus artifact (the two arrows point the artifact region). The figure 11(b) shows the 3D plot

of the same signals after artifact removal by batch processing of the artifact removal module.

Page 25 of 45

Figure 11: 3D signals before and after stimulus artifact removal. The color–bars show the

amplitude intensity of the signals. (a) Raw signals recorded from 13 EOSFETs. The two arrows

show the stimulus artifact region. (b) Signals without stimulus artifact as a result of batch

processing.

4.2. Noise characterization and signal quality assessment

The method was tested on different datasets for a range of candidate models (m = 6)

and order (n = 2 to 7). Except for a few signals it could calculate the steady–states

accurately and provide successful signal quality assessment. In case of highly oscillatory

signals with a high SD, the method failed to calculate the accurate response–onset, thus, the

steady–states. In a pool of 65 different datasets, the algorithm failed to detect the exact

evoked response for 5% of the signals. During an experiment, the multisite neuronal probes

acquire signals simultaneously with an assumption that the experimental conditions for all

the sites are similar. Considering this hypothesis, the quality of the recordings from an

experiment can be assessed neglecting the failed cases.

Page 26 of 45

Figure 12: Left: figure showing the raw trace (black solid line); the detected FSS (grey dot-dash

line); the SSS (grey solid line); fitted polynomial model, SSS–Fit (black dot-dot-dash line); and

the SSS‟s ME, SSS–ME (dashed grey line). Right: histogram of statistical distribution of SSS‟s

ME and its estimated density function (Gaussian).

Figure 12 shows representative result of FSS and SSS’s detection (left). It depicts the

raw trace (in black solid line) with detected FSS (gray dot–dash line), the FSS fit to facilitate

the detection of the response–onset (dashed black line), the SSS (gray solid line), the

polynomial model fitted to the SSS (black dot–dot–dash line), and the ME of the SSS

(dashed gray line). The fitted polynomial model is seen as an oscillating wave as the post–

response portion of the signal usually contained spontaneous oscillatory brain activity

uncorrelated to the given stimuli. The ME calculated from the SSS had a Gaussian

distribution as hypothesized.

Table 2 reports the means and SDs of the FSSs and the SSSs and their respective MEs.

The steady−states were calculated using the algorithm listed in appendix A.2. Analyzing

these results we noticed that the means of the MEs for all the signals (μme−fss and μme−sss)

were very close to zero and the SDs of these MEs (σme−fss and σme−sss) were consistent

around 0.01.

Table 2: Mean and SD of FSS, SSS with their MEs

FET µfss σfss µme-fss σme-fss µsss σsss µme-sss σme-sss

FET01 0.0067 0.0123 0.0831 × 10-3 0.0118 0.0016 0.0153 9.397 × 10-15 0.0108

FET02 0.0038 0.0114 0.0618 × 10-3 0.0109 0.0038 0.0118 1.091 × 10-12 0.0110

FET03 0.0013 0.0105 0.0750 × 10-3 0.0101 0.0068 0.0101 1.513 × 10-13 0.0096

Page 27 of 45

FET04 0.0098 0.0144 0.0036 × 10-3 0.0139 0.0014 0.0144 1.612 × 10-14 0.0119

FET05 0.0044 0.0133 0.0045 × 10-3 0.0128 0.0038 0.0140 9.183 × 10-15 0.0120

FET06 0.0056 0.0126 0.1397 × 10-3 0.0121 0.0012 0.0117 7.995 × 10-9 0.0111

FET07 0.0012 0.0089 0.0394 × 10-3 0.0086 0.0004 0.0085 2.580 × 10-10 0.0082

FET08 0.0038 0.0098 0.0935 × 10-3 0.0095 0.0019 0.0104 1.268 × 10-13 0.0093

FET09 0.0062 0.0118 0.0671 × 10-3 0.0113 0.0027 0.0110 2.213 × 10-15 0.0092

FET10 0.0015 0.0104 0.0404 × 10-3 0.0100 0.0023 0.0107 2.356 × 10-15 0.0101

FET11 0.0134 0.0133 0.0068 × 10-3 0.0128 0.0007 0.0146 8.215 × 10-15 0.0116

FET12 0.0004 0.0109 0.0183 × 10-3 0.0107 0.0028 0.0139 5.100 × 10-13 0.0119

FET13 0.0029 0.0108 0.0545 × 10-3 0.0104 0.0010 0.0122 6.045 × 10-15 0.0108

FET14 0.0060 0.0113 0.0293 × 10-3 0.0108 0.0007 0.0101 9.123 × 10-9 0.0101

FET15 0.0079 0.0102 0.1083 × 10-3 0.0098 0.0063 0.0009 6.182 × 10-8 0.0110

FET16 0.0083 0.0118 0.1523 × 10-3 0.0112 0.0088 0.0108 5.653 × 10-16 0.0099

Legend: FET: Field Effect Transistor, µfss: mean of the FSS, σfss: SD of the FSS, µme-fss: mean of the ME calculated from FSS, σme-fss : SD of the

ME calculated from FSS, µsss: mean of the SSS, σsss: SD of the SSS, µme-sss: mean of the ME calculated from SSS, σme-sss: SD of the ME

calculated from SSS.

