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ABSTRACT 

It is widely accepted that the prediction of building energy performance is strongly related to the 

occupancy parameters. Currently, existing buildings and laboratories are the main sources for 

collecting occupancy related data. However, using such data for predicting the energy consumption 

of future buildings can create a considerable amount of uncertainties. Recent studies show that 

Immersive Virtual Environments (IVEs) have the potential to generate design and context sensitive 

occupant-related data. However, extended observations (longitudinal data covering relevant spatial 

and temporal events) which are necessary for developing quantitative predictive models are 

impractical using conventional IVEs. To that end, the authors propose a Spatial-Temporal Event-
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Driven (STED) modeling approach to enable IVEs for longitudinal studies. Using a single 

occupant office as case study, two sets of occupancy and lighting data, from IVEs and a comparable 

physical environment (in-situ), were collected. The occupancy/lighting data was organized in form 

of state transitions at six events (i.e., arrival in the morning, leaving for and returning from a short 

leave, leaving for and returning from a long leave, and leaving at the end of a day). It was 

hypothesized that the probabilities of the occupancy/lighting state transitions in a given event 

across the two experimental environments (i.e. IVE vs. in-situ) are not statistically different. 

Results revealed similar patterns at four of the six events (α=0.05), except at the short leave events. 

Thereby, STED modeling enabled the potential viability of IVEs for extended observations and 

generating data to support predictive models. Clearly, more basic research is needed to make data 

collection using IVEs more effective including a better understanding of virtual cue design and 

participant’s physiological and psychological conditions at the time of experiments.   

Keywords: Immersive Virtual Environment (IVE), occupant energy behavior, case study, building 

BACKGROUND 

Recent studies suggest that occupant behavior has a significant impact on building energy 

consumption [1] and has caused high performance buildings to fail in meeting their design 

expectations [2]. Meanwhile, work productivity, human health, and building energy efficiency are 

intertwined and heavily dependent on occupant comfort (e.g., [3], [4]). Thus, a better 

understanding of human and building interactions in different settings is critical to building design 

and operations. Currently, mainstream studies on occupant behaviors have been mainly conducted 

in-situ using actual buildings [5]. While such studies are important to the operations of existing 

buildings, results of those studies are often difficult to generalize and apply to other buildings or 

new designs [6]. This is one of the reasons that after decades of building performance research, 
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performance gaps still exist [7]. In buildings where automated systems are used occupants’ 

interactions with such automated systems (e.g. technology–user interactions, program design, and 

data analysis) are critical for the successful implementation of full automated systems [8,9]. 

Therefore, human-building interactions are a topic that will not be exempted from future research. 

Let alone to say that passive building designs are also gaining popularity [10,11].    

The authors suggest a new approach, the application of immersive virtual environments 

(IVEs) for generating and examining occupant-related data during the preconstruction phases of a 

building project. IVE’s are rich multisensory computer simulations that can afford the feeling of 

being mentally immersed or present in the simulations, i.e.,—a virtual world [12].The level of 

immersion in Virtual Reality (VR) is dependent upon the graphic frame rate, overall extent of 

tracking, tracking latency, quality of the images, the field of view, the visual quality of the rendered 

scene, dynamics, and the range of the sensory modalities accommodated [13,14]. VR experiences 

can be classified into 1) fully immersive or first-order immersive systems that have a lot in 

common with our everyday experiences (e.g. head-mounted displays). Lower order VR systems 

are 2) semi-immersive (e.g. projection-based displays), and 3) non-immersive (e.g. desktop 

stereoscopic displays) complied with fewer immersion capabilities, however, they still offer some 

levels of presence [15,16]. The advantage of using IVEs for data collection is its ability to retain 

the control of an experimental environment, and its flexibility in designing experimental contexts. 

“IVE’s attraction lies in the tendency for individuals to react in virtual reality as they would in the 

real-life situation.”[17]. They have been effectively utilized to testing situations that are too risky 

to be examined in reality, such as emergency evacuation in tunnels [18] [19] or hotels [20]. 

Furthermore, IVE applications have made an exceptionally useful contribution to cases with non-

existing testing platform or experiences that cannot be easily replicated in in-situ; for instance, 
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building design review and analysis [21][22], the review of full scale physical mock-ups of hospital 

patient rooms [23][24], and architectural design [25][26][27]. Above all, IVE applications to 

occupant energy–use behavior studies are emerging [27] [28][29][30][31][32][33]. These studies 

have demonstrated the outstanding capabilities of IVEs to model: 1) building components such as 

rooms, spaces, windows, lights, or blinds, as well as their properties such as space layout and 

luminance levels; 2) states of a building component such as blinds close or open and lights on or 

off; 3) indoor environments specific to the purpose of a study, such as addressing visual, acoustic, 

and thermal comfort factors; and 4) interactions with building components such as operations of 

lights or blinds.   

Although these capabilities are critical to modeling occupant energy behaviors, IVEs have 

not been used to develop quantitative predictive models yet. Typically, creating such models 

requires sufficient information about the variable of interest to enable establishing and examining 

the patterns in the data [34], which can only be achieved through extended observations 

(longitudinal data) or repeated measures. Whilst acquiring longitudinal data is not a problem in in-

situ studies or using surveys, it represents a significant challenge to IVE applications. In an IVE 

experiment, researchers typically cannot continuously put participants in IVEs for more than 20 to 

30 minutes or request the same participant to participate in many experiments. Thus, collecting 

longitudinal data using conventional IVE designs is impractical. To better address this limitation 

of IVEs, the authors propose a Spatial-Temporal Event-Driven (STED) modeling approach, which 

selects and models a series of critical events and thus condenses a long period of observations such 

as days or seasons into a considerably shorter time such as a couple of hours. In other words, 

continuous observations are broken down into numerous measurable experimental units, which 

represent benchmarks subjected to the planned interventions of an experiment. If successful, this 
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approach will enable longitudinal data collection in IVEs, which is critical to support a larger range 

of applications including predictive modeling than existing applications of IVEs in building 

design.  

THE SPATIAL-TEMPORAL EVENT-DRIVEN (STED) MODEL 

Conceptual Framework 

Longitudinal studies supposedly contain a balanced coverage of observations based on the needs 

of research. Using a conceptual framework, this study was able to design a systematic method to 

generate sufficient data that will be useful for ensuring IVEs in extended observations. To begin 

with, the authors adopted four basic elements related to occupants and building energy 

performance, to describe the conceptual framework of a STED model, i.e., “State”, “Context”, 

“Event”, and “Human (H)-Building(B) Interaction.” In this study, State (si, si+1, …, si+n) is defined 

as the collective status of operations in different building spaces at a certain point of time, 

especially the conditions of building systems and components that are operable by human beings 

and have energy efficiency consequences. An example of the state of a building can be the light-

use condition of an entire building at 8:00am on a normal working day. Contexts are situational 

factors that are associated with and describe the state of a building, but not necessarily a part of it. 

