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Abstract 

The rat embryonic cardiomyoblast-derived H9c2 cell line is increasingly used for 

studies into cardioprotection, as these cells display similar properties to primary 

cardiomyocytes.  Adenosine receptors are well known mediators of cardioprotection 

and trigger effectors such as the mitochondrial KATP channel – however, the role of 

the mitochondrial BKCa channel in adenosine receptor-mediated cardioprotection has 

not been investigated.  GPCR assays provided evidence for functional expression of 

Gi-coupled adenosine A1 and κ-opioid receptors, Gs-coupled β2 adrenergic receptors 

and Gq-coupled UTP-binding P2Y purinergic receptors on H9c2 cells.  Activation of 

the adenosine A1 receptor with CPA (N(6)-cyclopentyladenosine) provided 

significant protection against hypoxia-induced cell death in these cells, as did 

opening of a BKCa channel with NS1619.  The location of this BKCa channel was 

confirmed to be the mitochondria by the probing of subcellular fractions with BKCa-

specific antibodies.  Interestingly, CPA-induced protection against hypoxia was 

blocked by inhibition of the BKCa channel.  In a model of hypoxia/reoxygenation in 

H9c2 cells both CPA and NS1619 significantly reduced cell death when used as 

postconditioning agents, and in both cases the protection was abolished by blockade 

of the BKCa channel.  This data suggests for the first time that, in H9c2 cells, the 

BKCa channel is involved in A1 receptor-mediated cytoprotection.  To confirm this 

finding in a more physiologically relevant model – and validate the use of H9c2 cells 

as a model for cardioprotection –hypoxia/reoxygenation in isolated rat ventricle 

strips was investigated.  It was discovered that blockade of the BKCa channel 

significantly attenuated protection afforded by hypoxia preconditioning and 

preconditioning triggered by activation of the adenosine A1 and A2A receptors. 

For the first time, this report has shown an important role for the BKCa channel in 

adenosine receptor-mediated cytoprotection. 
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1. Introduction 

1.1. Cardiovascular disease  

Cardiovascular disease is currently the leading cause of death in the developed 

world, with ischaemic heart disease accounting for over 94,000 deaths in the United 

Kingdom in 2006 alone (British Heart Foundation Statistics Database).  Although 

heart disease is often thought to be an affliction of the elderly, since risk does 

increase with age, it is also the foremost cause of premature death in the UK in men 

and women (British Heart Foundation Statistics Database).  Ischaemic heart disease, 

or coronary heart disease, is caused when a coronary artery becomes blocked - often 

as a result of a thrombus or atherosclerotic plaque.  Blood flow to myocardial tissue 

is reduced leading to symptoms such as dyspnea, angina pectoris and myocardial 

infarction.  As the populace increases in age, and risk factors such as obesity and 

diabetes become more common, the incidence of ischaemic heart disease will be 

raised – creating a substantial burden on the National Health Service.  Research 

regarding the mechanisms involved in cardiac ischaemia and protection against the 

resultant tissue damage is plentiful, but as yet very few pharmacological agents have 

successfully transferred from producing positive experimental data (in cell and 

animal models) to encouraging clinical outcomes.  Therefore, any insight into the 

complex pathways involved in ischaemia and ischaemia/reperfusion injury could 

help identify future, or potentiate existing, targets for therapy.   

1.2. Ischaemia and ischaemia/reperfusion-induced cell death  

Myocardial cells exhibit a variety of metabolic responses to ischaemia; the extent of 

the response depends on the degree of ischaemia experienced by the cells and so not 

all myocytes exhibit the same behaviour.  Cellular responses to ischaemia include 
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myocardial stunning, hibernation and preconditioning.  The phenomena of 

myocardial stunning has been described in a number of animal models including the 

isolated rabbit heart (Flameng et al, 1991) and dogs (Phillips & Ko, 2007), and has 

also been proven to occur in humans (Gerber et al, 1999).  It describes the delayed 

return of myocardial contractile function following ischaemia, despite full restoration 

of blood flow, so allowing myocytes time to “repair” during a period of reduced 

energy requirement (Depre & Taegtmeyer, 2000).  Alternatively, repeated stunning 

may lead to myocardial hibernation (Kim et al, 2003).  This is often in response to 

chronic ischaemia/hypoxia and is a process where myocardial function is lessened in 

alignment with the reduced supply of oxygen and nutrients.  These processes allow 

irreversible tissue damage to be avoided, so upon restoration of normal blood flow 

contractile function can eventually return.  Another process that can occur in 

response to ischaemia is preconditioning, which enhances the resistance of the 

myocardium to irreversible damage and will be described later on in more detail (see 

section 1.4). 

During ischaemia the reduced availability of oxygen and metabolic substrates is 

insufficient to support normal oxidative phosphorylation.  This triggers the 

mitochondria to switch from aerobic to anaerobic respiration, so reducing formation 

of ATP and producing intracellular acidosis with accumulation of hydrogen ions (H
+
) 

and lactate (see Figure 1.1, page 12).  This leads to inhibition of the ATP-dependant 

sodium/potassium pump (Na
+
/K

+
-ATPase) and activation of the sodium/hydrogen 

exchanger (NHE) – both of these actions augmenting intracellular Na
+
 accumulation.  

The increase in Na
+
 activates the Na

+
/Ca

2+
 exchanger, leading to intracellular 

accumulation of Ca
2+

.  Osmotic swelling occurs due to influx of Cl
-
 and H2O.  The 

reduction of ATP also reduces uptake of Ca
2+

 by the sarco/endoplasmic reticulum 
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Ca
2+

-ATPase (SERCA), so further intracellular Ca
2+

 accumulation occurs.  Ca
2+

-

dependant proteases are then activated, causing damage to the membranes and 

cytoskeleton.  This, combined with the swelling of the cell, can lead to membrane 

rupture and oncotic necrosis.  Oncosis, or “ischaemic cell death” (Schaper & Kostin, 

2005), is a form of accidental cell death caused by failure of ion pumps.  It is 

characterised by cell swelling, increased membrane permeability, blebbing and non-

specific DNA degradation (Majno & Joris, 1995).  In the literature the term 

“necrosis” is often used in place of oncotic necrosis, however, necrosis specifically 

refers to the changes that occur following any kind of cell death.  This is 

characterised by further changes to the nucleus and cytoplasmic constituents and 

breakdown of the plasma membrane; up until this point it is thought that cells can be 

rescued, and the onset of necrosis represents irreversible cell death (for review see 

Trump & Berezesky, 1996).  To remain consistent with the literature, from this point 

“necrosis” will be used to describe non-apoptotic cell death in this report.    

Apoptosis is a distinct form of cell death and can be initiated by a cell’s “internal 

clock” or an external signal (Majno & Joris, 1995).  Unlike necrosis, it is 

characterised by cell shrinkage, nuclear condensation and specific nuclear cleavage, 

and budding of apoptotic bodies – these are then phagocytosed without stimulating 

an inflammatory response.         
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Fig.1.1: Proposed series of events leading from myocardial ischaemia to irreversible cell 

death.  The reduced formation of ATP and intracellular acidosis caused by lack of oxygen 

disrupts ion transporters within the cell, leading to cell swelling and damage – resulting in 

irreversible necrosis. 
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It was originally thought that necrosis was the predominant form of cell death 

initiated by hypoxia/ischaemia, and there is evidence for and against a role for 

apoptosis.  For example, hypoxia-induced apoptosis has been detected in neonatal 

and adult rat cardiomyocytes (Tanaka et al, 1994; de Moissac et al, 2000), but a 

study by Webster et al (1999) reported that apoptosis could only be measured when 

hypoxia was accompanied with reoxygenation or a shift in pH – and this was found 

to be the case in neonatal rat cardiomyocytes and the Langendorff-perfused mouse 

heart.  Such discrepancies may arise due to the model used, different conditions for 

hypoxia and/or different methods of measuring apoptosis.  It has been shown that 

different apoptotic pathways can be stimulated depending on culture conditions; one 

study utilising Jurcat cells (Malhotra et al, 2001) described caspase-3-dependent 

apoptosis following hypoxia in a glucose-free medium, but caspase-3-independant 

apoptosis following hypoxia in glucose-containing medium – suggesting that a 

caspase-independent death receptor pathway had been activated.  Overall, the data 

regarding hypoxia-induced cell death is varied, but a there is a large body of 

evidence in favour of a role for apoptosis.   

However, it is now believed that a combination of apoptosis and necrosis occurs – 

with apoptosis being the preferred pathway until ATP levels are too low to sustain 

the energy-dependent process, after which necrosis takes over (Tatsumi et al, 2003; 

Otani et al, 2006). 

Initially the damage observed in myocardial tissue following an infarction (in the 

clinical setting and experimental models) was believed to be inflicted purely during 

the period of ischaemia.  However, in 1987 Olafsson et al provided evidence that 

some injury occurs due to the reinstatement of blood flow during reperfusion.  The 

Olafsson group used a canine model and reported that treatment with adenosine for 
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the first hour of reperfusion after a 90 minute period of ischaemia reduced infarct 

size and improved ventricular function compared to untreated controls (Olafsson et 

al, 1987).  The observation that the outcome of the ischaemic insult could be 

improved by pharmacological treatment during reperfusion suggested that some of 

the damage was generated at this stage.  Since this report it has been found that 

treatment with several pharmacological agents at the start of reperfusion can ease 

myocardial injury (for review see Gross & Auchampach, 2007). 

Reperfusion is essential to “rescue” the ischaemic tissue, but it is now known to lead 

to further problems such as arrhythmia, decreased contractile function and 

irreversible cell death.  During ischaemia neutrophils accumulate at the damaged 

tissue, and this process is accelerated upon reoxygenation (Hansen, 1995). 

Neutrophils release ROS, proteases and inflammatory mediators, which in turn 

recruit more neutrophils so amplifying the inflammatory-like response (Jordan et al, 

1999).  Alongside the inflammatory-like response, mitochondria are thought to be the 

main mediators of reperfusion injury (see Figure 1.2, page 15); it is postulated that 

the reintroduction of oxygen re-energises the mitochondrial respiration machinery, 

leading to excessive production of reactive oxygen species (ROS) (Korge et al, 

2008).  SERCA (Sarco/Endoplasmic Reticulum Ca
2+

-ATPase) is activated when 

ATP production proceeds, placing the sarcoplasmic reticulum under severe calcium 

overload.  Calcium is released via ryanodine receptors then taken up again by 

SERCA – this leads to intracellular calcium oscillations and mechanical irregularities 

(Piper et al, 2006).  The accumulation of calcium activates Ca
2+

-dependant proteases, 

such as calpains, which degrade intracellular proteins and compromise the integrity 

of the cell membrane. 

 

http://en.wikipedia.org/wiki/Sarcoplasmic_reticulum
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/ATPase
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Figure 1.2: Proposed series of events leading from myocardial ischaemia/reperfusion to 

irreversible cell death.  Upon reoxygenation the increase in oxygen and activation of 

neutrophils sets off a series of events.  Ccommon features of both pathways are excessive 

ROS production and activation of the mPTP – eventually culminating in cell death. 
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1.3. A role for the mitochondria 

Precise regulation of cytoplasmic potassium ion concentration is essential to 

maintain ion homeostasis and cell volume, and it is thought that K
+
 homeostasis is 

the main regulator of mitochondrial matrix volume.  Efflux of K
+
 from the cell can 

lead to osmotic shrinkage, which stimulates mitochondrial release of cytochrome-c, 

activation of executioner caspase-3 and eventual cell death.  This intrinsic apoptotic 

pathway is mediated by the mitochondria. 

Mitochondria are responsible for generating cellular energy in the form of ATP via 

oxidative phoshorylation.  Oxidative phosphorylation involves generation of a proton 

gradient across the inner mitochondrial membrane by the electron transport chain; 

inner membrane-bound ATP synthase then utilises the gradient to power the 

production of ATP from ADP and phosphate (Pi).  If ATP synthesis is disrupted the 

whole cell is affected as ion homeostasis is disturbed, leading to a change in cell 

volume.  

Several ion channels have been described that are located on the mitochondrial inner 

mitochondrial membrane, including two K
+
 channels – the ATP-sensitive potassium 

channel (mitoKATP) and the large-conductance calcium-activated potassium channel 

(mitoBKCa).  Both of these channels have been implicated in cardioprotection against 

ischaemia/reperfusion injury (for review see Nishida et al, 2009).  The proton 

gradient across the mitochondrial membrane (formed by the mitochondrial electron 

transport chain) leads to a negative potential in the mitochondrial matrix compared to 

the cytosol, and this leads to Ca
2+

 influx into the mitochondria (Gunter & Pfeiffer, 

1990).  During ischaemia, when conditions favour Ca
2+

 influx, activation of K
+
 

channels partially depolarises the mitochondrial membrane so reducing the negative 
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gradient, and this attenuates the potentially damaging Ca
2+

 influx.  This has been 

shown in an isolated cardiac mitochondrial preparation using the KATP openers 

diazoxide and pinacidil, and in intact cardiomyocytes with diazoxide 

(Holmuhamedov et al, 1999) and the BKCa channel opener NS1619 (Sato et al, 2005) 

– in each case treatment with the channel openers depolarised the mitochondrial 

membrane and reduced mitochondrial Ca
2+

 uptake. 

It is thought that activation of the mitoKATP channel evokes cardioprotection through 

a pathway involving inhibition of the mitochondrial transition pore (Facundo et al, 

2005; Krolikowski et al, 2005), however, the precise mechanisms by which 

mitoKATP channels mediate cardioprotection are debatable.  The structure of 

mitoKATP channels is not fully known, but it is postulated that they are similar to 

the plasma membrane KATP channels and are composed of an inward rectifier 

potassium channel subunit (Kir) associated with a sulfonylurea receptor (SUR) 

(Mironova et al, 2004; O’Rourke, 2004).  The cardioprotective role of the 

mitochondrial BKCa channel will be discussed later on (see section 1.7).  

Not all mitochondrial channels exert such a cardioprotective effect.  Also on the 

inner mitochondrial membrane is the mitochondrial permeability transition pore 

(mPTP), which is thought to be a key player in ischaemia/reperfusion injury.  The 

mPTP consists of several proteins spanning the inner and outer mitochondrial 

membranes, so allowing the passage of solutes <1.5 kDa through the usually 

impermeable inner mitochondrial membrane.  The structure of the mPTP is under 

debate, but the main components are proposed to be adenine nucleotide translocase 

(ANT), cyclophilin-D (CyP-D), mitochondrial phosphate carrier (PiC) and voltage-

dependent anion channel (VDAC) – although recent evidence contrasts the original 

model for the mPTP where VDAC had a major role.   
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The mPTP opens in response to an increase in mitochondrial Ca
2+

, facilitating the 

release of pro-apoptotic molecules into the cytosol (Rodriguez-Enriquez et al, 2004); 

though during periods of increased oxidative stress the mPTP is sensitised to Ca
2+

, so 

increased Ca
2+

 is not actually required for pore opening (Halestrap et al, 1997). 

However, when ATP depletion occurs to an extent that is too low to support 

apoptosis the mPTP can also mediate necrosis (for review see Crompton, 1999; see 

Figure 1.3).   

ATP hydrolysis

Impaired energy 
metabolism

[Ca2+]i deregulation

Collapse of energy and
[Ca2+]i regulation

NECROSIS

Cytochrome c

Activation of the
caspase cascade

APOPTOSIS

 

Figure 1.3: Regulation of cell death by the mPTP.  Mitochondrial permeability transition 

can set off a series of events culminating in necrotic and/or apoptotic cell death. (Green/blue 

bars, open mPTP). 
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It has been suggested that mPTP is formed by a CyP-D-facilitated conformational 

change of the PiC, and that this is modulated by the conformational state of an 

associated ANT (Halestrap et al, 1997; for review see Halestrap, 2009).  Evidence 

for these associated proteins arises from various reports.  For example, it has been 

shown that livers from CyP-D knock-out mice are extremely resistant to Ca
2+

-

induced opening of the mPTP (Basso et al, 2005), pointing to an important role for 

this protein in mPTP formation.  In 2008 it was discovered that PiC binds to CyP-D 

in a cyclosporine-sensitive manner (cyclosporine interacts with CyP-D, preventing 

pore formation), and that PiC can also associate with ANT – suggesting that PiC may 

also play a role in mPTP formation (Leung et al, 2008).  The modulatory (i.e. not 

essential) role for the ANT arises from the evidence that livers from mice without 

ANT1 or ANT2 still present a permeability transition (Kokoszka et al, 2004).  It is 

important to note, however, that only nucleotides transported by ANT (i.e. ATP and 

ADP) can inhibit mPTP opening, implicating ANT in regulation of the pore 

(Halestrap et al, 1997; the role of ANT is reviewed in Leung & Halestrap, 2008).  

 VDAC was originally proposed to be an important part of the mPTP by Zoratti & 

Szabo in 1994, as it had been co-purified with ANT.  The role of VDAC is 

controversial though, as more recently is has been shown that mitochondria from 

VDAC-null mice exhibited a Ca
2+ 

- and oxidative stress-inducible permeability 

transition comparable to that observed in mitochondria from wild-type mice (Baines 

et al, 2007). 

However, in comparison to this role in the initiation of cell death it has also been 

suggested that transient opening of this channel can have a cytoprotective effect 

(Hausenloy et al, 2004).  Despite this, the mPTP appears to play a key role in 

regulation of ischaemia/reperfusion injury, and provides a good target for 
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cardioprotective therapies – and the potential modulation of the mPTP by the KATP 

channel, or BKCa channel, provides an exciting area of research.    

It is proposed that during oxidative stress, while the energy state still favours 

apoptosis, the mPTP opens allowing influx of water and solutes into the 

mitochondria, increasing matrix volume and rupturing the outer membrane.  This 

allows the release of cytochrome c from the intermembrane space, formation of the 

apoptosome (a complex of cytochrome c, APAF-1 and pro-caspase-9) and initiation 

of the caspase cascade – resulting in apoptotic cell death (see Figure 1.3).  As 

oxidative stress increases, necrosis is favoured.  Opening of the mPTP leads to ATP 

hydrolysis, so worsening energy metabolism and causing further Ca
2+

 deregulation.  

This feeds back to the mitochondria – initiating more mPTP opening and eventual 

loss of energy and Ca
2+

 regulation, culminating in necrosis (see Figure 1.3).  

However, although prolonged exposure is ultimately damaging, ischaemia can also 

have a beneficial effect.  

1.4. Ischaemia as a trigger of cardioprotection   

It is now well accepted that a brief period of ischaemia and reperfusion (I/R) can 

protect against a subsequent, prolonged I/R.  This phenomenon, termed ischaemic 

preconditioning, has been demonstrated in various models including swine (Schott et 

al, 1990) and dog (Murry et al, 1986), as well as several in vitro models such as 

isolated rabbit cardiomyocytes (Armstrong et al, 1994).  There is also evidence 

suggesting that ischaemic preconditioning can be beneficial when used in a clinical 

setting with coronary artery bypass graft surgery (CABG).  For example, Wu et al 

(2002) found that brief periods of ischaemia before CABG, in patients with 3 vessel 

disease, significantly reduced the occurrence of ventricular fibrillation and 
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tachycardia after the operation.  The same group (Laurikka et al, 2002) used the 

same preconditioning protocol in patients with 2 vessel disease and found that, 

following CABG, myocardial enzyme release was attenuated, heart rate was 

stabilised and recovery of stroke volume was increased compared to the control 

group.   

The ischaemic preconditioning phenomenon first described by Murry et al (1986) is 

now described as “classical”, or “early phase” preconditioning.  This form of 

preconditioning refers to transient beneficial effects (1-2 hours) that develop within 

minutes of the cardioprotective stimulus, e.g. a brief period of sublethal ischaemia 

(see figure 1.4).  It involves rapid modulation of pre-existing proteins within the cell, 

such as activation of GPCRs, protein kinases and ion channels, and provides 

protection in many models against ischaemia/reperfusion injury (for reviews see 

Sanada & Kitakaze, 2004; Bolli, 2007).   

In 1993 two separate groups (Kuzuya et al, 1993; Marber et al, 1993) reported that 

some effects of myocardial protection could still be observed 24 hours after the 

initial preconditioning stimulus.  This is now termed “late phase” or “second 

window” preconditioning, and describes long lasting effects (peak protection at 24-

72 hours) that develop from 6 hours of the preconditioning stimulus.  As the longer 

time span would suggest, the late phase of preconditioning arises from different 

signal transduction mechanisms to the early phase – although some commonalities 

do occur.  A key feature of late phase preconditioning is up-regulation of 

cardioprotective genes and the synthesis of new proteins, e.g. inducible nitric oxide 

synthase (iNOS), which is a well known mediator of late phase preconditioning and 

is reported to provide protection via inhibition of mitochondrial swelling and 

inhibition of the mPTP (West et al, 2008).  It has also been reported that anti-
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apoptotic, prosurvival genes are also “switched on” and proteins synthesised during 

the late phase of preconditioning (Stein et al, 2007) – further strengthening the role 

of apoptosis in ischaemia/reperfusion injury.  These two forms of ischaemic 

preconditioning can both reduce infarct size in various animal models (see Yellon & 

Downey, 2003, for comprehensive review), but in mice the early phase is reported to 

be more potent (Guo et al, 1998).  However, the late phase of ischaemic 

preconditioning can also provide protection against myocardial stunning in conscious 

rabbits (Dawn et al, 1999).  Figure 1.4 provides a basic outline of the phases 

involved in ischaemia/reperfusion injury and types of cardioprotection.  The duration 

of ischaemia and reperfusion varies between experimental models, but the general 

outcomes are highlighted in the text. 

Ischaemia/reperfusion

Pre-conditioning
< 2h = early phase
24-72h = late phase

Post-conditioning

I/R INJURY:
Myocardial stunning
Hibernation
Cell death
Contractile dysfunction
Arrhythmia
Myocardial infarction

CARDIOPROTECTION:
Reduced cell death
Improved recovery of function

Reduced infarct size

 

Figure 1.4: Graphical representation of ischaemia/reperfusion and 

pre/postconditioning.  Ischaemia/reperfusion leads to ischaemia/reperfusion injury (I/R 

injury), which can be attenuated by ischaemic pre- or postconditioning.  Areas of blue 

indicate ischaemia, red indicated normal perfusion.  Diagram adapted from Ferdinandy et al, 

2007. 

Both the early and late phases of ischaemic preconditioning rely on signal 

transduction pathways to link the initial trigger of cardioprotection with the overall 

effectors, or mediators.  During the preconditioning period of ischaemia autacoid 
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triggers such as adenosine (Headrick, 1996), opioid peptides (Pan et al, 2000), 

bradykinin (Romano et al, 2004) and catecholamines (Schömig, 1990) are released 

from the myocardial tissue.  These are thought to stimulate specific G protein-

coupled receptors (GPCRs) and protein kinases, which culminate in activation of 

mediators such as the mitochondrial ATP-dependent potassium (KATP) channel (for 

examples see Peart & Gross, 2003; Uchiyama et al, 2003).  The precise signalling 

pathways involved in ischaemic preconditioning are still under debate, but 

extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase C (PKC), cAMP-

dependent protein kinase (PKA), cGMP-dependant protein kinase (PKG), p38 

mitogen-activated protein kinase (p38 MAPK) and nitric oxide (NO) all have well 

reported roles (Hausenloy & Yellon, 2006) (see Figure 1.5). 

Adenosine Bradykinin Noradrenaline Opioid peptides

A1/A3 β2 α1B δ/κ

GiGi Gq/Gi Gs/Gi Gi

ERK1/2
P38 MAPK

PKC

NO
cGMP
PKG

PKCε PKA ERK1/2
P38 MAPK

PKC

mitoKATP

Regulation of ROS
↓ mPTP

β2

 

Figure 1.5: Proposed series of events following the release of autacoids during 

ischaemic preconditioning.  Autacoids are released by myocardial cells and activate 

specific GPCR subtypes.  The receptors bind to G proteins, which once activated can 

stimulate protein kinases and other effectors – culminating in activation of the mitochondrial 

KATP channel, ROS regulation and reduced mitochondrial permeability transition. 



24 

 

The MEK1/2-ERK1/2 and PI3K-PKB signalling pathways are key players in the 

“RISK” (Reperfusion Injury Salvage Kinase) pathway (Hausenloy & Yellon, 2004).  

Both of these pathways have been shown to be activated at the time of reperfusion 

following pharmacological preconditioning (Yang et al, 2004a & 2004b), leading to 

recruitment of downstream anti-apoptotic molecules (see Figure 1.6).   

Ras

Raf

MEK1/2

ERK1/2

PI3K

PIP2 PIP3

PDK

PKB

ACTIVATION OF DOWNSTREAM
CELL SURVIVAL EFFECTORS

 

Figure 1.6: The basic steps leading to activation of ERK1/2 and PKB.  (See main body of 

text for more detailed description.) 

 

For initiation of the MEK/ERK1/2 pathway GTP-bound Ras recruits Raf to the 

plasma membrane, and then phosphorylates Raf.  Active Raf then phosphorylates 

MAPK/ERK kinase 1 (MEK1) and MEK2.  MEK1/2 phosphorylation leads to 

phosphorylation of ERK1/2, and then ERK1/2 can activate downstream targets.  One 

anti-apoptotic pathway mediated by ERK1/2 activation is through the downstream 

activation of the protein kinase p90 ribosomal S6 kinase (p90RSK) (Herrera & 
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Sebolt-Leopold, 2002).  p90RSK phosphorylates and inactivates the pro-apoptotic 

protein BAD, so inhibiting BAD-mediated cytochrome-c release and caspase 

activation (Downward, 1999).  

The role of ERK1/2 in preconditioning and postconditioning is clear.  For example, it 

has been shown that ERK1/2 phosphorylation is increased following a 

preconditioning stimulus in rat hearts in vitro (Hausenloy et al, 2005 & 2005a), and 

also in rat hearts in vivo – where a role for ERK1/2 was described in ischaemic 

preconditioning and preconditioning mediated by the δ-opioid receptor (Fryer et al, 

2001).  ERK1/2 phosphorylation is also increased in post-conditioned in vivo pig 

hearts (Schwartz & Lagranha, 2006) – pointing to recruitment of similar pathways 

for pre- and postconditioning.  In fact, it has been reported that it is the first few 

minutes of reperfusion following the major ischaemic insult that is critical for both 

pre- and postconditioning (Hausenloy & Yellon, 2007a).  It is known that activation 

of the adenosine A1 receptor leads to ERK1/2 phosphorylation, but there is variation 

regarding the role of ERK1/2 in adenosine receptor-mediated cardioprotection.  It 

was shown that the anti-apoptotic effect of adenosine in neonatal rat cardiomyocytes 

was mediated by the A1 and A3 receptors, and dependent on MEK/ERK1/2 activation 

(Germack & Dickenson, 2005).  However, a study with isolated rat ventricle strips 

found that inhibition of MEK did not affect adenosine A1, A2A or A3 receptor-

mediated preconditioning, but did attenuate hypoxic preconditioning (Button et al, 

2005).  ERK1/2 is also proposed to be involved in mitoKATP channel signalling in 

isolated rabbit hearts (Naitoh et al, 2006).   

The PI3K/PKB pathway is initiated by phosphorylation of PIP2 by PI3K, generating 

PIP3.  PIP3 recruits cytoplasmic PKB and PDK to the plasma membrane, where PDK 

activates PKB.  Activated PKB then redistributes to the mitochondria (Miyamoto et 
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al, 2008) or nucleus (Shiraishi et al, 2004), and activates anti-apoptotic pathways.  