Figure 13: Graphs showing means of FSSs and their MEs (left); SSSs and their MEs (right). The

y–axis scale is log10 based.

Figure 13 compares the means of FSS and SSS with their respective MEs from another

dataset. The results are comparable to table 2, i.e., the means of the MEs were significantly

small compared to those of the steady–states (the y–axis scale is log10 based). Also, their

standard deviations were stable in the range of 0.01 to 0.015.

Furthermore, the means of the averaged steady–states (obtained by averaging the FSSs

and the SSSs across a number of signals) and averaged MEs (obtained by averaging the

MEs of FSSs and the MEs of SSSs across a number of signals) were very close to zero and

their standard deviations were steady around 0.012 (similar to the ones calculated from

single signals) as seen in figure 14.

Page 28 of 45

Figure 14: Left: means of averaged FSS and SSS with their respective MEs. Right: Standard

deviations of Averaged FSS, SSS, and their respective MEs.

The results presented above illustrate that the MEs’ means are almost zero and the

signals satisfy the assumption of Gaussianity, thus implying a good quality of the recorded

signals. Therefore, the noise characterization and signal quality assessment performed by

the module helps the user to estimate signal quality easily and quickly. Also, analyses

presented above show the module’s reliable workability for cortical signals.

4.3. Latency calculation and layer activation order detection

The module was applied to a number of datasets recorded using borosilicate

micropipettes and implantable EOSFET based chips. We report here results obtained by

applying the method on signals recorded using micropipettes. The method found to be

working well except a few situations (2% of occurrence rate) with an error of ± 300 μs in

latency calculation. Particularly, this error occurred in case of signals containing slow

stimulus artifacts (with frequency components less than 250 Hz). As calculated latencies

were in terms of a few milliseconds up to hundreds of milliseconds, this error can be

considered negligible. Figure 15 shows representative signals and their respective detected

events after a run of the method.

Page 29 of 45

Figure 15: LFP depth profile with detected events using the method. The signals were recorded

equidistantly (90 μm pitch). For better visualization only representative signals from each layer

are shown.

To check the accuracy of the automated latency calculation, the LFP based latencies

were also compared with the manually calculated latencies and the results were found to be

similar (in table 3). ‘M’ denotes manual computation by hand and ‘A’ denotes automated

calculation using the method. In table 3 the ‘E1’, ‘E2’, ‘E3’ and ‘E4’ are the latencies of the

respective events. Furthermore, table 4 reports average latencies for 3 different experiments

evaluated manually and by the program with their root mean square errors (RMSE). In table

4 the ‘E1’, ‘E2’, ‘E3’ and ‘E4’ are averaged latencies and RMSE of the respective events.

The low RMSE indicates that the calculation of latencies using the automated method is

accurate. The tables report data corresponding to representative signal(s) from depth(s)

within each layer.

Table 3: Comparison of manual and automatic calculation of latencies

Depth Mode
Latencies (ms)

E1 E2 E3 E4

90 µm M 5.384 19.784 42.934 144.954

Page 30 of 45

A 5.655 19.564 42.742 143.393

180 µm
M Absent 19.745 60.055 174.215

A Absent 19.416 59.259 174.023

270 µm
M Absent 19.905 64.795 180.965

A Absent 19.615 63.513 183.733

450 µm
M Absent 20.215 69.395 232.835

A Absent 20.228 70.32 232.836

540 µm
M Absent 20.075 74.205 221.595

A Absent 20.216 74.124 222.021

720 µm
M Absent 20.645 79.895 283.305

A Absent 20.565 78.228 282.532

990 µm
M Absent 19.375 87.805 220.125

A Absent 19.464 87.887 175.475

1260 µm
M Absent 18.585 96.025 238.595

A Absent 18.213 96.046 239.489

1620 µm
M 16.115 38.925 110.835 202.635

A 16.116 38.785 112.562 198.448

1800 µm
M 10.175 38.585 118.825 234.975

A 10.311 38.584 118.568 234.784

Table 4: Average latencies of events using manual and automatic calculation with RMSE

Depth Mode
Average Latencies (ms) RMS Errors (ms)