For example, a contextual factor can be the season for describing the light-use state of a building 

at 8:00am, because the daylight condition in the winter can be significantly different from the 

summer at the same time point. Event (e1, e2, …, ek) is an occurrence that triggers the change of a 

state or sets the foundation for future events to change a state. Thus, there are state changing events 

and non-state changing events.  Finally, H-B Interaction refers to a particular type of occupant 

actions to mitigate a thermal, visual, indoor air quality, or acoustic discomfort of an occupant such 
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as turning on artificial lighting at 8:00am by an occupant, which is associated with a state change 

event. 

At a higher level, states and events are interconnected, forming a constant loop between them 

(see Fig. 1). State i is the initial status of a given set of spaces at a specific time point along the 

time span of a study. State i will change to state i+1 upon the occurrence of an event. This structure 

allows researchers to connect space conditions and time, which is critical to designing experiments 

for longitudinal data collection in built environments.  

 

Fig. 1. State-Event Model 

Fig. 2 displays a more extensive model of the state-event diagram that incorporate 

“occupant need”, and “H-B interaction” into the state-event model. Occupant needs are defined 

as human motivation under the context preceding the occurrence of an event, and consequently 

trigger H-B interactions. In fact, the occurrence of an event can impact occupant’s overall comfort 

and generate a desire for H-B interactions, which leads a state change. Thus, a state transition, the 

change in the collective status of a building and its component will take place.  Window-opening, 

shade control, lighting control, thermostat control, electric equipment usage, and space occupancy 

status are among the most common H-B interactions people perform to maintain or pursue their 

general comfort indoors.  
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Fig. 2. STED Model 

Theoretical Framework  

Since state transitions are a key parameter to measure the impact of occupant behavior, this 

study uses a transition matrix to estimate all possible transitions from one state (si) to the following 

state (si+1). According to Fig. 2, the connection between two consecutive states is tightly related to 

possible events (ek) in between. Consequently, the likelihood of state transitions is essential 

dependent on paired transitions, i.e., from si to ek and then from ek to si+1. Therefore, two 

conditional probabilities are used to describe a state transition from si to si+1, the probability of the 

occurrence of an event given an initial state, p(ek|si), and the probability of an event leading to a 

succeeding state, p(si+1| ek). Hence, the probability of the occurrence of a state (si+1) given a certain 

initial state (si) is estimated by two conditional probabilities, p(ek|si) and p(si+1| ek), which is 

calculated by p(si+1|si) = p(ek|si) * p(si+1| ek). 
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The probability, p(ek|si), is calculated as follows. The number of occurrence of event k 

(𝑛𝑒𝑘) at state i (𝑠𝑖), is expressed as neksi and used to construct a probability matrix M. For instance, 

the number of event 2 at the occurrence of state 0 is ne2s0.  

 𝑀 = [

𝑛𝑒1𝑠0 𝑛𝑒2𝑠0 𝑛𝑒3𝑠0 … 𝑛𝑒𝑙𝑠0

𝑛𝑒1𝑠1 𝑛𝑒2𝑠1 𝑛𝑒3𝑠1 … 𝑛𝑒𝑙𝑠1

⋮           ⋮        ⋮      …      ⋮
𝑛𝑒1𝑠𝑛 𝑛𝑒2𝑠𝑛 𝑛𝑒3𝑠𝑛

… 𝑛𝑒𝑙𝑠𝑛

]                (1) 

where, l is the number of possible events, 𝑛𝑒𝑘 ∈ (𝑛𝑒1 ,𝑛𝑒2 , … , 𝑛𝑒𝑙); and n is the number of possible 

states, 𝑠𝑖 ∈ (𝑠0 ,𝑠1, … , 𝑠𝑛). 

Thereafter, p(ek|si) is calculated by,  

p(ek|si) =  𝑛𝑒𝑘𝑠𝑖 ∑ 𝑛𝑒𝑗𝑠𝑖
𝑙
𝑗=1⁄      (2) 

The collective probabilities are expressed using a matrix, 𝑃𝑒𝑘|𝑠𝑖
, shown below, 

 𝑃𝑒𝑘|𝑠𝑖
= [

𝑝(𝑒1|𝑠0) 𝑝(𝑒2|𝑠0) 𝑝(𝑒3|𝑠0) … 𝑝(𝑒𝑘|𝑠0)

𝑝(𝑒1|𝑠1) 𝑝(𝑒2|𝑠1) 𝑝(𝑒3|𝑠1) … 𝑝(𝑒𝑘|𝑠1)
⋮        ⋮                ⋮            …      ⋮

𝑝(𝑒1|𝑠𝑖) 𝑝(𝑒2|𝑠𝑖) 𝑝(𝑒3|𝑠𝑖) … 𝑝(𝑒𝑘|𝑠𝑖)

]   (3) 

Likewise, the probability, P(si+1|ek), is calculated as follows. The number of occurrence of 

state i+1 (𝑛𝑠𝑖+1) at event k (𝑒𝑘) is expressed as 𝑛𝑠𝑖+1𝑒𝑘 and used to construct a matrix M’. For 

instance, the number of occurrence of state 2 at event 1 is ns2e1. 

 𝑀′ = [

𝑛𝑠1𝑒1 𝑛𝑠2𝑒1 𝑛𝑠3𝑒1
… 𝑛𝑠𝑛𝑒1

𝑛𝑠1𝑒2 𝑛𝑠2𝑒2 𝑛𝑠3𝑒2
… 𝑛𝑠𝑛𝑒2

⋮      ⋮     ⋮      …      ⋮
𝑛𝑠1𝑒𝑙 𝑛𝑠2𝑒𝑙 𝑛𝑠3𝑒𝑙 … 𝑛𝑠𝑛𝑒𝑙

]                (4) 

where, l is the number of possible events, 𝑒𝑘 ∈ (𝑒1 ,𝑒2 , … , 𝑒𝑙); and n is the number of possible 

states, 𝑛𝑠𝑖 ∈ (𝑛𝑠1 ,𝑛𝑠2, … , 𝑛𝑠𝑛). 