One such pathway is via inhibition of BAD (Datta et al, 1997), which is a 

mechanism triggered by both the PI3K/PKB and MEK/ERK1/2 pathways.  PKB is 

also proposed to enhance the association of hexokinase with VDAC at the outer 

mitochondrial membrane, so preserving mitochondrial integrity and inhibiting 

opening of the mPTP (Gottlob et al, 2001).  It has been shown that PDK1 (and, 

therefore, phosphorylation of PKB) is essential for ischaemic preconditioning, as the 

beneficial effect of ischaemic preconditioning is lost in hearts and cell models from 

PDK1-deficient mice (Budas et al, 2006).  Phosphorylation of PKB is increased in 

various models of cardioprotection, including preconditioning of in vitro rat and 

rabbit hearts (Hausenloy et al, 2005 & 2005a; Solenkova et al, 2005), and 

postconditioning of in vivo pig hearts (Schwartz & Lagranha, 2006).  Increased 

phosphorylation of PKB has also been described in the protection of isolated rat 

hearts by ischaemic postconditioning and low-pressure reperfusion, where inhibition 

of the mPTP is the proposed target (Bopassa et al, 2006).  As with ERK1/2, 

activation of PKB via opening of the mitoKATP channel has also been reported 

(Ahmad et al, 2006), and the role of PKB phosphorylation in adenosine receptor-

mediated cardioprotection is poorly understood.  Qin et al, (2003) discovered that 

adenosine triggered preconditioning in isolated rabbit hearts by a PI3K-independent 

pathway, but another report (Solenkova et al, 2006), claimed that endogenous 

adenosine protects isolated rabbit hearts through phosphorylation of PKB during the 

early stage of reperfusion.  In neonatal rat hearts, it was shown that PKB 

phosphorylation was involved in adenosine A1 and A3 receptor-mediated signalling, 

but not in A1 and A3 receptor-mediated cardioprotection (Germack et al, 2004).   
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It is reported that cross-talk occurs between the MEK1/2-ERK1/2 and PI3K-PKB 

pathways, and activation of both at the start of reperfusion is necessary to exert the 

protective preconditioning effect (Hausenloy et al, 2004; Solenkova et al, 2006).  

Taken as a whole, a role for the MEK/ERK1/2 and PI3K/PKB pathways in anti-

apoptotic and cardioprotective signalling is clear, but further work is necessary to 

elucidate the role of these pathways in adenosine receptor-mediated cardioprotection.   

The PI3K/PKB pathway can also activate endothelial nitric oxide synthesase 

(eNOS), which synthesises NO.  NO has many roles in the cardiovascular system, 

including activation of the mitoKATP channel.  NO activates soluble guanylyl cyclase, 

which then produces cGMP from GTP.  cGMP then activates PKG, which 

phosphorylates a target on the outer mitochondrial membrane and (via an unknown 

intermediate step) activates PKC and consequentially the KATP channel (Cuong et al, 

2006; Downey et al, 2008). 

During ischaemia it is thought that there is in increase in cAMP which activates PKA 

– however the result of such activation is debatable.  PKA activation prior to 

ischaemia has been reported to reduce infarct size in dogs (Sanada et al, 2004), but 

conversely blockade of PKA prior to ischaemia is reported to reduce infarct size and 

improve post-ischaemic recovery in isolated rat hearts (Makaula et al, 2005).   

There is a large body of evidence suggesting PKC as a mediator of cardioprotection 

triggered by ischaemia and pharmacological agents, such as adenosine and the 

volatile anaesthetic isoflurane (Liu et al, 1999; Ludwig et al, 2004; Okada et al, 

2005).  There are ten isoforms of PKC, with the novel, Ca
2+

-independent PKCδ and 

PKCε being dominant in murine heart with regards to protein expression and activity 

(Schreiber et al, 2001).  However there are conflicting reports regarding the 
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expression of the different PKC isoforms; for example, in human ventricle it is 

reported that the Ca
2+

-dependent PKCα, PKCβI and PKCβII are dominant, with 

PKCδ and PKCδ mainly expressed in the atria and PKCε and PKCλ expressed 

equally in both regions (Simonis et al, 2007).  Therefore data from different animal 

models must be interpreted cautiously.  Despite these discrepancies, PKCε is 

reported to be involved in cardioprotective signalling in several models as diverse as 

rabbit cardiomyocytes (Liu et al, 1999) and human myocardium (Sivaraman et al, 

2009).  Following a trigger, PKCε is activated and translocates within the cell to 

activate downstream effectors such the mitoKATP channel and the mPTP – where it 

exerts a protective effect by activation or inhibition of these proteins (for review see 

Budas & Mochly-Rosen, 2007).  In contrast to the role for PKCε as a critical 

mediator of ischaemic pre- and postconditioning (Zatta et al, 2006), PKCδ has a role 

in mediating ischaemia/reperfusion-induced apoptosis Liu et al, 1999) – and it has 

been shown that inhibition of PKCδ at the time of reperfusion can improve recovery 

of function and reduce infarct size in murine hearts (Inagaki et al, 2003). 

Overall, there is much evidence suggesting that protein kinases have an essential role 

in regulation of cardioprotective signalling, and due to the timing of activation it has 

been proposed that the RISK pathway has an important role in preconditioning and 

postconditioning (Hausenloy et al, 2005), although the exact mechanisms involved 

are unknown. 

Ischaemic postconditioning is a more recently discovered cardioprotective 

phenomena (Zhao et al, 2003).  This consists of brief, sublethal cycles of 

ischaemia/reperfusion after the prolonged ischaemic attack, and has since been 

observed in various experimental models, e.g. isolated rabbit hearts (Pinheiro et al, 

2009) and isolated rat hearts (Penna et al, 2009). 
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Clarification of the signalling pathways involved in ischaemic pre- and 

postconditioning would provide scientists with potential targets for pharmacological 

treatments, so gaining the beneficial effects observed from these phenomena without 

the complexity of inducing ischaemia in patients.  The pathways involved may be 

intricate, but it cannot be denied that GPCRs play an essential part in triggering the 

signal transduction pathways that eventually lead to cardioprotection.   

1.5. G protein-coupled receptors 

Currently, over 30% of prescription drugs target one or more GPCR, and it is thought 

that many more act through GPCRs indirectly (Vaidehi et al, 2009).  GPCRs are a 

super-family of cell surface receptors characterised by seven trans-membrane 

spanning domains (7TM α-helices) with a long-chain lipid anchor to strengthen 

membrane association, an intracellular amino terminal and an extracellular carboxyl 

terminal (see Figure 1.7, page 30).  They are widely distributed throughout 

mammalian cells and tissues, and are responsible for mediating intracellular 

responses to a range of extracellular signals.  The binding of a ligand to the receptor 

sets off a cascade of events involving second messengers such as cyclic nucleotides, 

IP3 and Ca
2+

. 

The structure of the light-sensitive rhodopsin receptor was the first to be determined 

(Palczewski et al, 2000), and the crystalline structure of this receptor provided a 

basis for understanding the structure and function of further GPCRs.  The rhodopsin-

like/Class A receptors form the largest subgroup of GPCRs, and they can be 

activated by an extensive range of ligands such as light (rhodopsin receptor), 

peptides (e.g. opioid receptors) and hormones (e.g. follicle stimulating hormone 

receptor).      



30 

 

 

C

Lipid 
membrane

N

G protein binding domain

Extracellular

Intracellular

PKA phosphorylation site
GRK phosphorylation site
Lipid anchor

 

Figure 1.7: Schematic diagram showing the basic structure of a Class A GPCR.  Class 

A GPCRs are activated when a ligand interacts with the 7TM domain, initiating a cascade of 

events culminating in an intracellular response. 

 

Receptor activation occurs when a ligand binds to the receptor, creating a 

conformational change (see Figure 1.8 for overview, page 31).  This allows the 

receptor to act as a guanine nucleotide exchange factor (GEF), catalysing the 

exchange of Gα-bound GDP for GTP.  The heterotrimeric G protein dissociates into 

Gα-GTP and Gβγ subunits which then act upon downstream targets.  The Gβγ 

subunit is generally thought to remain as a tightly associated heterodimer throughout 

the signalling process, however there is an exception to this rule.  It has been shown 

that a Gβ subunit exists in the brain and retina that only associates with the γ-like 

domain of a regulator of G protein signalling (RGS), instead of a traditional Gγ 

protein (Cabrera et al, 1998; Witherow et al, 2000).   Once dissociated from the Gα 

subunit, Gβγ is able to activate signalling enzymes such as phospholipase A2 (PLA2), 

or directly act upon ion channels such as L-type Ca
2+ 

channels and G protein-coupled 
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inward rectifying K
+
 channels (Jelsema & Axelrod, 1987; Viard, 1999; Hommers et 

al, 2003).   
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Figure 1.8: Conformational changes during GPCR activation.  (1) In the unoccupied, 

resting state the inactive heterotrimeric G protein is bound to GDP.  (2) Upon ligand binding 

a conformational change occurs in the receptor, exposing a catalytic component that 

exchanges GDP for GTP.  (3) The active Gα-GTP subunit dissociates from the membrane-

bound Gβγ subunit and both trigger downstream effectors and signalling pathways.  (4) The 

signal is terminated by hydrolysis of GTP to GDP by intrinsic GTPase activity of the α-

subunit, and the receptor/G protein complex returns to resting state. 

 

GPCRs are further classified by the associated G protein α subunit (see Figure 1.9, 

page 32).   
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Figure 1.9: Signalling pathways mediated by the main classes of G protein.  Gαs and Gαi 

proteins have respective stimulatory and inhibitory effects on adenylate cyclase and its 

downstream effectors.  Gαq/11 protein activates phospholipase C, leading to protein kinase C 

activation and calcium signalling.  Gα12/13 proteins act upon guanine nucleotide exchange 

factors of the Rho family. 

The main subtypes are Gαs, Gαi/o and Gαq/11.  Gαs proteins are so named because of 

the stimulatory effect of the subunit on the enzyme adenylate cyclase, which 

produces second messenger cAMP.  Gαs proteins are selectively activated by cholera 
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toxin.  The Gαi/o protein subunit, on the other hand, has an inhibitory effect on 

adenylate cyclase, and is sensitive to pertussis toxin.  The Gαq,11 proteins affect the 

phosphoinositide system by activating phospholipase C-β (PLCβ), which cleaves 

phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 

trisphosphate (IP3).  DAG then activates protein kinase C (PKC) while IP3 stimulates 

the release of intracellular calcium.  These proteins are also distinguished from Gαs 

and Gαi/o proteins as they are insensitive to both cholera toxin and pertussis toxin.  

The G protein-mediated signal is terminated by hydrolysis of GTP to GDP and re-

association of the inactive Gαβγ heterotrimer.  The Gα subunit has innate GTPase 

activity, but this does not always terminate the signal fast enough.  Regulators of G 

protein signalling (RGS) proteins enhance the speed of hydrolysis by acting as 

GTPase-activating proteins (GAPs), this is possible as they contain a RGS domain 

that binds to the Gα subunit and stimulates GTPase activity (for review see 

Hendriks-Balk et al, 2008).  

There are many cardioprotective GPCRs expressed in the heart, including adenosine 

receptors, the signalling mechanisms of which are of interest with regard to finding 

pharmacological targets to protect against myocardial injury.      

1.6. Adenosine receptors 

Adenosine is a purine nucleotide released from myocardial tissue during periods of 

metabolic stress.  It equilibrates the balance between cellular energy supply and 

demand, as well as having important roles in normal physiological regulation.  

Research has shown that adenosine is released during ischaemia or 

ischaemia/reperfusion, and it has been reported that the extracellular concentration of 

adenosine in the body can increase 100-fold up to 10 µM during hypoxia or 

http://en.wikipedia.org/wiki/Inositol_triphosphate
http://en.wikipedia.org/wiki/Inositol_triphosphate
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ischaemia (Schulte & Fredholme, 2003).  This endogenous adenosine then exerts a  

cardioprotective effect against ischaemia/reperfusion-induced injury and cell death 

(Mubagwa & Flameng 2001; Fryer et al, 2002).  

Four adenosine receptors (A1, A2A, A2B and A3) belonging to the GPCR superfamily 

have been cloned and characterised (Fredholm et al, 2001).  The A1 and A3 receptors 

are negatively coupled to adenylate cyclase via pertussis toxin-sensitive Gi/o 

proteins, therefore inhibit cAMP production (Fredholm et al 2001).  It is well known 

that the A1 and A3 receptors are involved in cardioprotection (Mubagwa & Flameng 

2001; Fryer, Auchampach & Gross 2002).  Adenosine A2A and A2B receptors are 

positively coupled to adenylate cyclase via Gs proteins, and have high and low 

affinities for adenosine, respectively.  All four of the adenosine receptor subtypes are 

expressed in the heart (see Auchamp & Bolli, 1999), but the presence of A2A 

receptors on cardiomyocytes is debateable.  Adenosine A2A receptors are widespread 

throughout coronary vessels where activation causes potent vasodilation, but are 

reported to be absent from porcine cardiomyocytes (Hein et al, 2001).  In 2002 it was 

reported that rat ventricular myocytes express A2A receptors, but these receptors are 

not functional as no response was observed from selective agonism (Kilpatrick et al, 

2002).  However, in separate studies functional A2A receptors have been described in 

adult and neonatal rat cardiomyocytes (Xu et al, 1996; Germack & Dickenson, 2004) 

and human atrial myocytes (Hove-Madsen et al, 2006).   

Ischaemic preconditioning reduces infarct size in intact rabbits, and this protection 

has been shown to be abolished by infusion of different non-selective adenosine 

receptor antagonists prior to the preconditioning phase (Liu et al, 1991).  This 

pointed to an important role for adenosine and one or more adenosine receptor 

subtypes in ischaemic preconditioning. This report also progressed on to show that 



35 

 

selective antagonism of the A1 receptor blocked the protection afforded by ischaemic 

preconditioning.  Further strengthening the role for the A1 receptor in  

preconditioning, the same group (Thornton et al, 1992) demonstrated that infusion of 

a selective A1 agonist prior to ischaemia reduced infarct size to the same extent as 

ischaemic preconditioning – but an A2A agonist had no effect.  It has also been 

shown that activation of the A1 receptor is an effective trigger of the early and late 

phases of preconditioning in isolated hearts from normal and hypertensive rats 

(Hochhauser et al, 2007); in addition, this report showed that activation of the A3 

receptor was partially effective as a preconditioning trigger, particularly in the late-

phase model.  A place for the A3 receptor in cardioprotection had also been described 

earlier by Auchampach et al (1997), who reported that activation of the A3 receptor 

in conscious rabbits gave a level of protection equivalent to that obtained from 

ischaemic preconditioning.  This report measured the effect of A3 receptor activation 

on both myocardial stunning and infarct size, and claimed protection in both areas, 

interestingly without any hemodynamic changes.  Activation of the A1 receptor 

produces vasodilation, which is undesirable in the clinical setting (Mustafa et al, 

2009).  There are many studies assessing infarct size as a measure of 

cardioprotection, but fewer that look into myocardial function.  One such study 

found that ischaemic preconditioning did not preserve myocardial function in dogs, 

but preconditioning with adenosine did (Phillips & Ko, 2007).  However, this 

protection came at a cost as treatment with adenosine lead to an increased energy 

requirement of the heart and oxygen wasting.   

The timing of pharmacological treatment can also affect the extent of protection 

gained, but findings do vary between models used.  For example, infusion of 

adenosine at the time of reperfusion is effective at reducing infarct size in dogs 
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(Velasco et al, 1991), but no protection was observed in isolated rabbit hearts (Xu et 

al, 2001).  It has been reported that activation of the A2B receptor at the time of 

reperfusion is important for ischaemic preconditioning in rabbit hearts (Kuno et al, 

2007), and also that postconditioning is dependent on activation of the A2B receptor, 

but not A1 or A2A receptors (Philipp et al, 2006).  These data suggest that the A2B 

receptor is the main mediator of postconditioning, but the protective effect of 

ischaemic postconditioning is lost in A1 receptor knock-out mice, suggesting an 

additional role for the A1 receptor (Xi et al, 2008).  Interestingly, the protection 

afforded by ischaemic preconditioning was absent in A2B receptor knock-out mice – 

but mice lacking the A1, A2A or A3 receptor had a preserved response (Eckle et al, 

2007).  It has been proposed that the release of adenosine during ischaemic 

preconditioning triggers activation of the A1 and A3 receptors, which (via a Gi 

protein and PKC-dependent pathway) activate the A2B receptor.  The A2B receptor 

then mediates ischaemic preconditioning by targeting effecter proteins such as the 

KATP channel and the mPTP (Cohen & Downey, 2008). 

There is a clear role for the adenosine A1 and possibly A2B and A3 receptors in 

cardioprotection, however, the role of the A2A receptor remains controversial. For 

example, in anesthetized rabbits there is evidence for and against adenosine A2A 

receptor-mediated protection.  Phillip et al (2006) described that postconditioning 

could be blocked with an antagonist at the A2B receptor, but not the A2A or A1 

receptors.  Alternatively, Boucher et al (2004) described that activation of the A2A 

receptor 5 minutes prior to (but not 5 minutes after) the onset of reperfusion 

successfully reduced infarct size.      

Understanding the signal transduction mechanisms involved in adenosine receptor-

mediated cardioprotection is an area of intense investigation, especially since 
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adenosine has shown promise in clinical trials (Bolli et al 2004).  However, further 

work is needed before further clinical trials are considered.  The Acute Myocardial 

Infarction Study of Adenosine Trials (AMISTAD and AMISTAD II) showed that 

adenosine was effective at reducing infarct size in humans, but there was no 

significant improvement of clinical outcome (Mahaffey et al, 1999; Ross et al, 

2005).  From the diverse range of data obtained from animal models it was perhaps 

unwise to invest such a large amount of time and money into clinical trials at this 

stage.   

As mentioned previously, stimulation of the adenosine A1 receptor has been found to 

lead to activation of signalling pathways involving several different protein kinases.  

PKC (Henry et al, 1996), ERK1/2 (Germack & Dickenson, 2005) and p38 MAPK 

(Dana et al, 2000) have all been implicated, and another commonly described feature 

of adenosine A1 receptor-mediated cardioprotection is the mitochondrial KATP 

channel (e.g. Van Winkle et al, 1994; Heurteaux et al, 1995; Baxter & Yellon, 1999).  

The KATP channel is one of several cytoprotective channels expressed in the inner 

mitochondrial membrane, and has a well reported role in cardioprotection.  More 

recently, however, a large conductance calcium-activated potassium channel (BKCa 

channel) located to the inner mitochondrial membrane has also been implicated in 

cardioprotection. 
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1.7. Large conductance calcium-activated potassium channels 

There are two types of BKCa channel, one found on the inner mitochondrial 

membrane and the other on the cytoplasmic membrane.  Mitochondrial BKCa 

channels are abundant in the brain and cardiac tissue, cytoplasmic BKCa channels are 

ubiquitously expressed throughout vascular beds in the membranes of smooth muscle 

cells (Korovkina & England, 2002).  The exact structure of the BKCa channel is 

currently under debate, but it is thought that the channel consists of a tetramer of 

pore-forming α-subunits that alone constitute a fully functional channel (see Figure 

1.10, page 39), with associated modulatory β-subunits (Yusifov et al, 2008).  The β1 

subunit is expressed in mammalian cardiac mitochondria (Ohya et al, 2005), and the 

β4 subunit is highly expressed throughout brain mitochondria (Piwonska et al, 2008) 

– however, although it is predominantly located to the brain, the β4 subunit has also 

been detected in cardiac tissue (Poulsen et al, 2009). 

The α-subunits are proposed to form a C-terminal Ca
2+

 bowl, containing two Ca
2+

-

sensing domains (RCK, regulators of the conductance of potassium, domains), with 

the voltage-sensing domain located on the external side of the channel (Quin et al, 

2006) (see Figure 1.11, page 39).   

Xu et al (2002) first discovered the presence of this channel on the inner 

mitochondrial membrane of guinea pig ventricular cells, and reported that 

pharmacological activation of this channel provided protection against ischaemic 

injury.  Since then, mitochondrial BKCa channels have been implicated in 

cardioprotective mechanisms in several different models including anesthetized dogs 

and isolated murine hearts (Shintani et al, 2004; Wang et al, 2004).     
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Figure 1.10: The BKCa channel is formed from a tetramer of α-subunits (dark blue).  

Each subunit consists of seven membrane spanning domains (see highlighted light blue 

section). 
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Figure 1.11: Proposed structure of the BKCa channel subunits.  Each α-subunit (dark 

blue) has an internal Ca
2+

 sensing bowl and an external voltage sensing domain, and a pore is 

formed between the seventh and eight membrane spanning domains.  One auxiliary β-

subunit (light blue) can associate with the N terminal of an α-subunit.  

 

On separate occasions Cao’s group used rat ventricular myocytes and isolated 

perfused rat hearts to  elaborate on the role of the mitochondrial BKCa channel, and 
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reported that this channel is responsible for triggering cardioprotection of ischaemic 

preconditioning (Cao et al, 2005a) and cardioprotection mediated by the κ-opioid 

receptor (Cao et al, 2005).  In the latter study it was also deduced that PKC 

activation occurs upstream of the mitochondrial BKCa channel, and activation of the 

mitochondrial BKCa channel is proposed to lead to inhibition of the mPTP (Cao et al, 

2005; Cheng et al, 2008).  Several other studies have also implicated protein kinases 

in the signal transduction pathways leading to mitochondrial BKCa channel 

activation.  In 2007, Gao et al reported that the cardioprotective isoflavone puerarin 

provides protection against ischaemia/reperfusion in isolated perfused rat hearts by 

activation of PKC and the mitochondrial BKCa channel.  However, Sato et al (2005) 

claimed that activation of PKA enhanced NS1619 (BKCa channel opener)-induced 

flavoprotein oxidation, suggesting that a mechanistic link is present between the two 

signal transducers.  However, no such augmentation was observed with PKC and the 

BKCa channel.  Redel et al (2008) also found that PKA was involved in signal 

transduction leading up to BKCa channel activation, in this case in anaesthetic-

induced preconditioning with desflurane.  Activation of the BKCa channel is involved 

in preconditioning triggered by a variety of pharmacological agents including tumour 

necrosis factor-α, estradiol, the phosphodiesterase type 5 inhibitor sildenafil and the 

phosphodiesterase type 3 inhibitor cilostazol (Gao et al, 2005; Ohya et al, 2005; 

Wang et al, 2008; Fukasawa et al, 2008), and GPCR agonists such as (-)-U-50488 

and adrenomedullin (Cao et al, 2005; Nishida et al, 2008).  However, to date, the 

role of the BKCa channel in adenosine receptor-mediated signalling has yet to be 

investigated.       

Overall, in simple terms, it can be presumed that pre- and postconditioning are 

triggered by stimulation of GPCRs, which leads to recruitment of cell survival 
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protein kinases, and culminates in activation of cytoprotective ion channels.  

However, the precise mechanisms are still under debate.  Any information that could 

lead to elucidation of cardioprotective signalling would help in the search for 

effective pharmacological targets against ischaemia and ischaemia/reperfusion 

injury.  

1.8. H9c2 cells and rat ventricle strips – models for studies into 

cardioprotection  

 

The H9c2 cell line is derived from embryonic rat heart tissue (Kimes & Brandt, 

1976), and is increasingly used as an in vitro model of cardiac tissue for studies into 

cardioprotection as these cells display similar morphological, electrophysiological 

and biochemical properties to primary cardiac cells (Hescheler et al, 1991).  It has 

previously been shown that adenosine can protect against simulated ischaemia in 

H9c2 cells, although the subtype of adenosine receptor involved in such 

preconditioning and the type of cell death triggered by ischaemia were not reported 

(Nagarkitti & Sha’afi, 1998).   

H9c2 cells are a useful model for investigating cardiac signal transduction, and also 

for assessing the cardioprotective potential of pharmacological agents from a cell 

viability perspective.  It is always advisable to compare experimental results from 

more than one model as discrepancies often occur between different cell, tissue and 

animal models, so a comparison of data from more than one model gives a more 

rounded perspective and verification of results.  To validate the results obtained from 

H9c2 cells in this report a model using isolated rat right ventricle strips was utilised. 

Rat ventricle strips are a more physiologically relevant model for studies into 

cardioprotection than H9c2 cells, and are reported to exhibit a larger hypoxia-
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induced mechanical impairment than strips from guinea pig or frog ventricles 

(Joseph et al, 2000) – therefore they are ideal for assessing the potential of 

pharmacological agents to protect against hypoxia.  It has been shown that adenosine 

treatment does not provide any benefit to rat ventricle strips during hypoxia (Varela 

et al, 1999), but preconditioning with adenosine and agonists specific to the 

adenosine A1, A2A and A3 receptors significantly increase the return of mechanical 

function during reperfusion (Button et al, 2005).  However, the role of the BKCa 

channel in preconditioning of rat ventricle strips has not been investigated. 

1.9. Aims of this project 

The main aims of this project were: 

1) To establish the functional expression of GPCRs on H9c2 cells, and assess 

the cytoprotective potential of such receptor activation 

2) To investigate the role of the BKCa channel in adenosine A1 receptor-

mediated signalling in H9c2 cells 

3) To validate the data obtained from H9c2 cells and research the role of the 

BKCa channel in adenosine receptor-mediated preconditioning in rat ventricle 

strips 

 

 

 



43 

 

2. Methods 

2.1.  Cell Culture 

Rat embryonic cardiomyoblast-derived H9c2 cells (European Collection of Animal 

Cell Cultures, Salisbury, UK) were cultured in 75 cm
2
 flasks in Dulbecco’s Modified 

Eagles Medium (DMEM) supplemented with 10% (v/v) foetal calf serum, 2 mM L-

glutamine and 100 U/ml penicillin/streptomycin.  Cells were maintained in a 

humidified incubator (95% air / 5% CO2, 37°C) and grown to 70-80% confluency to 

avoid differentiation and formation of myotubes.  Typically, cells were sub-cultured 

with a 1:5 split using trypsin (0.05% w/v)/EDTA (0.02% w/v).  Cells for functional 

receptor expression assays were grown in 24 well plates (Sarstedt), cells for LDH 

assay were grown in 96 well plates (Sarstedt) and cells for caspase-3 analysis and 

western blot were grown in 60mm culture dishes (Greiner Bio-One). 

2.2. Functional Expression of GPCRs: 

i)  Measurement of cAMP accumulation   

Confluent H9c2 cells were incubated with 500 μl serum-free DMEM and 2 µCi [
3
H]-

adenine for 2 hours, then washed twice with Hank’s Balanced Salt Solution (HBSS) 

to remove excess radioactivity.  Cells were treated with the phosphodiesterase 

inhibitor rolipram (10 μM in 500 μl serum-free DMEM) and incubated for 15 

minutes in a humidified incubator (95% air / 5% CO2, 37ºC).  Agonists were then 

added (1:10 dilution) and incubated for a further 15 minutes.  When assessing Gi-

coupled receptor activity, the agonists were added 5 minutes prior to a 10 minute 

incubation period with forskolin (10 µM).  If required, cells were pre-treated with 

antagonists for 15 minutes prior to addition of rolipram.  The experiments were 
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terminated by exchanging the media for 500 μl trichloroacetic acid (5% w/v) then 

plates were wrapped in foil and stored at -20ºC. 