E1 E2 E3 E4 E1 E2 E3 E4

90 µm
M

A

6.019

6.592

19.784

19.564

42.450

42.201

139.014

140.047
0.542 0.081 0.024 0.315

180 µm
M

A

Absent

Absent

19.745

19.416

67.547

68.974

178.850

175.654
Absent 0.092 0.021 0.221

270 µm
M

A

Absent

Absent

28.517

28.428

62.574

65.051

183.015

187.373
Absent 0.026 0.032 0.254

450 µm
M

A

Absent

Absent

25.591

25.675

74.102

77.108

221.301

203.952
Absent 0.062 0.028 0.253

540 µm
M

A

Absent

Absent

18.175

18.318

71.214

72.980

231.595

213.741
Absent 0.059 0.046 0.477

720 µm
M

A

Absent

Absent

20.145

19.619

72.985

73.428

210.745

271.659
Absent 0.048 0.094 0.351

990 µm
M

A

Absent

Absent

21.937

22.121

84.862

90.957

192.251

183.241
Absent 0.095 0.392 0.853

1260 µm
M

A

Absent

Absent

18.985

19.018

91.213

91.478

210.021

228.674
Absent 0.036 0.095 0.764

1620 µm
M

A

11.152

10.920

26.132

25.925

110.835

112.562

192.380

181.154
0.152 0.071 0.93 0.429

1800 µm M 9.631 35.585 117.241 221.341 0.821 0.087 0.034 0.762

Page 31 of 45

A 9.927 35.885 113.231 214.114

From the CSD profile the latencies were calculated as the difference between the first

sink’s peak and stimulus–onset. Figure 16 shows a comparison of the cortical layer

activation order using LFPs and CSDs (Mahmud et al., 2011a).

Figure 16: Comparison of cortical layer activation order obtained from LFPs and CSDs.

Basing on these evidences, we can assert that the latency estimation module can

calculate the latencies, and, in turn, that the activation order of layers in the barrel columns is

calculated accurately. Both the approaches (using LFP or CSD) provide similar results which

are justifiable using a simple barrel cortex network model from Fox, 2008. Thus, it is the

user’s choice which one of the two approaches to use (Mahmud et al., 2011a).

Figure 17: Layer activation order using latencies calculated from LFPs averaged across

experiments and CSDs calculated from them are depicted in (a) and (b), respectively.

Page 32 of 45

Application of the method on averaged signals across experiments (n=3) provided a

temporal order of layer activation comparable with previous studies done by Armstrong-

James et al., 1992; Di et al., 1990; and Einevoll et al.,2007. Figure 17 shows the layer

activation order using LFPs averaged across experiments and CSDs derived from them,

respectively.

4.4. Clustering of single LFPs

The module was validated on a number of datasets recorded with borosilicate micropipettes.

Results were found satisfactory except some cases, where signal morphology was highly

atypical (occurrence rate of 1%). Each dataset comprised recordings from about 20 different

depths, and each of them contained as many as 100 single sweeps. Except to demonstrate

the distribution of single LFPs to different clusters, we present clustering results related to a

representative set of single LFPs.

In figure 18 we can see the raw single LFPs and their average signal (left), and the

estimated single sweeps and their average signal (right).

Figure 18: Left: raw sweeps (without estimation) with average in red. Right: estimated sweeps

with average in red. The noise in the raw single sweeps is evident in the left figure.

Page 33 of 45

Figure 19: The template (in red), the upper and lower bounds (in green), and the single sweeps

truncated to the size of the template. It also shows the recognized single LFPs using contour

comparison of the template (blue).

Figure 20: Result of the clustering. Single sweeps (in grey) and their respective averages (in red)

depict the clear difference in the inter–cluster signal shapes.

Page 34 of 45

Figure 19 shows single sweeps truncated to the size of template, the upper and lower

bounds of the template. Each single LFP that fell within these bounds was considered to be

recognized.

Figure 20 shows the various clusters of signals with their respective averages. The

recognized N single LFPs were classified using the iK–means clustering method to obtain

different shape based clustering.

Table 5: Total Recognized Sweeps and Single LFP Allocation to Clusters

Depth RS
Clusters

1 2 3 4 5 6 7 8 9 10

90 µm 90 5 6 12 11 11 7 8 12 6 12
180 µm 86 11 17 10 17 18 13 – – – –
270 µm 87 8 8 8 11 15 7 4 10 10 6
360 µm 80 7 10 7 14 13 9 11 9 – –
450 µm 78 10 9 11 4 7 15 9 13 – –
540 µm 86 9 8 16 9 9 2 9 8 7 9
630 µm 85 16 6 15 14 17 17 – – – –
720 µm 93 6 18 17 16 7 16 13 – – –
810 µm 92 10 9 13 9 13 8 14 6 10 –
900 µm 97 11 15 6 8 14 10 6 9 9 9
990 µm 96 19 15 15 10 5 17 15 – – –
1080 µm 92 12 12 9 9 12 9 8 10 11 –
1170 µm 99 8 13 13 9 6 11 10 9 10 10
1260 µm 100 11 20 13 16 7 7 16 10 – –
1350 µm 100 18 13 19 19 19 12 – – – –
1440 µm 98 13 10 16 8 16 14 7 5 9 –
1530 µm 100 7 9 18 7 14 7 10 16 12 –
1620 µm 99 10 5 16 10 11 8 10 12 11 6
1710 µm 99 10 12 20 13 14 12 18 – – –
1800 µm 100 10 12 5 15 16 14 9 19 – –