Then, p(si+1|ek) is calculated by, 

p(si+1|ek) =  𝑛𝑠𝑖+1𝑒𝑘 ∑ 𝑛𝑠𝑖+1𝑒𝑘
𝑛−1
𝑖=0⁄      (5) 
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The collective probabilities could be then combined into a matrix form, 𝑃𝑠𝑖+1|𝑒𝑘
, as shown 

below, 

 𝑃𝑠𝑖+1|𝑒𝑘
= [

𝑝(𝑠1|𝑒1) 𝑝(𝑠2|𝑒1) 𝑝(𝑠3|𝑒1) … 𝑝(𝑠𝑛|𝑒1)

𝑝(𝑠1|𝑒2) 𝑝(𝑠2|𝑒2) 𝑝(𝑠3|𝑒2) … 𝑝(𝑠𝑛|𝑒2)
⋮        ⋮                ⋮            …      ⋮

𝑝(𝑠1|𝑒𝑘) 𝑝(𝑠2|𝑒𝑘) 𝑝(𝑠3|𝑒𝑘) … 𝑝(𝑠𝑛|𝑒𝑘)

]   (6) 

Finally, the probability, p(si+1|si), is determined as follow,  

p(si+1|si) = p(ek|si) * p(si+1| ek)     (7) 

   𝑃𝑠𝑖+1|𝑠𝑖
= [

𝑝(𝑠1|𝑠0) 𝑝(𝑠2|𝑠0) 𝑝(𝑠3|𝑠0) … 𝑝(𝑠𝑛|𝑠0)

𝑝(𝑠1|𝑠1) 𝑝(𝑠2|𝑠1) 𝑝(𝑠3|𝑠1) … 𝑝(𝑠𝑛|𝑠1)
⋮      ⋮     ⋮      …      ⋮

𝑝(𝑠1|𝑠𝑖) 𝑝(𝑠2|𝑠𝑖) 𝑝(𝑠3|𝑠𝑖) … 𝑝(𝑠𝑛|𝑠𝑖)

]   (8) 

The rows of the matrix represent the initial state (si) and the columns account for the 

succeeding state (si+1). For instance, the probability of state 2 occurring after state 1 is determined 

by 𝑝(𝑠2|𝑠1). 

RESEARCH OBJECTIVE, HYPOTHESIS, SIGNIFICANCE AND METHODOLOGY 

In the following section, the authors provide details regarding the research objective, 

hypothesis, significance, and methodology with respect to the STED modeling approach. In the 

research methodology section, the authors discuss a case study applied in this study, the design of 

IVEs based on the STED modeling approach, experiment design and procedure, data collection, 

and the analysis method.   

Objective 

The objective of this study is to obtain initial evidence that IVEs have potential for supporting 

longitudinal experimental studies. The authors applied STED modeling in designing a case study 

in order to emulate extended observations in IVEs, and examined the validity of state transitions 

based on data acquired from IVEs by comparing state transitions with data gathered from a 
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comparable in-situ environment. The case study was focused on the replicability of events and 

state transitions across the two experimental settings. Thus, the key metric in this case study was 

the likelihood of state changes at selected events, and in more specific terms, the probability of 

state changes in occupancy/lighting patterns (state transitions).    

Hypothesis 

The authors hypothesize that given a set of logically related states and corresponding events, 

the STED modeling enables IVEs to produce longitudinal occupant behavior data in a short period 

of time, which are as reliable as observational studies conducted in-situ. It is expected that 

changing the experimental environment does not affect the state-event changes.  

To test this hypothesis, the authors used transitional probabilities of the occupancy/lighting 

states in some selected events in to similar IVE and in-situ experimental setting: 

𝐻0: 𝑝(𝑠𝑖+1|𝑠𝑖) =  𝑝′(𝑠𝑖+1|𝑠𝑖), 𝑖 = 0,1, … , 𝑛 

𝐻1: 𝑝(𝑠𝑖+1|𝑠𝑖) ≠ 𝑝′(𝑠𝑖+1|𝑠𝑖), 𝑖 = 0,1, … , 𝑛 

Where, 𝑠𝑖  is the initial state; 𝑠𝑖+1 is the succeeding state; 𝑝(𝑠𝑖+1|𝑠𝑖)  is the transition 

probability from 𝑠𝑖  to 𝑠𝑖+1 in IVEs; and 𝑝′(𝑠𝑖+1|𝑠𝑖)  is the transition probability in the 

corresponding in-situ environment.  

Significance 

If IVEs are proven to be effective for collecting longitudinal data and support building energy 

behavior studies, they can significantly impact occupant behavior research. First, using IVEs 

represents a design context-sensitive alternative to existing methods of occupant energy behavior 

modeling, enabling inquiries that are difficult or impossible to do in-situ. Researchers can design 

different and critical virtual scenes that do not exist in reality and observe human responses in 

those scenes. Second, IVEs have been applied to simulations of specific and individual events but 
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have not been used to perform experiments on occupant behavior related to a series of connecting 

events, which is common in reality. In in-situ studies, such models are often developed to simulate 

occupant behavior of using lighting systems, temperature set points, space occupancy, or blinds 

and windows [1]. The STED modeling approach will make IVEs more useful as a scientific data 

collection tool. Finally, existing data collection methods have limitations compared with using 

IVEs. For example, fully-outfitted laboratories, such as the zero-net energy laboratory at the 

University of North Texas and the Flexlab at the Lawrence Berkeley National Laboratory, are 

expensive, and reconfiguring such labs for various architectural designs requires significant 

resources.  

CASE STUDY 

STED Modeling 

The STED modeling is to model critical events in a chronological order, representing long 

observations of states in reality. In the case study, the basic measurement is the operations on a 

lighting switch to determine the occupancy/lighting state transition, which is a snapshot of a space 

at two different time points representing the initial and subsequent status of a space. Considering 

the current limitation of virtual reality technologies, the authors selected a single occupancy office 

in the case study in order to reduce the effect of the extraneous variables. The spatial dimension of 

the STED model depicts the physical configurations of the single occupancy office space, whereas 

the temporal aspect of it simulates the sense of time and captures a series of state transitions within 

a specific time frame, such as a day. Events are determined based on research needs and the 

likelihood of state changes.  Since most lighting adjustments during a day happen upon arrival 

and/or before departure [35], the authors have selected six typical events representing the arrivals 

and departures and investigated the occupancy/lighting status of the office space at those time 
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points.  Therefore, events in this study are broken down into: e1) arrival at the office; e2) 

intermediate (short) leave; e3) return from intermediate short leave; e4) intermediate (long) leave; 

e5) return from intermediate long leave; e6) departure (see Fig. 3).  

 
 

Fig. 3. STED Model (case study) 

On the other hand, states are defined based on the combination of the occupancy and 

lighting status of the testing environments, which leads to four types of states: s0) non-occupancy 

without artificial lighting; s1) non-occupancy with artificial lighting; s2) occupancy without 

artificial lighting; and s3) occupancy with artificial lighting (see Fig. 4).  