Samples were purified by gravitational column chromatography.  Dowex columns 

were pre-washed with 5 ml HCl (1 M) and 20 ml distilled water, alumina columns 

were pre-washed with 20 ml imidazole (0.1 M).  Well content was transferred to the 

dowex columns and washed through with 3 ml distilled water.  The dowex columns 

were then placed on top of the alumina columns and 4 ml distilled water washed 

through both sets.  5 ml HCl (1 M) and 20 ml distilled water was then used to wash 

the dowex columns only, while 5 ml imidazole (0.1 M) was drained through the 

alumina columns and collected in scintillation vials.  The cAMP had now been eluted 

from the alumina columns so they were washed with 20 ml imidazole (0.1 M).  To 

the vials, 0.5 ml HCl (1 M) and 10 ml liquid scintillant was added (Packard 

Biosciences).  Vials were shaken and activity read using a liquid scintillation counter 

(Packard Tri-Carb Liquid Scintillation Analyser).  For reference, see Cordeaux et al 

(2000). 

 ii)   Inositol trisphosphate Assay 

Confluent H9c2 cells were pre-labelled with 3 μCi [
3
H] myo-inositol in 500 μl 

serum-free DMEM for 24 hours.  Excess radioactivity was then removed by two 

washes with HBSS, and then cells were incubated with LiCl (20 mM) in 500 μl 

serum-free DMEM for 30 minutes in a humidified incubator (95% air / 5% CO2, 

37ºC).  Without removing the LiCl the cells were further incubated with Gq agonist 

for 30 minutes (1:10 dilution).  Reactions were stopped by replacing the media with 

1 ml termination mix (6 ml concentrated HCl in 500 ml dH2O added to 500 ml 

methanol; pH 2-3). 
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Samples were purified by anion-exchange chromatography.  HCl (10 ml; 1 M) was 

washed through the columns followed by 20 ml distilled water.  Samples were then 

added to 4 ml neutralising solution (0.5 M NaOH, 25 mM Tris; pH 7) and run 

through the columns; 20 ml distilled water followed.  10 ml of ammonium formate 

(25 mM) was drained through then the columns were placed above scintillation vials.  

3 ml HCl (1 M) was run through into the vials then 10 ml liquid scintillant was added 

before reading the radioactivity using a liquid scintillation counter (Packard Tri-Carb 

Liquid Scintillation Analyser).  For reference, see White et al (1992). 

 

2.3.  Protection against hypoxia- and hypoxia/reoxygenation-induced 

cell death: Experimental protocol 

80% confluent H9c2 cells in glucose and serum-free DMEM were exposed to 

hypoxia (5% CO2/0.5% O2; 37°C) for 6 hours (NB. this time varied for time-course 

experiments) before performance of the appropriate cell viability assay.  Normoxic 

incubation was used for controls.   

Where pharmacological preconditioning was required, cells were incubated with 

GPCR agonist or potassium channel opener in 200 μl (when using microplates) / 2 

ml (when using culture dishes) serum-free DMEM  for 30 minutes; this medium was 

then discarded and replaced with 200 μl / 3 ml glucose and serum-free DMEM for 

the hypoxic/normoxic incubation.  When required, cells were also treated with 

antagonist or potassium channel blocker for 15 minutes prior to the addition of 

agonist or channel opener.   
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For hypoxia-reoxygenation experiments, cells were exposed to hypoxia for 6 hours 

as before, and then reoxygenated for 18 hours in 200 μl / 3 ml DMEM containing 

glucose and 1% serum.  Preconditioning occurred prior to hypoxia, postconditioning 

occurred at the start of reoxygenation – treatment protocol as before (see Figure 2.1 

for summary) 



47 

 



48 

 

i)  MTT Assay 

H9c2 cells were cultured in 96 well flat bottom plates, at a density of 5000 cells/well, 

for 24 hours in fully supplemented DMEM.  Incubations were performed in 200ul 

glucose/serum-free DMEM, then cell viability measured by colorimetric assessment 

of the mitochondrial reduction of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) to a coloured formazan product.  Cells were incubated 

for 1 hour (37°C) in 0.5 mg/ml MTT.  Solution was then aspirated away and replaced 

with 100 µl DMSO.  Plates were shaken to solubilise the formazan product then 

absorbance read at 570nm using a standard plate reader (Model 680, Bio-Rad).  

Results expressed as percentage of basal MTT reduction. 

ii)  Lactate dehydrogenase (LDH) Assay 

H9c2 cells were cultured in 96 well flat bottom plates, at a density of 5000 cells/well, 

for 24 hours in fully supplemented DMEM.  Incubations were performed in 200 μl of 

the appropriate medium then cell death measured using the colorimetric CytoTox 

96
®
 Non-Radioactive Cytotoxicity Assay (Promega).  This kit allows LDH release to 

be measured via a coupled chemical reaction that leads to formation of a coloured 

formazan product.  Firstly, LDH released from the cells catalyses the formation of 

pyruvate and NADH from lactate and NAD
+
.  The secondary reaction is catalysed by 

the dehydrogenase enzyme diaphorase (present in the substrate mix), and involves 

the formation of NAD
+
 and a red formazan product from NADH and a tetrazolium 

salt.  LDH release is proportional to the red formazan product, which is measured 

using a standard plate reader (Model 680, Bio-Rad).   

 

http://en.wikipedia.org/wiki/Colorimetry
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Plates were centrifuged to compact any cell debris to the bottom of the wells (5 

minutes at 300 g), and then 50 μl of supernatant was transferred to a non-sterile 96 

well plate (“assay plate”; Greiner Bio-One).  A further 60 μl of the supernatant was 

discarded before 10 μl of 10x lysis buffer (9% v/v Triton
®
 X-100, provided with kit) 

was added to the remaining 90 μl.  Following 45 minutes incubation at 37°C, the 

plates were centrifuged for 5 minutes at 300 g.  As before, 50 μl of supernatant was 

added to the assay plate.  Reconstituted assay buffer (50 μl; provided in the kit) was 

added to each well, and then the assay plates were wrapped in foil and agitated for 30 

minutes at room temperature.  To terminate the reactions, 50 μl of stop solution (1 M 

acetic acid, provided with kit) was dispensed into each well; absorbance was then 

read at 490nm.  

LDH release was calculated as a percentage of total LDH, and results are presented 

as LDH release as a percentage of basal release (acquired from untreated controls). 

iii)  Caspase-3 Assay 

Cells were cultured in 60 mm dishes, until confluent, in fully supplemented DMEM.  

Where appropriate, treatments were performed in 2 ml serum-free DMEM, this was 

replaced with 3 ml glucose/serum-free DMEM for the 6 hours incubation in hypoxia 

or normoxia.  When the incubation period was over phosphate buffered saline (PBS) 

was used to wash the cells which were then trypsinised and centrifuged for 10 

minutes at 300 g to obtain a cell pellet.  Supernatant was discarded and pellets were 

stored at -20°C until required for the caspase-3 assay. 

Cell pellets were resuspended in 120 μl lysis buffer (25 mM HEPES, 2.5 mM 

CHAPS, 2.5 mM DTT, pH 7.4) and incubated on ice for 20 minutes.  Lysate was 
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then centrifuged for 10 minutes (4°C, 14000 rcf) and supernatant collected and stored 

on ice.  Supernatant (30 μl) was added to a black microplate (Greiner Bio-One) along 

with 50 μl assay buffer (20 mM HEPES, 5 mM DTT, 0.1% CHAPS, 2 mM EDTA, 

pH 7.4) and 20 μl substrate (0.5 mM, Acetyl-Asp-Glu-Val-Asp-7-Amido-Methyl 

Coumarin).  For blanks, assay buffer replaced supernatant. 

Fluorescence was read over a 2 hour period resulting in a linear relationship between 

time and caspase-3 activity (FLUOstar Optima, BMG Labtech).  In combination with 

the protein assay, caspase-3 activity per minute per μg protein (Ufluo/min/μg) was 

calculated and expressed as percentage of basal activity. 

iv)  DC Lowry Protocol – Protein Assay 

Protein content of samples was measured using the DC Lowry Protocol (reagents 

from the Bio-Rad DC Protein Assay range) using bovine serum albumin standards 

(BSA).  Standards were prepared with 2 mg/ml BSA to produce a calibration curve 

as below (table 2.1), to ensure that the relationship between protein content and 

absorbance was linear. 

Table 2.1: BSA standard curve 

Protein mg/ml μl protein standard μl dH2O

0.0 0 >10

0.2 20 180

0.4 40 160

0.5 50 150

0.8 80 120

1.0 100 100

1.5 150 50

2.0 >10 0  
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5 μl of standards and samples were added to a 96-well flat bottom plate in duplicate.  

25 μl of reagent A’ (comprising of 20 μl Reagent S to 1 ml Reagent A; BioRad) and 

200 μl of Reagent B (BioRad) was added to each well and then plates were covered 

in foil and agitated for 15 minutes.  Absorbance was read at 750nm using a standard 

plate reader (Model 680, Bio-Rad).   

Protein content of the samples was obtained by manipulation of the equation of the 

standard curve; results expressed as μg protein/μl. 

2.4.  Western blot analysis of BKCa channel subunit expression and 

protein kinase phosphorylation 

For the determination of BKCa channel subunit expression isolated mitochondrial, 

cytoplasmic and whole cell protein fractions (isolated by subcellular fractionation, 

see section 2.9) were mixed two parts to one part sample buffer (Cell Signalling 

Technology). For the assessment of protein kinase activation H9c2 cells were 

exposed to the conditions and treatments described previously and stated in the 

figure legends. Following stimulation cell supernatants were removed and the cells 

washed twice with ice-cold PBS and lysed in ice-cold lysis buffer (100 μl; 150 mM 

NaCl, 50 mM Tris.HCl, 5 mM EDTA, 1% (v/v) IGEPAL CA-630, 0.5% (w/v) 

sodium deoxycholate, 0.1% (w/v) SDS (sodium dodecyl sulphate), 1 mM Na3VO4, 1 

mM NaF, 1 mM benzamidine, 0.1 mM phenylmethylsulphonylfluoride (PMSF), 10 

g/ml aprotinin and 5 g/ml leupeptin). Cell lysates were cleared by centrifugation 

(5 minutes; 12,000 g; 4°C), the supernatant collected and mixed two parts to one part 

sample buffer – with an aliquot of the supernatant taken for analysis of protein 

content. Samples were boiled at 95ºC for 5 minutes and thoroughly vortexed to 
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ensure protein denaturation, and then stored at -20°C.  Protein concentration was 

determined using Bio-Rad DC Protein assay as described above and protein samples 

separated by Sodium Dodecyl Sulphate/Polyacrylamide Gel Electrophoresis 

(SDS/PAGE) using a Bio-Rad Mini-Protean II system. 

Equipment was set up according to the manufacturers’ instructions and 20 ml of 12% 

acrylamide solution made per two gels (6.6 ml dH2O, 8.0 ml 30% Acrylamide mix, 

5.0 ml 1.5 M Tris buffer, 200 μl 10% SDS solution, 200 μl 10% ammonium 

persulphate (APS) solution, 20 μl TEMED) – APS and TEMED are responsible for 

initiating gel polymerisation so were added last.  The unpolymerised acrylamide gel 

solution was pipetted between two glass plates held together in the BioRad 

equipment, with a gap at the top being left for dH2O to ensure level setting of the gel.  

Once the gel had set, the water was poured off and replaced with stacking gel (for 

two gels: 4.1 ml dH2O, 1.0 ml 30% Acrylamide mix, 750 μl 1.5 M Tris buffer, 60 μl 

SDS solution, 60 μl APS, 6 μl TEMED) and a plastic comb to form wells.  The 

equipment was placed into the lower buffer chamber with electrophoresis buffer 

(24.8 mM Tris base, 192 mM Glycine, 3.5 mM SDS), ensuring that the buffer did not 

leak from between the two gels.  Once the stacking gels had set the combs were 

removed and samples were loaded into the wells (20-30 μg/well depending on target 

protein).  The circuit was then run for 45 minutes at 200 V. 

Separated proteins were transferred to nitrocellulose membranes using a Bio-Rad 

Trans-Blot system (1 hour at 100 V in 25 mM Tris base, 192 mM glycine and 20% 

MeOH). Following transfer, nitrocellulose membranes were stained with Poncea S 

(Sigma) and the appropriate band size identified and cut from the rest of the 

membrane.  The desired strips of membrane were washed with the pH buffer Tris-
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buffered saline (TBS) and blocked for 1 hour at room temperature in blocking buffer 

(TBS, 5% (w/v) skimmed milk powder, 0.1% Tween-20). Membranes were then 

incubated overnight at 4
o
C in blocking buffer with the following primary antibodies: 

cytochrome c (Santa Cruz Biotechnology; 1:500); BKCa channel  subunit (Becton 

Dickinson; 1:250), BKCa channel β4 subunit (Sigma-Aldrich; 1:250), phospho-

specific ERK1/2 (Thr
202

/Tyr
204

; Sigma Aldrich; 1:1000), and phospho-specific PKB 

(Ser
473

; New England Biolabs (U.K.) Ltd; 1:500). The next day the primary antibody 

was removed and the membrane extensively washed three times for 10 minutes in 

TBS/Tween 20. Blots were then incubated for 1 hour at room temperature with the 

appropriate secondary antibody (1:1000) coupled to horseradish peroxidase (DAKO 

Ltd, Cambridge, UK) in blocking buffer. Following removal of the secondary 

antibody, blots were extensively washed as above and developed using the Enhanced 

Chemiluminescence Detection System (Amersham Pharmacia Biotech, Little 

Chalfont, UK) and quantified by densitometry using GeneGenius BioImaging 

System (Syngene, Synoptics Ltd, UK). Replicate samples from each experiment 

were analysed on separate blots using total unphosphorylated ERK1/2 (New England 

Biolabs (U.K.) Ltd; 1:1000) and PKB (New England Biolabs (U.K.) Ltd; 1:1000) 

primary antibodies in order to confirm the uniformity of protein loading. 

2.5.  Subcellular fractionation 

H9c2 cells were grown in 125 cm
2 

culture flasks; to obtain enough protein 3 flasks 

were used per experiment.  Once confluent cells were detached using trypsin and 

then centrifuged for 5 minutes at 300 g.  The supernatant was discarded and the cell 

pellet resuspended in 1 ml PBS and centrifuged again (5 minutes, 300 g).  This 

process was repeated, then the cell pellet was transferred to a Dounce tissue grinder 
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tube (Sigma) kept on ice using a Pasteur pipette and homogenised 10 times with 

grinder A and 10 times with grinder B (Sigma; each time consisting of one clockwise 

rotation of the grinder).  The cell homogenate was resuspended in 500 μl of 

extraction buffer (10 mM HEPES, 1 mM EGTA, 200 mM mannitol, 1 mM sucrose) 

and transferred to a 2 ml centrifuge tube labelled “nucleus”, then centrifuged for 5 

minutes at 300 g (4°C).  The supernatant was transferred to a 2 ml centrifuge tube 

labelled “mitochondria”, with 100 μl being saved as total extract.  The nuclear pellet 

was resuspended in 500 μl of extraction buffer and centrifuged for 10 minutes at 

1000 g (4°C).  The supernatant was again transferred to the mitochondria tube, and 

then the nuclear pellet was discarded.  The mitochondrial fraction was centrifuged 

for 15 minutes at 10,000 g (4°C) then the supernatant was transferred to a 2 ml 

centrifuge labelled “cytoplasm”.  The mitochondrial pellet was resuspended in 500 μl 

extraction buffer and centrifuged for 10 minutes at 10,000 g (4°C).  The supernatant 

was again transferred to the cytoplasmic extract tube and the mitochondrial pellet 

resuspended in 100 μl extraction buffer.  All fractions were then stored at -20°C until 

required. 

2.6.  Right Ventricle Strip Preparation 

All experiments were performed on adult Wistar rats of either sex which were 

executed by cervical dislocation in accordance with the Animals (Scientific 

Procedures) Act 1986.  Hearts were rapidly removed and placed in ice-cold Krebs 

solution (119 mM NaCl, 25 mM NaHCO3, 11.1 mM D-glucose, 4.7 mM KCl, 2.5 

mM CaCl2, 1.2 mM KH2PO4, 1.0 mM MgSO4).  One strip from the right ventricle 

wall (approximately 2 mm x 10 mm) was isolated per heart and then longitudinally 

attached to platinum electrodes and isometric force transducers. The strips were 
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placed under 2 g tension in a tissue bath (Harvard Single Heated Tissue Bath) 

containing 40 ml gassed Krebs (95% O2-5%-CO2, 37°C) and electrically stimulated 

at a frequency of 1 Hz (Ealing Dual Pulse Student Stimulator).  Contractions were 

measured on a chart recorder (Harvard Student Oscillograph).  All strips were 

equilibrated for 40 minutes in gassed Krebs (95% O2-5% CO2, 37°C) before drug 

challenge.  Hypoxia was simulated by replacing the medium with gassed glucose-

free Krebs (95% N2-5% CO2, 37°C).  Normalisation of data controlled for variation 

of data due to ventricle thickness.   

Experimental protocol: 

Following the equilibration period, control strips were exposed to 30 minutes 

oxygenation followed by 30 minutes hypoxia and finally 30 minutes reoxygenation – 

this treatment protocol was previously established by members of my research group, 

therefore deemed appropriate for use with this current project (Button et al, 2005). 

If appropriate, CPA or NS1619 was added to the medium for the final 2 minutes of 

oxygenation.  When using DPCPX, Paxilline or Iberiotoxin the required drug was 

added at the start of oxygenation and remained there for the 30 minutes duration.   

For hypoxic preconditioning, ventricle strips were equilibrated for 40 minutes as  

usual, and then exposed to a 10 minute preconditioning period of hypoxia followed 

by 20 minutes oxygenation, 30 minutes hypoxia and finally 30 minutes 

reoxygenation.  When using iberiotoxin the drug was added after for the final 30 

minutes of the equilibration.  All drugs were washed out following treatment and no 

drugs were present during hypoxia or reoxygenation.  See figure 2.2 for summary. 
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2.7.  Data analysis 

GraphPad Prism 5 was used for all statistical analysis.  The one-way ANOVA 

(analysis of variance) test was used to compare two or more sets of data, with the 

two-way ANOVA being used to compare grouped sets of data.  Tukey's Multiple 

Comparison Post Test was used to further analyse the data to uncover where any 

significance lay.  Significance was classed as p<0.05 and highlighted with an asterix; 

all data is presented as mean ± S.E.M.  

2.8.  Materials 

Acetyl-Asp-Glu-Val-Asp-7-Amido-Methyl Coumarin, acetylcholine, 30% 

acrylamide mix, adenosine, ATP (adenosine triphosphate), baclofen, BSA (bovine 

serum albumin), D-glucose, DPCPX (8-Cyclopentyl-1,3-dipropylxanthine), forskolin, 

histamine, imidazole, isoprenaline, lithium chloride, MRS1220 (N-[9-Chloro-2-(2-

furanyl)[1,2,4]-triazolo[1,5-c]quinazo lin-5-yl]benzene acetamide), noradrenaline, 

NS1619 (1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-

2H-benzimidazol-2-one), PTX (pertussis toxic), rolipram, SDS (sodium dodecyl 

sulphate), TEMED (N,N,N',N'-Tetramethylethylenediamine), TCA (trichloroacetic 

acid), staurosporine, and UTP (uridine triphosphate) were all obtained from Sigma-

Alrich. 

(-)-U-50488 ((±)-U-50488 hydrochloride; trans-(±)-3,4-Dichloro-N-methyl-N-[2-(1-

pyrrolidinyl)cy clohexyl]benzeneacetamide hydrochloride), CGS (CGS 21680 

hydrochloride; 4-[2-[[6-Amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H -purin-2-

yl]amino]ethyl]benzenepropanoic acid hydrochloride), CI-IB-MECA (2-CI-IB-

MECA; 1-[2-Chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9- yl]-1-deoxy-N-
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methyl-b-D-ribofuranuronamide), CPA (N
6
-Cyclopentyladenosine), dobutamine  

(dobutamine hydrochloride; 4-[2-[[3-(4-Hydroxyphenyl)-1-

methylpropyl]aminoethyl-1, 2-benzenediol hydrochloride], iberiotoxin, nor-BNI 

(nor-Binaltorphimine dihydrochloride; 17,17'-(Dicyclopropylmethyl)-6,6',7,7'-6,6'-

imino- 7,7'-binorphinan-3,4',14,14'-tetrol dihydrochloride), paxilline, procaterol and 

SNC 80 ((+)-4-[(aR)-a-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3 

methoxybenzyl]-N,N-diethylbenzamide) were all obtained from Tocris Biosciences. 

All cell culture agents, unless stated, were obtained from Cambrex.  Glucose-free 

DMEM was obtained from Invitrogen, and FBS (foetal bovine serum) was obtained 

from BioSera. 

[
3
H]-adenine was obtained from Amersham Biosciences; [3H]-myo-inositol was 

obtained from M.P Biomedicals. 

Antibodies were obtained from the following suppliers: monoclonal BKCa channel  

subunit from Beckon-Dickinson; polyclonal BKCa channel β4 subunit and 

monoclonal phospho-specific ERK1/2 (Thr
202

/Tyr
204

) from Sigma-Aldrich; 

polyclonal phospho-specific PKB (Ser
473

), monoclonal total unphosphorylated 

ERK1/2 and polyclonal total unphosphorylated PKB from New England Biolabs 

(U.K.) Ltd; and monoclonal cytochrome c from Santa Cruz Biotechnology. All other 

chemicals were of analytical grade. 

 

 

 

http://www.tocris.com/dispprod.php?ItemId=65402
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3. Functional GPCR studies 

3.1.  Functional expression of adenosine receptors on H9c2 cells 

Adenosine is released from myocardial tissue during ischaemia or 

ischaemia/reperfusion (I/R), exerting cardioprotective effects against ischaemic 

injury/damage caused by reperfusion (Mubagwa & Flameng 2001; Fryer et al, 2002).  

Cardiomyocytes have been shown to express the adenosine A1, A2A and A3 receptor 

subtypes (Germack & Dickenson, 2004; for review see Peart & Headrick, 2007), but 

the presence of functional adenosine receptors on H9c2 cells has not been reported.  

In this study GPCR expression on H9c2 cells has been investigated by measuring the 

effects of selective receptor agonists and antagonists on [
3
H]-cAMP accumulation. 

CPA, the selective A1 receptor agonist, gave a modest inhibition of forskolin-induced 

cAMP accumulation (maximum inhibition occurring at 100 nM; 22.0 ± 4.2%; n=6; 

see Fig.3.1) but at higher concentrations produced a significant augmentation of 

cAMP-accumulation (maximum effect at 10 μM, 288 ± 56%, n=5, p<0.01).  CGS 

21680, the  adenosine A2A receptor agonist, did not increase cAMP accumulation 

(see Fig.3.2).  CI-IB-MECA, the Gi-coupled A3 receptor agonist (up to 1 μM), had no 

effect on forskolin-stimulated cAMP accumulation.  However, 10 μM Cl-IB-MECA 

induced a significant increase in cAMP accumulation (179.6  15% compared to 

forskolin response alone = 100%, n=5, p<0.05, see Fig.3.3).   

The inhibition afforded by CPA was reversed by pertussis toxin (PTX), a specific 

blocker of Gi protein (119.1 ± 4% of forskolin response in the presence of PTX; n=6; 

see Fig.3.4), and by the adenosine A1 receptor antagonist DPCPX (107.4 ± 7% of 

forskolin response in the presence of DPCPX; n=4; see Fig.3.4).   
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The augmentation of cAMP accumulation induced by CI-IB-MECA was blocked by 

the adenosine A1 receptor antagonist DPCPX (112.2  7% of forskolin response in 

the presence of DPCPX; n=4; see Fig.3.5) but not significantly by the adenosine A3 

receptor antagonist MRS 1220 (130.8 ± 11% of forskolin response in the presence of 

MRS 1220; n=4; see Fig.3.5). 

These data suggest that H9c2 cells functionally express Gi-coupled adenosine A1 

receptors, but not adenosine A2A or A3 receptors, and that at high agonist 

concentrations the adenosine A1 receptor can also couple to Gs protein. 
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Figure 3.1: CPA-mediated effects on forskolin-induced cAMP accumulation in H9c2 cells.  

Cells were pre-treated with the indicated concentrations of the selective adenosine A1 receptor 

agonist CPA for 5 minutes prior to the addition of 10 μM forskolin for a further 10 minutes.  

Data expressed as the percentage of forskolin response (=100%).  Each point represents mean ± 

S.E.M. of 5 separate experiments each performed in triplicate.  (b) is an enlargement of the frame 

in (a).  * p<0.05 vs. forskolin alone response; ** p<0.01 vs. forskolin alone response. 
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Figure 3.2: CGS 21680-mediated cAMP accumulation in H9c2 cells. Cells were treated 

with the indicated concentrations of the selective adenosine A2A receptor agonist CGS 21680 

hydrochloride for 15 minutes.  Data expressed as percentage of basal cAMP accumulation 

(=100%).  Each point represents mean ± S.E.M of 6 separate experiments each performed in 

triplicate.  
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Figure 3.3: CI-IB-MECA-mediated effects on forskolin-induced cAMP accumulation 

in H9c2 cells.  Cells were pre-treated with the indicated concentrations of the adenosine A3 

receptor agonist CI-IB-MECA for 5 minutes prior to the addition of 10 μM forskolin for a 

further 10 minutes.  Data expressed as the percentage of forskolin response (=100%).  Each 

point represents mean ± S.E.M. of 5 separate experiments each performed in triplicate.  * 

p<0.05 vs. forskolin alone response. 
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Figure 3.4: The effect of pertussis toxin (PTX) and DPCPX on CPA-induced inhibition 

of forskolin-mediated cAMP accumulation in H9c2 cells.  (a) Control and PTX-treated 

cells (100 ng/ml; 16 hours) were pre-treated with 100 nM CPA for 5 minutes prior to the 

addition of 10 μM forskolin for a further 10 minutes.  (b) Control and DPCPX-treated cells 

(10 μM) were pre-treated with 100 nM CPA for 5 minutes prior to the addition of 10 μM 

forskolin for a further 10 minutes.  Data expressed as the percentage of forskolin control 

response (=100%).  Each point represents mean ± S.E.M. of 4 separate experiments each 

performed in triplicate.  * p<0.05 vs. forskolin alone response. 
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Figure 3.5: The effect of MRS 1220 and DPCPX on CI-IB-MECA-induced 

augmentation of forskolin-mediated cAMP accumulation.  (a) Control and MRS 1220-

treated cells (10 μM) were pre-treated with 10 μM CI-IB-MECA for 5 minutes prior to the 

addition of 10 μM forskolin for a further 10 minutes.  (b) Control and DPCPX-treated cells 

(10 μM) were pre-treated with 10 μM CI-IB-MECA for 5 minutes prior to the addition of 10 

μM forskolin for a further 10 minutes.  Data expressed as the percentage of forskolin control 

response (=100%).  Each point represents mean ± S.E.M. of 4 separate experiments each 

performed in triplicate.  *** p<0.001 vs. forskolin alone response. 
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3.2.  Functional expression of opioid receptors on H9c2 cells 

It has been shown that during periods of stress (e.g. cardiac ischaemia) the synthesis 

and release of some opioid peptides are increased, leading to modulation of response 

and cytoprotection (Clement-Jones et al 1980; Falcone et al 1993).  The receptors are 

widely distributed throughout the central nervous system and periphery; it has been 

reported that the κ- and δ-opioid receptors are the dominant subtypes present in rat 

heart (Zimlichman et al, 1996), and there is supporting data for the involvement of 

both receptors in cardioprotection (Valtchanova-Matchouganska & Ojewole, 2003).  

The presence of functional κ- and δ-opioid receptors on H9c2 cells has not been 

reported, so this study investigated this by measuring the effects of selective receptor 

agonists and antagonists on [
3
H] - cAMP accumulation.  