Table 5 tabulates the recording depths, total number of recognized LFPs, and single LFP

signal distribution among different clusters. This table shows that the single LFPs were well

classified into different clusters. In the table, ‘RS’ denotes total number of recognized signals

in one recording position, ‘1’ to ‘10’ are the cluster numbers, and ‘–’ means no clusters

Once the single sweep clusters were formed, the program computes local averages of

each cluster for further processing. Analyses of these local averages (the signal amplitudes

of the E2 and the calculated latencies based on the signal events) revealed that the

activation of underlying neuronal network generating the signal might be different even if the

signals were recorded from the same recording site with the same stimulus (figure 21 and

figure 22).

Page 35 of 45

Figure 21: Latency variation among different clusters local averages. Each bar corresponds to a

local average of a cluster and each color corresponds to a recording depth consisting of a

number of clusters.

Figure 22: Amplitude variation among different clusters local averages.

From these variations in the latency and the amplitude it can be asserted that different

neuronal networks near the recording electrode were activated during the whisker

stimulation at different times.

5. Conclusion

To understand brain activities with an unprecedented level, parallel high resolution

recordings are required. This paper presents a report on the SigMate software package. As

with the growth of multisite neuronal probes, amount of acquired data are increasing, the

need of one single software package performing all necessary processing and analysis on

Page 36 of 45

the data has become crucial. This is the first step towards meeting that need. As the

software has been extensively tested with two possible sources of data, we believe that once

it is disseminated to the community (which will happen in the near future) it will serve a good

deal in analyzing extracellular neurophysiological signals (Mahmud et al., 2010b; 2011b).

Modules for coherence and correlation based analysis to obtain more information about the

brain’s functionality from the recorded signals, neuronal network based on different stimuli to

be able to predict the signals a priori and compare them with the recorded signals, and

understand the activation of underlying neuronal networks generating the signals are under

development. Also, in the near future we will convert SigMate to perform online signal

processing and analysis.

Acknowledgments

This work was carried out as a part of the European Commission funded CyberRat

project under the Seventh Framework Programme (ICT-2007.8.3 Bio-ICT convergence,

216528, CyberRat). We express our sincere gratitude to the anonymous referees for their

fruitful comments to improve the quality of the paper.

Page 37 of 45

A. Algorithms

A.1. Peak–valley detection

The following algorithm is used for the detection of peaks–and–valleys of the signal to have an estimation of the artifact

signal.

Function: Detect Peak-Valley()

Input: Signal file, whose peaks and valleys are to be found.

Output: Peaks-and-valleys of the input signal.

Method:

1. Initialize, S:=signal; and Threshold:=Standard-deviation(S);

2. Set, Peak:=infinity; Valley=-infinity; and Flag:=True;

3. Current:=Current element of S;

4. if (Current > Peak), Reset, Peak:= Current; end if ;

5. if (Current < Peak), Reset, Valley:= Current; end if ;

6. if (Flag is True)

if (Current <(Peak − Threshold))

Add Current to Peaks; and

Reset, Flag:=False;

end if ;

if (Current >(Valley + Threshold))

Add Current to Valleys; and

Reset, Flag:=True;

end if;

end if;

7. Repeat step 3 to 6 for every element of the signal.

8. Return Peaks and Valleys.

A.2. Calculation of measurement errors

The following algorithm is used in calculating the MEs. As described in section 3.4, the MEs are calculated after having

detected the FSS and the SSS. Thus, this method calls two other methods which detect the FSS and the SSS.

Function: MeasurementErrors()

Input: Signal files containing time and data.

Output: Statistical information (µ, σ and distribution) of the data.

Method:

// this is for the single sweep approach.

1. for each signal file

a. Load time(t) and data(s);

b. firstSteadyState[fssT, fssS]:=Call the findFirstSteadyState(t, s);

Page 38 of 45

c. secondSteadyState[sssT, sssS]:=Call the findSecondSteadyState(t, s, firstSteadyState);

d. Fit mathematical models to the firstSteadyState and secondSteadyState;

e. Calculate the data bounds around the firstSteadyState and secondSteadyState;

f. Box data points based on the data bound, i.e., boxing the data around ±2σ from the straight line;

g. Calculate MEs for first and SSSs using equation(1);

h. Characterize MEs by calculating µ and σ;

i. Plot the distribution of MEs using histogram and estimate the distribution using smoothing function;

end for

// this is for the averaged steady–state approach.