 

Fig. 4. Occupancy/lighting states (case study) 

In larger scale studies, many other contextual factors such as the environmental and the 

social variables may also be considered and investigated for their possible influence on the 
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occupancy/state behavioral pattern. This study chose a pairwise comparison (using IVE and in-

situ) to test the occupancy/lighting state changes and kept all other variables consistent across the 

two testing environments. Furthermore, the socio-demographic characteristics of the participants 

which would naturally have impact on the use of the space, have to be taken into account. However, 

in this study, the same participant took part in all data collection process and the major behavioral 

factors (e.g. attitudes, norms) were expected to remain consistent between the two experiments. 

Considering more contextual factors in the STED data collection method enables the researchers 

to gather more sensitive data. 

Method 

The case study involved two data collection methods, namely sensor (in-situ) and IVEs. The 

authors selected an on-campus single occupancy office at a major state university in the southern 

region of the United States. The office occupant (male, age: 30-40) was a faculty member of the 

university, who agreed to have sensors installed in his office for in-situ data collection and 

participate in the virtual reality experiments as well. The layout of the testing office and the place 

of the sensors are illustrated in Fig. 5. The testing office had a south-facing window with operable 

window-blinds as well as ceiling lights. The interior design of the office is shown in Fig. 6.  
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Fig. 5: Testing office layout Fig. 6: Testing office photo 

     In-situ data collection was accomplished by using sensors to measure the occupancy 

pattern, the artificial lighting status, the lighting intensity, the indoor air temperature, and the 

relative humidity of the office. Table 1 presents a list of the sensors, their locations, and the 

purpose of using them, along with their pictures.   

Table 1:  Sensors, their locations and the purpose of using them  

Sensor Type/Model Purpose Location Picture 

Onset UX90-005 HOBO 

Occupancy/Light 

Runtime Data Logger 

To identify the 

occupancy 

pattern and the 

lighting status 

(on/off) 

Sensor # 1: above the 

door; Sensor # 3: above 

the work plane. 

(both attached to the 

ceiling, facing 

downward) 
 

Onset U12-012 HOBO 

Temperature/Relative 

Humidity/Light/External 

Data Logger 

To measure the 

light intensity, 

ambient 

temperature, and 

relative humidity 

Sensor # 2: on the work 

plane, at the height of 

2.8 ft.; Sensor # 4: near 

the window, at the 

height of 4.1 ft. (both 

sensors facing upward) 
 

The sensors began monitoring and recording data from September 23 throughout October 

27, 2016. The data from the occupancy/light data logger (marked as #1 and #3 in Fig.6) were 
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recorded every second. The temperature/relative humidity/light intensity data logger (marked as 

#2 and #4 in Fig.6), was set to collect data every 5 seconds. The sensor readings were collected on 

a weekly basis. The data were exported to a computer and saved in a spreadsheet. The occupancy 

and the lighting status of the office were the main variables used in the analysis of this study; the 

indoor temperature and the relative humidity were recorded only as control variables. The indoor 

air temperature and the relative humidity of the testing office during the time span of this study 

were 72.40 ±2.13 °F and 54.11 ±6.03 %, respectively, which were mostly consistent during the 

occupancy period. They were also in the acceptable and recommended range of 68-76° F and 20%-

60% respectively, according to the United States Occupational Safety and Health Administration 

[36]. The data collected from the sensors allowed the authors to observe major patterns of the 

occupancy/lighting and the state changes in the office. Consequently, the in-situ environment was 

reconstructed in IVEs and the observed events were modeled using cues. Eventually, the sensor 

data were used as a baseline for validating data collected in IVEs.  The major variable of interest 

in this case study was the occupancy/lighting state change transitions which occurred at 128 events; 

25 events of arrival at the office (e1), 32 events of intermediate short leave (e2), 32 events of 

returning from the intermediate short leave (e3), 8 events of intermediate long leave (e4), 8 events 

of returning from the intermediate long leave (e5), and 23 events of departure (e6). The initial 

occupancy/lighting state of the testing office, in the beginning of the experiment was always s0 

and the succeeding state of each event was the initial state of the second event.   

 IVE Development 

IVE projects have some essential components that have to be taken into consideration; i.e. 

content, software, and display. The IVEs of this study are 3D computer-generated graphics 

modeled based on the testing office (Fig. 9). The initial 3D model of the IVEs was developed in 
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AutoCAD 2016 and afterwards an image-editing application, Photoshop CC, was used to create 

its textures. The lighting maps were created in 3ds Max and then along with other components 

were imported into a game engine, Unreal Engine 4 (UE4), to program the IVE setting.  

In designing the IVEs of this study, various types of virtual cues were designed and utilized 

to enhance the process of realizing the surroundings [37], and facilitate the flow of the experiment 

procedure. They included stimulatory cues, pertaining to the spatial and the temporal configuration 

of the IVE, as well as instructional cues. The former was used to simulate essential information 

about the experiment environment such as the sense of time, weather condition, and crowd (Fig. 

7) and the latter helped the participant navigate within the IVEs, distinguish operable, virtual 

objects, and interact with those; e.g. as the participant hover the controller over the operable objects, 

they would start blinking, indicating that they are activated (Fig. 8). The study employed a 

narrative-along-the-experiment method to assist the participant to follow various steps of the 

experiment without the need to break his/her connection with the IVEs. Moreover, there were 

floating textual cues to inform the participant about the procedure of the experiment.  

  
Fig. 7. Stimulatory cues Fig. 8: Instructional cues 
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Since this case study was related to the lighting-use behaviors of the participant, it was 

important to verify the illuminance specification of the IVEs. During the one-month in-situ 

observation, the range of the recorded lighting on the working area bounced around 400-600 lux. 

This illuminance range was in line with the standards and the recommended lighting for office 

task, i.e., 500 lux [38][39]. Thus, the illuminance level for the working area in the IVEs of this 

study was set to ~500 lux and the RADIANCE software was used to verify the illuminance level 

based on three input variables of luminous flux (lumen), bulb size, and light color [40]. Essential 

game functions (e.g., interacting with light-switch and window-blind operations) were added to 

the IVEs through visual scripting system in UE4, which works based on the concept of a node-

based interface.  

In order to experience immersion in a virtual reality experiment, a specific set of hardware, 

head-mounted display (HMD) and controllers, are required. HMD is a kind of computer display 

that is worn on the head which completely blocks out the vision and sound of the real world. The 

HMD that was used in this study had 2160x1200 resolution screen (1080x1200 per eye) and 110° 

Field of View (FOV). Figure 9 displays the view of the IVEs in the HMD.  

 

Fig. 9: IVE view from the HMD 



18 

 

The type of IVE content greatly affects the quality of the virtual experience as well as the 

cost of its development. In essence, the more realistic and the more interactive the content, the 

more time-consuming and costly to produce. In fact, for a high-quality sensory experience, both 

the production and projection expenses are still high. At the time of writing this manuscript, a VR-

ready computer and a high-end HMDs price would start from $2000. 