The δ-opioid receptor agonist SNC 80 had no effect on forskolin-induced cAMP 

accumulation (see Fig.3.6), whereas the κ-opioid agonist (-)-U-50488 induced a 

robust inhibition (maximal inhibition occurring at 1 μM, 25.5 ± 7.4%, n=4, p<0.05, 

see Fig.3.7).  The Gi-protein blocker PTX attenuated (-)-U-50488-mediated 

inhibition of cAMP accumulation (15 ± 2.6% reduction of forskolin response in the 

presence of PTX compared to 27.5 ± 4.1% reduction of forskolin response seen in 

controls, n=4, see Fig.3.8a) and the selective kappa-opioid receptor antagonist nor-

Binaltorphimine completely reversed (-)-U-50488-mediated inhibition of cAMP 

accumulation (112.4 ± 11.4% of forskolin response in the presence of nor-BIN,  n=4, 

see Fig.3.8b).  

Overall, these data suggest that H9c2 cells functionally express Gi-coupled κ-opioid 

receptors, but not δ-opioid receptors. 
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Figure 3.6: SNC 80-mediated effect on forskolin-induced cAMP accumulation in H9c2 

cells.  Cells were pre-treated with the indicated concentrations of the selective δ-opioid 

receptor agonist SNC 80 for 5 minutes prior to the addition of 10 μM forskolin for a further 

10 minutes.  Data expressed as the percentage of forskolin response (=100%).  Each point 

represents mean ± S.E.M. of 4-6 separate experiments each performed in triplicate.  
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Figure 3.7: (-)-U-50488-mediated effect on forskolin-induced cAMP accumulation in 

H9c2 cells.  Cells were pre-treated with the stated concentrations of the selective κ-opioid 

receptors agonist for 5 minutes prior to the addition of 10 μM forskolin for a further 10 

minutes.  Data expressed as the percentage of forskolin response (=100%).  Each point 

represents mean ± S.E.M of 5 separate experiments each performed in triplicate.  * p<0.05 

vs. forskolin alone response. 
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Figure 3.8: The effects of PTX and nor-BIN on (-)-U-50488-mediated inhibition of 

forskolin-induced cAMP accumulation in H9c2 cells.  (a) Control and PTX-treated cells 

(100 ng/ml; 16 hours) were pre-treated with 1 μM (-)-U-50488 for 5 minutes prior to the 

addition of 10 μM forskolin for a further 10 minutes.  (b) Control and nor-BIN-treated cells 

(10 μM) were pre-treated with 1 μM (-)-U-50488 for 5 minutes prior to the addition of 10 

μM forskolin for a further 10 minutes.  Data expressed as the percentage of forskolin control 

response (=100%).  Each point represents mean ± S.E.M. of 5 separate experiments each 

performed in triplicate.  * p<0.05 vs. forskolin alone response. 
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3.3.  Functional expression of beta-adrenergic receptors on H9c2 cells 

During ischaemia it is well accepted that catecholamines, such as noradrenaline, are 

released and consequential activation of G protein-coupled adrenergic receptors 

occurs.  The presence of both the β1 and β2 subtypes has been demonstrated on H9c2 

cells using radioligand binding studies (Dangel et al, 1996) and using antibody 

imaging (Ianoul et al, 2005).  In this study, the presence of functional beta-

adrenergic receptors on H9c2 cells was investigated by measuring the effects of 

selective receptor agonists and on [
3
H]-cAMP accumulation. 

The non-selective β-adrenergic receptor agonist isoprenaline stimulated a 

concentration-dependent increase in cAMP accumulation (maximal effect occurring 

at 100 nM; 622 ± 117% basal response; n = 4; see Fig.3.9).  The selective β1 agonist 

dobutamine stimulated cAMP accumulation to an extent (10 μM induced 174 ± 57% 

basal response; n=4; see Fig.3.10), however, a larger response was seen from the 

selective β2 agonist procaterol (1 μM induced 203 ± 29% basal response, n=4; 10 μM 

induced 598 ± 150% basal response; n=4; see Fig.3.11). 

These data suggest that the Gs-coupled β2 adrenergic receptor could be present on 

H9c2 cells, but the presence of a functional β1 adrenergic receptor is less clear. 
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Figure 3.9: The effect of isoprenaline on cAMP accumulation in H9c2 cells.  Cells were 

treated with the indicated concentrations of isoprenaline for 10 minutes.  Data expressed as 

the percentage of basal response (=100%).  Each point represents mean ± S.E.M of 4 

separate experiments each performed in triplicate.  * p<0.05 vs. basal response, ** p<0.01 

vs. basal response. 
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Figure 3.10: The effect of dobutamine on cAMP accumulation in H9c2 cells.  Cells were 

treated with the indicated concentrations of the β1 receptor agonist dobutamine for 10 

minutes.  Data expressed as the percentage of basal response (=100%).  Each point 

represents mean ± S.E.M of 4 separate experiments each performed in triplicate. 
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Figure 3.11: The effect of procaterol on cAMP accumulation in H9c2 cells.  Cells were 

treated with the indicated concentrations of the β2 receptor agonist procaterol for 10 minutes.  

Data expressed as the percentage of basal response (=100%).  Each point represents mean ± 

S.E.M of 4 separate experiments each performed in triplicate.  * p<0.05 vs. basal response. 
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3.4:  Functional expression of other Gi and Gq protein-coupled 

receptors on H9c2 cells 

 

The presence of a selection of other GPCRs on H9c2 cells was also investigated as, 

to date, an extensive functional study has not been reported.   

Firstly, the effects of baclofen and acetylcholine on forskolin-induced cAMP 

accumulation were tested.  Baclofen is an agonist at the Gi-coupled GABAB receptor, 

which has been found to be expressed in mammalian heart and exert a 

cardioprotective effect during ischaemia (Lorente et al, 2000).  In H9c2 cells this 

agent provided some inhibition of cAMP accumulation, but not to a statistically 

significant level (maximal inhibition occurring at 10 nM, 83 ± 9% of forskolin 

response = 100%, n=4, p>0.05, see fig.3.12a).  Therefore, functional expression of 

this receptor on H9c2 cells is debatable.   

There are several subtypes of acetylcholine receptor, and the Gi-coupled muscarinic 

M2 subtype is known to have parasympathetic effects in the heart. However, no 

significant effect on cAMP accumulation was observed from acetylcholine 

suggesting that the muscarinic M2 receptor is not functionally expressed on H9c2 

cells (see fig.3.12). 

It was also decided to test a range of agonists at Gq-coupled receptors by measuring 

the accumulation of radiolabelled inositol trisphosphate (IP3) following receptor 

stimulation.  As previously mentioned, mammalian cardiomyocytes express Gi-

coupled M2 receptors, but there is also evidence supporting the expression of Gq-

coupled M1 receptors (Sharma et al, 1997).  Acetylcholine did stimulate an increase 

in IP3 accumulation in H9c2 cells, but not significantly implying that the Gq-coupled 
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muscarinic receptors may not be functionally expressed (100 µM, 132 ± 12% of 

control = 100%, n=6, p>0.05, see fig.3.13).   

Histamine H1 receptors predominantly couple to Gq protein, but there is evidence 

stating that the H2 receptor can also bind Gq protein (Kühn et al, 1996).  Both of 

these subtypes have been found to have a role in the mediation of the effects of 

histamine in the heart (Flynn et al, 1979), but this study found no evidence for 

functional expression of a histamine receptor on H9c2 cells (100 µM, 94 ± 8% of 

control = 100%, n=6, p>0.05, see fig. 3.13). 

As mentioned previously, catecholamines such as noradrenaline are released from 

cardiac tissue during ischaemia; it has been found that Gq-coupled  α1A, α1B and α1D-

adrenergic receptors are all expressed in rat heart, with the α1B receptor being the 

predominant subtype and mainly responsible for the cardioprotective effects of α-

adrenergic receptor agonism (Gao et al, 2007).  Treatment of H9c2 cells with 

noradrenaline did result in a sizeable increase in IP3 accumulation – but this was not 

statistically significant (100 µM, 150 ± 15% of control = 100%, n=4, p>0.05, see fig. 

3.13).   

Cardiac ischaemia stimulates the release of ATP and UTP, which then activate 

purinergic P2Y receptors.  The expression of P2Y4 receptors, which preferentially 

bind UTP, is low in the heart but the expression of P2Y2 (equal affinity for ATP and 

UTP) and P2Y11 (preferentially bind ATP) is high (Erlinge & Burnstock, 2008).  

Although ATP did not elicit an increase in IP3 accumulation in H9c2 cells (100 µM, 

103 ± 15% of control = 100%, n=6, p>0.05, see fig.3.13), UTP gave a sizeable 

response (100 µM, 199 ± 15% of control = 100%, n=4, p<0.01, see fig.3.13).  This 
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suggests that one or more of the UTP-binding receptors are functionally expressed on 

H9c2 cells. 

In conclusion, these data provide evidence for the functional expression of Gi-

coupled adenosine A1 and κ-opioid receptors, Gs-coupled β2 adrenergic receptors and 

Gq-coupled UTP-binding P2Y purinergic receptors on H9c2 cells.   
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Figure 3.12: The effects of baclofen and acetylcholine of forskolin-induced cAMP 

accumulation in H9c2 cells.  Cells were pre-treated with the indicated concentrations of (a) 

the GABAB receptor agonist baclofen or (b) the muscarinic receptor agonist ACh for 5 

minutes prior to the addition of 10 μM forskolin for a further 10 minutes.  Data expressed as 

the percentage of forskolin response (=100%).  Each point represents mean ± S.E.M. of 4 

separate experiments each performed in triplicate.   
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Figure 3.13: The effects of selected agonists on inositol phosphate accumulation in H9c2 

cells.  Cells were incubated with the selected agonists (noradrenaline (NA), ATP, UTP, 

histamine (HA), ACh all at 100 μM) for 30 minutes.  Data expressed as the percentage of 

basal response (=100%).  Each point represents mean ± S.E.M. of 4 separate experiments 

each performed in triplicate.   
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4.  Cardioprotective potential of functionally expressed 

receptors on H9c2 cells 

 

4.1.  Determining the effects of GPCR agonists against hypoxia-

induced cell death in H9c2 cells 

 

As mentioned in the previous chapter, all of the GPCRs found to be functionally 

expressed on H9c2 cells have been implicated in cardioprotective mechanisms so it 

was important to assess such properties in this cell line.  Initially it was necessary to 

investigate the effect of hypoxia upon H9c2 cells, allowing the ideal length of time in 

hypoxia to be chosen for further experiments involving pharmacological 

preconditioning.       

Cell death was measured following 1, 2, 4, 6, 8 and 24 hours in hypoxia (0.5% O2) 

using assays to measure MTT reduction, LDH release and caspase-3 activity (see 

fig.4.1).  6 hours of hypoxia was chosen for further experiments as it produced a 

large response in all of the assays (MTT reduction was decreased to 33 ± 8% of 

control, n=4, p<0.01; LDH release was increased to 352 ± 101% of control, n=4; 

caspase-3 activity was increased to 235 ± 19% of control, n=4, p<0.05) and allowed 

a whole experiment with preconditioning and viability assay to be completed in a 

working day. 

The adenosine A1 receptor agonist CPA (100 nM) was the only drug to increase 

MTT reduction during hypoxia (123 ± 24% compared to 65 ± 13% = hypoxic 

control, n=4, p<0.05, see fig.4.2a).  Interestingly, the β2 adrenergic receptor agonist 

procaterol (10 µM) significantly increased MTT reduction during normoxia (164 ± 

34% compared to normoxic control = 100%, n=4, p<0.01). 
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LDH release during hypoxia was significantly reduced by CPA (100 nM, 102 ± 10% 

compared to 161 ± 10% = hypoxic control, n=7, p<0.01, see fig.4.2b) and the κ-

opioid receptor agonist (-)-U-50488 (100 nM, 112 ± 9% compared to 161 ± 10% = 

hypoxic control, n=7, p<0.05).  None of the drugs had a significant effect during 

normoxia. 

CPA also significantly reduced hypoxia-induced caspase-3 activity (100 nM, 103 ± 

14% compared to 174 ± 11% = hypoxic control, n=5, p<0.05, see fig.4.2c), as did the 

non-selective beta-adrenergic receptor agonist isoprenaline (10 µM, 99 ± 15% 

compared to 174 ± 11% = hypoxic control, n=5, p<0.05).  As before, none of the 

drugs had a significant effect during normoxia. 

Overall, the most promising target for protection against hypoxia-induced cell death 

in H9c2 cells was the adenosine A1 receptor, which attenuated cell death according 

to all three parameters measured.  Stimulation of the beta-adrenergic receptors also 

appeared to be beneficial, as did activation of the κ-opioid receptor.  Importantly, 

these data show that i) it is possible to stimulate a preconditioning response in H9c2 

cells, and ii) the protective properties of activation of the adenosine A1 receptor 

observed in cardiac myocytes (Safran et al, 2001) can be reproduced in H9c2 cells.  
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Figure 4.1: Effect of hypoxia on H9c2 cell viability over time.  Cells were exposed to 

hypoxia for the stated times then cell viability was assessed via (a) MTT reduction, (b) LDH 

release and (c) caspase-3 activity.  Data expressed as the percentage of control response 

(=100%).  Each point represents mean ± S.E.M. of 4-6 separate experiments; for each 

experiment the mean was taken from 2 (caspase-3) or 6 (MTT and LDH) replicates.                       

* p<0.05 vs. control; ** p<0.01 vs. control; *** p<0.001 vs. control. 
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Figure 4.2: Effects of GPCR agonists on hypoxia-induced cell death in H9c2 cells.  Cells 

were exposed the stated agonist (Concentrations as follows: 10 μM isoprenaline, 10 μM 

dobutamine, 10 μM procaterol, 100 nM CPA, 100 nM (-)-U-50488) for 30 minutes prior to 6 

hours hypoxia.  Cell viability was measured by (a) MTT reduction, (b) LDH release and (c) 

caspase-3 activity.  Data expressed as the percentage of Normoxic control response 

(=100%).  Each point represents mean ± S.E.M. of 4-6 separate experiments; for each 

experiment the mean was taken from 2 (caspase-3) or 6 (MTT and LDH) replicates.  ## 

p<0.01 vs. normoxic control; * p<0.05 vs. hypoxic control; ** p<0.01 vs. hypoxic control. 
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4.2:  Establishing a role for the ATP-sensitive potassium channel 

(KATP) and the large-conductance calcium-activated potassium 

channel (BKCa channel)  

 

KATP channels have a widely accepted role in cardioprotection and ischaemic 

preconditioning (for review see Gross & Peart, 2003).  Sarcolemmal KATP 

(sarcoKATP) channels were the first to be described, with evidence for a 

mitochondrial KATP (mitoKATP) emerging at a later date.  Garlid et al (1997) were the 

first to publish data showing a link between the mitoKATP channel and 

cardioprotection using diazoxide and rat hearts; therefore this study postulated that  

diazoxide would have a protective effect against hypoxia in the cardiac H9c2 cell 

line.   

Diazoxide significantly reduced hypoxia-induced LDH release (123 ± 3% compared 

to 156 ± 9% = hypoxic control, n=5, p<0.01, see fig.4.3), and this effect was reversed 

by co-treatment with the KATP channel blocker 5-HD (153 ± 6% compared to 156 ± 

9% = hypoxic control, n=5, see fig.4.3).  This data supports the presence of a KATP 

channel in H9c2 cells, and as diazoxide is a potent opener of cardiac mitoKATP 

channels but a weak sarcoKATP opener it is highly likely that the channel in question 

is located to the mitochondria .  However, as much evidence already exists regarding 

the role of the KATP channel in cardioprotection and its link with GPCRs, for the 

remainder of this study  it was decided to proceed purely with research in to the 

Ca
2+

-activated K
+
 channel.    

Siemen et al (1999) first described the presence of a Ca
2+

-activated K
+
 channel on the 

inner mitochondrial membrane of human glioma LN229 cells, and since this 

discovery the activation of mitoBKCa channels has been implicated in 
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cardioprotection against ischemia and reperfusion injury in various models including 

isolated perfused guinea pig hearts (Xu et al, 2002), anesthetised dogs (Shintani et al, 

2004) and isolated guinea pig ventricular myocytes (Sato et al, 2005).  It was, 

therefore, postulated that activation of these channels would also elicit a protective 

effect against hypoxia-induced cell death in H9c2 cells.   

The BKCa channel activator, NS1619 (10 µM), significantly decreased LDH release 

during hypoxia (111 ± 10% compared to 161 ± 12% = hypoxic control, n=7, p<0.05, 

see fig.4.4) and this was attenuated by the selective BKCa channel blockers paxilline 

(1 µM, 151 ± 15% compared to 161 ± 12% = hypoxic control, n=7) and iberiotoxin 

(10 nM, 141 ± 13% compared to 161 ± 12% = hypoxic control, n=5).  NS1619 (10 

µM) also considerably reduced caspase-3 activity during hypoxia (126 ± 11% 

compared to 195 ± 16% = hypoxia control, n=5, p<0.05, see fig.4.5), and this was 

completely reversed by both paxilline (207 ± 26% compared to 195 ± 16% = hypoxia 

control, n=5) and iberiotoxin (196 ± 59% compared to 195 ± 16% = hypoxia control, 

n=5). 

To confirm that the channel in question was the mitochondrial BKCa channel, 

mitochondria from H9c2 cells were collected and probed with antibodies for the 

BKCa-α and β4 subunits and the mitochondrial marker cytochrome c (see fig.4.6).  

Bands for the BKCa-α and β4 subunits were clearly observed in the mitochondrial 

fraction, but not in the cytoplasmic fraction or total extract.  Cytochrome c was 

abundant in the mitochondrial fraction but absent from the cytoplasmic fraction, 

confirming the purity of the fractions. 

In conclusion, these data show that NS1619 is activating the mitochondrial BKCa 

channel, and that this channel has cytoprotective potential in H9c2 cells. 
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Figure 4.3: Establishing a role for the KATP channel in protection against hypoxia-

induced cell death in H9c2 cells.  Cells were exposed to the channel blocker 5-HD (100 

μM) for 45 minutes, with the addition of diazoxide (30 μM) for the final 30 minutes, prior to 

6 hours hypoxia.  Cell viability was assessed via LDH release.  Data expressed as the 

percentage of normoxic control response (=100%).  Each point represents mean ± S.E.M. of 

5 separate experiments; for each experiment the mean was taken from 6 replicates.     ** 

p<0.01 vs. normoxic control. 
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Figure 4.4: Establishing a role for the BKCa channel in protection against hypoxia-

induced LDH release in H9c2 cells.  Cells were exposed to the channel blockers paxilline 

(1 μM) or iberiotoxin (10 nM) for 45 minutes, with the addition of NS1619 (10 μM) for the 

final 30 minutes, prior to 6 hours hypoxia.  Cell viability was assessed via LDH release.  

Data expressed as the percentage of normoxic control response (=100%).  Each point 

represents mean ± S.E.M. of 5-7 separate experiments; for each experiment the mean was 

taken from 6 replicates.  * p<0.05 vs. normoxic control.  
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Figure 4.5: Establishing a role for the BKCa channel in protection against hypoxia-

induced caspase-3 activation in H9c2 cells.  Cells were exposed to the channel blockers 

paxilline (1 μM) or iberiotoxin (10 nM) for 45 minutes, with the addition of NS1619 (10 

μM) for the final 30 minutes, prior to 6 hours hypoxia.  Cell viability was assessed via 

caspase-3 activity.  Data expressed as the percentage of normoxic control response (=100%).  

Each point represents mean ± S.E.M. of 5-7 separate experiments; for each experiment the 

mean was taken from 2 replicates.  * p<0.05 vs. normoxic control. 
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Figure 4.6: Establishing the presence of the mitochondrial BKCa channel subunits in 

H9c2 cells.  Mitochondria were extracted from H9c2 cells by differential centrifugation and 

probed with antibodies specific to the BKCa-α and BKCa-β4 subunits (30 μg protein was 

loaded per lane).  Cyto represents the cytoplasmic fraction; TE represents total extract.  

Cytochrome c was used to confirm purity of the mitochondrial fraction.  Blots are 

representative of 4 separate experiments. 
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4.3:  Determining a link between the adenosine A1 receptor and the 

BKCa channel  

 

There is some evidence that BKCa channels have a role in cardioprotection induced 

by some GPCR agonists including the κ-opioid receptor agonist (-)-U-50488 (Cao et 

al, 2005).  However, to date, the role of the BKCa channel in adenosine receptor-

induced cardioprotection has yet to be investigated.  The adenosine A1 receptor 

activates similar Gi protein-modulated pathways to the κ-opioid receptor, so it was 

hypothesized that the BKCa channel may also feature in cardioprotection induced by 

this receptor. 

As before, activation of the adenosine A1 receptor with CPA reduced LDH release 

during hypoxia (100 nM, 135 ± 10% compared to 191 ± 8% = hypoxic control, n=6, 

p<0.05, see fig.4.7a).  This effect was attenuated by the A1 receptor antagonist 

DPCPX (10 µM, 171 ± 5% compared to 191 ± 8% = hypoxic control, n=6), and 

interestingly, also by the BKCa channel blockers paxilline (1 µM, 177 ± 9% 

compared to 191 ± 8% = hypoxic control, n=6) and iberiotoxin (10 nM, 173 ± 7% 

compared to 191 ± 8% = hypoxic control, n=6). 

This was also the case when assessing caspase-3 activity.  CPA reduced caspase-3 

activity during hypoxia (128 ± 12% compared to 184 ± 16% = hypoxic control, n=5, 

p<0.05, see fig.4.7b), and this was prevented by both paxilline (174 ± 17% compared 

to 184 ± 16% = hypoxic control, n=5) and iberiotoxin (181 ± 30% compared to 184 ± 

16% = hypoxic control, n=5). 
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None of the blockers affected LDH release or caspase-3 activity when used alone 

(data not shown).  These data have, for the first time, uncovered a role for the BKCa 

channel in adenosine A1 receptor-induced protection against hypoxia. 
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Figure 4.7: The effect of BKCa channel blockers on CPA-mediated protection against 

hypoxia-induced cell death in H9c2 cells.  Cells were exposed to paxilline (1 μM) or 

iberiotoxin (10 nM) for 45 minutes, with the addition of CPA (100 nM) for the final 30 

minutes prior to 6 hours hypoxia.  Cell viability was assessed via (a) LDH release or (b) 

caspase-3 activity.  Data expressed as the percentage of normoxic control response (=100%).  

Each point represents mean ± S.E.M. of 5-6 separate experiments; for each experiment the 

mean was taken from 2 (caspase-3) or 6 (LDH) replicates.  * p<0.05 vs. hypoxic control.  
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5. The role of protein kinases ERK1/2 and PKB in 

adenosine A1 receptor and BKCa channel-mediated 

cytoprotection 

 

Several protein kinases have been implicated in ischaemic pre- and postconditioning, 

including ERK1/2 and PKB. Both of these are pro-survival kinases included in the 

RISK pathway (Reperfusion Injury Salvage Kinase), and have been associated with 

the cardioprotective effects of KATP channels (de Toit et al, 2008; Grossini et al, 

2009; for extensive review see Hausenloy & Yellon, 2007).  In addition, there is 

existing data stating that PKB can be activated by the BKCa channel opener NS1619 

(100 µM) in neurones (Gáspár et al, 2008).  Both kinases have been documented to 

form part of the cardioprotective signalling cascades initiated by activation of 

adenosine receptors (Germack et al, 2004; Downey et al, 2008), so when taking this 

knowledge into account it was postulated that ERK1/2 and PKB are involved in 

signal transduction mediated by the adenosine A1 receptor and BKCa channel. 

However, in this study it was found that 10 µM NS1619 did not induce 

phosphorylation of ERK1/2 (see fig.5.1) or PKB (see fig.5.2) in H9c2 cells; 

conversely, 100 µM significantly inhibited the activation of both protein kinases.  

ERK1/2 was maximally inhibited following 15 minutes treatment (39 ± 9% of 

control; n=5; p<0.05; see fig.5.3), after which levels increased over time and 

phosphorylation was actually raised above control following 180 minutes treatment 

(144 ± 25% of control; n=5; p>0.05).  Maximum inhibition of PKB phosphorylation 

occurred following 60 minutes treatment with 100 µM NS1619 (32 ± 15% of 

control; n=4; p<0.05; see fig.5.4), after which the level of activation gradually 

increased but did not reach that of the control.   
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It was postulated that NS1619 may activate ERK1/2 and PKB during periods of 

stress, such as hypoxia.  However, when H9c2 cells were pre-treated with NS1619 

(10 µM) then subjected to hypoxia for 1, 2, 4, or 6 hours no phosphorylation of either 

protein was observed (see figs.5.5 and 5.6). 

It has previously been shown that CPA can activate ERK1/2 and PKB in both 

cardiomyocyes and the DDT(1)MF-2 hamster vas deferens smooth muscle cell line 

(Germack & Dickenson, 2000; Germack et al, 2004).  In this study it was also found 

that CPA activated ERK1/2 in H9c2 cells in a transient manner, with maximal 

phosphorylation occurring with 5 minutes treatment (264 ± 26% of control; n=4; 

p<0.001; see fig.5.7).  However, activation of PKB was not observed (see fig.5.8). 

Earlier results have shown that by blocking the BKCa channel CPA-mediated 

protection against hypoxia-induced cell death in H9c2 cells can be attenuated.  It was 

decided to investigate whether ERK1/2 or PKB are involved in this process as it has 

been shown that ERK1/2 is phosphorylated following activation of the adenosine A1 

receptor, and is well documented that both ERK1/2 and PKB are implicated in 

cytoprotective pathways.  However, in this model CPA (100 nM)-induced ERK1/2 

phosphorylation was not blocked by paxilline (1 µM; 277 ± 75% of control 

compared to 227 ± 48% of control for CPA alone; n=4; see fig.5.9) or iberiotoxin (10 

nM; 223 ± 26%  of control compared to 227 ± 48% of control for CPA alone; n=4; 

see fig.5.9).  No phosphorylation of PKB was observed (see fig.5.10). 

From these data it appears that ERK1/2 and PKB are not activated upstream of BKCa 

channel-mediated signal transduction since no phosphorylation of either protein 

kinase was detected.  It is important to note, however, that compartmentalisation of 

these activated proteins has been described (Chuderland et al, 2008; Gonzalez & 
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McGraw, 2009).  It is therefore possible that if this is the case in H9c2 cells, by using 

whole cell lysates the phosphorylated proteins may have been diluted to a level 

undetectable by the method used.   

The sizeable phosphorylation of ERK1/2 by stimulation of the adenosine A1 receptor 

further confirms earlier data relating to the functional expression of this receptor on 

H9c2 cells – and although ERK1/2 does not seem to be activated upstream of 

adenosine A1 receptor/BKCa channel signalling it is possible that it is an intermediate 

step in this pathway. 
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Figure 5.1: The effect of 10 μM NS1619 on phosphorylation of ERK1/2 in H9c2 cells.  

Cells were exposed to NS1619 for the indicated periods of time then cell lysates were 

collected and probed for phosphorylated ERK1/2 and total ERK1/2.  (a) Representative blot 

with exposure time (in minutes) underneath.  (b) Data expressed as percentage of untreated 

controls.  Each bar represents mean ± S.E.M. of 6 separate experiments. 
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Figure 5.2: The effect of 10 μM NS1619 on phosphorylation of PKB in H9c2 cells.  Cells 

were exposed to NS1619 for the indicated periods of time then cell lysates were collected 

and probed for phosphorylated PKB (Ser 473) and total PKB.  (a) Representative blot with 

exposure time (in minutes) underneath.  (b) Data expressed as percentage of untreated 

controls.  Each bar represents mean ± S.E.M. of 6 separate experiments. 
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Figure 5.3: The effect of 100 μM NS1619 on phosphorylation of ERK1/2 in H9c2 cells.  

Cells were exposed to NS1619 for the indicated periods of time then cell lysates were 

collected and probed for phosphorylated ERK1/2 and total ERK1/2.  (a) Representative blot 

with exposure time (in minutes) underneath.  (b) Data expressed as percentage of untreated 

controls.  Each bar represents mean ± S.E.M. of 5 separate experiments. * p<0.05 vs. 

untreated pERK1/2 control. 
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Figure 5.4: The effect of 100 μM NS1619 on phosphorylation of PKB in H9c2 cells.  