2. Calculate the average of the all FSSs;

3. Fit mathematical model to the average of the FSSs;

4. Calculate the ME of the average using equation (1);

5. Characterize error by calculating µ and σ;

6. Calculate the average of the all SSSs;

7. Fit mathematical model to the average of the SSSs;

8. Calculate the ME of the average using equation (1);

9. Characterize error by calculating µ and σ;

10. Plot the distribution of ME using histogram and estimate the distribution using a smoothing function;

// this is for the averaged ME approach.

11. Calculate average of all MEs for the FSS;

12. Characterize error by calculating µ and σ;

13. Plot the distribution using histogram and estimate the distribution using a smoothing function;

14. Calculate average of all MEs for the SSS;

15. Characterize error by calculating µ and σ;

16. Plot the distribution using histogram and estimate the distribution using a smoothing function;

A.2.1. Detecting the first–steady–state

The following algorithm is used in detecting the first–steady state.

Function: findFirstSteadyState()

Input: The time(t) and data(s).

Output: The FSS of the signal (firstSteadyState).

Method:

1. firstPart:=the first 10 ms of the signal, s;

2. stdFirst:=std(firstPart); stdS:=std(s);

3. intervalInt:= 3 ms; newS:=rest of the signal;

4. Divide newS into intervals of length intervalInt;

5. Initialize, newPartS:=[]; newPartT:=[]; flag:=1;

6. while currInterval isn’t in evoked response

Page 39 of 45

fitLine:=Fit a straight line to currInterval;

sdNew:=std(currInterval);

if (sdNew ≥ stdCheck && flag)

add currInterval to newPartS;

add currIntervalTime to newPartT;

stdCheck:= sdNew; flag:= 1;

else

flag:=0;

add currInterval to newPartS;

add currIntervalTime to newPartT;

if (last point of fitLine > stdS)

remove currInterval from newPartS;

remove currIntervalTime from newPartT;

end if;

end if;

end while;

7. Return firstSteadyState:=[newPartT,newPartS];

A.2.2. Detecting second–steady–state

The following algorithm detects and returns the second–steady–state.

Function: findSecondSteadyState(t, s,fsState)

Input: Signaltime(t) anddata(s), and theFSS(fsState).

Output: TheSSS ofthe signal(secondSteadyState).

Method:

1. fsStateLength:=length(fsState); fsStateStd:=standard deviation(fsState);

2. sToAnalyse:=s(fsStateLength to length(s));

3. sToAnalyseT:=t(fsStateLength to length(s));

4. numDiv:=floor(length(s)/fsStateLength);

5. sToAnalyseRev:=Reverse(sToAnalyse);

6. sToAnalyseRevT:=Reverse(sToAnalyseT);

7. Initialize, ssStateS:=[]; ssStateT:=[]; flag:=0;

8. Find which part of sToAnalyseS has to be considered as SSS

for i:=1 to numDiv

currInterval:=sToAnalyseRev[i];

currIntervalTime:=sToAnalyseRevT[i];

stdCurrInterval:=std(currInterval);

if stdCurrInterval < fsStateStd

Page 40 of 45

add the currInterval to ssStateS;

add the currIntervalTime to ssStateT;

else

if (i==1)

add currInterval to ssStateS;

add the currIntervalTime to ssStateT;

end if;

flag:=flag+1;

if (flag<=2) &&(length(sToAnalyseRev) < length(fsState))

nextInterval:= sToAnalyseRev[i+1];

nextIntervalT:=sToAnalyseRevT[i+1];

stdNextInterval:=std(nextInterval);

 if (stdNextInterval <= fsStateStd)

add the nextInterval to ssStateS;

add the nextIntervalT to ssStateT;

end if;

else

exit the loop;

end if;

end if;

end for;

9. sssRevT:=Reverse(ssStateT); sssRevS:=Reverse(ssStateS);

10. Return secondSteadyState:=[sssRevT, sssRevS];

References

Ahissar E, Knutsen KM. Object localization with whiskers. Biol Cybern 2008; 98(6): 449–58.

Ahrens KF, Kleinfeld D. Current flow in vibrissa motor cortex can phase– lock with exploratory
rhythmic whisking in rat. J Neurophysiol, 2004; 92: 1700–7.

Akaike H. A new look at the statistical model identification. IEEE T Automat Contr, 1974; 19:
716–22.

Alloway KD. Information processing streams in rodent barrel cortex: the differential functions of
barrel and septal circuits. CerebCortex,2008; 18(5): 979–98.

Armstrong-James M, Fox K, Das-Gupta A. Flow of excitation within rat barrel cortex on stiking a
single vibrissa. J Neurophysiol 1992; 68(4): 1345–57.

Bock HH. Clustering methods: a history of K-Means algorithms. In: Brito P, Cucumel G,
deCarvalho F, editor. Selected contributions in data analysis and classification, 2007; 888:
161–72.