Experiment Procedure 

This study was approved by the local Institutional Review Board. An informed consent form was 

sent to the participant and the signed form was collected before the first visit. The experiment 

procedure consisted of three major steps; a pre-experiment survey, IVE experiments for data 

collection, and the post-experiment surveys (Fig. 10). 

 

Fig. 10: Experiment procedure  

The pre-experiment survey contained demographic information, knowledge of computer, 

and virtual reality experience inquiries. Furthermore, the constructs of the Theory of Planned 

Behavior (TPB) were incorporated in the survey to obtain information about the participant’s 

tendency in the use of the lighting in the office. It is believed that a combination of measures of 
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- Session # 2  
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- Theory of Planned 
Behavior (related to the 
IVE experience)  
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attitudes,  norms, and perceived control belief to perform a behavior determines the intention to 

perform the behavior [41]; and the intention to perform a behavior, itself, is a proximal predictor 

of the actual behavior. The pre-experiment survey was used to find out the possible 

occupancy/lighting patterns in the office. It was administered two weeks prior to the IVE 

experiment, using a web-based survey tool (1 – 7 Likert scale). The IVE experiment was carried 

out in two separate sessions, with one week gap in between. Before the IVE experiment, the 

participant was required to attend a familiarization (training) session, so that all the necessary 

actions with the VR tools, navigating through menus and within the IVEs, and responding to the 

virtual stimuli can be mastered.  

The end result of the IVE experiments were the data related to the occupancy/lighting state 

change transitions which happened at 126 events, in total; 18 events of arrival at the office (e1), 18 

events of intermediate short leave (e2), 18 events of returning from the intermediate short leave 

(e3), 18 events of intermediate long leave (e4), 18 events of returning from the intermediate long 

leave (e5), and 36 events of departure (e6). The initial occupancy/lighting state of the virtual office, 

in the beginning of the experiment was always set to s0 and the succeeding state of each event 

became the initial state of the second event. Events in this study were established and ordered in a 

continuous chronological succession (i.e. starting with the arrival at the office in the morning) 

without an interruption. The duration of each event in the IVE experiment did not exceed 2 minutes 

and after every 12 events, there was a 5-10 minutes break. Each session lasted about 70 minutes 

in total.  

  All interactions with the lighting fixtures and window-blinds, the final decision on the 

lighting choice, and the intensity of the light were recorded during the IVE experiments. The output 

data from the IVEs were then recorded and stored in text format for the assessments. At the end, 
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participant’s subjective virtual reality experience was recorded using the ITC Sense of Presence 

Inventory (ITC-SOPI) instrument [42]. This questionnaire contained 44 items (1-5 Likert scale) 

and was administered upon the completion of the first IVE session. The second session of the IVE 

experiment was conducted after 10 days and the procedure of it was the same as the first session. 

However, there was an additional post-experiment TPB survey, investigating the perception of the 

behavioral control factors in the IVEs. 

Data Processing 

The in-situ data collected from sensors were extracted and analyzed as follows. Data from 

sensor #3 which was located next to the ceiling lighting fixture was used to determine the lighting 

status (on/off) of the testing office. This sensor was supported with a light pipe accessory to 

eliminate effects of ambient light ensuring the most accurate readings. Additionally, the 

illuminance level of the work plane was identified by the use of sensor #2 which then helped to 

confirm the readings from sensor #3. To identify the occupancy status of the office, arrivals, and 

departures the data from both sensors #1 and #3 were simultaneously utilized. The detected motion 

by sensor #3 determined the office’s occupancy status, i.e., when this sensor showed motion for at 

least two minutes, it indicated that the office was occupied. The actions of entering and departing 

the office were assessed by the order of the two sensors that sensed a motion. For instance, if 

sensor #1 detects a motion before sensor #3, it would indicate that the subject has entered the office. 

Otherwise, if sensor #1 monitors a motion after sensor #3, it shows that the office has already been 

occupied—so, that would be a departure event from the office. Sensor #4, located near the window, 

was mainly used to estimate the window blind (up/down) status. However, this type of information 

is not reported in this manuscript.  
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 Events were determined based on the time and the duration of the arrivals and departures; 

and states were identified by disclosing both the occupancy and the lighting status of the testing 

office. The first state change occurring in the morning, from non-occupied state (either s0 or s1) to 

occupied (either s2 or s3), was considered the initial arrival at the office. All lighting state changes 

during this study’s timeline happened upon the participant’s arrival at or departure from the office. 

Moreover, the intermediate leaves during the day were classified into long and short leaves; 

absences shorter than 60 minutes were considered as short intermediate leaves and those longer 

than 60 minutes as long intermediate leaves. The last departure was leaving the office for the day. 

Afterwards, the frequency and the probability of transitions from one state to another were 

arithmetically calculated. Algorithms used to organize and analyze the data were developed using 

Microsoft Excel, Matlab, and Python.  

As discussed before, the relationship between states and events were defined as matrix 

𝑃𝑒𝑘|𝑠𝑖 
and matrix 𝑃𝑠𝑖+1|𝑒𝑘

. The first matrix represents the likelihood that event k occurs at the state 

i; and the latter demonstrates the likelihood that state i+1 is the succeeding occupancy/lighting 

status of the indoor setting.  

𝑃𝑒𝑘|𝑠𝑖 
 =  

[
 
 
 
𝑝(𝑒1|𝑠0) 𝑝(𝑒2|𝑠0) 𝑝(𝑒3|𝑠0) 𝑝(𝑒4|𝑠0) 𝑝(𝑒5|𝑠0)    𝑝(𝑒6|𝑠0)

𝑝(𝑒1|𝑠1) 𝑝(𝑒2|𝑠1) 𝑝(𝑒3|𝑠1) 𝑝(𝑒4|𝑠1) 𝑝(𝑒5|𝑠1)    𝑝(𝑒6|𝑠1)

𝑝(𝑒1|𝑠2) 𝑝(𝑒2|𝑠2) 𝑝(𝑒3|𝑠2) 𝑝(𝑒4|𝑠2) 𝑝(𝑒5|𝑠2)    𝑝(𝑒6|𝑠2)

𝑝(𝑒1|𝑠3) 𝑝(𝑒2|𝑠3) 𝑝(𝑒3|𝑠3) 𝑝(𝑒4|𝑠3) 𝑝(𝑒5|𝑠3)    𝑝(𝑒6|𝑠3)]
 
 
 

              (9) 

𝑃𝑠𝑖+1|𝑒𝑘
= 

[
 
 
 
 
 