Cells were exposed to NS1619 for the indicated periods of time then cell lysates were 

collected and probed for phosphorylated PKB (Ser 473) and total PKB.  (a) Representative 

blot with exposure time (in minutes) underneath.  (b) Data expressed as percentage of 

untreated controls.  Each bar represents mean ± S.E.M. of 4 separate experiments. *p<0.05 

vs. untreated pPKB control. 
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Figure 5.5: The effect of NS1619 on ERK1/2 phosphorylation during hypoxia.  H9c2 

cells were treated with 10 µM NS1619 (or serum-free DMEM for controls) for 30 minutes 

prior to hypoxic/normoxic incubation for the indicated amount of time (hours; see graph).  

Cell lysates were then collected and probed for phosphorylated ERK1/2 and total ERK1/2.  

(a) Representative blot for phosphorylated ERK1/2 (b) Representative blot for total ERK1/2 

(c) Data expressed as percentage of 1 hour untreated normoxic control, total ERK1/2 not 

shown.  Each bar represents mean ± S.E.M. of 6 separate experiments. 
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Figure 5.6: The effect of NS1619 on PKB phosphorylation during hypoxia.  H9c2 

cells were treated with 10 µM NS1619 (or serum-free DMEM for controls) for 30 minutes 

prior to hypoxic/normoxic incubation for the indicated amount of time (hours; see graph).  

Cell lysates were then collected and probed for phosphorylated PKB (Ser 473) and total 

PKB.  (a) Representative blot for phosphorylated PKB (b) Representative blot for total PKB 

(c) Data expressed as percentage of 1 hour untreated normoxic control, total PKB not shown.  

Each bar represents mean ± S.E.M. of 6 separate experiments. 
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Figure 5.7: CPA-induced phosphorylation of ERK1/2 in H9c2 cells.  Cells were treated 

with 100 nM CPA for the indicated amounts of time then cell lysates were collected and 

probed for phosphorylated ERK1/2 and total ERK1/2.  (a) Representative blot with exposure 

time (in minutes) underneath.  (b) Data expressed as percentage of untreated controls.  Each 

bar represents mean ± S.E.M. of 4 separate experiments.  *** p<0.001 vs. untreated 

pERK1/2 control. 
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Figure 5.8: The effect of CPA on PKB phosphorylation in H9c2 cells.  Cells were treated 

with 100 nM CPA for the indicated amounts of time then cell lysates were collected and 

probed for phosphorylated PKB and total PKB.  (a) Representative blot with exposure time 

(in minutes) underneath.  (b) Data expressed as percentage of untreated controls.  Each bar 

represents mean ± S.E.M. of 4 separate experiments.   
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Figure 5.9:  The effect of blocking the BKCa channel on CPA-induced ERK1/2 

phosphorylation in H9c2 cells.  Cells were exposed to paxilline (1 µM) or iberiotoxin (10 

nM) for 45 minutes, with the addition of CPA (100 nM) for the final 30 minutes.  Cell 

lysates were then collected and probed for phosphorylated ERK1/2 and total ERK1/2.  (a) 

Representative blot.  (b) Data expressed as percentage of untreated controls. Each bar 

represents mean ± S.E.M. of 4 separate experiments.  * p<0.05 vs. untreated pERK1/2 

control. 
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Figure 5.10: The effect of blocking the BKCa channel on CPA-induced PKB 

phosphorylation in H9c2 cells.  Cells were exposed to paxilline (1 µM) or iberiotoxin (10 

nM) for 45 minutes, with the addition of CPA (100 nM) for the final 30 minutes.  Cell 

lysates were then collected and probed for phosphorylated PKB and total PKB.  (a) 

Representative blot.  (b) Data expressed as percentage of untreated controls. Each bar 

represents mean ± S.E.M. of 5 separate experiments.   
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6. The role of the BKCa channel in adenosine receptor-

mediated protection against hypoxia-reoxygenation 

 

6.1.  A model for hypoxia-reoxygenation in H9c2 cells 

Models using hypoxia-reoxygenation allow us to gain a more realistic insight into the 

damage caused by ischaemia/reperfusion and discovery of potential therapeutic 

agents.  This study utilised a model for hypoxia-reoxygenation in H9c2 cells 

consisting of 6 hours hypoxia as used for previous experiments, followed by 18 

hours of reoxygenation – a time point which had previously been used (Germack & 

Dickenson, 2005).  Preliminary data showed that this model was sufficient for 

initiating cell death in H9c2 cells as measured by LDH release (363 ± 70% compared 

to normoxic control = 100%, n=6, p<0.06, see fig.6.1a), but caspase-3 activity was 

not increased suggesting that apoptosis had not occurred (100.5 ± 11% compared to 

normoxic control = 100%, n=6, see fig.6.1b).   

For preconditioning, H9c2 cells were treated with pharmacological agents for 30 

minutes before the onset of the hypoxic incubation.  Activation of the adenosine A1 

receptor with CPA (100 nM) did not provide any protection against hypoxia-

reoxygenation induced cell death as measured by LDH release (100 ± 13% compared 

to untreated control = 100%, n=7, see fig.6.2).  Unexpectedly, treatment with the 

BKCa channel opener NS1619 (10 µM) raised LDH release (148 ± 8% of untreated 

control = 100%, n=11, p<0.01 vs. control, see fig.6.2).  This augmentation was 

reversed by co-treatment with paxilline (1 µM, 110 ± 6% of untreated control = 

100%, n=5, p<0.05 vs. NS1619 alone, see fig.6.3) and iberiotoxin (10 nM, 116 ± 7% 
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of untreated control = 100%, n=5, p<0.05 vs. NS1619 alone, see fig.6.3), confirming 

the involvement of the BKCa channel. 

To assess the postconditioning potential of pharmacological agents, treatment 

occurred after hypoxia at the start of reoxygenation.  Postconditioning is a more valid 

method for protection against myocardial infarction in a clinical setting as the 

stimulus is applied following a bout of ischaemia – with preconditioning it would be 

difficult to predict when treatment should occur.  NS1619- and CPA-mediated 

postconditioning both proved to be beneficial in the H9c2 model specified earlier 

(NS1619: 10 µM, 64 ± 4% of untreated control = 100%, n=7, p<0.001; CPA: 100 

nM, 59 ± 6% of untreated control = 100%, n=7, p<0.001, see fig. 6.4).  The 

protection afforded by NS1619 was reversed by paxilline (1 µM, 101 ± 11% of 

untreated control = 100%, n=5, p<0.05 vs. NS1619) and iberiotoxin (10 nM, 103 ± 

8% of untreated control = 100%, n=5, p<0.05 vs. NS1619, see fig. 6.5), confirming 

that it is mediated by the BKCa channel.   

CPA-mediated protection was reversed by the adenosine A1 receptor antagonist 

DPCPX (10 µM, 92 ± 7% of untreated control = 100%, n=6, p<0.01 vs. CPA, see 

fig. 6.6).  Interestingly, the BKCa channel blockers paxilline and iberiotoxin also 

significantly attenuated the CPA-mediated response suggesting a role for the BKCa 

channel in adenosine A1 receptor-mediated postconditioning in H9c2 cells (paxilline: 

1 µM, 83 ± 5% of untreated control = 100%, n=6, p<0.05 vs. CPA; iberiotoxin: 10 

nM, 84 ± 4% of untreated control = 100%, n=6, p<0.05 vs. CPA). 
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Figure 6.1: Cell death induced by hypoxia-reoxygenation in H9ce cells.  Cells were 

exposed to 6 hours normoxia (control), 6 hours hypoxia (HX) or 6 hours hypoxia followed 

by 18 hours reoxygenation (HX/Reox) then cell death was assessed by (a) LDH release or 

(b) caspase-3 activity.  Data expressed as percentage of control.  Each bar represents mean ± 

S.E.M from 6 separate experiments; for each experiment the mean was taken from 2 

(caspase-3) or 6 (LDH) replicates.  ** p<0.01 vs. control.   

 



112 

 

 

 

HX/Reox NS1619 CPA 
0

50

100

150

200

**

L
D

H
 R

e
le

a
s
e

(%
 H

x
/R

e
o

x
 c

o
n

tr
o

l)

 

Figure 6.2: Preliminary data investigating the potential cardioprotective effects of 

preconditioning with CPA and NS1619.  H9c2 cells were exposed to NS1619 (10 µM) or 

CPA (100 nM) for 30 minutes prior to 6 hours of hypoxa followed by 18 hours of 

reoxygenation.  Data expressed as percentage of untreated controls exposed to 

hypoxia/reoxygenation (HX/Reox = 100%).  Each bar represents mean ± S.E.M. of 7-11 

separate experiments, for each experiment the mean was taken from 6 replicates.  ** p<0.01 

vs. HX/Reox. 
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Figure 6.3: The role of the BKCa channel in NS1619-mediated preconditioning in H9c2 

cells.  Cells were treated with paxilline (Pax, 1 µM) or iberiotoxin (IbTx, 10 nM) for 45 

minutes, with the addition of NS1619 (10 µM) for the final 30 minutes.  This preceded 6 

hours hypoxia followed by 18 hours reoxygenation. Data expressed as percentage of 

untreated controls exposed to hypoxia/reoxygenation (HX/Reox = 100%).  Each bar 

represents mean ± S.E.M. of 5-11 separate experiments, for each experiment the mean was 

taken from 6 replicates.  ** p<0.01 vs. HX/Reox; # p<0.05 vs. NS1619. 
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Figure 6.4: Preliminary data investigating the potential cardioprotective effects of 

postconditioning with CPA and NS1619.  H9c2 cells were exposed to 6 hours of hypoxia 

followed by 18 hours of reoxygenation.  For the first 30 minutes of reoxygenation, cells were 

exposed to NS1619 (10 µM) or CPA (100 nM) which was then removed for the remainder of 

reoxygenation.  Data expressed as percentage of untreated controls exposed to 

hypoxia/reoxygenation (HX/Reox = 100%).  Each bar represents mean ± S.E.M. of 7 

separate experiments, for each experiment the mean was taken from 6 replicates.  *** 

p<0.001 vs. HX/Reox. 
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Figure 6.5: The role of the BKCa channel in NS1619-mediated postconditioning in H9c2 

cells.  Cells were exposed to 6 hours of hypoxia followed by 18 hours of reoxygenation.  For 

the first 45 minutes of reoxygenation the cells were treated with paxilline (Pax, 1 µM) or 

iberiotoxin (IbTx, 10 nM) with the addition of NS1619 (NS, 10 µM) for the final 30 minutes 

of treatment.  Data expressed as percentage of untreated controls exposed to 

hypoxia/reoxygenation (HX/Reox = 100%).  Each bar represents mean ± S.E.M. of 5 

separate experiments, for each experiment the mean was taken from 6 replicates.  * p<0.05 

vs. HX/Reox; # p<0.05 vs. NS1619. 
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Figure 6.6: The role of the BKCa channel in CPA-mediated postconditioning in H9c2 

cells.  Cells were exposed to 6 hours of hypoxia followed by 18 hours of reoxygenation.  For 

the first 45 minutes of reoxygenation the cells were treated with DPCPX (10 µM), paxilline 

(Pax, 1 µM) or iberiotoxin (IbTx, 10 nM) with the addition of CPA (100 nM) for the final 30 

minutes of treatment.    Data expressed as percentage of untreated control (=100%).  Each 

bar represents mean ± S.E.M. of 5 separate experiments, for each experiment the mean was 

taken from 6 replicates.  *** p<0.001 vs. control; ## p<0.01 vs. NS1619; # p<0.05 vs. 

NS1619. 
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6.2.  A model for hypoxia-reoxygenation in rat ventricle strips 

The previous experiments assessed the cytoprotective effects of activation of the 

adenosine A1 receptor and the BKCa channel in H9c2 cells.  To test the hypothesis 

that the BKCa channel is involved in A1 receptor-mediated signal transduction in a 

more physiologically relevant model the contractile function of rat ventricle strips 

following hypoxia with/without pharmacological preconditioning was assessed. One 

strip per heart was taken from the right ventricle wall and set up in an organ bath.  

Control strips were exposed to 40 minutes of oxygenation to allow for equilibration, 

a further 30 minutes oxygenation, 30 minutes hypoxia and then 30 minutes 

reoxygenation – this lead to a 5 ± 2% recovery of function during reoxygenation, 

compared to the loss of function during hypoxia.  The loss of contractile function 

during hypoxia and reoxygenation was measured, and the recovery of function 

during reoxygenation expressed as a percentage of original function compared to the 

loss observed during hypoxia.  For pharmacological preconditioning the agents were 

added for the final 2 minutes of oxygenation then washed out before the onset of 

hypoxia.  Where appropriate, blockers were added for the whole 30 minutes of 

oxygenation.  For hypoxic preconditioning strips were exposed to 40 minutes of 

oxygenation to allow for equilibration, 10 minutes preconditioning hypoxia, 20 

minutes oxygenation, 30 minutes hypoxia and then 30 minutes reoxygenation.  When 

appropriate, strips were exposed to iberiotoxin for 30 minutes prior to the 

preconditioning period of hypoxia. 

Firstly, it was verified that activation of the BKCa channel has a beneficial effect in 

this model.  Preconditioning with NS1619 significantly increased the return of 

contractile function of the ventricle strips during the reperfusion stage (10 µM, 36 ± 
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4% contractile recovery compared to 5 ± 2% observed in control strips, n=4, p<0.01 

vs. control, see fig.6.7).  To ensure that the response observed was due to the BKCa 

channel ventricle strips were then co-treated with NS1619 and the channel blockers 

paxilline and iberiotoxin.  Preliminary data with 1 µM paxilline did not reveal any 

effect upon the NS1619-mediated return of contractile function (38 ± 4% contractile 

recovery compared to 5 ± 2% observed in control strips, n=4, p<0.001 vs. control, 

see fig.6.7),  10 µM paxilline slightly attenuated the return of response (29 ± 6% 

contractile recovery compared to 5 ± 2% observed in control strips, n=4, p<0.01 vs. 

control, see fig.6.7); it is possible that the concentrations of paxilline tested were 

insufficient in this model, however, to reduce the number of animals used it was 

decided to continue using solely iberiotoxin to block the BKCa channel.  Iberiotoxin 

considerably decreased the NS1619-mediated effect (50 nM, 14 ± 6% contractile 

recovery compared to 5 ± 2% observed in control strips, n=4, p<0.05 vs. NS1619, 

see fig.6.7), confirming that it was due to activation of the BKCa channel.   

A brief period of hypoxia has been shown to be beneficial against a subsequent, 

prolonged period of hypoxia (hypoxia preconditioning) in many clinical setting and 

models – including the rat ventricle strip (Button et al, 2005).  This study also 

observed a large return of contractile function when strips were preconditioned in 

this manner (35 ± 4% contractile recovery compared to 5 ± 2% observed in control 

strips, n=4, p<0.001 vs. control, see fig.6.8), and found that this could be 

significantly attenuated by treatment with iberiotoxin (50 nM, 18 ± 6% contractile 

recovery compared to 5 ± 2% observed in control strips, n=4, p<0.05 vs. hypoxic 

preconditioning, see fig.6.8).  These data indicate that hypoxic preconditioning in rat 

ventricle strips involves activation of the BKCa channel. 
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Using specific agonists for the adenosine A1, A2A and A3 receptors (CPA, CGS  

21680 and 2-CI-IB-MECA respectively) it was found that activation of the A1 and 

A2A receptors lead to significant return of contractile function (see next paragraphs 

for details), however, a large response with activation of the A3 receptor was not 

observed (1 µM, 13 ± 4% contractile recovery compared to 5 ± 2% observed in 

control strips, n=4, p>0.05 vs. control, data not shown).   

Activation of the A1 receptor with CPA lead to a robust return of function (1 µM, 39 

± 6% contractile recovery compared to 5 ± 2% observed in control strips, n=4, 

p<0.001 vs. control, see fig.6.9) and this was considerably decreased by co-treatment 

with DPCPX (10 µM, 14 ± 5% contractile recovery compared to 5 ± 2% observed in 

control strips, n=4, p<0.01 vs. CPA alone, see fig.6.9) – confirming involvement of 

the A1 receptor.   

Activation of the A2A receptor with CGS 21680 also increased return of function (1 

µM, 32 ± 3% contractile recovery compared to 5 ± 2% observed in control strips, 

n=4, p<0.001 vs. control, see fig.6.10) which was attenuated by co-treatment with the 

A2A antagonist ZM 241385 (12 ± 3% contractile recovery compared to 5 ± 2% 

observed in control strips, n=4, p<0.01 vs. CGS 21680 alone, see fig.6.10).  

Furthermore, return of function mediated by both CPA and CGS 21680 was 

significantly inhibited by co-treatment with 50 nM iberiotoxin (CPA: 14 ± 2% 

contractile recovery compared to 5 ± 2% observed in control strips, n=4, p<0.01 vs. 

CPA alone, see fig.6.9; CGS 21680: 15 ± 3% contractile recovery compared to 5 ± 

2% observed in control strips, n=4, p<0.01 vs. CGS 21680 alone, see fig.6.10).   

These data, for the first time, demonstrate a role for the BKCa channel in adenosine 

A1 and A2A receptor-mediated preconditioning – with evidence regarding the A1 
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receptor collected from both in vitro cell viability work and experiments using an ex-

vivo model measuring mechanical function. 
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Figure 6.7: The role of the BKCa channel in NS1619-mediated pharmacological 

preconditioning in rat ventricle strips.  Rat ventricle strips were pretreated with paxiline 

(Pax; 10 µM) or iberiotoxin (IbTx, 50 nM) for 30 minutes prior to cardioprotection induced 

by 10 µM NS1619.  Data expressed as a percentage of contractile recovery compared to the 

level of recovery observed in control strips exposed to 30 minutes hypoxia alone.  Each bar 

represents mean ± S.E.M. of 4 experiments. *** p<0.001 vs. hypoxia control; ** p<0.01 vs. 

hypoxia control; # p<0.05 vs. NS1619 alone. 
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Figure 6.8: The role of the BKCa channel in hypoxic preconditioning in rat ventricle 

strips.  Rat ventricle strips were pretreated with iberiotoxin (IbTx, 50 nM) for 30 minutes 

prior to cardioprotection induced by hypoxic preconditioning (HPC).  Data expressed as a 

percentage of contractile recovery compared to the level of recovery observed in control 

strips exposed to 30 minutes hypoxia alone.  Each bar represents mean ± S.E.M. of 4 

experiments. *** p<0.001 vs. hypoxia control; # p<0.05 vs. HPC alone. 
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Figure 6.9: The role of the BKCa channel in pharmacological preconditioning mediated 

by the adenosine A1 receptor in rat ventricle strips. Rat ventricle strips were pretreated 

with iberiotoxin (IbTx; 50 nM) or DPCPX (A1 antagonist, 10 µM) for 30 minutes prior to 

cardioprotection induced by 1 µM CPA.  Data expressed as a percentage of contractile 

recovery compared to the level of recovery observed in control strips exposed to 30 minutes 

hypoxia alone.  Each bar represents mean ± S.E.M. of 4 experiments.  *** p<0.001 vs. 

hypoxia control; ## p<0.01 vs. CPA alone. 
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Figure 6.10: The role of the BKCa channel in pharmacological preconditioning 

mediated by the adenosine A2A receptor in rat ventricle strips. Rat ventricle strips were 

pretreated with iberiotoxin (IbTx; 50 nM) or ZM 241385 (A2A antagonist, 1 µM) for 30 

minutes prior to cardioprotection induced by 1 µM CGS 21680.  Data expressed as a 

percentage of contractile recovery compared to the level of recovery observed in control 

strips exposed to 30 minutes hypoxia alone.  Each bar represents mean ± S.E.M. of 4 

experiments.  *** p<0.001 vs. hypoxia control; ## p<0.01 vs. CGS 21680 alone. 
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7. Discussion 

7.1. Summary of main findings 

i)   H9c2 myocardial cell model 

Cytoprotection

A1 Receptor

BKCa channel

ERK1/2

?

 

Figure 7.1.i) Cytoprotective signal transduction in H9c2 cells.  Activation of the 

adenosine A1 receptor leads to protection against hypoxia and hypoxia-reoxygenation-

induced cell death, and this involves activation of the BKCa channel and possibly ERK1/2.  

Black arrow = well documented event; red arrow = possible link; blue arrow = novel 

pathway. 

 

ii)  Rat ventricle strip model 

HPC A1 receptor A2A receptor

BKCa channel

Enhanced recovery of function
 

Figure 7.1.ii) The BKCa channel in cardioprotection of rat ventricle strips.  For the first 

time it has been shown that the BKCa channel mediates cardioprotection triggered by hypoxic 

preconditioning (HPC) and activation of adenosine A1 and A2A receptors in rat ventricle 

strips.     
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Figure 7.1.i) summarizes the main findings from this current project using H9c2 

cells.  It was shown that pharmacological activation of the adenosine A1 receptor and 

the BKCa channel both lead to protection against hypoxia and hypoxia-

reoxygenation-induced cell death.  Regarding hypoxia-reoxygenation-induced 

damage, the A1 receptor agonist CPA was most beneficial as a preconditioning agent, 

whereas the BKCa channel activator NS1619 was most beneficial as a 

postconditioning agent.  Interestingly, the protection afforded by A1 receptor 

activation was abolished by blockade of the BKCa channel – implying that the 

cytoprotective signal transduction pathway triggered by this receptor involves 

activation of the BKCa channel.  However, the role of ERK1/2 in this pathway 

remains controversial; more work is required to elucidate whether ERK1/2 activation 

occurs upstream of BKCa channel activation, or not at all. 

Figure 7.1.ii) summarizes the findings from the work with the rat ventricle strip 

model.  Hypoxic preconditioning and pharmacological preconditioning with agonists 

at the adenosine A1 receptor (CPA) and the A2A receptor (CGS 21680) all led to 

significantly enhanced contractile recovery following a hypoxic insult.  Blockade of 

the BKCa channel prevented such preconditioning, showing that the this channel has 

an important role in preconditioning of rat ventricle strips mediated by hypoxia, 

activation of the adenosine A1 receptor and activation of the adenosine A2A receptor. 

For the first time, and in two different models, a role for the BKCa channel in 

adenosine receptor-mediated cytoprotective signal transduction has been 

demonstrated. 
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7.2.  Characterisation of GPCRs functionally expressed on H9c2 cells 

i)    Adenosine receptors 

This report provides evidence for the functional expression of Gi-coupled adenosine 

A1 receptors on myocardial H9c2 cells.  The specific A1 receptor agonist CPA 

provided a robust inhibition of forskolin-stimulated [
3
H]-cAMP accumulation, which 

was reversed by the Gi-protein blocker pertussis toxin (PTX) and the specific 

adenosine A1 receptor antagonist DPCPX.  The adenosine A3 receptor agonist CI-IB-

MECA did not inhibit cAMP accumulation, but at a high concentration actually 

amplified the forskolin response; interestingly, this was blocked by DPCPX but not 

the A3 receptor antagonist MRS 1220.  This observation is suggestive of a non-

specific action of CI-IB-MECA resulting in A1 activation, indeed this was reported 

by Kilpatrick et al (2001) who showed that CI-IB-MECA-induced cardioprotection 

was blocked by DPCPX.   

The adenosine A1 receptor usually couples to Gi protein, producing an inhibitory 

effect on adenylyl cyclase, but it has been shown that high agonist concentrations can 

lead an increase in cAMP production (Cordeaux et al, 2004).  This biphasic adenylyl 

cyclase response following A1 receptor activation is due to direct coupling of the A1 

receptor with both Gi and Gs protein; and agonist potency at the Gs-coupled A1 

receptor was in the micromolar range, compared to nanomolar responses at the Gi-

coupled receptor (Cordeaux et al, 2004; Baker & Hill, 2007).  This finding is in 

keeping with the biphasic cAMP response to CPA observed in this current report, 

and could explain the increase in cAMP measured following treatment with 10 µM 

CI-IB-MECA.   
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A previous report showed that stimulation of the A1 receptor transiently activates 

ERK1/2 in cardiomyocytes (Germack & Dickenson, 2004).  In this current report a 

robust CPA-induced ERK1/2 phosphorylation was also observed in the H9c2 cell 

line, further validating a functional role for the A1 receptor in these cells. 

The data presented in this report indicate that adenosine A2A receptors are not 

functionally expressed on H9c2 cells.  This is in contrast to a recent study by 

Urmaliya et al (2009), which described cooperation between adenosine A1 and A2A 

receptors in cardioprotection in H9c2 cells.  The latter study exposed H9c2 cells to 

hypoxia (100% N2) for 12 hours, and noticed that protection against necrosis 

mediated by a selective A1 receptor agonist could be attenuated with a selective A2A 

receptor antagonist.  It was also noticed that co-treatment with the A1 and A2A 

agonists potentiated the effect of the A1 agonist alone, but treatment with only the 

A2A agonist had no effect – suggesting that the receptors are working together during 

hypoxia.  The presence of the A2A receptor in this H9c2 cell model, but not in the 

functional study in this current report, could be explained by the experimental 

conditions.  It has been demonstrated that adenosine A2A receptor mRNA and protein 

levels are increased during hypoxia in PC12 cells (Kobayashi & Millhorn, 1999), 

with a maximum of ~250% increase in mRNA and ~400% increase in protein 

occurring at 12 hours of hypoxia.  It is therefore likely that the expression of A2A 

receptors on H9c2 cells is low during normal conditions (and so not detectable by 

functional assay), but 12 hours of hypoxic incubation stimulates a substantial 

increase in receptor expression so the effects of A2A receptor signalling reach a 

detectable level.     
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ii) Opioid receptors 

κ-opioid receptors are the predominant subtype of opioid receptor in the heart; and 

results suggest that these Gi-coupled receptors are also expressed on H9c2 cells.  

However, no evidence was uncovered for functional expression of δ-opioid 

receptors.  Research suggests that κ-opioid receptors account for 80% of opioid 

receptors expressed in immature rat hearts (Zimlichman et al, 1996), and expression 

of δ-opioid receptors increases with postnatal development.  As H9c2 cells are 

derived from embryonic rat heart (Kimes & Brandt, 1976) this could explain the lack 

of functional δ-opioid receptors. 

During these experiments it was found that treatment with pertussis toxin (PTX) 

actually decreased forskolin-induced cAMP accumulation.  This was also observed 

by Robinson & Caron (1997), who noticed that this effect only occurred with 

HEK293 cells expressing adenylyl cyclase type V.  It is thought that PTX may 

increase intracellular Ca
2+

, which would inhibit the calcium-sensitive adenylyl 

cyclase type V – which is the predominant isoform of adenylyl cyclase expressed in 

the heart, possibly explaining the observed effect in the heart-derived H9c2 cells 

(Ebina et al, 1997). 

iii) β-adrenergic receptors 

The data in this report regarding β2-adrenergic receptor expression implies that these 

receptors are expressed on H9c2 cells, but the data regarding β1 receptor expression 

is less convincing.  A study using receptor mRNA levels and radioligand binding 

assays to investigate β-adrenergic receptor expression on H9c2 cells reported a 

29%:71% ratio in favour of the β2 receptor (Dangel et al, 1996), but another study 
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using antibody imaging reported modest expression of both subtypes (Ianoul et al, 

2005); it is possible that discrepancies regarding expression of the receptor subtypes 

on H9c2 cells arise from the different methods utilised.  Taking all of these data into 

account, it can be inferred that β2-adrenergic receptors are expressed on H9c2 cells. 