Bokil HS, Andrews P, Kulkarni JE, Mehta S, Mitra PP. Chronux: A platform for analyzing neural
signals. J Neurosci Methods 2010; 192: 146–51.

Bologna LL, Pasquale V, Garofalo M, Gandolfo M,Baljon PL, Maccione A, Martinoia S,
Chiappalone M. Investigating neuronal activity by SPYCODE multi–channel data analyzer.

Page 41 of 45

Neural Networks, 2010; 23(6): 685–97.

Bonomini MP, Ferrandez JM, Bolea JA, Fernandez E. DATA-MEAns: An open source tool for
the classification and management of neural ensemble recordings. J Neurosci Methods,
2005; 148: 137–46.

Bowman AW, Azzalini A. Applied Smoothing Techniques for Data Analysis. New York: Oxford
University Press; 1997.

Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci, 2004; 7(5): 446-51.

Castro-Alamancos MA, Oldford E. Cortical sensory suppression during arousal is due to the
activity–dependent depression of thalamocortical synapses. J Physiol, 2002; 541: 319-31.

Chiang MMT, Mirkin B. Intelligent choice of the number of clusters in K– Means clustering: an
experimental study with different cluster spreads. J Classif, 2010; 27(1): 3-40.

Cui J, Xu L, Bressler SL, Ding M, Liang H. BSMART: A Matlab/C toolbox for analysis of
multichannel neural time series. Neural Networks, 2008; 21(8): 1094-104.

Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG
dynamics including independent component analysis. J Neurosci Meth, 2004; 134: 9–21.

Di S, Baumgartner C, Barth D S. Laminar Analysis of extracellular field potentials in rat
vibrissa/barrel cortex. J Neurophysiol, 1990; 63: 832-40.

Diamond ME, vo Heimendahl M, Knutsehn PM, Kleinfeld D, Ahissar D. ‘Where’ and ‘what’ in
the whisker sensorimotor system. Nat Rev Neurosci, 2008; 9: 601-12.

Dodge Y. The Oxford Dictionary of Statistical Terms. New York: Oxford University Press; 2003.

Eckerson WW. Three tier client/server architecture: achieving scalability, performance, and
efficiency in client server applications. Open Information Systems, 1995; 10(1): 3(20).

Egert U, Knott Th, Schwarz C, Nawrot M, Brandt A, Rotter S, Diesmann M. MEA-Tools: an open
source toolbox for the analysis of multi–electrode data with Matlab. J Neurosci Methods, 2002;
117(1): 33-42.

Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM. Laminar population analysis:
Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel
cortex. J Neurophysiol2007; 97: 2174-90.

Felderer F, Fromherz P, Transistor needle chip for recording in brain tissue, Appl Phys A, 2011;
104:1-6.

Fletcher M, Liang B, Smith L, Knowles A, Jackson T, Jessop M, Austin J. Neural network based
pattern matching and spike detection tools and services - in the CARMEN neuroinformatics
project. Neural Networks 2008; 21: 1076-84.

Fox K. Barrel Cortex. Cambridge: Cambridge University Press; 2008.

Goldberg D, Victor J, Gardner E, Gardner D. Spike train analysis toolkit: enabling wider
application of information–theoretic techniques to neurophysiology. Neuroinformatics, 2009;
7(3): 165-78.

Gunay C, Edgerton J, Li S, Sangrey T, Prinz A, Jaeger D. Database analysis of simulated and
recorded electrophysiological datasets with PANDORAs toolbox. Neuroinformatics, 2009; 7(2):

Page 42 of 45

93-111.

Hazan L, Zugaro M, Buzsaki G. Klusters, NeuroScope, NDManager: A free software suite for
neurophysiological data processing and visualization. J Neurosci Methods, 2006; 155: 207-16.

Herz AVM, Meier R, Nawrot MP, Schiegel W, Zito T. G–Node: An integrated tool-sharing
platform to support cellular and systems neurophysiology in the age of global neuroinformatics.
Neural Networks, 2008; 21(8):1070-5.

Hierlemann A, Frey U, Hafizovic S, Heer F. Growing Cells Atop Microelectronic Chips: Interfacing
Electrogenic Cells In Vitro With CMOS-Based Microelectrode Arrays. Proc IEEE, 2011; 99(2):
252-284.

Huang Y, Li X, Li Y, Xu Q, Lu Q, Liu Q. An integrative analysis platform for multiple neural spike
train data. J Neurosci Methods, 2008; 172(2): 303-11.

Hutzler M, Lambacher A, Eversmann B, Jenkner M, Thewes R, Fromherz P. High-Resolution
Multitransistor Array Recording of Electrical Field Potentials in Cultured Brain Slices. J
Neurophysiol, 2006; 96: 1638-1645.