 
𝑝(𝑠0|𝑒1) 𝑝(𝑠1|𝑒1) 𝑝(𝑠2|𝑒1) 𝑝(𝑠3|𝑒1)

𝑝(𝑠0|𝑒2) 𝑝(𝑠1|𝑒2) 𝑝(𝑠2|𝑒2) 𝑝(𝑠3|𝑒2)

𝑝(𝑠0|𝑒3) 𝑝(𝑠1|𝑒3) 𝑝(𝑠2|𝑒3) 𝑝(𝑠3|𝑒3)

𝑝(𝑠0|𝑒4)
𝑝(𝑠0|𝑒5)
𝑝(𝑠0|𝑒6)

𝑝(𝑠1|𝑒4)
𝑝(𝑒1|𝑒5)
𝑝(𝑒1|𝑒6)

𝑝(𝑠2|𝑠4)
𝑝(𝑒2|𝑒5)
𝑝(𝑒2|𝑒6)

𝑝(𝑠3|𝑠4)
𝑝(𝑠3|𝑒5)
𝑝(𝑠3|𝑒6)]

 
 
 
 
 
 

    (10) 

After defining the probabilities of the state to event and event to the next state, the 

probability of all possible state transition will be shown in 𝑃𝑠𝑖+1|𝑒𝑘
as follows:  
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          𝑃𝑠𝑖+1|𝑠𝑖
 = [

𝑝(𝑠0|𝑠0) 𝑝(𝑠1|𝑠0)
𝑝(𝑠0|𝑠1) 𝑝(𝑠1|𝑠1)

𝑝(𝑠2|𝑠0) 𝑝(𝑠3|𝑠0)
𝑝(𝑠2|𝑠1) 𝑝(𝑠3|𝑠1)

𝑝(𝑠0|𝑠2) 𝑝(𝑠1|𝑠2)
𝑝(𝑠0|𝑠3) 𝑝(𝑠1|𝑠3)

𝑝(𝑠2|𝑠2) 𝑝(𝑠3|𝑠2)
𝑝(𝑠2|𝑠3) 𝑝(𝑠3|𝑠3)

]                              (8) 

The above formulas are applicable to both the in-situ and the IVE experiments. That is, 

there will be one set of transition matrix (𝑃𝑠𝑖+1|𝑠𝑖
) for each single event (ek) in in-situ and a 

corresponding transition matrix (𝑃′𝑠𝑖+1|𝑠𝑖
) for the equivalent event (ek’) in IVE. Therefore, six 4 x 

4 transition matrices will be produced (k=6; s=4) for each of the IVE and the in-situ observations. 

As an example, the process of computing one of the state transitions is presented in Table 2. The 

probability of the initial state of si=0 to a succeeding state of si+1=3, at a given event of e1, in the 

in-situ and in IVE are, respectively, p(s3|𝑠0) and p’(𝑠3|𝑠0).  

Table 2. Sample state-event transition calculations in in-situ and IVE 

In-situ IVE 

p(𝒆𝒌|𝒔𝒊)  
p(e1|s0) =  𝑛𝑒1𝑠0 ∑ 𝑛𝑒𝑗𝑠0

6
𝑗=1⁄   

= 36/45 = 0.8 
p’(𝒆𝒌|𝒔𝒊)  

p’(e1|s0) =  𝑛𝑒′1𝑠′0 ∑ 𝑛𝑒′𝑗𝑠′0
6
𝑗=1⁄   

=18/46 = 0.39 

p(𝒔𝒊+𝟏|𝒆𝒌)  
p(s3|e1) =  𝑛𝑠3𝑒1 ∑ 𝑛𝑠3𝑒1

𝑛−1
𝑖=0⁄    

= 25/25 =1 
p’(𝒔𝒊+𝟏|𝒆𝒌)  

p’(s3|e1) =  𝑛𝑠′3𝑒′1 ∑ 𝑛𝑠′3𝑒′1
𝑛−1
𝑖=0⁄           

= 36/36 =1 

P(𝒔𝒊|𝒔𝒊+𝟏)  
p(s3|s0) = p(e1|s0) * p (s3| e1)  

=0.8 * 1 = 0.8 
P’(𝒔𝒊|𝒔𝒊+𝟏)  

p’(s3|s0) = p’(e1|s0) * p’ (s3| e1)  

=0.39 * 1 = 0.39 

There has been many state transitions in each matrix that would be impossible (e.g., p(𝑠1|𝑠0) 

to happen or not probable (e.g., p(𝑠2|𝑠0) at e1) in this case study; henceforth, they had zero 

probabilities. Given that, only non-zero state transitions were collected and listed for the statistical 

analysis (see Table 3). 

Data Analysis 

Using the collected sample data, a statistical hypothesis testing was used to determine whether the 

case study provides enough evidence to accept the study’s proposition. In essence, the case study 
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is to provide statistical proof of similarity between the IVE and in-situ datasets. It was, in fact, 

intended to see whether changing the experimental environment would have an impact on the 

outcome of the study. The major response (outcome) variable of this case study was the probability 

of the occupancy/lighting state changes prior and after the events, while the independent 

(manipulated) variable was the experimental environment, i.e., in-situ vs. IVE. Table 3 represents 

the frequency distribution of the occupancy/lighting state transitions at each event in-situ and in 

IVEs, as well as the p-values associated with the hypothesis test.  

Table 3: Statistical significant test  

Events 

State 

Transition  

(si+1|si) 

Frequency distribution of 

the State Transitions P-

value  In-situ IVE 

O X O X 

e1 Arrival at the office (s3|s0)  25 0 18 0 1 

e2 Intermediate (short) leave  (s0|s3) 2 28 10 8 <0.05* 

 (s1|s3) 30 2 8 10 <0.05* 

e3 Return from intermediate (short) leave  (s2|s0) 1 31 0 18 1 

 (s3|s0) 1 31 10 8 <0.05* 

 (s3|s1) 30 2 8 10 <0.05* 

e4 Intermediate (long) leave  (s0|s3) 7 1 18 0 0.31 

 (s1|s3) 1 7 0 18 0.31 

e5 Return from intermediate long leave  (s2|s0) 0 8 1 17 1 

 (s3|s0) 7 1 17 1 0.53 

 (s3|s1) 1 7 0 18 0.31 

e6 Departure  (s0|s2) 1 22 1 35 1 

 (s1|s2) 0 23 0 36 1 

 (s0|s3) 21 2 35 1 0.55 

 (s2|s3) 1 22 0 36 0.39 

Note: O: Count number of occurrences, X: Count number of non-occurrences 

This study used a nonparametric statistical test, namely, Fisher’s exact test to find out if 

there is any nonrandom association between the studied variables of the research. This test is 

applicable when the variables are nominal and it is more accurate than other independence tests 