Evidence has also been presented supporting the functional expression of a UTP-

sensitive Gq-coupled P2Y receptor on H9c2 cells.  To date, this is the first study 

looking into the functional expression of GPCRs on H9c2 cells; if time permitted it 

would be interesting to expand on this body of information by confirming the results 

using other techniques (e.g. Ca
2+

 mobilization for Gq-coupled receptors) and 

increasing the selection of receptors tested. 

 

7.2. The cardioprotective potential of functionally expressed receptors and K
+
 

channels on H9c2 cells 

 

i) Adenosine A1 receptor 

H9c2 cells are commonly used for studies into cardioprotection, as they display 

similar biochemical and electrophysiological properties to cardiac tissue (Hescheler 

et al, 1991) but are less demanding to culture (Zordoky & El-Kadi, 2007).  

Activation of the Gi-coupled adenosine A1 receptor has a well-documented role in 

cardioprotection in many models, including primary rat cardiomyocytes (Safran et al, 

2001; Fei et al, 2009), so it was proposed that this would also be the case in H9c2 

cells.  Stimulation of the adenosine A1 receptor with the selective agonist CPA, prior 

to 6 hours hypoxic incubation, significantly increased mitochondrial reduction of 

MTT, and decreased LDH release and caspase-3 activity.  Loss of mitochondrial 
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function or cell membrane integrity (as measured by MTT metabolism and LDH 

leakage, respectively) signifies irreversible cell death (i.e. necrosis), but can also 

occur at the late stages of apoptosis, so caspase-3 activity (which is specific to 

apoptosis) was also measured to fully distinguish between necrosis and apoptosis.  

These findings (that CPA increased mitochondrial reduction of MTT, and decreased 

LDH release and caspase-3 activity) point to a role for the A1 receptor in regulation 

of apoptosis and necrosis during hypoxia - confirming the receptors part in 

cardioprotection.  This role for the A1 receptor in both apoptosis and necrosis has 

also been documented in murine hearts; in isolated hearts from transgenic mice over-

expressing the cardiac A1 receptor it was reported that, following 

ischaemia/reperfusion, less apoptosis and less necrosis occurred compared to wild-

type controls (Regan et al, 2003). 

ii) κ-opioid receptor 

Activation of the Gi-coupled κ-opioid receptor with (-)-U-50488 conferred a different 

pattern of protection to the adenosine A1 receptor.  Hypoxia-induced LDH release 

was attenuated, but neither MTT metabolism or caspase-3 activity were affected.  

This suggests that activation of the κ-opioid receptor provides some protection 

against necrotic cell death in H9c2 cells, but does not modulate apoptosis or 

mitochondrial function.  There is great variability regarding the anti-apoptotic nature 

of the κ-opioid receptor when using different experimental models; one study stated 

that activation of κ-opioid receptors in a human epithelial tumour cell line increased 

apoptosis (Diao et al, 2000), but more recently activation of this receptor has been 

reported to attenuate myocardial apoptosis following ischaemia/reperfusion (Rong et 

al, 2009).  When measuring different parameters, even the beneficial role of cardiac 
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κ-opioid receptor activation can be questioned, as activation of such receptors can be 

arrhythmogenic during ischaemia/reperfusion (Wong et al, 1990).  The role of the κ-

opioid receptor may be well documented in cardioprotection, but it is important to 

note that inconsistencies do arise between different in vitro and in vivo models. 

iii) β-adrenergic receptors  

As mentioned previously, the role of β-adrenergic receptor activation in 

cardioprotection is unclear and appears to differ between various models and 

experimental procedures.  In this current study it was found that the non-selective β-

adrenergic receptor agonist isoprenaline significantly attenuated hypoxia-induced 

caspase-3 activity in H9c2 cells.  The functional receptor assays implied that the β2 

but not β1 adrenergic receptor was present on these cells; the β2 receptor has a well 

documented role in cardioprotection (Tong et al, 2005), and the β1 receptor 

reportedly has a role in cardioprotection and ischaemia-reperfusion injury (Spear et 

al, 2007).  It is thought that the cardioprotective properties of β-adrenergic receptor 

activation arise from coupling of β2 receptors with Gi protein, which is dependent on 

PKA activity (Tong et al, 2005) - PKA phosphorylates the receptor, creating a higher 

affinity for Gi protein over Gs protein, and inhibition of PKA has been shown to 

block isoprenaline-mediated cardioprotection in mouse hearts (Tong et al, 2005).  

Taking this into account, it could be presumed that the effect observed from 

isoprenaline is mediated by the β2 receptor.  However, in this case it is interesting to 

note that the selective β2 agonist procaterol did not provide any significant protection 

against hypoxia-induced cell death (as measured my MTT reduction, LDH release 

and caspase-3 activity) in H9c2 cells, but did increase MTT reduction in control cells 

exposed to 6 hours normoxia in glucose and serum-free DMEM.  It is possible that 
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this is mediated by a non-β2 adrenergic receptor effect, otherwise it would be 

expected that isoprenaline would also induce an increase in MTT reduction.           

Overall, from the agonists used in this study it can be concluded that stimulation of 

the adenosine A1 receptor provided the greatest cardioprotective effect in H9c2 cells. 

iv)  KATP and BKCa channels 

Activation of mitochondrial KATP and BKCa channels are reported to protect against 

ischemic injury (Ardehali, 2005), and this also appears to be the case when H9c2 

cells are exposed to a 6 hour hypoxic insult.  Both diazoxide (KATP activator) and 

NS1619 (BKCa activator) significantly reduced LDH release, which was blocked by 

specific channel inhibitors (5-HD, KATP inhibitor; paxilline and iberiotoxin, BKCa 

inhibitors).  NS1619 also significantly inhibited hypoxia-induced caspase-3 activity, 

suggesting an anti-apoptotic role for the BKCa channel in H9c2 cells.   

It has been reported that NS1619-induced delayed neuronal preconditioning occurs 

independently of the BKCa channel, and is instead mediated by activation of the 

PI3K/PKB pathway, generation of reactive oxygen species and inhibition of caspases 

(Gáspár et al, 2008).  Taking this into account two specific BKCa channel inhibitors 

(paxilline and iberiotoxin) were used in this present study to confirm the presence of 

a BKCa channel in H9c2 cells via NS1619-mediated cytoprotection, however, there is 

doubt surrounding the specificity of diazoxide for KATP channels.  Kim et al (2006) 

suggest that activation of KATP channels by diazoxide is indirect, with diazoxide 

inducing translocation of PKC which then leads to opening of KATP channels.  

Alternatively, Dröse et al (2006) found that diazoxide induced oxidation of a reactive 

oxygen species indicator in the absence of potassium or ATP, so questioning the 
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involvement of KATP channels.  This article also postulated that 5-HD acts as a 

metabolic substrate rather than an inhibitor of KATP channels.  Despite these 

reservations regarding the specific actions of diazoxide, it is still widely accepted that 

it has a role in cardioprotection. 

Due to the large body of work and knowledge regarding mitoKATP channels, it was 

decided to concentrate on BKCa channels for the remainder of the project.  However, 

by finding evidence for functional expression of KATP channels the expression profile 

of receptors and channels on H9c2 cells has been expanded.   

Although mitochondrial, not sarcolemmal, BKCa channels are reported to be 

expressed in myocardial cells, the BKCa channel opener NS1619 does not 

discriminate between channels expressed at the two locations so further investigation 

was required to uncover the location of BKCa channels in H9c2 cells.  By probing the 

mitochondrial and cytoplasmic fractions of these cells with antibodies specific to the 

α and β4 subunits of the BKCa channel it was shown that myocardial H9c2 cells 

express a BKCa channel in the mitochondria, but not cytoplasm (therefore, not in the 

sarcolemmal membrane).  As mentioned previously, mitochondrial BKCa channels 

are reported to be expressed in cardiomyocytes but the presence of a plasma 

membrane channel is less definite (Ko et al, 2009), so this finding is as expected.  

Interestingly, the BKCa channel β4 subunit is believed to be the predominant subunit 

in the brain, with β1 mainly expressed in the heart (Piwonska et al, 2008; Jiang et al, 

1999) – but the use of a β1-specific antibody did not provide evidence for protein 

expression of this subtype in H9c2 cells (data not shown).  However, a study using 

RT-PCR has identified both the β1 and β4 subunits in rat cardiac tissue (Poulsen et 

al, 2009), demonstrating that the β4 subunit is not purely localised to neural tissue.  
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BKCa channels with associated β4 subunits are less sensitive to the channel blockers 

charybdotoxin and iberiotoxin (Meera et al, 2000), so the presence of the β4 subunit 

in H9c2 cells could explain why iberiotoxin did not block NS1619-mediated 

cytoprotection as fully as paxilline in this report.     

In conclusion, BKCa channels display cytoprotective properties in H9c2 cells, and the 

channels in question are located to the mitochondria.  These mitochondrial BKCa 

channels have been linked with signalling pathways mediated by GPCR agonists 

such as (-)-U-50488 (Cao et al, 2005) and adrenomedullin (Nishida et al, 2008), but 

for the first time this present study discovered a link between mitochondrial BKCa 

channels and adenosine A1 receptor-mediated signal transduction.  It was revealed 

that hypoxia-induced LDH release and caspase-3 activity were attenuated by pre-

treatment with CPA, the selective adenosine A1 receptor agonist, and this effect 

could be reversed by blockade of the BKCa channel with paxilline and iberiotoxin.  

This finding demonstrates that BKCa channels (presumably mitochondrial BKCa 

channels) mediate the cytoprotective and anti-apoptotic effects of the adenosine A1 

receptor against hypoxia-induced cell death in H9c2 cells. 

 

7.3. The role of protein kinases ERK1/2 and PKB in adenosine A1 

receptor and BKCa channel-mediated cytoprotection 

 

Having shown that stimulation of the adenosine A1 receptor can lead to activation of 

the BKCa channel it was then postulated that cellular protein kinases mediate some of 

the intermediate signal transduction pathways.  Extracellular signal-regulated kinase 

1/2 (ERK1/2) and protein kinase B (PKB) have well documented roles in the 
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Reperfusion Injury Salvage Kinase (RISK) pathway (Hausenley et al, 2007), and 

have both been implicated in cardioprotection mediated by adenosine receptors 

(Germack & Dickenson, 2005; Germack et al, 2004) and mitochondrial KATP 

channels (de Toit et al, 2008; Grossini et al, 2009), so it was postulated that they may 

be involved in A1 receptor/BKCa channel signalling in H9c2 cells.  Initially, cells 

were treated with 10 µM NS1619 for varying amounts of time, but at no point was an 

increase in ERK1/2 or PKB phosphorylation observed.  It was then decided to use 

100 µM NS1619, as one study reported that this activates PKB in neurones (although 

by a BKCa channel-independent mechanism; Gáspár et al, 2008).  However, this 

finding was not replicated in H9c2 cells – in fact 100 µM NS1619 significantly 

inhibited phosphorylation of PKB, and ERK1/2.  It is likely that due to the high 

concentration used, the observed effects of NS1619 on dephosphorylation of ERK1/2 

and PKB are independent of the BKCa channel – possibly occurring via activation of 

a phosphatase.  It is interesting to note that Quercetin, a flavonoid which is reported 

to activate BKCa channels in coronary arteries (Cogolludo et al, 2007), also 

dephosphorylates ERK1/2 and PKB when used at a high concentration (Spencer et 

al, 2003).    

As PKB and ERK1/2 are both cell survival kinases activated during periods of stress, 

and activation of the BKCa channel has an anti-apoptotic effect in H9c2 cells, it was 

proposed that increased phosphorylation of these kinases may be observed during 

hypoxia following pre-treatment with NS1619 (10 µM); however this was not 

observed – suggesting that the anti-apoptotic effect of BKCa channel-mediated 

signalling occurs independently of ERK1/2 and PKB, or that BKCa channel activation 

occurs downstream of ERK1/2 or PKB phosphorylation.  It is interesting to note that 
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activation of both of these protein kinases has been reported following 

pharmacological activation of the mitochondrial KATP channel, implying that the 

anti-apoptotic effects of the mitochondrial KATP channel and the BKCa channel are 

differentially mediated (Ahmad et al, 2006; Naitohel et al, 2006).     

An alternative explanation is that compartmentalisation of ERK1/2 and PKB occurs 

upon activation.  During the resting state of a cell ERK1/2 and PKB are distributed 

throughout the cytoplasm, but both have been reported to localise elsewhere when 

activated.  Despite the lack of a nuclear localisation signal ERK1/2 has been found to 

accumulate in the nucleus upon activation (Chuderland et al, 2008), where is then 

able to generate signal responses most effectively.  Translocation of PKB to the 

mitochondria upon activation is reported in rat cardiomyocytes, where it then exerts 

an anti-apoptotic effect by phosphorylating hexokinase-II which prevents opening of 

the mPTP (Miyamoto et al, 2008).  If this was the case, phosphorylation of ERK1/2 

or PKB at specific subcellular localities may not be apparent when using whole cell 

lysates. 

Activation of the adenosine A1 receptor with CPA has been reported to produce an 

increase in activity of ERK1/2 and PKB in rat cardiomyocytes (Gemack & 

Dickenson, 2004; Germack et al, 2004).  In H9c2 cells CPA produced a significant, 

transient increase in ERK1/2 phosphorylation, but had no effect on PKB – suggesting 

that in these cells adenosine A1 receptor signalling is mediated by ERK1/2 but not 

PKB.   

Using the knowledge that adenosine A1 receptor stimulation leads to activation of 

ERK1/2 and the BKCa channel, it was hypothesised that ERK1/2 forms part of the A1 

receptor/BKCa channel signal transduction pathway.  However, in H9c2 cells 
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blockade of the BKCa channel did not affect CPA-mediated ERK1/2 activation – 

suggesting that these kinases are not phosphorylated downstream of the BKCa 

channel.   

Overall, these data suggest that activation of the BKCa channel, and the signalling 

pathway between adenosine A1 receptors and the BKCa channel, are likely to occur 

independently of ERK1/2 and PKB activation in H9c2 cells.     

 

7.4. The role of the BKCa channel in adenosine receptor-mediated 

protection against hypoxia-reoxygenation 

 

i) A model for hypoxia-reoxygenation in H9c2 cells 

Studies into protection against hypoxia-induced cell death are important to help 

elucidate the mechanisms involved in such phenomena, but models using hypoxia-

reoxygenation can provide more clinically relevant data, especially when relating to 

myocardial infarction.  By creating a model for hypoxia-reoxygenation in H9c2 cells 

it was possible to then test the pre- and postconditioning potential of 

pharmacological activation the adenosine A1 receptor and the BKCa channel.  It was 

observed that a protocol of 6 hours hypoxia (0.5% O2 with glucose/serum-free 

DMEM to mimic ischaemia) followed by 18 hours reoxygenation (DMEM 

containing glucose and 1% serum) was sufficient to induce necrotic cell death, as 

measured by LDH release.  No caspase-3 activity was observed though, indicating 

that apoptosis had not occurred.  Nevertheless, it is possible that during the 24 hour 

long protocol of hypoxia and reoxygenation, any cell death initiated by hypoxia 
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could have progressed beyond the apoptotic stage – consequentially caspase-3 would 

not be detected but LDH would be released from the damaged and dying cells. 

ii) Pre- and postconditioning in H9c2 cells 

Pre-treating H9c2 cells with CPA prior to the period of hypoxia did not have any 

effect on LDH release, implying that adenosine A1 receptor-mediated 

pharmacological preconditioning is not protective in H9c2 cells.  Interestingly, 

preconditioning with NS1619 augmented LDH release, and this was reversed with 

paxilline and iberiotoxin – indicating that pharmacological preconditioning via 

activation of the BKCa channel amplifies cell death in this model.  This finding 

contrasts with the majority of reports regarding BKCa channels in preconditioning, so 

more work would be required to uncover the mechanisms involved.  It is possible 

that the observed increase in LDH release could be a cell specific effect, or due to the 

experimental protocol used.  It has been shown that the time of agonist/antagonist 

treatment can greatly affect the experimental outcome.  For example, Schröter et al 

(2005) found that excitotoxic NMDA receptor-evoked rises in neuronal intracellular 

calcium could be attenuated by pre-treatment with nitric oxide,  but nitric oxide 

treatment at the time of NMDA receptor stimulation actually potentiated the toxicity.  

Therefore it can be expected that the treatment protocol used would affect the end 

result.  

Conversely, activation of the BKCa channel during the first few minutes of 

reoxygenation (i.e. postconditioning) significantly reduced hypoxia-reoxygenation-

induced LDH release.  This was also attenuated by co-treatment with paxilline and 

iberiotoxin, suggesting that the effect was mediated by the BKCa channel.  Currently, 
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this is the first report of postconditioning triggered by direct activation of the BKCa 

channel. 

Despite the lack of efficacy of CPA as a preconditioning agent, activation of the 

adenosine A1 receptor created a postconditioning effect in H9c2 cells as LDH release 

was significantly reduced.  Not only was this reversed by antagonism of the A1 

receptor, but also by blockade of the BKCa channel – providing the first evidence of a 

role for the BKCa channel in adenosine A1 receptor-mediated postconditioning. 

iii) Preconditioning in rat ventricle strips 

To validate the use of H9c2 cells as a model for investigating adenosine A1 receptor 

and BKCa channel mediated signalling, it was decided to verify the observed results 

in a more physiologically relevant model.  Strips of rat ventricle are often used as a 

method for measuring mechanical contractile function of the tissue following various 

treatment protocols (for examples see: Button et al, 2005; Bravo et al, 2007; Vassallo 

et al, 2008; ).  In this case, strips from the right ventricle were used as the right 

ventricle wall is thinner than the left, allowing for greater penetration of drugs.  

Following a period of hypoxia (glucose/oxygen-free KREBS solution to mimic 

ischaemia) contractile function of the ventricle strips returned to approximately 5% 

of that observed prior to hypoxia, i.e. the control phase.  This was important as it 

conveyed that the tissue was still viable – if there had been no return of function it 

would be possible that the tissue had died, therefore the beneficial effects of 

preconditioning would be masked.   

Preconditioning with NS1619 significantly enhanced the return of contractile 

function following hypoxia, and this was blocked by iberiotoxin.  This is the first 
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time that activation of the BKCa channel has been investigated, and indeed shown to 

be beneficial, in this model.  Hypoxic preconditioning has been well documented in 

many different models, including rat ventricle strips (Button et al, 2005).  However, 

in this model the role of the BKCa channel had not been examined.  This present 

study demonstrates that blockade of the BKCa channel is sufficient to significantly 

inhibit the effect of hypoxic preconditioning in rat ventricle strips.   

Preconditioning with selective agonists of adenosine A1, A2A and A3 receptors has 

previously been reported to increase the return of contractile function in this rat 

ventricle strip model (Button et al, 2005).  However, in this current study it was 

observed that the A1 and A2A receptors were capable of inducing preconditioning, but 

not the A3 receptor.  There is no obvious explanation for this discrepancy, as the 

same drug was used at the same concentration in both studies (2-CI-IB-MECA, 1 

µM) – more work would need to be done to clarify the effects of adenosine A3 

receptor activation.      

The roles of the A1 and A2A receptors in preconditioning of rat ventricle strips were 

confirmed with the observation that the beneficial effect of pre-treating with an 

agonist at either receptor was blocked by co-treatment with a receptor-appropriate 

antagonist.  Following on from earlier work with H9c2 cells, it was postulated that 

the BKCa channel – direct stimulation of which has been proven to be beneficial in 

both the H9c2 cell viability model and the ventricle tissue mechanical function 

model -  was also involved in A1 receptor-mediated preconditioning in rat ventricle 

strips.  Indeed this was the case, as co-treatment with the A1 receptor agonist CPA 

and the BKCa channel blocker iberiotoxin significantly attenuated the protective 

effect afforded by treatment with CPA alone.   
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This study also revealed that blockade of the BKCa channel could inhibit 

preconditioning mediated by the Gs-coupled adenosine A2A receptor in rat ventricle 

strips.  Although the adenosine A1 and A2A receptors couple to different G proteins, 

they are both reported to activate ERK1/2 (Germack & Dickenson, 2004).  It is 

possible, therefore, that in rat ventricle strips this common ground of ERK1/2 

activation provides an intermediate step between adenosine receptor stimulation and 

BKCa channel activation, or is a consequence of BKCa channel signalling.  It would 

be interesting to further research the signal transduction pathways involving 

adenosine receptors and the BKCa channel, as this current report demonstrates a 

beneficial effect of such pathway activation in two separate models. 

 

7.5. Conclusions and further work 

i) General conclusions 

Overall, this body of work has provided novel data supporting a role for the BKCa 

channel in adenosine A1 receptor-mediated protection against hypoxia and hypoxia-

reoxygenation-induced cell death in a H9c2 myocardial cell model.  This data was 

then validated using a model utilising isolated rat ventricle strips, and it was 

discovered that in this more physiologically relevant model the BKCa channel has a 

pivotal role in hypoxic preconditioning and in pharmacological preconditioning 

mediated by the adenosine A1 and adenosine A2A receptors. 

ii) Further work 
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If this body of work were to be extended, it would be important to elucidate the 

signal transduction pathway that occurs between the adenosine A1 and A2A receptors 

and the BKCa channel.  Regarding the H9c2 cell model, by using subcellular 

fractionation it would be possible to probe distinct localities of the cells for protein 

kinase activity.  The possible role of ERK1/2 and PKB could then be uncovered, and 

PKA, PKC and PKG would also make good targets for future work as they have all 

been linked with adenosine A1 receptor-mediated signalling and/or BKCa channel-

mediated signalling.  Inhibitors of PKA, PKC and PKG are also commercially 

available, therefore increasing the scope for examining the signalling pathways and 

determining the triggers, modulators and effectors. 

Although there is not a commercially available direct inhibitor of ERK1/2, inhibitors 

of MEK1/2 are available (e.g. PD 98059) and are often used to study ERK1/2-

mediated responses.  The role of ERK1/2 as an upstream second messenger in 

adenosine A1 receptor-mediated signalling is confirmed, but it is not known if 

ERK1/2 is part of the BKCa channel signalling pathway.  By preventing ERK1/2 

activity via inhibition of MEK1/2 it would be possible to elucidate whether ERK1/2 

phosphorylation occurs upstream of the BKCa channel, as if this was the case 

inhibition of ERK1/2 would prevent NS1619-mediated protection.  

Due to the anti-apoptotic nature of adenosine A1 receptors and BKCa channel 

activation, it is likely that the signal pathway between these two proteins focuses on 

the mitochondria.  Activation of the mitochondrial BKCa channel has been reported 

to reduce Ca
2+

 overload (Kang et al, 2007), which would create an environment 

favouring closure of the mPTP – indeed it has already been suggested that the mPTP 

is a downstream modulator of BKCa channel signalling (Cao et al, 2005 & 2005a; 
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Gao et al, 2005), and that adenosine A1 receptor activation leads to inhibition of 

mPTP (Fei et al, 2009), so it appears quite likely that the anti-apoptotic effects of the 

adenosine A1 receptor/BKCa channel-mediated signal transduction pathway arises 

from inhibition of the mPTP.  As yet though, this has not been looked into. 

Another area of interest would be to determine the BKCa channel subtype/s expressed 

and responsible for A1 receptor/BKCa channel-mediated cardioprotection in the rat 

heart.  Western blotting with antibodies to the specific subtypes would reveal which 

are expressed, and then by using knock-out animals lacking the individual subtypes it 

would be possible to 1) ascertain the general effects of knocking out each BKCa 

channel subunit (e.g. β1 or β4), and 2) establish if cardioprotection triggered by the 

adenosine A1 receptor can still take place.   

A further avenue to explore would be whether the expressions of BKCa channel 

subunits are upregulated following treatment.  It has been shown that the KATP 

channel – which has a well documented role in preconditioning – contains a hypoxia-

inducible Kir6.1 subunit (Melamed-Frank et al, 2001); is this also the case for the 

BKCa channel and if so is this effect modulated by adenosine receptor activation? 

iii) Concluding remarks 

In conclusion, this study has shown that activation of the BKCa channel can provide 

protection against hypoxia and hypoxia-reoxygenation-induced cell death and loss of 

function, and that these effects are mediated by adenosine receptor signalling.  

Alongside the potential cardioprotective properties, opening of the BKCa channel has 

been proposed to be beneficial in ischaemic stroke.  In vivo experiments using the 

BKCa channel opener BMS-204352 have shown very promising data, but clinical 
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trials were disappointing (Jenson, 2002), highlighting the need for more research into 

the mechanisms involved in BKCa channel-mediated signalling.  The data in this 

current report will contribute to the increasing body of knowledge regarding BKCa 

channel-mediated signal transduction, and hopefully lead to further investigation and 

potential drug discovery.     



145 

 

8. References 

 Ahmad N, Wang Y, Haider KH, Wang B, Pasha Z, Uzun O, Ashraf M. Cardiac 

protection by mitoKATP channels is dependent on Akt translocation from cytosol to 

mitochondria during late preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2006; 

290:H2402–H2408. 

 Ardehali H. Cytoprotective channels in mitochondria.  J Bioenerg Biomembr. 2005; 

37(3):171-7. 

 Armstrong S, Ganote CE. In vitro ischaemic preconditioning of isolated rabbit 

cardiomyocytes: effects of selective adenosine receptor blockade and calphostin C. 

Cardiovasc Res. 1995; 29(5):647-52.  

 Armstrong S, Ganote CE. Preconditioning of isolated rabbit cardiomyocytes: effects 

of glycolytic blockade, phorbol esters, and ischaemia.  Cardiovasc Res. 1994; 

28(11):1700-6.  

 Auchampach JA, Bolli R. Adenosine receptor subtypes in the heart: therapeutic 

opportunities and challenges. Am J Physiol. 1999; 276(3 Pt 2):H1113-6. 

 Auchampach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R. 
Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)adenosine-5'-

N-methyluronamide protects against myocardial stunning and infarction without 

hemodynamic changes in conscious rabbits. Circ Res. 1997; 80(6):800-9. 

 Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD. Voltage-dependent 

anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell 

Biol. 2007; 9(5):550-5. 

 Baker JG & Hill SJ. A comparison of the antagonist affinities for the Gi- and Gs- 

coupled states of the human adenosine A1 receptor.  J Pharmacol Exp Ther. 2007; 

320(1): 218-28. 

 Balakumar P, Rohilla A, Singh M. Preconditioning and postconditioning to limit 

ischemia–reperfusion-induced myocardial injury: What could be the next footstep?  

Pharm Res. 2008; 57(6):403-12. 

 Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the 

permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem. 

2005; 280(19):18558-61. 

 Baxter GF, Yellon DM. ATP-sensitive K+ channels mediate the delayed 

cardioprotective effect of adenosine A1 receptor activation. J Mol Cell Cardiol. 

1999; 31(5):981-9. 

 Bolli R. Preconditioning: a paradigm shift in the biology of myocardial ischemia. 

Am J Physiol Heart Circ Physiol. 2007; 292(1):H19-27. 

 Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA. Myocardial 

protection at a crossroads: the need for translation into clinical therapy. Circ Res. 

2004; 95(2):125-34.  

http://www.ncbi.nlm.nih.gov/pubmed/16167174?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7606752?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7842465?ordinalpos=15&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WP9-4SMNXTY-1&_user=2471587&_coverDate=06%2F30%2F2008&_alid=943844732&_rdoc=15&_fmt=high&_orig=search&_cdi=6985&_st=13&_docanchor=&_ct=40&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=811480f944d7dcf738909bb81ad5cfb7
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WP9-4SMNXTY-1&_user=2471587&_coverDate=06%2F30%2F2008&_alid=943844732&_rdoc=15&_fmt=high&_orig=search&_cdi=6985&_st=13&_docanchor=&_ct=40&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=811480f944d7dcf738909bb81ad5cfb7
http://www.ncbi.nlm.nih.gov/pubmed/15271864?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


146 

 

 Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase 

regulates the mitochondrial transition pore in controlled reperfusion and 

postconditioning. Cardiovasc Res. 2006; 69(1):178-85. 