Jellema T, Brunia CHM, Wadman WJ. Sequential activation of microcircuits underlying
somatosensory-evoked potentials in rat neocortex. Neuroscience, 2004; 129: 283-95.

Kaur S, Rose H J, Lazar R, Liang K, Metherate R. Spectral integration in primary auditory cortex:
laminar processing of afferent input, in vivo and in vitro. Neuroscience, 2005; 134: 1033-45.

Kublik E. Contextual impact on sensory processing at the barrel cortex of awake rat. Acta
Neurobiol Exp, 2004; 64: 229-38.

Kwon KY, Eldawlatly S, Oweiss KG. NeuroQuest: A comprehensive analysis tool for extracellular
neural ensemble recording. J Neurosci Methods, 2011, 189-201.

Lambacher A, Vitzthum V, Zeitler R, Eickenscheidt M, Eversmann B, Thewes R, Fromherz P.
Identifying firing mammalian neurons in networks with high-resolution multi-transistor array
(MTA). Appl Phys A, 2011; 102: 1-11.

Landlaw EM, DiStefano Third JJ. Multiexponential, multicompartmental, and noncompartmental
modeling. II. Data analysis and statistical consideration. Am J Physiol Regul Integr Comp
Physiol, 1984; 246: R665-77.

Legatt A, Arezzo J, Vaughan HG. Averaged multiple unit activity as an estimate of phasic
changes in local neuronal activity: effects of volume-conducted potentials. J Neurosci Meth,
1980; 2(2): 203-17.

Lidierth M. sigTOOL: A Matlab–based environment for sharing laboratory developed software to
analyze biological signals. J Neurosci Methods, 2009; 178: 188-96.

Macqueen J. Some methods for classification and analysis of multivariate observations. Proc of
the Fifth Berkeley Symp on Math Statist and Prob, 1967; 1: 281-97.

Madsen K, Nielsen HB, Tingleff O. Methods for Non-Linear Least Squares Problems. Denmark:
Informatics and Mathematical Modelling, Technical University of Denmark (DTU), Kgs.
Lyngby; 2004.

Magri C, Whittingstall K, Singh V, Logothetis N, Panzeri S. A toolbox for the fast information
analysis of multiple-site LFP, EEG and spike train recordings. BMC Neuroscience, 2009;
10(1): 81.

Page 43 of 45

Mahmud M, Bertoldo A, Maschietto M, Girardi S, Vassanelli S. Automatic detection of layer
activation order in information processing pathways of rat barrel cortex under mechanical
whisker stimulation. In: Proc of the IEEE EMBC2010; 2010a. p. 6095-8.

Mahmud M, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. SigMate: a Matlab–based
neuronal signal processing tool. In: Proc. of the IEEE EMBC2010; 2010b. p. 1352-5.

Mahmud M, Travalin D, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. A contour based
automatic method to classify local field potentials recorded from rat barrel cortex. In: Proc. 5th
Cairo Intl. Conf. Biomedical Eng. (CIBEC2010); 2010c. p. 163-6

Mahmud M, Girardi S, Maschietto M, Rahman MM, Bertoldo A, Vassanelli S. Slow stimulus
artifact removal through peak-valley detection of neuronal signals recorded from
somatosensory cortex by high resolution brain-chip interface. In: IFMBE Proceedings -
WC2009, Germany, 2009a; p. 2062-5.

Mahmud M, Girardi S, Maschietto M, Rahman MM, Bertoldo A, Vassanelli S. Noise
characterization of electrophysiological signals recorded from high resolution brain–chip
interface. In: Proc of the ISBB2009, Melbourne, Australia, 2009b; pp. 84-7.

Mahmud M, Pasqualotto E, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. An automated
method for detection of layer activation order in information processing pathway of rat barrel
cortex under mechanical whisker stimulation. J Neurosci Meth, 2011a; 196: 141-150.

Mahmud M, Bertoldo A, Girardi S, Maschietto M, Pasqualotto E, Vassanelli S. SigMate: a
comprehensive software package for extracellular neuronal signal processing and analysis.
In: Proc. of 5th Intl. IEEE EMBS Conf. Neural Eng. (NER2011); 2011b. p. 88-91.

Mahmud M, Travalin D, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. An automated
classification method for single sweep local field potentials recorded from rat barrel cortex
under mechanical whisker stimulation. J. Med. Biol. Eng., 2011c; doi: 10.5405/jmbe.923 (in
press).

Mahmud M, Bertoldo A, Girardi S, Maschietto M, Vassanelli S. An automated quality
assessment method for cortical signals recorded by high resolution brain-chip interface from
S1 brain cortex. unpublished, 2011d.

Megevand P, Troncoso E, Quairiaux C, Muller D, Michel CM, Kiss JZ. Long-term plasticity in
mouse sensorimotor circuits after rhythmic whisker stimulation. J Neurosci, 2009; 29(16):
5326-35.