(e.g. chi-square) when the sample is small. The null hypothesis of this test is that there is no 

association between the two variables of the research, such that the proportions for the first variable 
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are different among values of the other variable. In the case of this study, that is, the probability of 

the occupancy/lighting state transitions are not influenced by being in any of the two experimental 

settings (𝐻0: 𝑝(𝑠𝑖+1|𝑠𝑖) =  𝑝′(𝑠𝑖+1|𝑠𝑖), 𝑖 = 0,1, … , 𝑛). Fisher’s exact test analyzes the two-by-two 

contingency tables and examines the equivalence of the probability distributions of the state 

transitions in the IVE and in-situ experiments. The p-values greater than 0.05 would retain the null 

hypothesis, suggesting that the two applied methods of data collection generate similar outcomes 

(at the 0.05 level of significance) and the data is independent from the studied tools, i.e., IVEs vs. 

in-situ. Statistical analysis of this study was performed in SAS 9.4 (Statistical Analysis System) 

and JMP 13 (see Fig. 10).    

 

Fig. 10: Analysis of contingency tables 

Results and Interpretations     

The results of the Fisher’s exact test given in Table 3 and illustrated in Figure 10 clearly showed 

that the majority of the occupancy/lighting state transitions were statistically comparable between 

the IVE and in-situ environments. In e1, the only possible state transition was (s3|s0) which was 

also the only occurred state transition and the result of the statistics revealed a complete 
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consistency in the outcomes across two experimental settings (p-value=1). That is, regardless of 

being in IVE or in-situ, s0 always led to s3 at the event of the arrival at the office. Similar to the e1, 

e6 showed that the IVEs were able to closely match in-situ observations. The reported p-values 

from the statistical significance test for comparing (s0|s2), (s1|s2), (s0|s3), (s2|s3) and their 

counterparts, were greater than 0.05, which suggest that there was no experimental setting effect 

on any of the occupancy/lighting state transitions at e6.  

Additionally, the case study investigated the intermediate leaves (short and long) and 

returns to the office. In the event of the long leaves (e4) and returns to the office from the long 

leaves (e5) the observed occupancy/lighting state transitional probabilities in IVEs perfectly 

corresponded with their counterpart in-situ (p-value> 0.05). Yet, there were inconsistencies in the 

event of the short leaves (e2) and returns to the office from short leaves (e3). At e2, the probabilities 

of transition from s3 to s0 and from s3 to s1 in IVEs was statistically different than those in-situ (p-

value<0.05). More specifically, in IVEs the tendency of turning the lights off upon the short leaves 

was significantly higher. Consequently, the occupancy/lighting state transitions at e3, which was 

essentially dependent on the chosen lighting status in e2, were different from the in-situ (p-value< 

0.05) and could not follow the same pattern as in-situ. However, in this case study, the cumulative 

record of the arrivals at the office (regardless of the initial lighting status) clearly showed that “s3” 

was the most probable office status in both the in-situ observation and IVEs. Considering that the 

only observed discrepancy between the IVE and the in-situ occupancy/lighting state transitions 

occurred at e2 and e3, the authors believe that the IVE design or the associated cues might not have 

been able to properly characterize those events. The cues that were used to represent e2 and e3 , 

intermediate (short) leaves and returns from/to the office, were mainly auditory cues, such as a 

voice message on the phone, asking the participant to assist a student in the next-door office, or 
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asking the participant to stop by the secretaries’ office for a quick business affair. However, the 

duration in which the participant was expected to be involved with such activity was not directly 

stated throughout the message. As a matter of fact, open-ended messages of this kind could be 

personally interpreted, and the participant might draw his/her own conclusion about it. That is to 

say, the messages could be delivered and perceived in a different way rather than what the study 

planned to; thus, when the message is not clearly understood, the participant’s response could be 

totally conditioned based on his/her subjective interpretation.  

IVE ECOLOGICAL VALIDITY 

According to Witmer [43], “the effectiveness of Virtual Environments (VEs) has often been linked 

to the sense of presence reported by users of those VEs.” The perception of being present is crucial 

in IVEs, since the more a person feels presence in a virtual environment, the more his/her responses 

would match those in the physical environment [43,44]. Thus, the authors administered a well-

known presence instrument, ITC-SOPI, in order to take this factor into account. To determine if 

the IVEs are effective, the authors compared the results with previous studies (Table 4).  

Table 4: Presence measurement scores comparison (mean ± Standard Deviation)  

ITC_SOPI 

Measurements 

Case 

Study 

Lighting use 

behavior in 

IVE (22) 

Thermal 

Comfort in 

IVE (23) 

Physiological 

monitoring in 

IVE (24) 

Engagement 4.38 3.58 ± 0.55 3.44 ± 0.48 3.15  ± 0.29 

Spatial Presence 3.95 3.36 ± 0.67 3.37 ± 0.55 3.06 ± 0.49 

Naturalness 4 4.16 ± 0.77 3.52 ± 0.61 3.04 ± 0.62 

Negative Effects 3.33 2.38 ± 0.72 2.61 ± 0.62 2.55 ± 0.74 

 

The factors and items contributing to this instrument consist of Spatial Presence, 

Engagement, Naturalness, as well as the Negative Effects. Comparing with previous studies, the 

IVEs in this study have the following characteristics:  
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1. The high scores of the “Spatial Presence” and “Engagement” were strong indication that 

the IVE setting of this study provided an adequate sense of attachment to the displayed 

environment, which afforded some sort of interactions.  

2. This IVE was successful in drawing the participant’s attention in terms of the “Naturalness” 

of the scenes and believability of its contents.  

3. Even though the factor of “Negative Effect” scored the lowest in this study, it was higher 

than that of in the other studies conducted by the authors. The authors tried to minimize 

negative effects by allocating a five-minute break between each sub-session of the 

experiment. 

The TPB survey, on the other hand, provided useful insight about the participant’s tendency 

in the use of artificial lighting. The pre-experiment survey covered all the necessary measurements 

of the TPB (i.e., attitude, social norms, personal norm, perceived control belief, and actual control 

belief) were included in the questionnaire to study the participant’s general behavioral intention. 

Thus, experimenters learned the exact way the participant tends to interact with the lighting in his 

real life (surveys are attached in the appendices). In the post-experiment survey, TPB 

measurements were designed and translated into the context of the IVE (e.g., social norms: “Even 

though I was in a virtual setting, I would still consider how my decision on the use of light would 

be evaluated by others”). The goal of using the TPB survey was to discover any existing causes of 

discrepancies in the occupancy/lighting behavioral patterns across the two testing environments. 