 Boucher M, Pesant S, Falcao S, de Montigny C, Schampaert E, Cardinal R, 

Rousseau G. Post-ischemic cardioprotection by A2A adenosine receptors: dependent 

of phosphatidylinositol 3-kinase pathway. J Cardiovasc Pharmacol. 2004; 43(3):416-

22. 

 Bravo G, Kurtansky A, López-Muñoz FJ, Hong E, Rojas G, Villalón CM, Huang F. 

Protective action of amlodipine on cardiac negative inotropism induced by 

lipopolysaccharide in rats. Basic Clin Pharmacol Toxicol. 2007; 100(5):339-44. 

 Budas GR, Mochly-Rosen D. Mitochondrial protein kinase Cepsilon (PKCepsilon): 

emerging role in cardiac protection from ischaemic damage. Biochem Soc Trans. 

2007; 35(Pt 5):1052-4. 

 Budas GR, Sukhodub A, Alessi DR, Jovanović A. 3'Phosphoinositide-dependent 

kinase-1 is essential for ischemic preconditioning of the myocardium. FASEB J. 

2006; 20(14):2556-8. 

 Burley DS, Baxter GF. Pharmacological targets revealed by myocardial 

postconditioning. Curr Opin Pharmacol. 2009; 9(2):177-88. Review. 

 Button L, Mireylees SE, Germack R, Dickenson JM. Phosphatidylinositol 3-kinase 

and ERK1/2 are not involved in adenosine A1, A2A or A3 receptor-mediated 

preconditioning in rat ventricle strips. Exp Physiol. 2005; 90(5):747-54. 

 Cabrera JL, de Freitas F, Satpaev DK, Slepak VZ. Identification of the Gbeta5-

RGS7 protein complex in the retina. Biochem Biophys Res Commun. 1998; 

249(3):898-902. 

 Cao CM, Chen M, Wong TM.  The K(Ca) channel as a trigger for the 

cardioprotection induced by kappa-opioid receptor stimulation - its relationship with 

protein kinase C.  Br J Pharmacol. 2005; 145(7):984-91.  

 Cao CM, Xia Q, Gao Q, Chen M, Wong TM. Calcium-activated potassium channel 

triggers cardioprotection of ischemic preconditioning.  J Pharmacol Exp Ther. 

2005a; 312(2):644-50.  

 Cao Z, Liu L, Van Winkle DM. Activation of delta- and kappa-opioid receptors by 

opioid peptides protects cardiomyocytes via KATP channels. Am J Physiol Heart 

Circ Physiol. 2003; 285(3):H1032-9.  

 Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D. Hypoxia 

increases activity of the BK-channel in the inner mitochondrial membrane and 

reduces activity of the permeability transition pore. Cell Physiol Biochem. 2008; 

22(1-4):127-36. 

 Chuderland D, Marmor G, Shainskaya A, Seger R. Calcium-mediated interactions 

regulate the subcellular localization of extracellular signal-regulated kinases. J Biol 

Chem. 2008; 283(17):11176-88. 

http://www.ncbi.nlm.nih.gov/pubmed/19109069?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19109069?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15912131?ordinalpos=16&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15345753?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cao%20Z%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Liu%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Van%20Winkle%20DM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Am%20J%20Physiol%20Heart%20Circ%20Physiol.');
javascript:AL_get(this,%20'jour',%20'Am%20J%20Physiol%20Heart%20Circ%20Physiol.');


147 

 

 Cohen MV, Downey JM. Adenosine: trigger and mediator of cardioprotection. Basic 

Res Cardiol. 2008; 103(3):203-15. 

 Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, 

opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating 

free radicals and opening mitochondrial K(ATP) channels. Circ Res. 2001; 

89(3):273-8.  

 Cogolludo A, Frazziano G, Briones AM, Cobeño L, Moreno L, Lodi F, Salaices M, 

Tamargo J, Perez-Vizcaino F. The dietary flavonoid quercetin activates BKCa 

currents in coronary arteries via production of H2O2. Role in vasodilatation. 

Cardiovasc Res. 2007; 73(2):424-31. 

 Cordeaux Y, Ijzerman AP, Hill SJ. Coupling of the human A1 adenosine receptor to 

different heterotrimeric G proteins: evidence for agonist-specific G protein 

activation. Br J Pharmacol. 2004; 143(6):705-14. 

 Cordeaux Y, Briddon SJ, Megson AE, McDonnell J, Dickenson JM, Hill SJ. 
Influence of receptor number on functional responses elicited by agonists acting at 

the human adenosine A(1) receptor: evidence for signaling pathway-dependent 

changes in agonist potency and relative intrinsic activity. Mol Pharmacol. 2000; 

58(5):1075-84. 

 Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD. The direct 

physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol 

Heart Circ Physiol. 2006; 290(1):H406-15.  

 Crompton M. The mitochondrial permeability transition pore and its role in cell 

death. Biochem J. 1999; 341(2):233-49. 

 Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, 

Kim H, Han J. Nitric oxide-cGMP-protein kinase G signaling pathway induces 

anoxic preconditioning through activation of ATP-sensitive K+ channels in rat 

hearts. Am J Physiol Heart Circ Physiol. 2006; 290(5):H1808-17. 

 Dana A, Skarli M, Papakrivopoulou J, Yellon DM. Adenosine A(1) receptor induced 

delayed preconditioning in rabbits: induction of p38 mitogen-activated protein 

kinase activation and Hsp27 phosphorylation via a tyrosine kinase- and protein 

kinase C-dependent mechanism.  Circ Res. 2000; 86(9):989-97.  

 Dangel V, Giray J, Ratge D, Wisser H. Regulation of beta-adrenoceptor density and 

mRNA levels in the rat heart cell-line H9c2.  Biochem J. 1996; 317 (3):925-31. 

 Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt 

phosphorylation of BAD couples survival signals to the cell-intrinsic death 

machinery. Cell. 1997; 91(2):231-41. 

 Dawn B, Xuan YT, Qiu Y, Takano H, Tang XL, Ping P, Banerjee S, Hill M, Bolli R. 

Bifunctional role of protein tyrosine kinases in late preconditioning against 

myocardial stunning in conscious rabbits. Circ Res. 1999; 85(12):1154-63. 

 Depre C, Taegtmeyer H. Metabolic aspects of programmed cell survival and cell 

death in the heart. Cardiovasc Res. 2000; 45(3):538-48. 

http://www.ncbi.nlm.nih.gov/pubmed/11485978?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/16143645?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10807872?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Dangel%20V%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Giray%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Ratge%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Wisser%20H%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Biochem%20J.');


148 

 

 Diao CT, Li L, Lau SY, Wong TM, Wong NS. kappa-Opioid receptor potentiates 

apoptosis via a phospholipase C pathway in the CNE2 human epithelial tumor cell 

line. Biochim Biophys Acta. 2000; 1499(1-2):49-62. 

 Downey JM, Krieg T, Cohen MV. Mapping preconditioning's signaling pathways: 

an engineering approach. Ann N Y Acad Sci. 2008; 1123:187-96. 

 Downward J. How BAD phosphorylation is good for survival. Nat Cell Biol. 1999; 

1(2):E33-5. 

 Dröse S, Brandt U, Hanley PJ.  K+-independent actions of diazoxide question the 

role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J 

Biol Chem. 2006; 281(33):23733-9. 

 du Toit EF, Genis A, Opie LH, Pollesello P, Lochner A. A role for the RISK 

pathway and K(ATP) channels in pre- and postconditioning induced by 

levosimendan in the isolated guinea pig heart. Br J Pharmacol. 2008; 154(1):41-50. 

 Ebina T, Toya Y, Oka N, Schwencke C, Kawabe J, Ishikawa Y.  Isoform-specific 

regulation of adenylyl cyclase by oxidized catecholamines. J Mol Cell Cardiol. 

1997; 29(4):1247-54. 

 Eckle T, Krahn T, Grenz A, Köhler D, Mittelbronn M, Ledent C, Jacobson MA, 

Osswald H, Thompson LF, Unertl K, Eltzschig HK. Cardioprotection by ecto-5'-

nucleotidase (CD73) and A2B adenosine receptors. Circulation. 2007; 115(12):1581-

90. 

 Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. 

Purinergic Signal. 2008; 4:1-20. 

 Facundo HT, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ 

channels prevent oxidative stress, permeability transition and cell death. J Bioenerg 

Biomembr. 2005; 37(2):75-82. 

 Falcone C, Guasti L, Ochan M, Codega S, Tortorici M, Angoli L, Bergamaschi R, 

Montemartini C. Beta-endorphins during coronary angioplasty in patients with silent 

or symptomatic myocardial ischemia. J Am Coll Cardiol. 1993; 22(6):1614-20. 

 Fei X, Yue-Sheng H, Dong-Xia Z, Zhi-Gang C, Jia-Ping Z, Qiong Z. Adenosine A1 

receptor activation reduces mitochondrial permeability transition pores opening in 

hypoxic cardiomyocytes. Clin Exp Pharmacol Physiol. 2009 [Epub ahead of print]. 

 Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Ménard L, Caron MG. 
Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor 

internalization. Science. 1996; 271(5247):363-6. 

 Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with 

myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. 
Pharmacol Rev. 2007; 59(4):418-58. 

 Flameng W, Andres J, Ferdinande P, Mattheussen M, Van Belle H. Mitochondrial 

function in myocardial stunning. J Mol Cell Cardiol. 1991; 23(1):1-11. 

http://www.ncbi.nlm.nih.gov/pubmed/16709571?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Facundo%20HT%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22de%20Paula%20JG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kowaltowski%20AJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'J%20Bioenerg%20Biomembr.');
javascript:AL_get(this,%20'jour',%20'J%20Bioenerg%20Biomembr.');
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Falcone%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Guasti%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Ochan%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Codega%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tortorici%20M%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Angoli%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bergamaschi%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Montemartini%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'J%20Am%20Coll%20Cardiol.');


149 

 

 Flynn SB, Gristwood RW, Owen DA. Differentiation of the roles of histamine H1- 

and H2-receptors in the mediation of the effects of histamine in the isolated working 

heart of the guinea-pig. Br J Pharmacol. 1979; 65(1):127-37. 

 Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires 

signaling through a redox-sensitive mechanism. Circ Res. 2001; 88(8):802-9.  

 Frances C, Nazeyrollas P, Prevost A, Moreau F, Pisani J, Davani S, Kantelip JP, 

Millart H. Role of beta 1- and beta 2-adrenoceptor subtypes in preconditioning 

against myocardial dysfunction after ischemia and reperfusion. J Cardiovasc 

Pharmacol. 2003; 41(3):396-405.  

 Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union 

of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. 

Pharmacol Rev. 2001; 53(4):527-52.  

 Fryer RM, Auchampach JA, Gross GJ. Therapeutic receptor targets of ischemic 

preconditioning. Cardiovasc Res. 2002; 55(3):520-5.  

 Fryer RM, Pratt PF, Hsu AK, Gross GJ. Differential activation of extracellular signal 

regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J 

Pharmacol Exp Ther. 2001; 296(2):642-9. 

 Fukasawa M, Nishida H, Sato T, Miyazaki M, Nakaya H. 6-[4-(1-Cyclohexyl-1H-

tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (cilostazol), a PDE type 3 

inhibitor, reduces infarct size via activation of mitochondrial Ca2+-activated K+ 

channels in rabbit hearts. J Pharmacol Exp Ther. 2008; 326(1):100-4. 

 Gao H, Chen L, Yang HT. Activation of alpha1B-adrenoceptors alleviates 

ischemia/reperfusion injury by limitation of mitochondrial Ca2+ overload in 

cardiomyocytes. Cardiovasc Res. 2007. 75(3):584-95. 

 Gao Q, Yang B, Ye ZG, Wang J, Bruce IC, Xia Q. Opening the calcium-activated 

potassium channel participates in the cardioprotective effect of puerarin.  Eur J 

Pharmacol. 2007; 574(2-3):179-84. 

 Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q. The mitochondrial permeability 

transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection 

conferred by tumor necrosis factor-alpha. Cytokine. 2005; 32(5):199-205.  

 Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective 

signaling to mitochondria. J Mol Cell Cardiol. 2009; 46(6):858-66.  

 Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, 

Lodge NJ, Smith MA, Grover GJ. Cardioprotective effect of diazoxide and its 

interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of 

cardioprotection. Circ Res. 1997; 81(6):1072-82. 

 Gáspár T, Katakam P, Snipes JA, Kis B, Domoki F, Bari F, Busija DW. Delayed 

neuronal preconditioning by NS1619 is independent of calcium activated potassium 

channels. J Neurochem. 2008; 105(4):1115-28. 

http://www.ncbi.nlm.nih.gov/pubmed/11325872?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/12605018?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/12605018?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11734617?ordinalpos=58&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Fryer%20RM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Auchampach%20JA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Gross%20GJ%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Cardiovasc%20Res.');
http://www.ncbi.nlm.nih.gov/pubmed/17692311?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/16260145?ordinalpos=37&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19118560?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19118560?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum


150 

 

 Gerber BL, Wijns W, Vanoverschelde JL, Heyndrickx GR, De Bruyne B, Bartunek 

J, Melin JA. Myocardial perfusion and oxygen consumption in reperfused 

noninfarcted dysfunctional myocardium after unstable angina: direct evidence for 

myocardial stunning in humans. J Am Coll Cardiol. 1999; 34(7):1939-46. 

 Germack R, Dickenson JM. Adenosine triggers preconditioning through 

MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat 

cardiomyocytes.  J Mol Cell Cardiol. 2005; 39(3):429-42.  

 Germack R, Dickenson, JM. Characterisation of ERK1/2 signaling pathways 

induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J 

Pharmacol. 2004; 141:329-39. 

 Germack R, Griffin M, Dickenson JM. Activation of protein kinase B by adenosine 

A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol. 2004; 

37(5):989-99. 

 Gessi S, Merighi S, Varani K, Leung E, Lennan S, Borea P. The A3 adenosine 

receptor: An enigmatic player in cell biology. Pharm & Thera. 2008; 117(1):123-40. 

 Gonzalez E, McGraw TE. Insulin-modulated Akt subcellular localization determines 

Akt isoform-specific signaling. Proc Natl Acad Sci U S A. 2009; 106(17):7004-9. 

 Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of 

early apoptotic events by Akt/PKB is dependent on the first committed step of 

glycolysis and mitochondrial hexokinase. Genes Dev. 2001; 15(11):1406-18. 

 Griffiths EJ, Halestrap AP. Protection by Cyclosporin A of ischemia/reperfusion-

induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993; 25(12):1461-9. 

 Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during 

cardiac ischaemia, but open upon reperfusion. Biochem J. 1995; 307 (1):93-8. 

 Gross GJ, Auchampach JA. Reperfusion injury: does it exist? J Mol Cell Cardiol. 

2007; 42(1):12-8. 

 Gross ER, Gross GJ. Ligand triggers of classical preconditioning and 

postconditioning. Cardiovasc Res. 2006; 70(2):212-21. 

 Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am 

J Physiol Heart Circ Physiol. 2003; 285(3):H921-30. 

 Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G. Levosimendan induces NO 

production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: 

role for mitochondrial K(ATP) channel. Br J Pharmacol. 2009; 156(2):250-61. 

 Gu C, Ma YC, Benjamin J, Littman D, Chao MV, Huang XY.  Apoptotic signaling 

through the beta -adrenergic receptor. A new Gs effector pathway.  J Biol Chem. 

2000; 275(27):20726-33.  

 Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am 

J Physiol. 1990; 258(5 Pt 1):C755-86. 

http://www.ncbi.nlm.nih.gov/pubmed/16005018?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBG-4PR3G5H-2&_user=2471587&_coverDate=01%2F31%2F2008&_alid=943844732&_rdoc=5&_fmt=high&_orig=search&_cdi=5142&_st=13&_docanchor=&_ct=40&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=318e2671036efba9c14a5942d1e24e84
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TBG-4PR3G5H-2&_user=2471587&_coverDate=01%2F31%2F2008&_alid=943844732&_rdoc=5&_fmt=high&_orig=search&_cdi=5142&_st=13&_docanchor=&_ct=40&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=318e2671036efba9c14a5942d1e24e84
http://www.ncbi.nlm.nih.gov/pubmed/10767282?ordinalpos=41&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


151 

 

 Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R. Demonstration of an early and a 

late phase of ischemic preconditioning in mice. Am J Physiol. 1998; 275(4 Pt 

2):H1375-87. 

 Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell 

Cardiol. 2009; 46(6):821-31. 

 Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and 

membrane potential modulate the mitochondrial permeability transition by affecting 

nucleotide binding to the adenine nucleotide translocase. J Biol Chem. 1997; 

272(6):3346-54. 

 Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 

1995; 91(6):1872-85. 

 Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial 

permeability transition pore opening: a new paradigm for myocardial 

preconditioning? Cardiovasc Res. 2002; 55(3):534-43. 

 Hausenloy DJ, Mocanu MM, Yellon DM. Cross-talk between the survival kinases 

during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc 

Res. 2004; 63(2):305-12. 

 Hausenloy DJ, Tsang A and Yellon DM. The reperfusion injury salvage kinase 

pathway: a common target for both ischemic preconditioning and postconditioning, 

Trends Cardiovasc Med. 2005; 15(2):69–75. 

 Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning 

protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ 

Physiol. 2005a; 288(2):H971-6. 

 Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochondrial permeability 

transition pore opening mediates preconditioning-induced protection. Circulation. 

2004; 109(14):1714-7. 

 Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and 

postconditioning. Cardiovasc Res. 2006; 70(2):240-53. 

 Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a 

RISK for cardioprotection. Heart Fail Rev. 2007; 12(3-4):217-34. 

 Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: united at 

reperfusion. Pharmacol Ther. 2007a; 116(2):173-91. 

 Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying 

mechanisms and clinical application. Atherosclerosis 2009; 204(2):334-41. 

 Hein TW, Wang W, Zoghi B, Muthuchamy M, Kuo L. Functional and molecular 

characterization of receptor subtypes mediating coronary microvascular dilation to 

adenosine. J Mol Cell Cardiol. 2001; 33(2):271-82.  

 Headrick J.P. Ischemic preconditioning: bioenergetic and metabolic changes and the 

role of endogenous adenosine. J Mol Cell Cardiol. 1996; 28:1227–1240. 

http://www.ncbi.nlm.nih.gov/pubmed/15066952?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19081095?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19081095?ordinalpos=11&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum


152 

 

 Hendriks-Balk MC, Peters SL, Michel MC, Alewijnse AE. Regulation of G protein-

coupled receptor signalling: focus on the cardiovascular system and regulator of G 

protein signalling proteins. Eur J Pharmacol. 2008; 585(2-3):278-91. 

 Henry P, Demolombe S, Pucéat M, Escande D. Adenosine A1 stimulation activates 

delta-protein kinase C in rat ventricular myocytes.  Circ Res. 1996; 78(1):161-5.  

 Herrera R, Sebolt-Leopold JS. Unraveling the complexities of the Raf/MAP kinase 

pathway for pharmacological intervention. Trends Mol Med. 2002; 8(4):S27-31. 

 Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G. 

Morphological, biochemical, and electrophysiological characterization of a clonal 

cell (H9c2) line from rat heart.  Circ Res. 1991; 69(6):1476-86.  

 Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, 

adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic 

preconditioning. Proc Natl Acad Sci USA.1995; 92(10):4666-70.  

 Hochhauser E, Leshem D, Kaminski O, Cheporko Y, Vidne BA, Shainberg A. The 

protective effect of prior ischemia reperfusion adenosine A1 or A3 receptor 

activation in the normal and hypertrophied heart. Interact Cardiovasc Thorac Surg. 

2007; 6(3):363-8. 

 Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent 

Ca2+ overload in rat cardiac mitochondria. J Physiol. 1999; 519 Pt 2:347-60. 

 Hommers LG, Lohse MJ, Bünemann M. Regulation of the inward rectifying 

properties of G-protein-activated inwardly rectifying K+ (GIRK) channels by Gbeta 

gamma subunits. J Biol Chem. 2003; 278(2):1037-43.  

 Hove-Madsen L, Prat-Vidal C, Llach A, Ciruela F, Casadó V, Lluis C, Bayes-Genis 

A, Cinca J, Franco R. Adenosine A2A receptors are expressed in human atrial 

myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. 
Cardiovasc Res. 2006 ; 72(2):292-302. 

 Huh J, Gross GJ, Nagase H, Liang BT. Protection of cardiac myocytes via delta(1)-

opioid receptors, protein kinase C, and mitochondrial K(ATP) channels. Am J 

Physiol Heart Circ Physiol. 2001; 280(1):H377-83.  

 Ianoul A, Grant DD, Rouleau Y, Bani-Yaghoub M, Johnston LJ, Pezacki JP. 

Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of 

cardiac myocytes.  Nat Chem Biol. 2005; 1(4):196-202. 

 Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, Bouley DM, et al. Inhibition of 

deltaprotein kinase C protects against reperfusion injury of the ischemic heart in 

vivo. Circulation. 2003; 108:2304–7. 

 Jacobson KA, Xie R, Young L, Chang L, Liang BT. A novel pharmacological 

approach to treating cardiac ischemia. Binary conjugates of A1 and A3 adenosine 

receptor agonists.  J Biol Chem. 2000; 275(39):30272-9.  

 Jelsema CL, Axelrod J. Stimulation of phospholipase A2 activity in bovine rod outer 

segments by the βγ subunits of transducin and its inhibition by the alpha subunit. 

http://www.ncbi.nlm.nih.gov/pubmed/8603500?ordinalpos=63&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/1683272?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/7753861?ordinalpos=8&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11123254?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/16408035?ordinalpos=14&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10887176?ordinalpos=25&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


153 

 

Proc Natl Acad Sci USA. 1987; 84:3623-3627. 

 Jensen BS. BMS-204352: a potassium channel opener developed for the treatment of 

stroke.   CNS Drug Rev. 2002; 8(4):353-60. 

 Jiang Z, Wallner M, Meera P, Toro L. Human and rodent MaxiK channel beta-

subunit genes: cloning and characterization. Genomics. 1999; 55(1):57-67. 

 Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial 

ischemia-reperfusion injury. Cardiovasc Res. 1999 Sep; 43(4):860-78. 

 Joseph T, Coirault C, Lecarpentier Y. Species-dependent changes in mechano-

energetics of isolated cardiac muscle during hypoxia. Basic Res Cardiol. 2000; 

95(5):378-84. 

 Kang SH, Park WS, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Han J. 

Mitochondrial Ca2+-activated K+ channels more efficiently reduce mitochondrial 

Ca2+ overload in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2007; 

293(1):H307-13. 

 Kakinuma Y, Ando M, Kuwabara M, Katare RG, Okudela K, Kobayashi M, Sato T. 
Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and 

hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Lett. 2005; 

579(10):2111-8. 

 Keith D. Garlid, Alexandre D.T. Costa, Casey L. Quinlan, Sandrine V. Pierre, Pierre 

Dos Santos. Cardioprotective signalling to mitochondria. J Mol Cell Cardiol. 2009; 

46(6):858-66. 

 Kilpatrick EL, Narayan P, Mentzer RM Jr, Lasley RD. Adenosine A3 agonist 

cardioprotection in isolated rat and rabbit hearts is blocked by the A1 antagonist 

DPCPX.  Am J Physiol Heart Circ Physiol. 2001; 281(2):H847-53.  

 Kilpatrick EL, Narayan P, Mentzer RM Jr, Lasley RD. Cardiac myocyte adenosine 

A2a receptor activation fails to alter cAMP or contractility: role of receptor 

localization. Am J Physiol Heart Circ Physiol. 2002; 282(3):H1035-40. 

 Kim MY, Kim MJ, Yoon IS, Ahn JH, Lee SH, Baik EJ, Moon CH, Jung YS. 

Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the 

mitochondrial K(ATP) channel conferring cardioprotection against hypoxic injury.  

Br J Pharmacol. 2006; 149(8):1059-70.  

 Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, 

Vatner SF. Persistent stunning induces myocardial hibernation and protection: 

flow/function and metabolic mechanisms. Circ Res. 2003; 92(11):1233-9. 

 Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp 

Cell Res. 1976; 98(2):367-81. 

 Ko JH, Ibrahim MA, Park WS, Ko EA, Kim N, Warda M, Lim I, Bang H, Han J. 

Cloning of large-conductance Ca(2+)-activated K(+) channel alpha-subunits in 

mouse cardiomyocytes. Biochem Biophys Res Commun. 2009; 389(1):74-9. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK6-4V47CN7-1&_user=2471587&_coverDate=06%2F30%2F2009&_alid=943844732&_rdoc=7&_fmt=high&_orig=search&_cdi=6898&_st=13&_docanchor=&_ct=40&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=1b1c2c78cc7b743d34918ad6b8ffa94d
http://www.ncbi.nlm.nih.gov/pubmed/11454590?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/17043673?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


154 

 

 Kobayashi S, Millhorn DE. Stimulation of expression for the adenosine A2A 

receptor gene by hypoxia in PC12 cells. A potential role in cell protection. J Biol 

Chem. 1999; 274(29):20358-65. 

 Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, 

Wallace DC. The ADP/ATP translocator is not essential for the mitochondrial 

permeability transition pore. Nature. 2004; 427(6973):461-5. 

 Korge P, Ping P, Weiss JN. Reactive oxygen species production in energized cardiac 

mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res. 

2008; 103(8):873-80. 

 Korovkina VP, England SK. Detection and implications of potassium channel 

alterations. Vascul Pharmacol. 2002; 38(1):3-12. 

 Krolikowski JG, Bienengraeber M, Weihrauch D, Warltier DC, Kersten JR, Pagel 

PS. Inhibition of mitochondrial permeability transition enhances isoflurane-induced 

cardioprotection during early reperfusion: the role of mitochondrial KATP channels. 

Anesth Analg. 2005; 101(6):1590-6.  

 Kühn B, Schmid A, Harteneck C, Gudermann T, Schultz G. G proteins of the Gq 

family couple the H2 histamine receptor to phospholipase C. Mol Endocrinol. 1996; 

10(12):1697-707. 

 Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, 

Cohen MV, Downey JM. Protein kinase C protects preconditioned rabbit hearts by 

increasing sensitivity of adenosine A2b-dependent signaling during early 

reperfusion. J Mol Cell Cardiol. 2007; 43(3):262-71. 

 Laurikka J, Wu ZK, Iisalo P, Kaukinen L, Honkonen EL, Kaukinen S, Tarkka MR. 

Regional ischemic preconditioning enhances myocardial performance in off-pump 

coronary artery bypass grafting. Chest. 2002; 121(4):1183-9. 

 Lecour S. Multiple protective pathways against reperfusion injury: a SAFE path 

without Aktion? J Mol Cell Cardiol. 2009, 46(5):607-9. Review.  

 Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism 

of the mitochondrial permeability transition pore. Biochim Biophys Acta. 2008; 

1777(7-8):946-52. 

 Leung AW, Varanyuwatana P, Halestrap AP. The mitochondrial phosphate carrier 

interacts with cyclophilin D and may play a key role in the permeability transition. J 

Biol Chem. 2008; 283(39):26312-23. 

 Liu GS, Cohen MV, Mochly-Rosen D, Downey JM. Protein kinase C-epsilon is 

responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol 

Cell Cardiol. 1999; 31(10):1937-48. 

 Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. 

Protection against infarction afforded by preconditioning is mediated by A1 

adenosine receptors in rabbit heart. Circulation. 1991; 84(1):350-6. 

 Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA. Ischemic 

http://www.ncbi.nlm.nih.gov/pubmed/16301224?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/16301224?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19318238?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19318238?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10468527?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


155 

 

preconditioning and the beta-adrenergic signal transduction pathway.  Circulation. 