Meier R, Egert U, Aertsen A, Nawrot MP. FIND–A unified framework for neural data analysis.
Neural Networks, 2008; 21(8): 1085-93.

Mitzdorf U, Singer W. Monocular activation of visual cortex in normal and monocularly deprived
cats: an analysis of evoked potentials. JPhysiol, 1980; 304: 203-20.

Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of
evoked potentials and EEG phenomena. Physiol Rev, 1985; 65: 37-100.

Morup M, Hansen LK, Arnfred SM. ERPWAVELAB: A toolbox for multi-channel analysis of time-
frequency transformed event related potentials. J Neurosci Meth, 2007; 161(2): 361-8.

NDF. Available at: http://www.carmen.org.uk/standards/CarmenDataSpecs.pdf (Retrieved on
March 15, 2012)

Neuroshare. http://www.neuroshare.org/ (Retrieved on February 6, 2012.)

http://www.neuroshare.org/

Page 44 of 45

Novellino A, Chiappalone M, Maccione A, Martinoia S. Neural Signal Manager: a collection of
classical and innovative tools for multi-channel spike train analysis. Int J Adapt Control Signal
Process, 2009; 23(11): 999-1013.

Okun M, Naim A, Lampl I. The subthreshold relation between cortical local field potential and
neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci, 2010; 30(12):
4440-8.

Pettersen KH, Devor A, Ulbert I, Dale AM, Einevoll GT. Current–source density estimation based
on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and
conductivity discontinuities. J Neurosci Meth, 2006; 154: 116-33.

Prochazka A, Mushahwar VK, McCreery DB. Neuralprostheses. J Physiol, 2001; 533(Pt1): 99-
109.

Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets
and superparamagnetic clustering. Neural Computation 2004; 16(8): 1661-87.

Rappelsberger P, Pockberger H, Petsche H. Current source density analysis: methods and
application to simultaneously recorded field potentials of the rabbit’s visual cortex. Pflugers
Arch, 1981; 389: 159-70.

Smith LS, Mtetwa N. A tool for synthesizing spike trains with realistic interference. J Neurosci
Meth 2007; 159: 170-80.

Staba RJ, Bergmann PC, Barth DS. Dissociation of slow waves and fast oscillations above 200
Hz during GABA application in rat somatosensory cortex. J Physiol, 2004; 561(1): 205-14.

Swadlow H A, Gusev A G, Bezdudnaya T. Activation of a cortical column by a thalamocortical
impulse. J Neurosci, 2002; 22(17): 7766-73.

Szymanski FD, Garcia-Lazaro JA, Schnupp JWH. Current source density profiles of stimulus-
specific adaptation in rat auditory cortex. J Neurophysiol, 2009; 102: 1483-90.

van Hemmen J, Ritz R. Neural coding: A theoretical vista of mechanisms, techniques, and
applications. In: Andersson SI, editor. Lecture Notes in Computer Science, Analysis of
Dynamical and Cognitive Systems, 1995; 888: 75-119.

Vargas-Irwin C, Donoghue JP. Automated spike sorting using density grid contour clustering and
subtractive waveform decomposition. J Neurosci Meth, 2007; 164: 1-18.

Vassanelli S, Fromherz P. Neurons fromrat brain coupled to transistors. Appl Phys A, 1997; 65:
85-88.

Vassanelli S, Fromherz P. Transistor records of excitable neurons from rat brain. Appl Phys A,
1998; 66: 459-463.

Vassanelli S, Fromherz P. Transistor Probes Local Potassium Conductances in the Adhesion
Region of Cultured Rat Hippocampal Neurons. J Neurosci, 1999; 19(16): 6767-73.

Vassanelli S, Mahmud M, Girardi S, Maschietto M. On the Way to Large-Scale and High-
Resolution Brain-Chip Interfacing. Cogn Comput, 2012; 4(1): 71-81.

Vato A, Bonzano L, Chiappalone M, Cicero S, Morabito F, Novellino A, Stillo G. Spike manager:
a new tool for spontaneous and evoked neuronal networks activity characterization.
Neurocomputing, 2004; 58-60: 1153-61.

Page 45 of 45

Versace M, Ames H, Lveill J, Fortenberry B, Gorchetchnikov A. KInNeSS: a modular framework
for computational neuroscience. Neuroinformatics, 2008; 6(4): 291-309.

Wagenaar D, DeMarse TB, Potter SM. MeaBench: A toolset for multi-electrode data acquisition
and on-line analysis. In: Proc IEEE EMBS Conf on Neural Eng, 2005; pp. v-viii.

Watson P, Hiden H, Woodman S. e-Science Central for CARMEN: science as a service.
Concurrency Computat: Pract Exper 2010; 22: 2369-80.

Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K. Wireless implantable microsystems: high-
density electronic interfaces to the nervous system. Proc IEEE, 2004; 92: 76-97.