Indeed, the pre-experiment TPB survey was used to shed light on the participant attitudes, norms, 

and perceived behavioral control factors on a daily basis. Interestingly, the answers to the post-

experiment TPB survey showed that the major control factors (e.g., the ease/difficulty of operating 

the window-blinds and light switch, also the impact of glare on the use of window-blind) in IVE 
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were perceived the same way as in in-situ. This is in line with the authors’ previous research [31] 

indicating that the control beliefs and actual control factors could be perceived as comparably 

easy/difficult as in the in-situ, if the design of the virtual setting upholds a fair ecological validity. 

CONCLUSIONS AND FUTURE RESEARCH 

The authors explored a data collection method applied to IVEs using the STED modelling 

approach. IVE data from a single occupancy office were collected in a few hours to compare with 

one-month in-situ data. One hundred twenty-six IVE data that were classified into six event 

categories were compared with one hundred twenty-eight in-situ data. State transitions as a result 

of human building interactions were used to test if the proposed STED modeling approach is 

effective in simulating longitudinal data collection in IVEs. The hypotheses of the study was that 

the probabilities of the occupancy/lighting state transitions in a given event across the two 

experimental environments (i.e. IVE vs. in-situ) are not statistically different. Results were 

promising in producing comparable patterns between the two environments at majority of the 

events. This suggests that the application of STED can potentially alleviate IVE’s weakness for 

producing predictive models. It should be noted that the goal of this research was not to generalize 

the results of this case study across other samples such as different people, but it was intended to 

initially discover the capability of IVEs representing extended observations, using STED. 

Even though there were some limitations in the case study (i.e., technology limitation), 

several important findings could be drawn based on the results of the data analysis. First, regarding 

the STED modeling approach, the case study shows that the flexibility of the event and spatial-

temporal structures allows researchers to organize data based on the need of a study. The results 

hold good potentials to support not only conventional validation studies, but also collecting 

longitudinal data for predictive modeling. These potentials, with further proofs, can transform 
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IVEs as an experiment platform. However, since the STED modeling approach is intended to cover 

a long-time study span in IVEs for longitudinal data collection, there often exists a time mismatch 

between IVE scenarios and experiments. For example, an IVE scenario is about winter conditions 

and the experiment might be carried out in summer time. Thus, more research is needed to 

understand the impact of a participant’s actual physiological and psychological state on IVE 

experiments in order to collect data in IVEs within a limited timeframe. Previous researches found 

evidence that a conventional IVE is capable of eliciting human responses to stimuli such as lighting 

[30,45], but for an IVE to be able to fully support occupant energy consumption behaviors, more 

complex IVE systems with additional sensory modalities as well as considering more careful 

participant inclusion criteria would be necessary. The authors conducted some pilot tests [32,33] 

to explore the feasibility of IVE’s in inducing individuals’ naturalistic physiological and 

psychological responses to temperature as the stimulus. Even though in a sample wise comparison, 

no statistical difference were found between the studied measures across the IVE and the in-situ, 

measurements of some participants varied significantly between the two settings. It is still 

unknown that what variables contribute the most to the mismatch of the in-situ experiences 

comparing to those in the IVE. Apparently, responses to the visual stimuli (e.g. lighting) can be 

provoked relatively faster and more naturalistic than some other sensory stimuli (e.g. thermal and 

air flow). Knowing the fact of how different various sensory systems function, one can 

accommodate the experimental design accordingly.  

Furthermore, the study also shows that the accuracy of IVE cues is very important. It seems 

that IVEs support salient events more strongly. Constructing IVEs with an intention to elicit a 

range of responses relies on the effectiveness of the details in the design of the IVEs, especially 

cues. Since it is not practical to replicate every single in-situ details in IVEs, a careful design of 
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cues is required to be able to elicit a variety of event/states even in less distinguishable events. 

Currently, a systematic study of cues on eliciting occupant behaviors does not exist and thus 

requires further research.  

Finally, this study demonstrated the potential of the STED modeling approach to support 

IVEs as an experiment apparatus and a predictive model in the future. Studies in the same vein 

often only focus on validating IVE experiments with in-situ observations, without further 

explanations of factors that contribute to discrepancies between in-situ and IVEs experiments. As 

an alternative to predictive modeling using in-situ data, it is important to show the reliability of 

any predictions using IVE data. Algorithms to calculate such reliability need to be developed.   
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APENDICES 

1. Theory of Planned Behavior (TPB); pre-experiment survey 

Attitude A1 Opening window-blinds during the day to use natural light instead of turning 

on the lights is beneficial. 

A2 Opening window-blinds during the day to use natural light instead of turning 

on the lights can help protect the environment. 

A3 I have a natural tendency to open the window-blinds and use the sun light. 

Social Norm 

 

SN1 Most people like me usually open the window-blinds during the day to use 

natural light instead of turning on the lights. 

SN2 Most people I care about expect me to open window-blinds during the day to 

use natural light instead of turning on the lights. 

Personal 

Norm 

SN1 I feel guilty when I don’t open the window-blinds during the day to use 

natural light instead of turning on the lights. 

SN2 I felt personal responsibility to open the window-blinds to let the natural light 

in my room or work area. 

Perceived 

Control 

Belief 

PCB1 Sometimes I don't open my office window-blinds because it will make me 

feel the office gets hot. 

PCB2 The decision to open the window-blinds and use the outdoor light in my 

office is entirely up to me. 

PCB3 Sometimes I don't open my office window-blinds because it is difficult to 

operate it. 

PCB4 Sometimes I don't open my office window-blinds because I feel it is 

inappropriate for me to open the window-blinds in the office. 

Actual 

Control  

 

ACF1 Sometimes privacy concerns keep me from opening my office window-

blinds. 

ACF2 Sometimes I don't open my office window-blinds because of glare or too 

much light. 

ACF3 I would have been more mindful of using my office window-blinds, if I was 

going to pay for the electricity. 
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2. Theory of Planned Behavior (TPB); post-experiment 

Perceived 

Control 

Belief 

PCB1 The ease/difficulty of operating and accessing the lighting switch or the 

window-blind had effect on my lighting choice. 

PCB2 The decision to open the window-blinds and use the outdoor light in my 

office was entirely up to me. 

PCB3 It was too difficult to interact with the window-blinds in the room that is 

why I preferred to use the ceiling light. 

PCB4 At some points, I only used ceiling light, because I felt it was 

inappropriate for me to open the window-blind in my office. 

Actual 

Control 

 

ACF1 Even though I was in a virtual environment, I felt some privacy concerns 

could prevent me from opening window-blinds. 

ACF2 I was not interested in opening the window-blinds because of glare or too 

much light. 

ACF3 I would have been more mindful of using a less energy consuming lighting 

choice in my virtual office, if I was going to pay for the electricity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