1999; 100(9):958-66.  

 Lohse MJ. Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol. 

2009. [Epub ahead of print] 

 Lorente P, Lacampagne A, Pouzeratte Y, Richards S, Malitschek B, Kuhn R, Bettler 

B, Vassort G. γ-aminobutyric acid type B receptors are expressed and functional in 

mammalian cardiomyocytes. PNAS. 2000; 97(15): 8664-9. 

 Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Protein kinase C 

translocation and Src protein tyrosine kinase activation mediate isoflurane-induced 

preconditioning in vivo: potential downstream targets of mitochondrial adenosine 

triphosphate-sensitive potassium channels and reactive oxygen species. 
Anesthesiology. 2004; 100(3):532-9. 

 Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, 

Eisenberg PR, Bolli R, Casas AC, Molina-Viamonte V, Orlandi C, Blevins R, 

Gibbons RJ, Califf RM, Granger CB. Adenosine as an adjunct to thrombolytic 

therapy for acute myocardial infarction: results of a multicenter, randomized, 

placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine 

(AMISTAD) trial. J Am Coll Cardiol. 1999; 34(6):1711-20. 

 Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J 

Pathol. 1995; 146(1):3-15. 

 Makaula S, Lochner A, Genade S, Sack MN, Awan MM, Opie LH. H-89, a non-

specific inhibitor of protein kinase A, promotes post-ischemic cardiac contractile 

recovery and reduces infarct size. J Cardiovasc Pharmacol. 2005; 45(4):341-7. 

 Malhotra R, Lin Z, Vincenz C, Brosius FC III. Hypoxia induces apoptosis via two 

independent pathways in Jurkat cells: differential regulation by glucose. Am J 

Physiol Cell Physiol. 2001; 281(5):C1596-603. 

 Melamed-Frank M, Terzic A, Carrasco AJ, Nevo E, Avivi A, Levy AP. Reciprocal 

regulation of expression of pore-forming KATP channel genes by hypoxia. Mol Cell 

Biochem. 2001; 225(1-):145-50. 

 Mironova GD, Negoda AE, Marinov BS, Paucek P, Costa AD, Grigoriev SM, 

Skarga YY, Garlid KD. Functional distinctions between the mitochondrial ATP-

dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J 

Biol Chem. 2004; 279(31):32562-8.  

 Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in 

cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death 

Differ. 2008; 15(3):521-9. 

 Mockford KA, Girn HR, Homer-Vanniasinkam S. Postconditioning: current 

controversies and clinical implications. Eur J Vasc Endovasc Surg. 2009; 37(4):437-

42.  

http://www.ncbi.nlm.nih.gov/pubmed/10900022?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10900022?ordinalpos=12&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15138282?ordinalpos=13&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15138282?ordinalpos=13&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mockford%20KA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Girn%20HR%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Homer-Vanniasinkam%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Eur%20J%20Vasc%20Endovasc%20Surg.');


156 

 

 de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA. Caspase 

activation and mitochondrial cytochrome C release during hypoxia-mediated 

apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000; 32(1):53-63. 

 Mubagwa K, Flameng W. Adenosine, adenosine receptors and myocardial 

protection: an updated overview. Cardiovasc Res. 2001; 52(1):25-39. 

 Murata M, Akao M, O'Rourke B, Marbán E. Mitochondrial ATP-sensitive potassium 

channels attenuate matrix Ca(2+) overload during simulated ischemia and 

reperfusion: possible mechanism of cardioprotection. Circ Res. 2001; 89(10):891-8.  

 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of 

lethal cell injury in ischemic myocardium. Circulation.1986; 74(5):1124-36.  

 Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: role 

in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp 

Pharmacol. 2009; (193):161-88. 

 Nagarkatti DS, Sha'afi RI. Role of p38 MAP kinase in myocardial stress. J Mol Cell 

Cardiol. 1998; 30(8):1651-64. 

 Naitoh K, Ichikawa Y, Miura T, Nakamura Y, Miki T, Ikeda Y, Kobayashi H, 

Nishihara M, Ohori K, Shimamoto K.  MitoKATP channel activation suppresses gap 

junction permeability in the ischemic myocardium by an ERK dependent 

mechanism. Cardiovasc. Res. 2006; 70:374–383. 

 Nishida H, Sato T, Miyazaki M, Nakaya H. Infarct size limitation by 

adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa 

channels. Cardiovasc Res. 2008; 77(2):398-405. 

 Nishida H, Sato T, Ogura T, Nakaya H. New aspects for the treatment of cardiac 

diseases based on the diversity of functional controls on cardiac muscles: 

mitochondrial ion channels and cardioprotection. J Pharmacol Sci. 2009; 

109(3):341-7. 

 Ohya S, Kuwata Y, Sakamoto K, Muraki K, Imaizumi Y. Cardioprotective effects of 

estradiol include the activation of large-conductance Ca(2+)-activated K(+) channels 

in cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005; 289(4):H1635-42. 

 Okada T, Otani H, Wu Y, Uchiyama T, Kyoi S, Hattori R, Sumida T, Fujiwara H, 

Imamura H. Integrated pharmacological preconditioning and memory of 

cardioprotection: role of protein kinase C and phosphatidylinositol 3-kinase. Am J 

Physiol Heart Circ Physiol. 2005; 289(2):H761-7. 

 Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R. 

Reduction of reperfusion injury in the canine preparation by intracoronary 

adenosine: importance of the endothelium and the no-reflow phenomenon. 

Circulation. 1987; 76(5):1135-45. 

 O'Rourke B. Evidence for mitochondrial K+ channels and their role in 

cardioprotection. Circ Res. 2004; 94(4):420-32.  

 Otani H, Matsuhisa S, Akita Y, Kyoi S, Enoki C, Tatsumi K, Fujiwara H, Hattori R, 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mubagwa%20K%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVCitation
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Flameng%20W%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVCitation
javascript:AL_get(this,%20'jour',%20'Cardiovasc%20Res.');
http://www.ncbi.nlm.nih.gov/pubmed/11701616?ordinalpos=7&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/3769170?ordinalpos=19&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15001541?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


157 

 

Imamura H, Iwasaka T. Role of mechanical stress in the form of cardiomyocyte 

death during the early phase of reperfusion. Circ J. 2006; 70(10):1344-55. 

 Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong 

I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of 

rhodopsin: A G protein-coupled receptor. Science. 2000; 289(5480):739-45. 

 Pan HL, Chen SR, Scicli GM, Carretero OA. Cardiac interstitial bradykinin release 

during ischemia is enhanced by ischemic preconditioning. Am J Physiol Heart Circ 

Physiol. 2000; 279(1):H116-21. 

 Peart J, Gross G. Adenosine and opioid receptor-mediated cardioprotection in the 

rat: evidence for cross-talk between receptors.  Am J Physiol Heart Circ Physiol. 

2003; 285(1):H81-9. 

 Peart J, Willems L, Headrick JP. Receptor and non-receptor-dependent mechanisms 

of cardioprotection with adenosine.  Am J Physiol Heart Circ Physiol. 2003; 

284(2):H519-27.  

 Peart JN, Headrick JP. Adenosinergic cardioprotection: multiple receptors, multiple 

pathways. Pharmacol Ther. 2007; 114(2):208-21. 

 Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, 

Mancardi D, Pagliaro P. Postconditioning induces an anti-apoptotic effect and 

preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta. 2009; 

1787(7):794-801. 

 Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning 

protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. 
Cardiovasc Res. 2006; 70(2):308-14. 

 Phillips AB, Ko W. Effects of ischemic preconditioning and adenosine pretreatment 

on myocardial function and energetics in a clinically relevant model. Life Sci. 2007; 

81(17-18):1355-61. 

 Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning 

protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. 
Cardiovasc Res. 2006; 70(2):308-14. 

 Pinheiro BB, Fiorelli AI, Gomes OM. Effects of ischemic postconditioning on left 

ventricular function of isolated rat hearts. Rev Bras Cir Cardiovasc. 2009; 24(1):31-

7. 

 Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary 

target of reperfusion protection. Cardiovasc Res. 2006; 70(2):170-3. 

 Piwonska M, Wilczek E, Szewczyk A, Wilczynski GM. Differential distribution of 

Ca2+-activated potassium channel beta4 subunit in rat brain: immunolocalization in 

neuronal mitochondria. Neuroscience. 2008; 153(2):446-60. 

 Po Yee Chiu, Ka Fai Luk, Hoi Yan Leung, Ka Ming Ng, Kam Ming Ko. Schisandrin 

B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and inhibit 

associated changes in Ca
2+

-induced mitochondrial permeability transition and 

http://www.ncbi.nlm.nih.gov/pubmed/12637353?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/12388277?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T99-4S5KXF9-1&_user=2471587&_coverDate=05%2F23%2F2008&_alid=943853705&_rdoc=2&_fmt=high&_orig=search&_cdi=5109&_st=13&_docanchor=&_ct=90&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=6c85b3213cdd778a28fc445242c9d9b8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T99-4S5KXF9-1&_user=2471587&_coverDate=05%2F23%2F2008&_alid=943853705&_rdoc=2&_fmt=high&_orig=search&_cdi=5109&_st=13&_docanchor=&_ct=90&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=6c85b3213cdd778a28fc445242c9d9b8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T99-4S5KXF9-1&_user=2471587&_coverDate=05%2F23%2F2008&_alid=943853705&_rdoc=2&_fmt=high&_orig=search&_cdi=5109&_st=13&_docanchor=&_ct=90&_acct=C000057461&_version=1&_urlVersion=0&_userid=2471587&md5=6c85b3213cdd778a28fc445242c9d9b8


158 

 

mitochondrial membrane potential in H9c2 cardiomyocytes. Life Sciences 2008; 

82(21-22):1092-1101. 

 Poulsen AN, Wulf H, Hay-Schmidt A, Jansen-Olesen I, Olesen J, Klaerke DA. 

Differential expression of BK channel isoforms and beta-subunits in rat neuro-

vascular tissues. Biochim Biophys Acta. 2009; 1788(2):380-9. 

 Qin Q, Downey JM, Cohen MV. Acetylcholine but not adenosine triggers 

preconditioning through PI3-kinase and a tyrosine kinase. Am J Physiol Heart Circ 

Physiol. 2003; 284(2):H727-34. 

 Redel A, Lange M, Jazbutyte V, Lotz C, Smul TM, Roewer N, Kehl F. Activation of 

mitochondrial large-conductance calcium-activated K+ channels via protein kinase 

A mediates desflurane-induced preconditioning. Anesth Analg. 2008; 106(2):384-91. 

 Regan SE, Broad M, Byford AM, Lankford AR, Cerniway RJ, Mayo MW, Matherne 

GP. A1 adenosine receptor overexpression attenuates ischemia-reperfusion-induced 

apoptosis and caspase 3 activity. Am J Physiol Heart Circ Physiol. 2003; 

284(3):H859-66. 

 Robinson SW, Caron MG. Selective inhibition of adenylyl cyclase type V by the 

dopamine D3 receptor.  Mol Pharmacol. 1997; 52(3):508-14. 

 Rodriguez-Enriquez S, He L, Lemasters JJ. Role of mitochondrial permeability 

transition pores in mitochondrial autophagy. Int J Biochem Cell Biol. 2004; 

36(12):2463-72.  

 Romano MA, Seymour EM, Berry JA, McNish RA, Bolling SF. Relative 

contribution of endogenous opioids to myocardial ischemic tolerance. J Surg Res. 

2004; 118(1):32-7. 

 Rong F, Peng Z, Ye MX, Zhang QY, Zhao Y, Zhang SM, Guo HT, Hui B, Wang 

YM, Liang C, Gu CH, Tao C, Cui Q, Yu SQ, Yi DH, Pei JM. Myocardial apoptosis 

and infarction after ischemia/reperfusion are attenuated by kappa-opioid receptor 

agonist. Arch Med Res. 2009; 40(4):227-34. 

 Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW; AMISTAD-II 

Investigators. A randomized, double-blinded, placebo-controlled multicenter trial of 

adenosine as an adjunct to reperfusion in the treatment of acute myocardial 

infarction (AMISTAD-II). J Am Coll Cardiol. 2005; 45(11):1775-80. 

 Saotome M, Katoh H, Yaguchi Y, Tanaka T, Urushida T, Satoh H, Hayashi H. 
Transient opening of mitochondrial permeability transition pore by reactive oxygen 

species protects myocardium from ischemia-reperfusion injury. Am J Physiol Heart 

Circ Physiol. 2009; 296(4):H1125-32. 

 Safran N, Shneyvays V, Balas N, Jacobson KA, Nawrath H, Shainberg A. 

Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia 

in isolated rat cardiac myocytes.  Mol Cell Biochem. 2001; 217(1-2):143-52.  

 Sanada S, Asanuma H, Tsukamoto O, Minamino T, Node K, Takashima S, 

Fukushima T, Ogai A, Shinozaki Y, Fujita M, Hirata A, Okuda H, Shimokawa H, 

Tomoike H, Hori M, Kitakaze M. Protein kinase A as another mediator of ischemic 

http://www.ncbi.nlm.nih.gov/pubmed/9281614?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15325585?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11269659?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


159 

 

preconditioning independent of protein kinase C. Circulation. 2004; 110(1):51-7. 

 Sanada S, Kitakaze M. Ischemic preconditioning: emerging evidence, controversy, 

and translational trials. Int J Cardiol. 2004; 97(2):263-76. 

 Sato T, Saito T, Saegusa N, Nakaya H. Mitochondrial Ca2+-activated K+ channels 

in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by 

protein kinase A. Circulation 2005; 111(2):198-203.  

 Schaper J, Kostin S. Cell death and adenosine triphosphate: the paradox. Circulation. 

2005; 112(1):6-8. 

 Schömig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. 
Circulation. 1990; 82(3 Suppl):II13-22. 

 Schott RJ, Rohmann S, Braun ER, Schaper W. Ischemic preconditioning reduces 

infarct size in swine myocardium. Circ Res. 1990; 66(4):1133-42. 

 Schreiber KL, Paquet L, Allen BG, Rindt H. Protein kinase C isoform expression 

and activity in the mouse heart. Am J Physiol Heart Circ Physiol. 2001; 

281(5):H2062-71. 

 Schröter A, Andrabi SA, Wolf G, Horn TF. Nitric oxide applications prior and 

simultaneous to potentially excitotoxic NMDA-evoked calcium transients: cell death 

or survival. Brain Res. 2005; 1060(1-2):1-15. 

 Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated 

protein kinases. Cell Signal. 2003; 15(9):813-27. 

 Schultz JJ, Hsu AK, Gross GJ. Ischemic preconditioning and morphine-induced 

cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol 

Cell Cardiol. 1997; 29(8):2187-95.  

 Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates 

Akt and ERK without protecting against lethal myocardial ischemia-reperfusion 

injury in pigs. Am J Physiol Heart Circ Physiol. 2006; 290(3):H1011-8. 

 Sharma VK, Colecraft HM, Rubin LE, Sheu SS. Does mammalian heart contain 

only the M2 muscarinic receptor subtype? Life Sci. 1997;60(13-14):1023-9. 

 Shintani Y, Node K, Asanuma H, Sanada S, Takashima S, Asano Y, Liao Y, Fujita 

M, Hirata A, Shinozaki Y, Fukushima T, Nagamachi Y, Okuda H, Kim J, Tomoike 

H, Hori M, Kitakaze M. Opening of Ca2+-activated K+ channels is involved in 

ischemic preconditioning in canine hearts. J Mol Cell Cardiol. 2004; 37(6):1213-8.  

 Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F. Ca2+-activated K channel 

of the BK-type in the inner mitochondrial membrane of a human glioma cell line. 

Biochem Biophys Res Commun. 1999; 257(2):549-54. 

 Simonis G, Briem SK, Schoen SP, Bock M, Marquetant R, Strasser RH. Protein 

kinase C in the human heart: differential regulation of the isoforms in aortic stenosis 

or dilated cardiomyopathy. Mol Cell Biochem. 2007; 305:103–111. 

http://www.ncbi.nlm.nih.gov/pubmed/15623543?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/2317890?ordinalpos=9&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/9281450?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15572051?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15572051?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/15572051?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10198249?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


160 

 

 Sivaraman V, Hausenloy DJ, Kolvekar S, Hayward M, Yap J, Lawrence D, Di Salvo 

C, Yellon DM. The divergent roles of protein kinase C epsilon and delta in simulated 

ischaemia/reperfusion injury in human myocardium. J Mol Cell Cardiol. 2009; 

46(5):758-64. 

 Solenkova NV, Solodushko V, Cohen MV, Downey JM. Endogenous adenosine 

protects preconditioned heart during early minutes of reperfusion by activating Akt. 
Am J Physiol Heart Circ Physiol. 2006; 290(1):H441-9. 

 Spear JF, Prabu SK, Galati D, Raza H, Anandatheerthavarada HK, Avadhani NG. 

Beta1-Adrenoreceptor activation contributes to ischemia-reperfusion damage as well 

as playing a role in ischemic preconditioning.  Am J Physiol Heart Circ Physiol. 

2007; 292(5):H2459-66. 

 Spencer JP, Rice-Evans C, Williams RJ. Modulation of pro-survival Akt/protein 

kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites 

underlie their action on neuronal viability. J Biol Chem. 2003; 278(37):34783-93. 

 Stein AB, Bolli R, Guo Y, Wang OL, Tan W, Wu WJ, Zhu X, Zhu Y, Xuan YT. The 

late phase of ischemic preconditioning induces a prosurvival genetic program that 

results in marked attenuation of apoptosis. J Mol Cell Cardiol. 2007; 42(6):1075-85. 

 Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, 

Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen 

messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res. 1994; 75(3):426-

33. 

 Tatsumi T, Shiraishi J, Keira N, Akashi K, Mano A, Yamanaka S, Matoba S, Fushiki 

S, Fliss H, Nakagawa M. Intracellular ATP is required for mitochondrial apoptotic 

pathways in isolated hypoxic rat cardiac myocytes. Cardiovasc Res. 2003; 

59(2):428-40. 

 Thornton JD, Liu GS, Olsson RA, Downey JM. Intravenous pretreatment with A1-

selective adenosine analogues protects the heart against infarction. Circulation. 

1992; 85(2):659-65. 

 Tong H, Bernstein D, Murphy E, Steenbergen C. The role of beta-adrenergic 

receptor signaling in cardioprotection. FASEB J. 2005; 19(8):983-5. 

 Trump BF, Berezesky IK. The role of altered [Ca
2+

]i regulation in apoptosis, oncosis, 

and necrosis. Biochim Biophys Acta. 1996; 1313(3):173-8. 

 Uchiyama Y, Otani H, Wakeno M, Okada T, Uchiyama T, Sumida T, Kido M, 

Imamura H, Nakao S, Shingu K. Role of mitochondrial KATP channels and protein 

kinase C in ischaemic preconditioning. Clin Exp Pharmacol Physiol. 2003; 30(5-

6):426-36. 

 Urmaliya VB, Church JE, Coupar IM, Rose'Meyer RB, Pouton CW, White PJ 

Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell 

ischemia model involves cooperative activation of adenosine A2A and A2B 

receptors by endogenous adenosine. J Cardiovasc Pharmacol. 2009; 53(5):424-33. 

 Vaidehi N, Pease JE, Horuk R. Modeling small molecule-compound binding to G-

http://www.ncbi.nlm.nih.gov/pubmed/17237252?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tong%20H%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bernstein%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Murphy%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Steenbergen%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'FASEB%20J.');


161 

 

protein-coupled receptors. Methods Enzymol. 2009; 460:263-88. 

 Valtchanova-Matchouganska A, Ojewole JA. Mechanisms of opioid delta and kappa 

receptors' cardioprotection in ischaemic preconditioning in a rat model of 

myocardial infarction.  Cardiovasc J S Afr. 2003; 14(2):73-80.  

 Van Winkle DM, Chien GL, Wolff RA, Soifer BE, Kuzume K, Davis RF. 
Cardioprotection provided by adenosine receptor activation is abolished by blockade 

of the KATP channel. Am J Physiol. 1994; 266(2 Pt 2):H829-39. 

 Varela A, Testoni G, Dalamon V, Kade P, Carregal M, Savino EA. Lack of 

protective effects of adenosine on the hypoxic and reoxygenated atria and ventricular 

strips of the rat. J Physiol Biochem. 1999; 55(1):17-23. 

 Vassallo DV, Lebarch EC, Moreira CM, Wiggers GA, Stefanon I. Lead reduces 

tension development and the myosin ATPase activity of the rat right ventricular 

myocardium. Braz J Med Biol Res. 2008; 41(9):789-95. 

 Velasco CE, Turner M, Cobb MA, Virmani R, Forman MB. Myocardial reperfusion 

injury in the canine model after 40 minutes of ischemia: effect of intracoronary 

adenosine. Am Heart J. 1991; 122(6):1561-70. 

 Ventura C, Bastagli L, Bernardi P, Caldarera CM, Guarnieri C. Opioid receptors in 

rat cardiac sarcolemma: effect of phenylephrine and isoproterenol. Biochim Biophys 

Acta. 1989; 987(1):69-74. 

 Venugopal V, Ludman A, Yellon DM, Hausenloy DJ. 'Conditioning' the heart 

during surgery. Eur J Cardiothorac Surg. 2009; 35(6):977-87.  

 Viard P, Exner T, Maier U, Mironneau J, Nürnberg B, Macrez N. Gbetagamma 

dimers stimulate vascular L-type Ca2+ channels via phosphoinositide 3-kinase. 

FASEB J. 1999; 13(6):685-94. 

 Wang GY, Wu S, Pei JM, Yu XC, Wong TM. Kappa- but not delta-opioid receptors 

mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats.  

Am J Physiol Heart Circ Physiol. 2001; 280(1):H384-91.  

 Wang X, Fisher PW, Xi L, Kukreja RC. Essential role of mitochondrial Ca2+-

activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. 

J Mol Cell Cardiol. 2008; 44(1):105-13.  

 Wang X, Yin C, Xi L, Kukreja RC. Opening of Ca2+-activated K+ channels triggers 

early and delayed preconditioning against I/R injury independent of NOS in mice. 
Am J Physiol Heart Circ Physiol. 2004; 287(5):H2070-7. 

 Webster, KA, Discher DJ, Kaiser S, Hernandez O, Sato B, and Bishopric NH. 

Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH 

shift and is independent of p53. J Clin Invest. 1999; 104:239-252. 

 West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, Keith RJ, 

Schrader J, Guo Y, Conklin DJ, Prabhu SD, Zweier JL, Bolli R, Bhatnagar A. 

Cardiac myocyte-specific expression of inducible nitric oxide synthase protects 

against ischemia/reperfusion injury by preventing mitochondrial permeability 

http://www.ncbi.nlm.nih.gov/pubmed/12748744?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Ventura%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bastagli%20L%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bernardi%20P%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Caldarera%20CM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Guarnieri%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Biochim%20Biophys%20Acta.');
javascript:AL_get(this,%20'jour',%20'Biochim%20Biophys%20Acta.');
http://www.ncbi.nlm.nih.gov/pubmed/19324569?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19324569?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/11123255?ordinalpos=26&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/18021798?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


162 

 

transition. Circulation. 2008; 118(19):1970-8. 

 White TE, Dickenson JM, Alexander SP, Hill SJ. Adenosine A1-receptor stimulation 

of inositol phospholipid hydrolysis and calcium mobilisation in DDT1 MF-2 cells. 
Br J Pharmacol. 1992; 106(1):215-21. 

 Witherow DS, Wang Q, Levay K, Cabrera JL, Chen J, Willars GB, Slepak VZ. 
Complexes of the G protein subunit gbeta 5 with the regulators of G protein 

signaling RGS7 and RGS9. Characterization in native tissues and in transfected 

cells. J Biol Chem. 2000; 275(32):24872-80. 

 Wong TM, Lee AY, Tai KK. Effects of drugs interacting with opioid receptors 

during normal perfusion or ischemia and reperfusion in the isolated rat heart--an 

attempt to identify cardiac opioid receptor subtype(s) involved in arrhythmogenesis. 

J Mol Cell Cardiol. 1990; 22(10):1167-75. 

 Wu ZK, Iivainen T, Pehkonen E, Laurikka J, Tarkka MR. Ischemic preconditioning 

suppresses ventricular tachyarrhythmias after myocardial revascularization. 

Circulation. 2002;106(24):3091-6. 

 Xi L, Das A, Zhao ZQ, Merino VF, Bader M, Kukreja RC. Loss of myocardial 

ischemic postconditioning in adenosine A1 and bradykinin B2 receptors gene 

knockout mice. Circulation. 2008; 118(14):S32-7. 

 Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B. 

Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner 

mitochondrial membrane. Science. 2002; 298(5595):1029-33.  

 Xu Z, Downey JM, Cohen MV. Amp 579 reduces contracture and limits infarction 

in rabbit heart by activating adenosine A2 receptors. J Cardiovasc Pharmacol. 2001; 

38(3):474-81. 

 Xu H, Stein B, Liang B. Characterization of a stimulatory adenosine A2a receptor in 

adult rat ventricular myocyte. Am J Physiol. 1996; 270(5 Pt 2):H1655-61. 

 Yang XM, Krieg T, Cui L, Downey JM, Cohen MV. NECA and bradykinin at 

reperfusion reduce infarction in rabbit hearts by signalling through PI3K, ERK and 

NO. J Mol Cell Cardiol. 2004a; 36(3):411–421. 

 Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief 

coronary occlusions during early reperfusion protect rabbit hearts by targeting cell 

signaling pathways. J Am Coll Cardiol . 2004b; 44(5):1103–1110. 

 Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology 

to clinical cardiology. Physiol Rev. 2003; 83(4):1113-51. 

 Yusifov T, Savalli N, Gandhi CS, Ottolia M, Olcese R. The RCK2 domain of the 

human BKCa channel is a calcium sensor. Proc Natl Acad Sci U S A. 2008; 

105(1):376-81. 

 Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton 

RA, Zhao ZQ, Vinten-Johansen J. Infarct-sparing effect of myocardial 

postconditioning is dependent on protein kinase C signalling. Cardiovasc Res. 2006; 

http://www.ncbi.nlm.nih.gov/pubmed/12411707?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


163 

 

70(2):315-24. 

 Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-

Johansen J. Inhibition of myocardial injury by ischemic postconditioning during 

reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ 

Physiol. 2003; 285(2):H579-88. 

 Zimlichman R, Gefel D, Eliahou H, Matas Z, Rosen B, Gass S, Ela C, Eilam Y, 

Vogel Z, Barg J. Expression of opioid receptors during heart ontogeny in 

normotensive and hypertensive rats.  Circulation. 1996;  93(5):1020-5.  

 Zizzo MG, Bonomo A, Belluardo N, Mulè F, Serio R. A1 receptors mediate 

adenosine inhibitory effects in mouse ileum via activation of potassium channels. 

Life Sci. 2009; 84(21-22):772-8.  

 Zoratti M, De Marchi U, Gulbins E, Szabò I. Novel channels of the inner 

mitochondrial membrane. Biochim Biophys Acta 2009; 1787(5):351-63. 

 Zoratti M, Szabó I. Electrophysiology of the inner mitochondrial membrane. J 

Bioenerg Biomembr. 1994; 26(5):543-53. 

 Zordoky BN, El-Kadi AO. H9c2 cell line is a valuable in vitro model to study the 

drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods. 2007; 

56(3):317-22. 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/8598065?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/8598065?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zizzo%20MG%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Bonomo%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Belluardo%20N%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mul%C3%A8%20F%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Serio%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Life%20Sci.');
http://www.ncbi.nlm.nih.gov/pubmed/19111672?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/19111672?ordinalpos=4&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

